1
|
Rogers T, Campbell-Washburn AE, Ramasawmy R, Yildirim DK, Bruce CG, Grant LP, Stine AM, Kolandaivelu A, Herzka DA, Ratnayaka K, Lederman RJ. Interventional cardiovascular magnetic resonance: state-of-the-art. J Cardiovasc Magn Reson 2023; 25:48. [PMID: 37574552 PMCID: PMC10424337 DOI: 10.1186/s12968-023-00956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Transcatheter cardiovascular interventions increasingly rely on advanced imaging. X-ray fluoroscopy provides excellent visualization of catheters and devices, but poor visualization of anatomy. In contrast, magnetic resonance imaging (MRI) provides excellent visualization of anatomy and can generate real-time imaging with frame rates similar to X-ray fluoroscopy. Realization of MRI as a primary imaging modality for cardiovascular interventions has been slow, largely because existing guidewires, catheters and other devices create imaging artifacts and can heat dangerously. Nonetheless, numerous clinical centers have started interventional cardiovascular magnetic resonance (iCMR) programs for invasive hemodynamic studies or electrophysiology procedures to leverage the clear advantages of MRI tissue characterization, to quantify cardiac chamber function and flow, and to avoid ionizing radiation exposure. Clinical implementation of more complex cardiovascular interventions has been challenging because catheters and other tools require re-engineering for safety and conspicuity in the iCMR environment. However, recent innovations in scanner and interventional device technology, in particular availability of high performance low-field MRI scanners could be the inflection point, enabling a new generation of iCMR procedures. In this review we review these technical considerations, summarize contemporary clinical iCMR experience, and consider potential future applications.
Collapse
Affiliation(s)
- Toby Rogers
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA.
- Section of Interventional Cardiology, MedStar Washington Hospital Center, 110 Irving St NW, Suite 4B01, Washington, DC, 20011, USA.
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - D Korel Yildirim
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Christopher G Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Laurie P Grant
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Annette M Stine
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Aravindan Kolandaivelu
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
- Johns Hopkins Hospital, Baltimore, MD, USA
| | - Daniel A Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Kanishka Ratnayaka
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA.
| |
Collapse
|
2
|
Özen AC, Russe MF, Lottner T, Reiss S, Littin S, Zaitsev M, Bock M. RF-induced heating of interventional devices at 23.66 MHz. MAGMA (NEW YORK, N.Y.) 2023:10.1007/s10334-023-01099-7. [PMID: 37195365 PMCID: PMC10386938 DOI: 10.1007/s10334-023-01099-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE Low-field MRI systems are expected to cause less RF heating in conventional interventional devices due to lower Larmor frequency. We systematically evaluate RF-induced heating of commonly used intravascular devices at the Larmor frequency of a 0.55 T system (23.66 MHz) with a focus on the effect of patient size, target organ, and device position on maximum temperature rise. MATERIALS AND METHODS To assess RF-induced heating, high-resolution measurements of the electric field, temperature, and transfer function were combined. Realistic device trajectories were derived from vascular models to evaluate the variation of the temperature increase as a function of the device trajectory. At a low-field RF test bench, the effects of patient size and positioning, target organ (liver and heart) and body coil type were measured for six commonly used interventional devices (two guidewires, two catheters, an applicator and a biopsy needle). RESULTS Electric field mapping shows that the hotspots are not necessarily localized at the device tip. Of all procedures, the liver catheterizations showed the lowest heating, and a modification of the transmit body coil could further reduce the temperature increase. For common commercial needles no significant heating was measured at the needle tip. Comparable local SAR values were found in the temperature measurements and the TF-based calculations. CONCLUSION At low fields, interventions with shorter insertion lengths such as hepatic catheterizations result in less RF-induced heating than coronary interventions. The maximum temperature increase depends on body coil design.
Collapse
Affiliation(s)
- Ali Caglar Özen
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Maximilian Frederik Russe
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lottner
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Reiss
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Littin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Kilbride BF, Narsinh KH, Jordan CD, Mueller K, Moore T, Martin AJ, Wilson MW, Hetts SW. MRI-guided endovascular intervention: current methods and future potential. Expert Rev Med Devices 2022; 19:763-778. [PMID: 36373162 PMCID: PMC9869980 DOI: 10.1080/17434440.2022.2141110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Image-guided endovascular interventions, performed using the insertion and navigation of catheters through the vasculature, have been increasing in number over the years, as minimally invasive procedures continue to replace invasive surgical procedures. Such endovascular interventions are almost exclusively performed under x-ray fluoroscopy, which has the best spatial and temporal resolution of all clinical imaging modalities. Magnetic resonance imaging (MRI) offers unique advantages and could be an attractive alternative to conventional x-ray guidance, but also brings with it distinctive challenges. AREAS COVERED In this review, the benefits and limitations of MRI-guided endovascular interventions are addressed, systems and devices for guiding such interventions are summarized, and clinical applications are discussed. EXPERT OPINION MRI-guided endovascular interventions are still relatively new to the interventional radiology field, since significant technical hurdles remain to justify significant costs and demonstrate safety, design, and robustness. Clinical applications of MRI-guided interventions are promising but their full potential may not be realized until proper tools designed to function in the MRI environment are available. Translational research and further preclinical studies are needed before MRI-guided interventions will be practical in a clinical interventional setting.
Collapse
Affiliation(s)
- Bridget F. Kilbride
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Kazim H. Narsinh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Teri Moore
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Alastair J. Martin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Mark W. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Steven W. Hetts
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Qin C, Murali S, Lee E, Supramaniam V, Hausenloy DJ, Obungoloch J, Brecher J, Lin R, Ding H, Akudjedu TN, Anazodo UC, Jagannathan NR, Ntusi NAB, Simonetti OP, Campbell-Washburn AE, Niendorf T, Mammen R, Adeleke S. Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. Eur Heart J Cardiovasc Imaging 2022; 23:e246-e260. [PMID: 35157038 PMCID: PMC9159744 DOI: 10.1093/ehjci/jeab286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular disease continues to be a major burden facing healthcare systems worldwide. In the developed world, cardiovascular magnetic resonance (CMR) is a well-established non-invasive imaging modality in the diagnosis of cardiovascular disease. However, there is significant global inequality in availability and access to CMR due to its high cost, technical demands as well as existing disparities in healthcare and technical infrastructures across high-income and low-income countries. Recent renewed interest in low-field CMR has been spurred by the clinical need to provide sustainable imaging technology capable of yielding diagnosticquality images whilst also being tailored to the local populations and healthcare ecosystems. This review aims to evaluate the technical, practical and cost considerations of low field CMR whilst also exploring the key barriers to implementing sustainable MRI in both the developing and developed world.
Collapse
Affiliation(s)
- Cathy Qin
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Sanjana Murali
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Elsa Lee
- School of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | | - Derek J Hausenloy
- Division of Medicine, University College London, London, UK
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Hatter Cardiovascular Institue, UCL Institute of Cardiovascular Sciences, University College London, London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Johnes Obungoloch
- Department of Biomedical Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Rongyu Lin
- School of Medicine, University College London, London, UK
| | - Hao Ding
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Theophilus N Akudjedu
- Institute of Medical Imaging and Visualisation, Faculty of Health and Social Science, Bournemouth University, Poole, UK
| | | | - Naranamangalam R Jagannathan
- Department of Electrical Engineering, Indian Institute of Technology, Chennai, India
- Department of Radiology, Sri Ramachandra University Medical College, Chennai, India
- Department of Radiology, Chettinad Hospital and Research Institute, Kelambakkam, India
| | - Ntobeko A B Ntusi
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Orlando P Simonetti
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Regina Mammen
- Department of Cardiology, The Essex Cardiothoracic Centre, Basildon, UK
| | - Sola Adeleke
- School of Cancer & Pharmaceutical Sciences, King’s College London, Queen Square, London WC1N 3BG, UK
- High Dimensional Neurology, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
5
|
Arar Y, Divekar A, Clark S, Hussain T, Sebastian R, Hoda M, King J, Zellers TM, Reddy SRV. Role of Cross-Sectional Imaging in Pediatric Interventional Cardiac Catheterization. CHILDREN 2022; 9:children9030300. [PMID: 35327672 PMCID: PMC8947056 DOI: 10.3390/children9030300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Management of congenital heart disease (CHD) has recently increased utilization of cross-sectional imaging to plan percutaneous interventions. Cardiac computed tomography (CT) and cardiac magnetic resonance (CMR) imaging have become indispensable tools for pre-procedural planning prior to intervention in the pediatric cardiac catheterization lab. In this article, we review several common indications for referral and the impact of cross-sectional imaging on procedural planning, success, and patient surveillance.
Collapse
Affiliation(s)
- Yousef Arar
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (A.D.); (S.C.); (T.H.); (R.S.); (M.H.); (T.M.Z.); (S.R.V.R.)
- Pediatric Cardiology, Children’s Medical Center, 1935 Medical District Dr, Dallas, TX 75235, USA;
- Correspondence:
| | - Abhay Divekar
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (A.D.); (S.C.); (T.H.); (R.S.); (M.H.); (T.M.Z.); (S.R.V.R.)
- Pediatric Cardiology, Children’s Medical Center, 1935 Medical District Dr, Dallas, TX 75235, USA;
| | - Stephen Clark
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (A.D.); (S.C.); (T.H.); (R.S.); (M.H.); (T.M.Z.); (S.R.V.R.)
- Pediatric Cardiology, Children’s Medical Center, 1935 Medical District Dr, Dallas, TX 75235, USA;
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (A.D.); (S.C.); (T.H.); (R.S.); (M.H.); (T.M.Z.); (S.R.V.R.)
- Pediatric Cardiology, Children’s Medical Center, 1935 Medical District Dr, Dallas, TX 75235, USA;
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Roby Sebastian
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (A.D.); (S.C.); (T.H.); (R.S.); (M.H.); (T.M.Z.); (S.R.V.R.)
- Pediatric Cardiology, Children’s Medical Center, 1935 Medical District Dr, Dallas, TX 75235, USA;
- Department of Anesthesia and Pain Management, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Mehar Hoda
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (A.D.); (S.C.); (T.H.); (R.S.); (M.H.); (T.M.Z.); (S.R.V.R.)
- Pediatric Cardiology, Children’s Medical Center, 1935 Medical District Dr, Dallas, TX 75235, USA;
| | - Jamie King
- Pediatric Cardiology, Children’s Medical Center, 1935 Medical District Dr, Dallas, TX 75235, USA;
| | - Thomas M. Zellers
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (A.D.); (S.C.); (T.H.); (R.S.); (M.H.); (T.M.Z.); (S.R.V.R.)
- Pediatric Cardiology, Children’s Medical Center, 1935 Medical District Dr, Dallas, TX 75235, USA;
| | - Surendranath R. Veeram Reddy
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (A.D.); (S.C.); (T.H.); (R.S.); (M.H.); (T.M.Z.); (S.R.V.R.)
- Pediatric Cardiology, Children’s Medical Center, 1935 Medical District Dr, Dallas, TX 75235, USA;
| |
Collapse
|
6
|
Amin EK, Campbell-Washburn A, Ratnayaka K. MRI-Guided Cardiac Catheterization in Congenital Heart Disease: How to Get Started. Curr Cardiol Rep 2022; 24:419-429. [PMID: 35107702 PMCID: PMC8979923 DOI: 10.1007/s11886-022-01659-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Cardiac magnetic resonance imaging provides radiation-free, 3-dimensional soft tissue visualization with adjunct hemodynamic data, making it a promising candidate for image-guided transcatheter interventions. This review focuses on the benefits and background of real-time magnetic resonance imaging (MRI)-guided cardiac catheterization, guidance on starting a clinical program, and recent research developments. RECENT FINDINGS Interventional cardiac magnetic resonance (iCMR) has an established track record with the first entirely MRI-guided cardiac catheterization for congenital heart disease reported nearly 20 years ago. Since then, many centers have embarked upon clinical iCMR programs primarily performing diagnostic MRI-guided cardiac catheterization. There have also been limited reports of successful real-time MRI-guided transcatheter interventions. Growing experience in performing cardiac catheterization in the magnetic resonance environment has facilitated practical workflows appropriate for efficiency-focused cardiac catheterization laboratories. Most exciting developments in imaging technology, MRI-compatible equipment and MRI-guided novel transcatheter interventions have been limited to preclinical research. Many of these research developments are ready for clinical translation. With increasing iCMR clinical experience and translation of preclinical research innovations, the time to make the leap to radiation-free procedures is now.
Collapse
Affiliation(s)
- Elena K Amin
- Division of Pediatric Cardiology, UCSF Benioff Children's Hospitals, University of California, San Francisco, San Francisco, CA, USA.
| | - Adrienne Campbell-Washburn
- Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kanishka Ratnayaka
- Division of Pediatric Cardiology, Rady Children's Hospital, University of California, San Diego, 3020 Children's Way, San Diego, CA, USA
| |
Collapse
|
7
|
Rier SC, Vreemann S, Nijhof WH, van Driel VJHM, van der Bilt IAC. Interventional cardiac magnetic resonance imaging: current applications, technology readiness level, and future perspectives. Ther Adv Cardiovasc Dis 2022; 16:17539447221119624. [PMID: 36039865 PMCID: PMC9434707 DOI: 10.1177/17539447221119624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cardiac magnetic resonance (CMR) provides excellent temporal and spatial resolution, tissue characterization, and flow measurements. This enables major advantages when guiding cardiac invasive procedures compared with X-ray fluoroscopy or ultrasound guidance. However, clinical implementation is limited due to limited availability of technological advancements in magnetic resonance imaging (MRI) compatible equipment. A systematic review of the available literature on past and present applications of interventional MR and its technology readiness level (TRL) was performed, also suggesting future applications. METHODS A structured literature search was performed using PubMed. Search terms were focused on interventional CMR, cardiac catheterization, and other cardiac invasive procedures. All search results were screened for relevance by language, title, and abstract. TRL was adjusted for use in this article, level 1 being in a hypothetical stage and level 9 being widespread clinical translation. The papers were categorized by the type of procedure and the TRL was estimated. RESULTS Of 466 papers, 117 papers met the inclusion criteria. TRL was most frequently estimated at level 5 meaning only applicable to in vivo animal studies. Diagnostic right heart catheterization and cavotricuspid isthmus ablation had the highest TRL of 8, meaning proven feasibility and efficacy in a series of humans. CONCLUSION This article shows that interventional CMR has a potential widespread application although clinical translation is at a modest level with TRL usually at 5. Future development should be directed toward availability of MR-compatible equipment and further improvement of the CMR techniques. This could lead to increased TRL of interventional CMR providing better treatment.
Collapse
Affiliation(s)
- Sophie C Rier
- Cardiology Division, Department of Cardiology, Haga Teaching Hospital, Els Borst-Eilersplein 275, Postbus 40551, The Hague 2504 LN, The Netherlands
| | - Suzan Vreemann
- Department of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands Siemens Healthineers Nederland B.V., Den Haag, The Netherlands
| | - Wouter H Nijhof
- Siemens Healthineers Nederland B.V., Den Haag, The Netherlands
| | | | | |
Collapse
|
8
|
Godinez F, Tomi-Tricot R, Delcey M, Williams SE, Mooiweer R, Quesson B, Razavi R, Hajnal JV, Malik SJ. Interventional cardiac MRI using an add-on parallel transmit MR system: In vivo experience in sheep. Magn Reson Med 2021; 86:3360-3372. [PMID: 34286866 DOI: 10.1002/mrm.28931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE We present in vivo testing of a parallel transmit system intended for interventional MR-guided cardiac procedures. METHODS The parallel transmit system was connected in-line with a conventional 1.5 Tesla MRI system to transmit and receive on an 8-coil array. The system used a current sensor for real-time feedback to achieve real-time current control by determining coupling and null modes. Experiments were conducted on 4 Charmoise sheep weighing 33.9-45.0 kg with nitinol guidewires placed under X-ray fluoroscopy in the atrium or ventricle of the heart via the femoral vein. Heating tests were done in vivo and post-mortem with a high RF power imaging sequence using the coupling mode. Anatomical imaging was done using a combination of null modes optimized to produce a useable B1 field in the heart. RESULTS Anatomical imaging produced cine images of the heart comparable in quality to imaging with the quad mode (all channels with the same amplitude and phase). Maximum observed temperature increases occurred when insulation was stripped from the wire tip. These were 4.1℃ and 0.4℃ for the coupling mode and null modes, respectively for the in vivo case; increasing to 6.0℃ and 1.3℃, respectively for the ex vivo case, because cooling from blood flow is removed. Heating < 0.1℃ was observed when insulation was not stripped from guidewire tips. In all tests, the parallel transmit system managed to reduce the temperature at the guidewire tip. CONCLUSION We have demonstrated the first in vivo usage of an auxiliary parallel transmit system employing active feedback-based current control for interventional MRI with a conventional MRI scanner.
Collapse
Affiliation(s)
- Felipe Godinez
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Raphael Tomi-Tricot
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Marylène Delcey
- Centre de Recherche Cardio, Thoracique de Bordeaux/IHU Liryc, INSERM U1045-University of Bordeaux, Pessac, France.,Siemens Healthcare, Saint-Denis, France
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ronald Mooiweer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Bruno Quesson
- Centre de Recherche Cardio, Thoracique de Bordeaux/IHU Liryc, INSERM U1045-University of Bordeaux, Pessac, France
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Shaihan J Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Yildirim DK, Bruce C, Uzun D, Rogers T, O'Brien K, Ramasawmy R, Campbell-Washburn A, Herzka DA, Lederman RJ, Kocaturk O. A 20-gauge active needle design with thin-film printed circuitry for interventional MRI at 0.55T. Magn Reson Med 2021; 86:1786-1801. [PMID: 33860962 DOI: 10.1002/mrm.28804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE This work aims to fabricate RF antenna components on metallic needle surfaces using biocompatible polyester tubing and conductive ink to develop an active interventional MRI needle for clinical use at 0.55 Tesla. METHODS A custom computer numeric control-based conductive ink printing method was developed. Based on electromagnetic simulation results, thin-film RF antennas were printed with conductive ink and used to fabricate a medical grade, 20-gauge (0.87 mm outer diameter), 90-mm long active interventional MRI needle. The MRI visibility performance of the active needle prototype was tested in vitro in 1 gel phantom and in vivo in 1 swine. A nearly identical active needle constructed using a 44 American Wire Gauge insulated copper wire-wound RF receiver antenna was a comparator. The RF-induced heating risk was evaluated in a gel phantom per American Society for Testing and Materials (ASTM) 2182-19. RESULTS The active needle prototype with printed RF antenna was clearly visible both in vitro and in vivo under MRI. The maximum RF-induced temperature rise of prototypes with printed RF antenna and insulated copper wire antenna after a 3.96 W/kg, 15 min. long scan were 1.64°C and 8.21°C, respectively. The increase in needle diameter was 98 µm and 264 µm for prototypes with printed RF antenna and copper wire-wound antenna, respectively. CONCLUSION The active needle prototype with conductive ink printed antenna provides distinct device visibility under MRI. Variations on the needle surface are mitigated compared to use of a 44 American Wire Gauge copper wire. RF-induced heating tests support device RF safety under MRI. The proposed method enables fabrication of small diameter active interventional MRI devices having complex geometries, something previously difficult using conventional methods.
Collapse
Affiliation(s)
- Dursun Korel Yildirim
- Institute of Biomedical Engineering, Bogazici University, Kandilli Campus, Istanbul, Turkey.,Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dogangun Uzun
- Institute of Biomedical Engineering, Bogazici University, Kandilli Campus, Istanbul, Turkey.,Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Toby Rogers
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kendall O'Brien
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrienne Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel A Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ozgur Kocaturk
- Institute of Biomedical Engineering, Bogazici University, Kandilli Campus, Istanbul, Turkey.,Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Yaras YS, Yildirim DK, Herzka DA, Rogers T, Campbell-Washburn AE, Lederman RJ, Degertekin FL, Kocaturk O. Real-time device tracking under MRI using an acousto-optic active marker. Magn Reson Med 2020; 85:2904-2914. [PMID: 33347642 DOI: 10.1002/mrm.28625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE This work aims to demonstrate the use of an "active" acousto-optic marker with enhanced visibility and reduced radiofrequency (RF) -induced heating for interventional MRI. METHODS The acousto-optic marker was fabricated using bulk piezoelectric crystal and π-phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF-induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto-optic markers were characterized in phantom studies. RF-induced heating risk was evaluated according to ASTM 2182 standard. In vivo real-time tracking capability was tested in an animal model under a 0.55T scanner. RESULTS Signal-to-noise ratio (SNR) levels suitable for real-time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto-optic sensor. RF-induced heating was significantly reduced compared to a coax cable connected reference marker. Real-time distal tip tracking of an active device was demonstrated in an animal model with a standard real-time cardiac MR sequence. CONCLUSION Acousto-optic markers provide sufficient SNR with a simple structure for real-time device tracking. RF-induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto-optic modulator can be used on a single catheter for determining catheter orientation and shape.
Collapse
Affiliation(s)
- Yusuf S Yaras
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Micromachined Sensors and Transducers Group, Atlanta, Georgia, USA
| | - Dursun Korel Yildirim
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Daniel A Herzka
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Toby Rogers
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | | | - Robert J Lederman
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - F Levent Degertekin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Micromachined Sensors and Transducers Group, Atlanta, Georgia, USA
| | - Ozgur Kocaturk
- Institute of Biomedical Engineering, Bogazici University, Kandilli Kampus, Istanbul, Turkey
| |
Collapse
|
11
|
Susceptibility artifacts from metallic markers and cardiac catheterization devices on a high-performance 0.55 T MRI system. Magn Reson Imaging 2020; 77:14-20. [PMID: 33309924 DOI: 10.1016/j.mri.2020.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/27/2020] [Accepted: 12/06/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Visualization of passive devices during MRI-guided catheterizations often relies on a susceptibility artifact from the device itself or added susceptibility markers that impart a unique imaging signature. High-performance low field MRI systems offer reduced RF-induced heating of metallic devices during MRI-guided invasive procedures, but susceptibility artifacts are expected to diminish with field strength, reducing device visualization. In this study, field strength and orientation dependence of artifacts from susceptibility markers and metallic guidewires were evaluated using a prototype high-performance 0.55 T MRI system. MATERIALS AND METHODS Artifact volume from nitinol and stainless steel passive susceptibility markers was quantified using histogram analysis of pixel intensities from three-dimensional gradient echo images at 0.55 T, 1.5 T and 3 T. In addition, visibility of commercially available clinical catheterization devices was compared between 0.55 T and 1.5 T using real-time bSSFP in phantoms and in vivo. RESULTS A low-tensile strength stainless-steel marker produced field strength- and orientation-dependent artifact size (1.7 cm3, 1.95 cm3, 2.21 cm3 at 0.55 T, 1.5 T, 3 T, respectively). Whereas, a high-tensile strength steel marker, of the same alloy, produced field strength- and orientation-independent artifact size (3.35 cm3, 3.41 cm3, 3.42 cm3 at 0.55 T, 1.5 T, 3 T, respectively). Visibility of commercially available nitinol guidewires was reduced at 0.55 T, but imaging signature could be maintained using high-susceptibility stainless steel markers. DISCUSSION AND CONCLUSION High-susceptibility stainless-steel markers generate field-independent artifacts between 0.55 T, 1.5 T and 3 T, indicating magnetic saturation at fields <0.55 T. Thus, artifact size can be tailored such that interventional devices produce identical imaging signatures across field strengths.
Collapse
|
12
|
Godinez F, Scott G, Padormo F, Hajnal JV, Malik SJ. Safe guidewire visualization using the modes of a PTx transmit array MR system. Magn Reson Med 2020; 83:2343-2355. [PMID: 31722119 PMCID: PMC7048617 DOI: 10.1002/mrm.28069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE MRI-guided cardiovascular intervention using standard metal guidewires can produce focal tissue heating caused by induced radiofrequency guidewire currents. It has been shown that safe operation is made possible by using parallel transmit radiofrequency coils driven in the null current mode, which does not induce radiofrequency currents and hence allows safe tissue visualization. We propose that the maximum current modes, usually considered unsafe, be used at very low power levels to visualize conductive wires, and we investigate pulse sequences best suited for this application. METHODS Spoiled gradient echo, balanced steady-state free precession, and turbo spin echo sequences were evaluated for their ability to visualize a conductive guidewire embedded in a gel phantom when run in maximum current modes at very low power level. Temperature at the guidewire tip was monitored for safety assessment. RESULTS Excellent guidewire visualization could be achieved using maximum current modes excitation, with the turbo spin echo sequence giving the best image quality. Although turbo spin echo is usually considered to be a high-power sequence, our method reduced all pulses to 1% amplitude (0.01% power), and heating was not detected. In addition, visualization of background tissue can be achieved using null current mode, also with no recorded heating at the guidewire tip even when running at 100% (reported) specific absorption rate. CONCLUSION Parallel transmit is a promising approach for both guidewire and tissue visualization using maximum and null current modes, respectively, for interventional cardiac MRI. Such systems can switch excitation mode instantaneously, allowing for flexible integration into interactive sequences.
Collapse
Affiliation(s)
- Felipe Godinez
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Greig Scott
- Magnetic Resonance Systems Research LaboratoryDepartment of Electrical EngineeringStanford UniversityStanfordCaliforniaUSA
| | | | - Joseph V. Hajnal
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Shaihan J. Malik
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| |
Collapse
|
13
|
Veeram Reddy SR, Arar Y, Zahr RA, Gooty V, Hernandez J, Potersnak A, Douglas P, Blair Z, Greer JS, Roujol S, Forte MNV, Greil G, Nugent AW, Hussain T. Invasive cardiovascular magnetic resonance (iCMR) for diagnostic right and left heart catheterization using an MR-conditional guidewire and passive visualization in congenital heart disease. J Cardiovasc Magn Reson 2020; 22:20. [PMID: 32213193 PMCID: PMC7098096 DOI: 10.1186/s12968-020-0605-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Today's standard of care, in the congenital heart disease (CHD) population, involves performing cardiac catheterization under x-ray fluoroscopy and cardiac magnetic resonance (CMR) imaging separately. The unique ability of CMR to provide real-time functional imaging in multiple views without ionizing radiation exposure has the potential to be a powerful tool for diagnostic and interventional procedures. Limiting fluoroscopic radiation exposure remains a challenge for pediatric interventional cardiologists. This pilot study's objective is to establish feasibility of right (RHC) and left heart catheterization (LHC) during invasive CMR (iCMR) procedures at our institution in the CHD population. Furthermore, we aim to improve simultaneous visualization of the catheter balloon tip, MR-conditional guidewire, and cardiac/vessel anatomy during iCMR procedures. METHODS Subjects with CHD were enrolled in a pilot study for iCMR procedures at 1.5 T with an MR-conditional guidewire. The CMR area is located adjacent to a standard catheterization laboratory. Using the interactive scanning mode for real-time control of the imaging location, a dilute gadolinium-filled balloon-tip catheter was used in combination with an MR-conditional guidewire to obtain cardiac saturations and hemodynamics. A recently developed catheter tracking technique using a real-time single-shot balanced steady-state free precession (bSSFP), flip angle (FA) 35-45°, echo time (TE) 1.3 ms, repetition time (TR) 2.7 ms, 40° partial saturation (pSAT) pre-pulse was used to visualize the gadolinium-filled balloon, MR-conditional guidewire, and cardiac structures simultaneously. MR-conditional guidewire visualization was enabled due to susceptibility artifact created by distal markers. Pre-clinical phantom testing was performed to determine the optimum imaging FA-pSAT combination. RESULTS The iCMR procedure was successfully performed to completion in 31/34 (91%) subjects between August 1st, 2017 to December 13th, 2018. Median age and weight were 7.7 years and 25.2 kg (range: 3 months - 33 years and 8 - 80 kg). Twenty-one subjects had single ventricle (SV) anatomy: one subject was referred for pre-Glenn evaluation, 11 were pre-Fontan evaluations and 9 post-Fontan evaluations for protein losing enteropathy (PLE) and/or cyanosis. Thirteen subjects had bi-ventricular (BiV) anatomy, 4 were referred for coarctation of the aorta (CoA) evaluations, 3 underwent vaso-reactivity testing with inhaled nitric oxide, 3 investigated RV volume dimensions, two underwent branch PA stenosis evaluation, and the remaining subject was status post heart transplant. No catheter related complications were encountered. Average time taken for first pass RHC, LHC/aortic pull back, and to cross the Fontan fenestration was 5.2, 3.0, and 6.5 min, respectively. Total success rate to obtain required data points to complete Fick principle calculations for all patients was 331/337 (98%). Subjects were transferred to the x-ray fluoroscopy lab if further intervention was required including Fontan fenestration device closure, balloon angioplasty of pulmonary arteries/conduits, CoA stenting, and/or coiling of aortopulmonary (AP) collaterals. Starting with subject #10, an MR-conditional guidewire was used in all subsequent subjects (15 SV and 10 BiV) with a success rate of 96% (24/25). Real-time CMR-guided RHC (25/25 subjects, 100%), retrograde and prograde LHC/aortic pull back (24/25 subjects, 96%), CoA crossing (3/4 subjects, 75%) and Fontan fenestration test occlusion (2/3 subjects, 67%) were successfully performed in the majority of subjects when an MR-conditional guidewire was utilized. CONCLUSION Feasibility for detailed diagnostic RHC, LHC, and Fontan fenestration test occlusion iCMR procedures in SV and BiV pediatric subjects with complex CHD is demonstrated with the aid of an MR-conditional guidewire. A novel real-time pSAT GRE sequence with optimized FA-pSAT angle has facilitated simultaneous visualization of the catheter balloon tip, MR-conditional guidewire, and cardiac/vessel anatomy during iCMR procedures.
Collapse
Affiliation(s)
- Surendranath R. Veeram Reddy
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Yousef Arar
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Riad Abou Zahr
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Vasu Gooty
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Jennifer Hernandez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
| | - Amanda Potersnak
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Phillip Douglas
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Zachary Blair
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Joshua S. Greer
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Sébastien Roujol
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Mari Nieves Velasco Forte
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Gerald Greil
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Alan W. Nugent
- Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E Chicago Ave, Chicago, IL 60611 USA
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, TX 75235 USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| |
Collapse
|
14
|
Abstract
In recent years, interventional cardiac magnetic resonance imaging (iCMR) has evolved from attractive theory to clinical routine at several centers. Real-time cardiac magnetic resonance imaging (CMR fluoroscopy) adds value by combining soft-tissue visualization, concurrent hemodynamic measurement, and freedom from radiation. Clinical iCMR applications are expanding because of advances in catheter devices and imaging. In the near future, iCMR promises novel procedures otherwise unsafe under standalone X-Ray guidance.
Collapse
|
15
|
Özen AC, Silemek B, Lottner T, Atalar E, Bock M. MR safety watchdog for active catheters: Wireless impedance control with real-time feedback. Magn Reson Med 2020; 84:1048-1060. [PMID: 31961965 DOI: 10.1002/mrm.28153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To dynamically minimize radiofrequency (RF)-induced heating of an active catheter through an automatic change of the termination impedance. METHODS A prototype wireless module was designed that modifies the input impedance of an active catheter to keep the temperature rise during MRI below a threshold, ΔTmax . The wireless module (MR safety watchdog; MRsWD) measures the local temperature at the catheter tip using either a built-in thermistor or external data from a fiber-optical thermometer. It automatically changes the catheter input impedance until the temperature rise during MRI is minimized. If ΔTmax is exceeded, RF transmission is blocked by a feedback system. RESULTS The thermistor and fiber-optical thermometer provided consistent temperature data in a phantom experiment. During MRI, the MRsWD was able to reduce the maximum temperature rise by 25% when operated in real-time feedback mode. CONCLUSION This study demonstrates the technical feasibility of an MRsWD as an alternative or complementary approach to reduce RF-induced heating of active interventional devices. The automatic MRsWD can reduce heating using direct temperature measurements at the tip of the catheter. Given that temperature measurements are intrinsically slow, for a clinical implementation, a faster feedback parameter would be required such as the RF currents along the catheter or scattered electric fields at the tip.
Collapse
Affiliation(s)
- Ali Caglar Özen
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Consortium for Translational Cancer Research Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Berk Silemek
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.,Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Thomas Lottner
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ergin Atalar
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA, Hansen MS, Rogers T, Bandettini WP, McGuirt DR, Mancini C, Grodzki D, Schneider R, Majeed W, Bhat H, Xue H, Moss J, Malayeri AA, Jones EC, Koretsky AP, Kellman P, Chen MY, Lederman RJ, Balaban RS. Opportunities in Interventional and Diagnostic Imaging by Using High-Performance Low-Field-Strength MRI. Radiology 2019; 293:384-393. [PMID: 31573398 PMCID: PMC6823617 DOI: 10.1148/radiol.2019190452] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022]
Abstract
Background Commercial low-field-strength MRI systems are generally not equipped with state-of-the-art MRI hardware, and are not suitable for demanding imaging techniques. An MRI system was developed that combines low field strength (0.55 T) with high-performance imaging technology. Purpose To evaluate applications of a high-performance low-field-strength MRI system, specifically MRI-guided cardiovascular catheterizations with metallic devices, diagnostic imaging in high-susceptibility regions, and efficient image acquisition strategies. Materials and Methods A commercial 1.5-T MRI system was modified to operate at 0.55 T while maintaining high-performance hardware, shielded gradients (45 mT/m; 200 T/m/sec), and advanced imaging methods. MRI was performed between January 2018 and April 2019. T1, T2, and T2* were measured at 0.55 T; relaxivity of exogenous contrast agents was measured; and clinical applications advantageous at low field were evaluated. Results There were 83 0.55-T MRI examinations performed in study participants (45 women; mean age, 34 years ± 13). On average, T1 was 32% shorter, T2 was 26% longer, and T2* was 40% longer at 0.55 T compared with 1.5 T. Nine metallic interventional devices were found to be intrinsically safe at 0.55 T (<1°C heating) and MRI-guided right heart catheterization was performed in seven study participants with commercial metallic guidewires. Compared with 1.5 T, reduced image distortion was shown in lungs, upper airway, cranial sinuses, and intestines because of improved field homogeneity. Oxygen inhalation generated lung signal enhancement of 19% ± 11 (standard deviation) at 0.55 T compared with 7.6% ± 6.3 at 1.5 T (P = .02; five participants) because of the increased T1 relaxivity of oxygen (4.7e-4 mmHg-1sec-1). Efficient spiral image acquisitions were amenable to low field strength and generated increased signal-to-noise ratio compared with Cartesian acquisitions (P < .02). Representative imaging of the brain, spine, abdomen, and heart generated good image quality with this system. Conclusion This initial study suggests that high-performance low-field-strength MRI offers advantages for MRI-guided catheterizations with metal devices, MRI in high-susceptibility regions, and efficient imaging. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Grist in this issue.
Collapse
Affiliation(s)
- Adrienne E. Campbell-Washburn
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Rajiv Ramasawmy
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Matthew C. Restivo
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Ipshita Bhattacharya
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Burcu Basar
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Daniel A. Herzka
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Michael S. Hansen
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Toby Rogers
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - W. Patricia Bandettini
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Delaney R. McGuirt
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Christine Mancini
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - David Grodzki
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Rainer Schneider
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Waqas Majeed
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Himanshu Bhat
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Hui Xue
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Joel Moss
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Ashkan A. Malayeri
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Elizabeth C. Jones
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Alan P. Koretsky
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Peter Kellman
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Marcus Y. Chen
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Robert J. Lederman
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Robert S. Balaban
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| |
Collapse
|
17
|
Functionalization of endovascular devices with superparamagnetic iron oxide nanoparticles for interventional cardiovascular magnetic resonance imaging. Biomed Microdevices 2019; 21:38. [DOI: 10.1007/s10544-019-0393-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Deutsch N, Swink J, Matisoff AJ, Olivieri LJ, Cross RR, Waberski AT, Unegbu C, Cronin IF, Kanter JP, Schwartz JM. Anesthetic considerations for magnetic resonance imaging-guided right-heart catheterization in pediatric patients: A single institution experience. Paediatr Anaesth 2019; 29:8-15. [PMID: 30375141 PMCID: PMC8074513 DOI: 10.1111/pan.13512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/31/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022]
Abstract
Cardiac catheterization is an integral part of medical management for pediatric patients with congenital heart disease. Owing to age and lack of cooperation in children who need this procedure, general anesthesia is typically required. These patients have increased anesthesia risk secondary to cardiac pathology. Furthermore, multiple catheterization procedures result in exposure to harmful ionizing radiation. Magnetic resonance imaging-guided right-heart catheterization offers decreased radiation exposure and diagnostic imaging benefits over traditional fluoroscopy but potentially increases anesthetic complexity and risk. We describe our early experience with anesthetic techniques and challenges for pediatric magnetic resonance imaging-guided right-heart catheterization.
Collapse
Affiliation(s)
- Nina Deutsch
- Division of Anesthesiology, Pain, and Perioperative Medicine, Children’s National Medical Center, Washington, DC
| | - Jonathan Swink
- Division of Anesthesiology, Pain, and Perioperative Medicine, Children’s National Medical Center, Washington, DC
| | - Andrew J Matisoff
- Division of Anesthesiology, Pain, and Perioperative Medicine, Children’s National Medical Center, Washington, DC
| | - Laura J Olivieri
- Division of Cardiology, Children’s National Medical Center, Washington, DC
| | - Russell R Cross
- Division of Cardiology, Children’s National Medical Center, Washington, DC
| | - Andrew T Waberski
- Division of Anesthesiology, Pain, and Perioperative Medicine, Children’s National Medical Center, Washington, DC
| | - Chinwe Unegbu
- Division of Anesthesiology, Pain, and Perioperative Medicine, Children’s National Medical Center, Washington, DC
| | - Ileen F Cronin
- Division of Cardiology, Children’s National Medical Center, Washington, DC
| | - Joshua P Kanter
- Division of Cardiology, Children’s National Medical Center, Washington, DC
| | - Jamie M Schwartz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Kakareka JW, Faranesh AZ, Pursley RH, Campbell-Washburn A, Herzka DA, Rogers T, Kanter J, Ratnayaka K, Lederman RJ, Pohida TJ. Physiological Recording in the MRI Environment (PRiME): MRI-Compatible Hemodynamic Recording System. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2018; 6:4100112. [PMID: 29552426 PMCID: PMC5849467 DOI: 10.1109/jtehm.2018.2807813] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/20/2017] [Accepted: 02/01/2018] [Indexed: 12/26/2022]
Abstract
Hemodynamic recording during interventional cardiovascular procedures is essential for procedural guidance, monitoring patient status, and collection of diagnostic information. Recent advances have made interventions guided by magnetic resonance imaging (MRI) possible and attractive in certain clinical scenarios. However, in the MRI environment, electromagnetic interference (EMI) can cause severe distortions and artifacts in acquired hemodynamic waveforms. The primary aim of this paper was to develop and validate a system to minimize EMI on electrocardiogram (ECG) and invasive blood pressure (IBP) signals. A system was developed which incorporated commercial MRI compatible ECG leads and pressure transducers, custom electronics, user interface, and adaptive signal processing. Measurements were made on pediatric patients (N = 6) during MRI-guided catheterization. Real-time interactive scanning, which is known to produce significant EMI due to fast gradient switching and varying imaging plane orientations, was selected for testing. The effectiveness of the adaptive algorithms was determined by measuring the reduction of noise peaks, amplitude of noise peaks, and false QRS triggers. During real-time gradient-intensive imaging sequences, peak noise amplitude was reduced by 80% and false QRS triggers were reduced to a median of 0. There was no detectable interference on the IBP channels. A hemodynamic recording system front-end was successfully developed and deployed, which enabled high-fidelity recording of ECG and IBP during MRI scanning. The schematics and assembly instructions are publicly available to facilitate implementation at other institutions. Researchers and clinicians are provided a critical tool in investigating and implementing MRI guided interventional cardiovascular procedures.
Collapse
Affiliation(s)
| | | | | | | | | | - Toby Rogers
- National Institutes of HealthBethesdaMD20892USA
| | - Josh Kanter
- Children's National Health SystemWashingtonDC20010USA
| | | | | | | |
Collapse
|
20
|
Jackson RC, Liu T, Çavuşoğlu MC. Catadioptric Stereo Tracking for Three Dimensional Shape Measurement of MRI Guided Catheters. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2017; 2016:4422-4428. [PMID: 28392968 DOI: 10.1109/icra.2016.7487641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The recent introduction of Magnetic Resonance Imaging (MRI)-actuated steerable catheters lays the ground work for increasing the efficacy of cardiac catheter procedures. The MRI, while capable of imaging the catheter for tracking and control, does not fulfill all of the needs required to identify and develop a complete catheter model. Specifially, the frequency response of the catheter must be identified to ensure stable control of the catheter system. This requires a higher frequency imaging than the MRI can achieve. This work uses a catadioptric stereo camera system consisting of a mirror and a single camera in order to track a MRI actuated catheter inside a MRI machine. The catadioptric system works in parallel to the MRI and is capable of recording the catheter at 60 fps for post processing. The accuracy of the catadioptric system is verified in imaging conditions that would be found inside the MRI. The stereo camera is then used to track a catheter as it is actuated inside the MRI.
Collapse
Affiliation(s)
- Russell C Jackson
- Department of Electrical Engineering and Computer Science (EECS) at Case Western Reserve University in Cleveland, OH, USA
| | - Taoming Liu
- Department of Electrical Engineering and Computer Science (EECS) at Case Western Reserve University in Cleveland, OH, USA
| | - M Cenk Çavuşoğlu
- Department of Electrical Engineering and Computer Science (EECS) at Case Western Reserve University in Cleveland, OH, USA
| |
Collapse
|
21
|
Lillaney PV, Yang JK, Losey AD, Martin AJ, Cooke DL, Thorne BRH, Barry DC, Chu A, Stillson C, Do L, Arenson RL, Saeed M, Wilson MW, Hetts SW. Endovascular MR-guided Renal Embolization by Using a Magnetically Assisted Remote-controlled Catheter System. Radiology 2016; 281:219-28. [PMID: 27019290 DOI: 10.1148/radiol.2016152036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose To assess the feasibility of a magnetically assisted remote-controlled (MARC) catheter system under magnetic resonance (MR) imaging guidance for performing a simple endovascular procedure (ie, renal artery embolization) in vivo and to compare with x-ray guidance to determine the value of MR imaging guidance and the specific areas where the MARC system can be improved. Materials and Methods In concordance with the Institutional Animal Care and Use Committee protocol, in vivo renal artery navigation and embolization were tested in three farm pigs (mean weight 43 kg ± 2 [standard deviation]) under real-time MR imaging at 1.5 T. The MARC catheter device was constructed by using an intramural copper-braided catheter connected to a laser-lithographed saddle coil at the distal tip. Interventionalists controlled an in-room cart that delivered electrical current to deflect the catheter in the MR imager. Contralateral kidneys were similarly embolized under x-ray guidance by using standard clinical catheters and guidewires. Changes in renal artery flow and perfusion were measured before and after embolization by using velocity-encoded and perfusion MR imaging. Catheter navigation times, renal parenchymal perfusion, and renal artery flow rates were measured for MR-guided and x-ray-guided embolization procedures and are presented as means ± standard deviation in this pilot study. Results Embolization was successful in all six kidneys under both x-ray and MR imaging guidance. Mean catheterization time with MR guidance was 93 seconds ± 56, compared with 60 seconds ± 22 for x-ray guidance. Mean changes in perfusion rates were 4.9 au/sec ± 0.8 versus 4.6 au/sec ± 0.6, and mean changes in renal flow rate were 2.1 mL/min/g ± 0.2 versus 1.9 mL/min/g ± 0.2 with MR imaging and x-ray guidance, respectively. Conclusion The MARC catheter system is feasible for renal artery catheterization and embolization under real-time MR imaging in vivo, and quantitative physiologic measures under MR imaging guidance were similar to those measured under x-ray guidance, suggesting that the MARC catheter system could be used for endovascular procedures with interventional MR imaging. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Prasheel V Lillaney
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Jeffrey K Yang
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Aaron D Losey
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Alastair J Martin
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Daniel L Cooke
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Bradford R H Thorne
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - David C Barry
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Andrew Chu
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Carol Stillson
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Loi Do
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Ronald L Arenson
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Maythem Saeed
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Mark W Wilson
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| | - Steven W Hetts
- From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry St, Suite 350, Room 320, San Francisco, CA 94107-5705 (P.V.L., J.K.Y., A.D.L., A.J.M., D.L.C., B.R.H.T., C.S., L.D., R.L.A., M.S., M.W.W., S.W.H.); and Penumbra, Alameda, Calif (D.C.B., A.C.)
| |
Collapse
|
22
|
Hascoët S, Warin-Fresse K, Baruteau AE, Hadeed K, Karsenty C, Petit J, Guérin P, Fraisse A, Acar P. Cardiac imaging of congenital heart diseases during interventional procedures continues to evolve: Pros and cons of the main techniques. Arch Cardiovasc Dis 2016; 109:128-42. [DOI: 10.1016/j.acvd.2015.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022]
|
23
|
Mazal JR, Rogers T, Schenke WH, Faranesh AZ, Hansen M, O'Brien K, Ratnayaka K, Lederman RJ. Interventional-Cardiovascular MR: Role of the Interventional MR Technologist. Radiol Technol 2016; 87:261-70. [PMID: 26721838 PMCID: PMC4724808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
BACKGROUND Interventional-cardiovascular magnetic resonance (iCMR) is a promising clinical tool for adults and children who need a comprehensive hemodynamic catheterization of the heart. Magnetic resonance (MR) imaging-guided cardiac catheterization offers radiation-free examination with increased soft tissue contrast and unconstrained imaging planes for catheter guidance. The interventional MR technologist plays an important role in the care of patients undergoing such procedures. It is therefore helpful for technologists to understand the unique iCMR preprocedural preparation, procedural and imaging workflows, and management of emergencies. The authors report their team's experience from the National Institutes of Health Clinical Center and a collaborating pediatric site.
Collapse
|
24
|
Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom. Int J Comput Assist Radiol Surg 2015; 11:1537-45. [PMID: 26704372 DOI: 10.1007/s11548-015-1337-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/08/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE To facilitate MRI-guided catheterization procedures, we present an MRI-compatible remote catheter navigation system that allows remote navigation of steerable catheters with 3 degrees of freedom. METHODS The system consists of a user interface (master), a robot (slave), and an ultrasonic motor control servomechanism. The interventionalist applies conventional motions (axial, radial and plunger manipulations) on an input catheter in the master unit; this user input is measured and used by the servomechanism to control a compact catheter manipulating robot, such that it replicates the interventionalist's input motion on the patient catheter. The performance of the system was evaluated in terms of MRI compatibility (SNR and artifact), feasibility of remote navigation under real-time MRI guidance, and motion replication accuracy. RESULTS Real-time MRI experiments demonstrated that catheter was successfully navigated remotely to desired target references in all 3 degrees of freedom. The system had an absolute value error of [Formula: see text]1 mm in axial catheter motion replication over 30 mm of travel and [Formula: see text] for radial catheter motion replication over [Formula: see text]. The worst case SNR drop was observed to be [Formula: see text]3 %; the robot did not introduce any artifacts in the MR images. CONCLUSION An MRI-compatible compact remote catheter navigation system has been developed that allows remote navigation of steerable catheters with 3 degrees of freedom. The proposed system allows for safe and accurate remote catheter navigation, within conventional closed-bore scanners, without degrading MR image quality.
Collapse
|
25
|
Campbell-Washburn AE, Rogers T, Basar B, Sonmez M, Kocaturk O, Lederman RJ, Hansen MS, Faranesh AZ. Positive contrast spiral imaging for visualization of commercial nitinol guidewires with reduced heating. J Cardiovasc Magn Reson 2015; 17:114. [PMID: 26695490 PMCID: PMC4688983 DOI: 10.1186/s12968-015-0219-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/09/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND CMR-guidance has the potential to improve tissue visualization during cardiovascular catheterization procedures and to reduce ionizing radiation exposure, but a lack of commercially available CMR guidewires limits widespread adoption. Standard metallic guidewires are considered to be unsafe in CMR due to risks of RF-induced heating. Here, we propose the use of RF-efficient gradient echo (GRE) spiral imaging for reduced guidewire heating (low flip angle, long readout), in combination with positive contrast for guidewire visualization. METHODS A GRE spiral sequence with 8 interleaves was used for imaging. Positive contrast was achieved using through-slice dephasing such that the guidewire appeared bright and the background signal suppressed. Positive contrast images were interleaved with anatomical images, and real-time image processing was used to produce a color overlay of the guidewire on the anatomy. Temperature was measured with a fiber-optic probe attached to the guidewire in an acrylic gel phantom and in vivo. RESULTS Left heart catheterization was performed on swine using the real-time color overlay for procedural guidance with a frame rate of 6.25 frames/second. Using our standard Cartesian real-time imaging (flip angle 60°), temperature increases up to 50 °C (phantom) and 4 °C (in vivo) were observed. In comparison, spiral GRE images (8 interleaves, flip angle 10°) generated negligible heating measuring 0.37 °C (phantom) and 0.06 °C (in vivo). CONCLUSIONS The ability to use commercial metallic guidewires safely during CMR-guided catheterization could potentially expedite clinical translation of these methods.
Collapse
Affiliation(s)
- Adrienne E Campbell-Washburn
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Toby Rogers
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Burcu Basar
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
| | - Merdim Sonmez
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Ozgur Kocaturk
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
| | - Robert J Lederman
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Michael S Hansen
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Anthony Z Faranesh
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Etezadi-Amoli M, Stang P, Kerr A, Pauly J, Scott G. Controlling radiofrequency-induced currents in guidewires using parallel transmit. Magn Reson Med 2015; 74:1790-802. [PMID: 25521751 PMCID: PMC4470871 DOI: 10.1002/mrm.25543] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE Elongated conductors, such as pacemaker leads, neurostimulator leads, and conductive guidewires used for interventional procedures can couple to the MRI radiofrequency (RF) transmit field, potentially causing dangerous tissue heating. The purpose of this study was to demonstrate the feasibility of using parallel transmit to control induced RF currents in elongated conductors, thereby reducing the RF heating hazard. METHODS Phantom experiments were performed on a four-channel parallel transmit system at 1.5T. Parallel transmit "null mode" excitations that induce minimal wire current were designed using coupling measurements derived from axial B1 (+) maps. The resulting current reduction performance was evaluated with B1 (+) maps, current sensor measurements, and fluoroptic temperature probe measurements. RESULTS Null mode excitations reduced the maximum coupling mode current by factors ranging from 2 to 80. For the straight wire experiment, a current null imposed at a single wire location was sufficient to reduce tip heating below detectable levels. For longer insertion lengths and a curved geometry, imposing current nulls at two wire locations resulted in more distributed current reduction along the wire length. CONCLUSION Parallel transmit can be used to create excitations that induce minimal RF current in elongated conductors, thereby decreasing the RF heating risk, while still allowing visualization of the surrounding volume.
Collapse
Affiliation(s)
- Maryam Etezadi-Amoli
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pascal Stang
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Adam Kerr
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - John Pauly
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Greig Scott
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
27
|
Schmidt EJ. Magnetic Resonance Imaging-Guided Cardiac Interventions. Magn Reson Imaging Clin N Am 2015; 23:563-77. [PMID: 26499275 DOI: 10.1016/j.mric.2015.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Performing intraoperative cardiovascular procedures inside an MR imaging scanner can potentially provide substantial advantage in clinical outcomes by reducing the risk and increasing the success rate relative to the way such procedures are performed today, in which the primary surgical guidance is provided by X-ray fluoroscopy, by electromagnetically tracked intraoperative devices, and by ultrasound. Both noninvasive and invasive cardiologists are becoming increasingly familiar with the capabilities of MR imaging for providing anatomic and physiologic information that is unequaled by other modalities. As a result, researchers began performing animal (preclinical) interventions in the cardiovascular system in the early 1990s.
Collapse
Affiliation(s)
- Ehud J Schmidt
- Radiology Department, Brigham and Women's Hospital, 221 Longwood Avenue, Room BRB 34C, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Campbell-Washburn AE, Faranesh AZ, Lederman RJ, Hansen MS. Magnetic Resonance Sequences and Rapid Acquisition for MR-Guided Interventions. Magn Reson Imaging Clin N Am 2015; 23:669-79. [PMID: 26499283 DOI: 10.1016/j.mric.2015.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interventional MR uses rapid imaging to guide diagnostic and therapeutic procedures. One of the attractions of MR-guidance is the abundance of inherent contrast mechanisms available. Dynamic procedural guidance with real-time imaging has pushed the limits of MR technology, demanding rapid acquisition and reconstruction paired with interactive control and device visualization. This article reviews the technical aspects of real-time MR sequences that enable MR-guided interventions.
Collapse
Affiliation(s)
- Adrienne E Campbell-Washburn
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room B1D416, Bethesda, MD 20892, USA.
| | - Anthony Z Faranesh
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 2C713, Bethesda, MD 20892, USA
| | - Robert J Lederman
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 2C713, Bethesda, MD 20892, USA
| | - Michael S Hansen
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Building 10, Room B1D416, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Campbell-Washburn AE, Rogers T, Xue H, Hansen MS, Lederman RJ, Faranesh AZ. Dual echo positive contrast bSSFP for real-time visualization of passive devices during magnetic resonance guided cardiovascular catheterization. J Cardiovasc Magn Reson 2014; 16:88. [PMID: 25359137 PMCID: PMC4210610 DOI: 10.1186/s12968-014-0088-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/08/2014] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) guided cardiovascular catheterizations can potentially reduce ionizing radiation exposure and enable new interventions. Commercially available paramagnetic X-Ray devices create a small signal void in CMR images, which is ambiguous and insufficient to guide catheterization procedures. This work aims to improve real-time CMR of off-the-shelf X-Ray devices by developing a real-time positive contrast sequence with color overlay of the device onto anatomy. METHODS A dual-echo bSSFP sequence was used to generate both a dephased positive contrast image and bSSFP image simultaneously. A variable flip angle scheme was implemented to reduce the specific absorption rate (SAR) and hence device heating. Image processing was used to isolate the device from background signal, and the device was overlaid in color on the anatomy, mimicking active device visualization. Proof-of-concept experiments were performed using a commercially available nitinol guidewire for left heart catheterization in Yorkshire swine. RESULTS The dual echo pulse sequence generated a temporal resolution of 175 ms (5.7 frames/second) with GRAPPA acceleration factor 4. Image processing was performed in real-time and color overlay of the device on the anatomy was displayed to the operator with no latency. The color overlay accurately depicted the guidewire location, with minimal background contamination, during left heart catheterization. CONCLUSIONS The ability to effectively visualize commercially available X-Ray devices during CMR-guided cardiovascular catheterizations, combined with safe low-SAR pulse sequences, could potentially expedite the clinical translation of interventional CMR.
Collapse
Affiliation(s)
- Adrienne E Campbell-Washburn
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Toby Rogers
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Hui Xue
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Michael S Hansen
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Robert J Lederman
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anthony Z Faranesh
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
30
|
Wireless mobile technology to improve workflow and feasibility of MR-guided percutaneous interventions. Int J Comput Assist Radiol Surg 2014; 10:665-76. [PMID: 25179151 DOI: 10.1007/s11548-014-1109-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/10/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE A wireless interactive display and control device combined with a platform-independent web-based user interface (UI) was developed to improve the workflow for interventional magnetic resonance imaging (iMRI). METHODS The iMRI-UI enables image acquisition of up to three independent slices using various pulse sequences with different contrast weighting. Pulse sequence, scan geometry and related parameters can be changed on the fly via the iMRI-UI using a tablet computer for improved lesion detection and interventional device targeting. The iMRI-UI was validated for core biopsies with a liver phantom ([Formula: see text] [Formula: see text] 40) and Thiel soft-embalmed human cadavers ([Formula: see text] [Formula: see text] 24) in a clinical 1.5T MRI scanner. RESULTS The iMRI-UI components and setup were tested and found conditionally MRI-safe to use according to current ASTM standards. Despite minor temporary touch screen interference at a close distance to the bore ([Formula: see text]20 cm), no other issues regarding quality or imaging artefacts were observed. The 3D root-mean-square distance error was [Formula: see text] (phantom)/[Formula: see text] mm (cadaver), and overall procedure times ranged between 12 and 22 (phantom)/20 and 55 min (cadaver). CONCLUSION The wireless iMRI-UI control setup enabled fast and accurate interventional biopsy needle placements along complex trajectories and improved the workflow for percutaneous interventions under MRI guidance in a preclinical trial.
Collapse
|
31
|
Tümer M, Sarioglu B, Mutlu S, Ulgen Y, Yalcinkaya A, Ozturk C. Using a low-amplitude RF pulse at echo time (LARFET) for device localization in MRI. Med Biol Eng Comput 2014; 52:885-94. [PMID: 25173518 DOI: 10.1007/s11517-014-1184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 08/13/2014] [Indexed: 11/28/2022]
Abstract
We describe a new method for frequency down-conversion of MR signals acquired with the radio-frequency projections method for device localization. A low-amplitude, off-center RF pulse applied simultaneously with the echo signal is utilized as the reference for frequency down-conversion. Because of the low-amplitude and large offset from the Larmor frequency, the RF pulse minimally interfered with magnetic resonance of protons. We conducted an experiment with the coil placed at different positions to verify this concept. The down-converted signal was transformed into optical signal and transmitted via fiber-optic cable to a receiver unit placed outside the scanner room. The position of the coil could then be determined by the frequency analysis of this down-converted signal and superimposed on previously acquired MR images for comparison. Because of minimal positional errors (≤ 0.8 mm), this new device localization method may be adequate for most interventional MRI applications.
Collapse
Affiliation(s)
- Murat Tümer
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey,
| | | | | | | | | | | |
Collapse
|
32
|
Rube MA, Fernandez-Gutierrez F, Cox BF, Holbrook AB, Houston JG, White RD, McLeod H, Fatahi M, Melzer A. Preclinical feasibility of a technology framework for MRI-guided iliac angioplasty. Int J Comput Assist Radiol Surg 2014; 10:637-50. [PMID: 25102933 DOI: 10.1007/s11548-014-1102-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/02/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE Interventional MRI has significant potential for image guidance of iliac angioplasty and related vascular procedures. A technology framework with in-room image display, control, communication and MRI-guided intervention techniques was designed and tested for its potential to provide safe, fast and efficient MRI-guided angioplasty of the iliac arteries. METHODS A 1.5-T MRI scanner was adapted for interactive imaging during endovascular procedures using new or modified interventional devices such as guidewires and catheters. A perfused vascular phantom was used for testing. Pre-, intra- and post-procedural visualization and measurement of vascular morphology and flow was implemented. A detailed analysis of X-ray fluoroscopic angiography workflow was conducted and applied. Two interventional radiologists and one physician in training performed 39 procedures. All procedures were timed and analyzed. RESULTS MRI-guided iliac angioplasty procedures were successfully performed with progressive adaptation of techniques and workflow. The workflow, setup and protocol enabled a reduction in table time for a dedicated MRI-guided procedure to 6 min 33 s with a mean procedure time of 9 min 2 s, comparable to the mean procedure time of 8 min 42 s for the standard X-ray-guided procedure. CONCLUSIONS MRI-guided iliac vascular interventions were found to be feasible and practical using this framework and optimized workflow. In particular, the real-time flow analysis was found to be helpful for pre- and post-interventional assessments. Design optimization of the catheters and in vivo experiments are required before clinical evaluation.
Collapse
Affiliation(s)
- Martin A Rube
- Division of Imaging and Technology, Institute for Medical Science and Technology, University of Dundee, Wilson House, 1 Wurzburg Loan, Dundee, DD2 1FD, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pushparajah K, Tzifa A, Razavi R. Cardiac MRI catheterization: a 10-year single institution experience and review. Interv Cardiol 2014. [DOI: 10.2217/ica.14.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Etezadi-Amoli M, Stang P, Kerr A, Pauly J, Scott G. Interventional device visualization with toroidal transceiver and optically coupled current sensor for radiofrequency safety monitoring. Magn Reson Med 2014; 73:1315-27. [PMID: 24691876 DOI: 10.1002/mrm.25187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE The development of catheters and guidewires that are safe from radiofrequency (RF) -induced heating and clearly visible against background tissue is a major challenge in interventional MRI. An interventional imaging approach using a toroidal transmit-receive (transceive) coil is presented. This toroidal transceiver allows controlled, low levels of RF current to flow in the catheter/guidewire for visualization, and can be used with conductive interventional devices that have a localized low-impedance tip contact. METHODS Toroidal transceivers were built, and phantom experiments were performed to quantify transmit power levels required for device visibility and to detect heating hazards. Imaging experiments in a pig cadaver tested the extendibility to higher field strength and nonphantom settings. A photonically powered optically coupled toroidal current sensor for monitoring induced RF currents was built, calibrated, and tested using an independent image-based current estimation method. RESULTS Results indicate that high signal-to-noise ratio visualization is achievable using milliwatts of transmit power-power levels orders of magnitude lower than levels that induce measurable heating in phantom tests. Agreement between image-based current estimates and RF current sensor measurements validates sensor accuracy. CONCLUSION The toroidal transceiver, integrated with power and current sensing, could offer a promising platform for safe and effective interventional device visualization.
Collapse
Affiliation(s)
- Maryam Etezadi-Amoli
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | | | | | | | |
Collapse
|
35
|
Losey AD, Lillaney P, Martin AJ, Cooke DL, Wilson MW, Thorne BRH, Sincic RS, Arenson RL, Saeed M, Hetts SW. Magnetically assisted remote-controlled endovascular catheter for interventional MR imaging: in vitro navigation at 1.5 T versus X-ray fluoroscopy. Radiology 2014; 271:862-9. [PMID: 24533872 DOI: 10.1148/radiol.14132041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. MATERIALS AND METHODS The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. RESULTS The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. CONCLUSION In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization under MR imaging guidance and was comparable to standard x-ray guidance.
Collapse
Affiliation(s)
- Aaron D Losey
- From the Department of Radiology and Biomedical Imaging, School of Medicine, University of California-San Francisco, 185 Berry St, Suite 350, Campus Box 0946, San Francisco, CA 94107-5705
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cannan C, Friedrich MG. Cardiac magnetic resonance imaging: current status and future directions. Expert Rev Cardiovasc Ther 2014; 8:1175-89. [DOI: 10.1586/erc.10.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Winter L, Özerdem C, Hoffmann W, Santoro D, Müller A, Waiczies H, Seemann R, Graessl A, Wust P, Niendorf T. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla. PLoS One 2013; 8:e61661. [PMID: 23613896 PMCID: PMC3632575 DOI: 10.1371/journal.pone.0061661] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
Abstract
This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device.
Collapse
Affiliation(s)
- Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Celal Özerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Werner Hoffmann
- Metrology in Medicine, Physikalisch Technische Bundesanstalt, Berlin, Germany
| | - Davide Santoro
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Alexander Müller
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Helmar Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Reiner Seemann
- Metrology in Medicine, Physikalisch Technische Bundesanstalt, Berlin, Germany
| | - Andreas Graessl
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Peter Wust
- Clinic for Radiation Oncology, CVK, Charité Universitätsmedizin Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- * E-mail:
| |
Collapse
|
38
|
Celik H, Mahcicek DI, Senel OK, Wright GA, Atalar E. Tracking the position and rotational orientation of a catheter using a transmit array system. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:809-817. [PMID: 23412592 DOI: 10.1109/tmi.2013.2247047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new method for detecting the rotational orientation and tracking the position of an inductively coupled radio frequency (ICRF) coil using a transmit array system is proposed. The method employs a conventional body birdcage coil, but the quadrature hybrid is eliminated so that the two excitation channels can be used separately. The transmit array system provides RF excitations such that the body birdcage coil creates linearly polarized and changing RF pulses instead of a conventional rotational forward-polarized excitation. The receive coils and their operations are not modified. Inductively coupled RF coils are constructed on catheters for detecting rotational orientation and for tracking purposes. Signals from the anatomy and from tissue close to the ICRF coil are different due to the new RF excitation scheme: the ICRF coil can be separated from the anatomy in real time, and after doing so, a color-coded image is reconstructed. More importantly, this novel method enables a real-time calculation of the absolute rotational orientation of an ICRF coil constructed on a catheter. Modified FLASH and TrueFISP sequences are used for the experiments. The acquired images from this technique show the feasibility of different applications, such as catheter tracking. Furthermore, applications where knowledge of the rotational orientation of the catheter is important, such as magnetic resonance-guided endoluminal-focused ultrasound, RF ablation, side-looking optical imaging, and catheters with side ports for needles, become feasible with this method.
Collapse
Affiliation(s)
- Haydar Celik
- Electrical and Electronics Engineering Department, Bilkent University, TR-06800 Ankara, Turkey.
| | | | | | | | | |
Collapse
|
39
|
Tavallaei MA, Thakur Y, Haider S, Drangova M. A Magnetic-Resonance-Imaging-Compatible Remote Catheter Navigation System. IEEE Trans Biomed Eng 2013. [DOI: 10.1109/tbme.2012.2229709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Hahn T, Kozerke S, Schwizer W, Fried M, Boesiger P, Steingoetter A. Real-time multipoint gastrointestinal 19-fluorine catheter tracking. Magn Reson Med 2013; 71:302-7. [PMID: 23400935 DOI: 10.1002/mrm.24654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/28/2012] [Accepted: 12/28/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop MR based real-time gastrointestinal 19-Fluorine (19F) catheter tracking and visualization allowing for real-time detection and feedback of 3D catheter shape and movement as well as catheter-driven adjustments of 1H imaging geometry parameters. METHODS Data were acquired on a 3T clinical system using 3D Golden Angle radial sampling. Two gastrointestinal catheters incorporating four fiducial 19F markers (65 or 50 µL marker volume) were tracked while being pulled through a gel phantom by an operator inside the MR room with velocities of 2-18 mm/s. During continuous acquisition, k-space profiles were transferred in real-time to an external computer for concurrent reconstruction of 3D 19F images and detection and visualization of marker positions. Based on αthe marker positions, automatic adjustments of 1H imaging planes to facilitate targeted anatomical scanning was implemented. RESULTS Mean tracking reliabilities were 94.5 and 83.6% (catheters 1 and 2) for temporal resolutions 185-740 ms. Reconstruction times of 196 ms were achieved. Real-time visual feedback allowed the operator to accurately control the catheter movement. Catheter-guidance for 1H imaging was reliable. CONCLUSION The presented real-time 19F MR based framework for the tracking of 19F labeled devices is applicable to combined 19F and 1H MRI guidance of gastrointestinal devices in vivo.
Collapse
Affiliation(s)
- Tobias Hahn
- Institute for Biomedical Engineering, University and ETH Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Halabi M, Ratnayaka K, Faranesh AZ, Hansen MS, Barbash IM, Eckhaus MA, Wilson JR, Chen MY, Slack MC, Kocaturk O, Schenke WH, Wright VJ, Lederman RJ. Transthoracic delivery of large devices into the left ventricle through the right ventricle and interventricular septum: preclinical feasibility. J Cardiovasc Magn Reson 2013; 15:10. [PMID: 23331459 PMCID: PMC4174899 DOI: 10.1186/1532-429x-15-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/14/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We aim to deliver large appliances into the left ventricle through the right ventricle and across the interventricular septum. This transthoracic access route exploits immediate recoil of the septum, and lower transmyocardial pressure gradient across the right versus left ventricular free wall. The route may enhance safety and allow subxiphoid rather than intercostal traversal. METHODS The entire procedure was performed under real-time CMR guidance. An "active" CMR needle crossed the chest, right ventricular free wall, and then the interventricular septum to deliver a guidewire then used to deliver an 18Fr introducer. Afterwards, the right ventricular free wall was closed with a nitinol occluder. Immediate closure and late healing of the unrepaired septum and free wall were assessed by oximetry, angiography, CMR, and necropsy up to four weeks afterwards. RESULTS The procedure was successful in 9 of 11 pigs. One failed because of refractory ventricular fibrillation upon needle entry, and the other because of inadequate guidewire support. In all ten attempts, the right ventricular free wall was closed without hemopericardium. There was neither immediate nor late shunt on oximetry, X-ray angiography, or CMR. The interventricular septal tract fibrosed completely. Transventricular trajectories planned on human CT scans suggest comparable intracavitary working space and less acute entry angles than a conventional atrial transseptal approach. CONCLUSION Large closed-chest access ports can be introduced across the right ventricular free wall and interventricular septum into the left ventricle. The septum recoils immediately and heals completely without repair. A nitinol occluder immediately seals the right ventricular wall. The entry angle is more favorable to introduce, for example, prosthetic mitral valves than a conventional atrial transseptal approach.
Collapse
Affiliation(s)
- Majdi Halabi
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
| | - Kanishka Ratnayaka
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
- Department of Cardiology, Children’s National Medical Center, Washington, DC, USA
| | - Anthony Z Faranesh
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
| | - Michael S Hansen
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
| | - Israel M Barbash
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
| | | | - Joel R Wilson
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
| | - Marcus Y Chen
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
| | - Michael C Slack
- Department of Cardiology, Children’s National Medical Center, Washington, DC, USA
| | - Ozgur Kocaturk
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
| | - William H Schenke
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
| | - Victor J Wright
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
| | - Robert J Lederman
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
| |
Collapse
|
42
|
|
43
|
Ratnayaka K, Faranesh AZ, Hansen MS, Stine AM, Halabi M, Barbash IM, Schenke WH, Wright VJ, Grant LP, Kellman P, Kocaturk O, Lederman RJ. Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur Heart J 2012; 34:380-9. [PMID: 22855740 DOI: 10.1093/eurheartj/ehs189] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Real-time MRI creates images with superb tissue contrast that may enable radiation-free catheterization. Simple procedures are the first step towards novel interventional procedures. We aim to perform comprehensive transfemoral diagnostic right heart catheterization in an unselected cohort of patients entirely using MRI guidance. METHODS AND RESULTS We performed X-ray and MRI-guided transfemoral right heart catheterization in consecutive patients undergoing clinical cardiac catheterization. We sampled both cavae and both pulmonary arteries. We compared success rate, time to perform key steps, and catheter visibility among X-ray and MRI procedures using air-filled or gadolinium-filled balloon-tipped catheters. Sixteen subjects (four with shunt, nine with coronary artery disease, three with other) underwent paired X-ray and MRI catheterization. Complete guidewire-free catheterization was possible in 15 of 16 under both. MRI using gadolinium-filled balloons was at least as successful as X-ray in all procedure steps, more successful than MRI using air-filled balloons, and better than both in entering the left pulmonary artery. Total catheterization time and individual procedure steps required approximately the same amount of time irrespective of image guidance modality. Catheter conspicuity was best under X-ray and next-best using gadolinium-filled MRI balloons. CONCLUSION In this early experience, comprehensive transfemoral right heart catheterization appears feasible using only MRI for imaging guidance. Gadolinium-filled balloon catheters were more conspicuous than air-filled ones. Further workflow and device enhancement are necessary for clinical adoption.
Collapse
Affiliation(s)
- Kanishka Ratnayaka
- Division of Intramural Research, Cardiovascular and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, Building 10, Room 2c713, MSC 1538, Bethesda, MD 20892-1538, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
George AK, Faranesh AZ, Ratnayaka K, Derbyshire JA, Lederman RJ, Hansen MS. Virtual dye angiography: flow visualization for MRI-guided interventions. Magn Reson Med 2012; 67:1013-21. [PMID: 21858865 PMCID: PMC3223535 DOI: 10.1002/mrm.23078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/26/2011] [Accepted: 06/11/2011] [Indexed: 11/11/2022]
Abstract
In magnetic resonance imaging-guided cardiovascular interventional procedures, it is valuable to be able to visualize blood flow immediately and interactively in selected regions. In particular, it is useful to assess normal or pathological communications between specific heart chambers and vessels. Phase-contrast velocity mapping is not suitable for this purpose as it requires too much data and is not capable of determining directly if blood originating in one location travels to a nearby location. This article presents a novel flow visualization method called virtual dye angiography that enables visualization of blood flow analogous to selective catheter angiography. The method uses two-dimensional radio frequency pulses to achieve interactive, intermittent, targeted saturation of a localized region of the blood pool. The flow of the saturated spins is observed directly on real-time images or, in an enhanced manner, using ECG synchronized background subtraction. The modular nature of the technique allows for easy and seamless integration into a real-time, interactive imaging system with minimal overhead. We present initial results in animals and in a healthy human volunteer.
Collapse
Affiliation(s)
- Ashvin K George
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
45
|
Bell JA, Saikus CE, Ratnakaya K, Wu V, Sonmez M, Faranesh AZ, Colyer JH, Lederman RJ, Kocaturk O. A deflectable guiding catheter for real-time MRI-guided interventions. J Magn Reson Imaging 2012; 35:908-15. [PMID: 22128071 PMCID: PMC3292659 DOI: 10.1002/jmri.23520] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/26/2011] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. MATERIALS AND METHODS The catheter shaft incorporated Kevlar braiding. A 180° deflection was attained with a 5-cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. RESULTS Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. CONCLUSION Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057" lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements.
Collapse
Affiliation(s)
- Jamie A. Bell
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christina E. Saikus
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Kanishka Ratnakaya
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Cardiology Division, Children’s National Medical Center, Washington, DC
| | - Vincent Wu
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Merdim Sonmez
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Anthony Z. Faranesh
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jessica H. Colyer
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Cardiology Division, Children’s National Medical Center, Washington, DC
| | - Robert J. Lederman
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ozgur Kocaturk
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
46
|
Faletra FF, Regoli F, Acena M, Auricchio A. Value of Real-Time Transesophageal 3-Dimensional Echocardiography in Guiding Ablation of Isthmus-Dependent Atrial Flutter and Pulmonary Vein Isolation. Circ J 2012; 76:5-14. [DOI: 10.1253/circj.cj-11-1040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Marta Acena
- Division of Cardiology, Fondazione Cardiocentro Ticino
| | | |
Collapse
|
47
|
Ratnayaka K, Saikus CE, Faranesh AZ, Bell JA, Barbash IM, Kocaturk O, Reyes CA, Sonmez M, Schenke WH, Wright VJ, Hansen MS, Slack MC, Lederman RJ. Closed-chest transthoracic magnetic resonance imaging-guided ventricular septal defect closure in swine. JACC Cardiovasc Interv 2011; 4:1326-34. [PMID: 22192373 PMCID: PMC3670769 DOI: 10.1016/j.jcin.2011.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/03/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to close ventricular septal defects (VSDs) directly through the chest wall using magnetic resonance imaging (MRI) guidance, without cardiopulmonary bypass, sternotomy, or radiation exposure. BACKGROUND Surgical, percutaneous, and hybrid management of VSD each have limitations and known morbidity. METHODS Percutaneous muscular VSDs were created in 10 naive Yorkshire swine using a transjugular laser catheter. Under real-time MRI guidance, a direct transthoracic vascular access sheath was introduced through the chest into the heart along a trajectory suitable for VSD access and closure. Through this transthoracic sheath, muscular VSDs were occluded using a commercial nitinol device. Finally, the right ventricular free wall was closed using a commercial collagen plug intended for arterial closure. RESULTS Anterior, posterior, and mid-muscular VSDs (6.8 ± 1.8 mm) were created. VSDs were closed successfully in all animals. The transthoracic access sheath was displaced in 2, both fatal. Thereafter, we tested an intracameral retention sheath to prevent this complication. Right ventricular access ports were closed successfully in all, and after as many as 30 days, healed successfully. CONCLUSIONS Real-time MRI guidance allowed closed-chest transthoracic perventricular muscular VSD closure in a clinically meaningful animal model. Once applied to patients, this approach may avoid traditional surgical, percutaneous, or open-chest transcatheter ("hybrid") risks.
Collapse
Affiliation(s)
- Kanishka Ratnayaka
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Cardiology Division, Children’s National Medical Center, Washington, DC
| | - Christina E. Saikus
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Anthony Z. Faranesh
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jamie A. Bell
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Israel M. Barbash
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Ozgur Kocaturk
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Merdim Sonmez
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - William H. Schenke
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Victor J. Wright
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael S. Hansen
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael C. Slack
- Cardiology Division, Children’s National Medical Center, Washington, DC
| | - Robert J. Lederman
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
48
|
Anders J, SanGiorgio P, Deligianni X, Santini F, Scheffler K, Boero G. Integrated active tracking detector for MRI-guided interventions. Magn Reson Med 2011; 67:290-6. [DOI: 10.1002/mrm.23112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/25/2011] [Accepted: 06/29/2011] [Indexed: 12/19/2022]
|
49
|
Celik H, Atalar E. Reverse polarized inductive coupling to transmit and receive radiofrequency coil arrays. Magn Reson Med 2011; 67:446-56. [PMID: 21656566 DOI: 10.1002/mrm.23030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 04/25/2011] [Accepted: 05/05/2011] [Indexed: 11/07/2022]
Abstract
In this study, the reverse polarization method is implemented using transmit and receive arrays to improve the visibility of the interventional devices. Linearly polarized signal sources--inductively and receptively coupled radiofrequency coils--are used in the experimental setups to demonstrate the ability of the method to separate these sources from a forward polarized anatomy signal. Two different applications of the reverse polarization method are presented here: (a) catheter tracking and (b) fiducial marker visualization, in both of which transmit and receive arrays are used. The performance of the reverse polarization method was further tested with phantom and volunteer studies, and the results proved the feasibility of this method with transmit and receive arrays.
Collapse
Affiliation(s)
- Haydar Celik
- National Research Center for Magnetic Resonance (UMRAM), Bilkent University, Ankara, Turkey
| | | |
Collapse
|
50
|
Kurita T, Kuroda K, Ohsaka T. Magnetic Resonance-visible Coating for Endovascular Device Visualization: Gadolinium(III)–Diethylenetriaminepentaacetic Acid-based Insoluble Polymer Coating. CHEM LETT 2010. [DOI: 10.1246/cl.2010.1305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|