1
|
Bijle MN, Sharaf D, Bahdar MAM, Daood U, Yiu C. Preventive potential of arginine incorporated in fancy waters for erosive tooth wear. J Dent 2025; 153:105500. [PMID: 39626842 DOI: 10.1016/j.jdent.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/17/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVE(S) The aim of the study was to examine the potential of arginine (Arg)-enriched fancy waters in preventing erosive tooth wear. METHODS L-arginine (2 % w/v.) was added to five commercial fancy waters: Oasis-Lemon, Oasis-Lemon Mint, Perrier-Lemon, Perrier-Grapefruit, Pellegrino-Lemon; and deionized water served as a negative control. The pH, buffer capacity of added Arg, and F- concentrations were measured. Tooth specimens were prepared and baseline volumetric assessment (T0) was conducted using micro-CT. Subsequently, the specimens were immersed in fancy waters for 72 h, kept in an incubator (37 ℃) and solutions were changed every 24 h. After the experimental cycle (T1), 3D volumetric analysis was performed, and 3D structural images were reconstructed for qualitative assessment. RESULTS The pH and F- concentrations of fancy waters with Arg were significantly higher than the control (p < 0.001). The buffer capacity of added Arg with Perrier-Grapefruit was significantly higher than Oasis-Lemon, Oasis-Lemon Mint & Pellegrino-Lemon (p < 0.05), except for Perrier-Lemon (p > 0.05). At T1, the specimen volume in Oasis-Lemon Mint (+/- Arg) and Pellegrino-Lemon (control) was significantly lower than T0 (p < 0.05). At T1, the specimen volume of Oasis-Lemon Mint and Pellegrino-Lemon (control) was significantly lower than Arg-containing fancy waters (p < 0.05). Surface contrast indicating wear was evident from T0 to T1 in specimens from the Oasis-Lemon Mint (+/- Arg) and Pellegrino-Lemon (- Arg). CONCLUSION Incorporating Arg in fancy waters reduces the potential of erosive tooth wear associated with these beverages. CLINICAL SIGNIFICANCE Consuming fancy water beverages (flavoured sparkling/carbonated) can lead to erosive tooth wear in young people. Incorporating Arg in fancy water beverages can prevent the erosive wear potential of these beverages while alleviating the burden of oral care on individuals at risk to erosive wear.
Collapse
Affiliation(s)
- Mohammed Nadeem Bijle
- Dr D Y Patil Dental College & Hospital, Dr D Y Patil Vidyapeeth, Pune, Maharashtra, India.
| | - Dalya Sharaf
- College of Dentistry, Ajman University, Ajman, United Arab Emirates.
| | | | - Umer Daood
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia.
| | - Cynthia Yiu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
2
|
KIANI AYSHAKARIM, BONETTI GABRIELE, MEDORI MARIACHIARA, CARUSO PAOLA, MANGANOTTI PAOLO, FIORETTI FRANCESCO, NODARI SAVINA, CONNELLY STEPHENTHADDEUS, BERTELLI MATTEO. Dietary supplements for improving nitric-oxide synthesis. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E239-E245. [PMID: 36479475 PMCID: PMC9710401 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an essential component of the human body, involved in blood vessel dilation, stimulation of hormone release, signaling and regulation of neurotransmission. Nitric oxide is synthesized by nitric-oxide-synthase-dependent and -independent pathways. Nitric oxide supplementation improves cardiac health, enhances performance during exercise, reduces high blood pressure during pregnancy, reduces erectile dysfunction and improves healing processes and respiratory response. Nitric-oxide-associated benefits are mostly apparent in untrained or moderately trained individuals. L-arginine and L-citrulline supplementation contributes to nitric oxide levels because L-arginine is directly involved in NO synthesis, whereas L-citrulline acts as an L-arginine precursor that is further converted to NO by a reaction catalyzed by NO synthase. L-arginine supplements increase respiratory response and enhance performance during exercise, while L-citrulline with malate and other molecules increase working capacity. Various studies involving beetroot juice have reported a significant increase in plasma nitrite levels, regarded as markers of NO, after intake of beetroot juice. Although NO supplementation may have mild to moderate side-effects, using smaller or divided doses could avoid some of these side-effects. Since nitric oxide supplementation may worsen certain health conditions and may interfere with certain medicines, it should only be taken under medical supervision.
Collapse
Affiliation(s)
| | | | | | - PAOLA CARUSO
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - PAOLO MANGANOTTI
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - FRANCESCO FIORETTI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | - SAVINA NODARI
- Department of Cardiology, University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy
| | | | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
3
|
Rezaei S, Gholamalizadeh M, Tabrizi R, Nowrouzi-Sohrabi P, Rastgoo S, Doaei S. The effect of L-arginine supplementation on maximal oxygen uptake: A systematic review and meta-analysis. Physiol Rep 2021; 9:e14739. [PMID: 33587327 PMCID: PMC7883807 DOI: 10.14814/phy2.14739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Background The efficacy and safety of L‐arginine supplements and their effect on maximal oxygen uptake (VO2 max) remained unclear. This systematic review aimed to investigate the effect of L‐arginine supplementation (LAS) on VO2 max in healthy people. Methods We searched PubMed, Scopus, Web of Science, Cochrane, Embase, ProQuest, and Ovid to identify all relevant literature investigating the effect of LAS on VO2 max. This meta‐analysis was conducted via a random‐effects model for the best estimation of desired outcomes and studies that meet the inclusion criteria were considered for the final analysis. Results The results of 11 randomized clinical trials indicated that LAS increased VO2 max compared to the control group. There was no significant heterogeneity in this meta‐analysis. Subgroup analysis detected that arginine in the form of LAS significantly increased VO2 max compared to the other forms (weighted mean difference = 0.11 L min−1, I2 = 0.0%, p for heterogeneity = 0.485). Conclusions This meta‐analysis indicated that supplementation with L‐arginine could increase VO2 max in healthy people. Further studies are warranted to confirm this finding and to identify the underlying mechanisms. This meta‐analysis indicated that the supplementation of L‐arginine could increase VO2 max in healthy people
Collapse
Affiliation(s)
- Shahla Rezaei
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Tabrizi
- Non-Communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Peyman Nowrouzi-Sohrabi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Rastgoo
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Saeid Doaei
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:167-187. [PMID: 34251644 DOI: 10.1007/978-3-030-74180-8_10] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a functional amino acid (AA), L-arginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginine, and agmatine in mammals (including humans). NO (a major vasodilator) increases blood flow to tissues. Arg and its metabolites play important roles in metabolism and physiology. Arg is required to maintain the urea cycle in the active state to detoxify ammonia. This AA also activates cellular mechanistic target of rapamycin (MTOR) and focal adhesion kinase cell signaling pathways in mammals, thereby stimulating protein synthesis, inhibiting autophagy and proteolysis, enhancing cell migration and wound healing, promoting spermatogenesis and sperm quality, improving conceptus survival and growth, and augmenting the production of milk proteins. Although Arg is formed de novo from glutamine/glutamate and proline in humans, these synthetic pathways do not provide sufficient Arg in infants or adults. Thus, humans and other animals do have dietary needs of Arg for optimal growth, development, lactation, and fertility. Much evidence shows that oral administration of Arg within the physiological range can confer health benefits to both men and women by increasing NO synthesis and thus blood flow in tissues (e.g., skeletal muscle and the corpora cavernosa of the penis). NO is a vasodilator, a neurotransmitter, a regulator of nutrient metabolism, and a killer of bacteria, fungi, parasites, and viruses [including coronaviruses, such as SARS-CoV and SARS-CoV-2 (the virus causing COVID-19). Thus, Arg supplementation can enhance immunity, anti-infectious, and anti-oxidative responses, fertility, wound healing, ammonia detoxification, nutrient digestion and absorption, lean tissue mass, and brown adipose tissue development; ameliorate metabolic syndromes (including dyslipidemia, obesity, diabetes, and hypertension); and treat individuals with erectile dysfunction, sickle cell disease, muscular dystrophy, and pre-eclampsia.
Collapse
|
5
|
Doll J, Bürkle F, Neide A, Tsitlakidis S, Bruckner T, Schmidmaier G, Fischer C. Contrast-enhanced ultrasound for determining muscular perfusion after oral intake of L-citrulline, L-arginine, and galloylated epicatechines: A study protocol. Medicine (Baltimore) 2020; 99:e22318. [PMID: 33031270 PMCID: PMC7544292 DOI: 10.1097/md.0000000000022318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION The market for dietary supplements in the sports sector has been growing rapidly for several years, though there is still lacking evidence regarding their claimed benefits. One group is that of nitric oxide increasing supplements, so-called "NO-boosters," which are claimed to improve the supply of oxygen and nutrients to the muscle by enhancing vasodilation.The aim of this study was to investigate 3 of these supplements in healthy male athletes for their muscle perfusion-enhancing potential using contrast-enhanced ultrasound (CEUS). METHODS This placebo-controlled, double-blind, randomized cross-over trial will be carried out at the Center for Orthopedics, Trauma Surgery and Spinal Cord Injury of the University Hospital Heidelberg. Three commercial NO enhancing products including 300 mg of the specific green tea extract VASO6 and a combination of 8 g L-citrulline malate and 3 g L-arginine hydrochloride will be examined for their potential to increase muscular perfusion in 30-male athletes between 18 and 40 years and will be compared with a placebo. On each of the 3 appointments CEUS of the dominant biceps muscle will be performed at rest and after a standardized resistance training. Every athlete receives each of the 3 supplements once after a wash-out period of at least 1 week. Perfusion will be quantified via VueBox quantification software. The results of CEUS perfusion measurements will be compared intra- and interindividually and correlated with clinical parameters. DISCUSSION The results of this study may help to establish CEUS as a suitable imaging modality for the evaluation of potentially vasodilatory drugs in the field of sports. Other supplements could also be evaluated in this way to verify the content of their advertising claims. TRIAL REGISTRATION German Clinical Trials Register (DRKS), ID: DRKS00016972, registered on 25.03.2019.
Collapse
Affiliation(s)
- Julian Doll
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| | - Franziska Bürkle
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| | - Arndt Neide
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| | - Stefanos Tsitlakidis
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| | - Christian Fischer
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, Ultrasound Center, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital
| |
Collapse
|
6
|
Chaliha DR, Vaccarezza M, Takechi R, Lam V, Visser E, Drummond P, Mamo JCL. A Paradoxical Vasodilatory Nutraceutical Intervention for Prevention and Attenuation of Migraine-A Hypothetical Review. Nutrients 2020; 12:E2487. [PMID: 32824835 PMCID: PMC7468811 DOI: 10.3390/nu12082487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Studies suggest that migraine pain has a vascular component. The prevailing dogma is that peripheral vasoconstriction activates baroreceptors in central, large arteries. Dilatation of central vessels stimulates nociceptors and induces cortical spreading depression. Studies investigating nitric oxide (NO) donors support the indicated hypothesis that pain is amplified when acutely administered. In this review, we provide an alternate hypothesis which, if substantiated, may provide therapeutic opportunities for attenuating migraine frequency and severity. We suggest that in migraines, heightened sympathetic tone results in progressive central microvascular constriction. Suboptimal parenchymal blood flow, we suggest, activates nociceptors and triggers headache pain onset. Administration of NO donors could paradoxically promote constriction of the microvasculature as a consequence of larger upstream central artery vasodilatation. Inhibitors of NO production are reported to alleviate migraine pain. We describe how constriction of larger upstream arteries, induced by NO synthesis inhibitors, may result in a compensatory dilatory response of the microvasculature. The restoration of central capillary blood flow may be the primary mechanism for pain relief. Attenuating the propensity for central capillary constriction and promoting a more dilatory phenotype may reduce frequency and severity of migraines. Here, we propose consideration of two dietary nutraceuticals for reducing migraine risk: L-arginine and aged garlic extracts.
Collapse
Affiliation(s)
- Devahuti Rai Chaliha
- Curtin Health Innovation Research Institute, Curtin University, Kent St., Bentley 6102, Australia; (D.R.C.); (M.V.); (R.T.); (V.L.)
- School of Public Health, Faculty of Health Sciences, Curtin University, Kent St., Bentley 6102, Australia
| | - Mauro Vaccarezza
- Curtin Health Innovation Research Institute, Curtin University, Kent St., Bentley 6102, Australia; (D.R.C.); (M.V.); (R.T.); (V.L.)
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Kent St., Bentley 6102, Australia
| | - Ryu Takechi
- Curtin Health Innovation Research Institute, Curtin University, Kent St., Bentley 6102, Australia; (D.R.C.); (M.V.); (R.T.); (V.L.)
- School of Public Health, Faculty of Health Sciences, Curtin University, Kent St., Bentley 6102, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Kent St., Bentley 6102, Australia; (D.R.C.); (M.V.); (R.T.); (V.L.)
- School of Public Health, Faculty of Health Sciences, Curtin University, Kent St., Bentley 6102, Australia
| | - Eric Visser
- School of Medicine, University of Notre Dame, Fremantle 6160, Australia;
| | - Peter Drummond
- College of Science, Health, Engineering and Education (SHEE), Murdoch University, Murdoch 6150, Australia;
| | - John Charles Louis Mamo
- Curtin Health Innovation Research Institute, Curtin University, Kent St., Bentley 6102, Australia; (D.R.C.); (M.V.); (R.T.); (V.L.)
- School of Public Health, Faculty of Health Sciences, Curtin University, Kent St., Bentley 6102, Australia
| |
Collapse
|
7
|
Esquius L, Segura R, Oviedo GR, Massip-Salcedo M, Javierre C. Effect of Almond Supplementation on Non-Esterified Fatty Acid Values and Exercise Performance. Nutrients 2020; 12:E635. [PMID: 32121011 PMCID: PMC7146300 DOI: 10.3390/nu12030635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/23/2022] Open
Abstract
Several studies have investigated the effects of fat intake before exercise on subsequent substrate oxidation and exercise performance. While some studies have reported that unsaturated fatty acid supplementation slightly increases fat oxidation, the changes have not been reflected in the maximum oxygen uptake or in other performance and physiological parameters. We selected almonds as a fatty acid (FA) source for acute supplementation and investigated their effect on non-esterified fatty acid (NEFA) values and exercise performance. Five physically active male subjects (age 32.9 ± 12.7 years, height 178.5 ± 3.3 cm, and weight 81.3 ± 9.7 kg) were randomly assigned to take an almond or placebo supplement 2 h before participating in two cycling resistance training sessions separated by an interval of 7-10 days. Their performance was evaluated with a maximal incremental test until exhaustion. Blood samples collected before, during, and after testing were biochemically analysed. The results indicated a NEFA value average increase of 0.09 mg·dL-1 (95% CI: 0.05-0.14; p < 0.001) after active supplement intake and enhanced performance (5389 ± 1795 W vs. placebo 4470 ± 2053 W, p = 0.043) after almond supplementation compared to the placebo. The almond supplementation did not cause gastrointestinal disturbances. Our study suggests that acute almond supplementation 2 h before exercise can improve performance in endurance exercise in trained subjects.
Collapse
Affiliation(s)
- Laura Esquius
- Department of Physiological Sciences, Campus of Medicine and Health Sciences of Bellvitge, Universitat de Barcelona (UB), C. Feixa Llarga, s/n, 08907 Hospitalet de Llobregat, Spain; (R.S.); (C.J.)
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Avda, del Tibidabo, 39-43, 08035 Barcelona, Spain;
| | - Ramon Segura
- Department of Physiological Sciences, Campus of Medicine and Health Sciences of Bellvitge, Universitat de Barcelona (UB), C. Feixa Llarga, s/n, 08907 Hospitalet de Llobregat, Spain; (R.S.); (C.J.)
| | - Guillermo R. Oviedo
- Faculty of Psychology, Education and Sport Science-Blanquerna, University Ramon Llull, C. Císter 34, 08022 Barcelona, Spain;
| | - Marta Massip-Salcedo
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Avda, del Tibidabo, 39-43, 08035 Barcelona, Spain;
| | - Casimiro Javierre
- Department of Physiological Sciences, Campus of Medicine and Health Sciences of Bellvitge, Universitat de Barcelona (UB), C. Feixa Llarga, s/n, 08907 Hospitalet de Llobregat, Spain; (R.S.); (C.J.)
| |
Collapse
|
8
|
Gilani N, Haghshenas R, Esmaeili M. Application of multivariate longitudinal models in SIRT6, FBS, and BMI analysis of the elderly. Aging Male 2019; 22:260-265. [PMID: 29901417 DOI: 10.1080/13685538.2018.1477933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective: SIRT6 is a main regulator of metabolism and lifespan and its importance has been implicated in the prevention against aging-related diseases. The objective of this study was to examine the application of multivariate longitudinal models in SIRT6, FBS, and BMI analysis in the elderly men after eight weeks concurrent training with supplementation of l-arginine (l-Arg). Methods: Thirty two elderly men with mean age of 63.09 ± 3.71 years were randomly divided into four equal-sized groups (each n = 8); Exercise + supplement (ES) group; exercise + placebo (EP) group; supplement (S) group and control (C) group. The ES and EP groups performed the eight weeks of concurrent training, three sessions per week. Group ES and group S consumed 1000 mg of l-Arg per day at 8:00 pm. Measurements of biochemical variables were done by ELISA Reader method. For analytical purposes, we used the paired sample t-test and multivariate longitudinal modeling with generalized estimating equation (GEE) methodology. All analyses have been implemented in R-3.4.1. p Values less than .05 were considered statistically significant. Results: With respect to significant association between sirt6, FBS, and BMI, this study showed that synergy effect of training and supplementation was greater than the sum of their individual effects on SIRT6 (β = 0.79, p < .001), FBS (β = -5.56, p = .022), and BMI (β = -3.89; p = .041). Also exercise alone had a significantly larger effect than supplementation alone on responses. Conclusions: It can be concluded that the joint usage of concurrent training and supplement of l-Arg for elderly men could improve the metabolism and body composition.
Collapse
Affiliation(s)
- Neda Gilani
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Rouhollah Haghshenas
- Department of Sport Sciences, Faculty of Humanities, Semnan University , Semnan , Iran
| | - Mahmoud Esmaeili
- Department of Sport Sciences, Faculty of Humanities, Semnan University , Semnan , Iran
| |
Collapse
|
9
|
Perez JM, Dobson JL, Ryan GA, Riggs AJ. The Effects of Beetroot Juice on VO 2max and Blood Pressure during Submaximal Exercise. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2019; 12:332-342. [PMID: 30899343 PMCID: PMC6413851 DOI: 10.70252/dxya1365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Beetroot juice (BR) has been shown to reduce blood pressure (BP) at rest and improve several performance parameters during exercise. However, the effect of BR on BP during submaximal exercise has not been investigated and its effects on VO2max are inconclusive. The purpose of this study was to investigate the effects of BR on VO2max and BP during submaximal exercise. 20 healthy, recreationally trained volunteers (age 21.8±2.35 years, weight 75.10±10.62 kg, height 177.4±6.39 cm) participated in this study, which had a double-blind placebo controlled randomized crossover design. Participants supplemented with either 237 ml servings of placebo or 70 ml BR servings (nitrate concentration of 6.4 mmol/day) for 7 days. Participants completed a ramp treadmill protocol to determine VO2max. BP was taken at 70% max heart rate calculated using the Karvonen method. There was no significant change in VO2max after BR supplementation (51.07±6.12 ml/kg/min) versus placebo (50.46±6.06 ml/kg/min), t(19)=1.41, p=0.17. There was no significant change in either systolic BP after BR supplementation (180.65±23.37 mm Hg) versus placebo (177.65±22.07 mm Hg), t(19)=0.49, p=0.63, or in diastolic BP after BR (92.90±18.89 mm Hg) versus placebo (90.75±17.73 mm Hg), t(19)=0.51, p=0.62. BR did not affect VO2max, nor did it affect BP during submaximal exercise.
Collapse
Affiliation(s)
- Jose M Perez
- Department of Health and Kinesiology, Georgia Southern University, Statesboro, GA, UNITED STATES
| | - John L Dobson
- Department of Health and Kinesiology, Georgia Southern University, Statesboro, GA, UNITED STATES
| | - Gregory A Ryan
- Department of Health and Kinesiology, Georgia Southern University, Statesboro, GA, UNITED STATES
| | - Amy Jo Riggs
- Department of Health and Kinesiology, Georgia Southern University, Statesboro, GA, UNITED STATES
| |
Collapse
|
10
|
Beal FLR, Beal PR, Beal JR, Carvalho-Neves N, Franco OL, Silva ON. Perspectives on the Therapeutic Benefits of Arginine Supplementation in Cancer Treatment. Endocr Metab Immune Disord Drug Targets 2019; 19:913-920. [PMID: 30652655 DOI: 10.2174/1871530319666190116121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Arginine is considered a semi-essential amino acid in healthy adults and the elderly. This amino acid seems to improve the immune system, stimulate cell growth and differentiation, and increase endothelial permeability, among other effects. For those reasons, it has been theorized that arginine supplementation may be used as an adjuvant to conventional cancer therapy treatments. OBJECTIVE This review aims to evaluate the existing knowledge of the scientific community on arginine supplementation in order to improve the efficacy of current cancer treatment. RESULTS Despite the continued efforts of science to improve treatment strategies, cancer remains one of the greatest causes of death on the planet in adults and elderly people. Chemo and radiotherapy are still the most effective treatments but at the cost of significant side effects. CONCLUSION Thus, new therapeutic perspectives have been studied in recent years, to be used in addition to traditional treatments or not, seeking to treat or even cure the various types of cancer with fewer side effects.
Collapse
Affiliation(s)
- Fabiani L R Beal
- Department of Nutrition, Health and Medicine School, Catholic University of Brasilia, UCB, Brasilia, DF, Brazil.,Department of Gerontology, Faculty of Catholic University of Brasilia, Brasilia, UCB, DF, Brazil
| | - Pedro R Beal
- Department of Medicine, Medical College, University of Brasilia, UnB, Brasilia, DF, Brazil
| | - Juliana R Beal
- Oncology Center, Albert Einstein Hospital, Sao Paulo, SP, Brazil
| | - Natan Carvalho-Neves
- Center for Proteomic and Biochemical Analysis, Department of Genomic Sciences and Biotechnology, University Catholic Church of Brasilia, UCB, Brasilia, DF, Brazil
| | - Octávio L Franco
- Center for Proteomic and Biochemical Analysis, Department of Genomic Sciences and Biotechnology, University Catholic Church of Brasilia, UCB, Brasilia, DF, Brazil.,Department of Molecular Pathology, University of Brasilia, Brasilia, UnB, DF, Brazil
| | - Osmar N Silva
- Department of Biotechnology, S-Inova Biotech, University Catholic Don Bosco, UCDB, Campo Grande, MS, Brazil
| |
Collapse
|
11
|
Fonar G, Polis B, Meirson T, Maltsev A, Elliott E, Samson AO. Intracerebroventricular Administration of L-arginine Improves Spatial Memory Acquisition in Triple Transgenic Mice Via Reduction of Oxidative Stress and Apoptosis. Transl Neurosci 2018; 9:43-53. [PMID: 29876138 PMCID: PMC5984558 DOI: 10.1515/tnsci-2018-0009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/01/2018] [Indexed: 12/15/2022] Open
Abstract
Arginine is one of the most versatile semi-essential amino acids. Further to the primary role in protein biosynthesis, arginine is involved in the urea cycle, and it is a precursor of nitric oxide. Arginine deficiency is associated with neurodegenerative diseases such as Parkinson's, Huntington's and Alzheimer's diseases (AD). In this study, we administer arginine intracerebroventricularly in a murine model of AD and evaluate cognitive functions in a set of behavioral tests. In addition, the effect of arginine on synaptic plasticity was tested electrophysiologically by assessment of the hippocampal long-term potentiation (LTP). The effect of arginine on β amyloidosis was tested immunohistochemically. A role of arginine in the prevention of cytotoxicity and apoptosis was evaluated in vitro on PC-12 cells. The results indicate that intracerebroventricular administration of arginine improves spatial memory acquisition in 3xTg-AD mice, however, without significantly reducing intraneuronal β amyloidosis. Arginine shows little or no impact on LTP and does not rescue LTP deterioration induced by Aβ. Nevertheless, arginine possesses neuroprotective and antiapoptotic properties.
Collapse
Affiliation(s)
- Gennadiy Fonar
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Baruh Polis
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Tomer Meirson
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Alexander Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Evan Elliott
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| | - Abraham O Samson
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| |
Collapse
|
12
|
Polis B, Samson AO. Arginase as a Potential Target in the Treatment of Alzheimer’s Disease. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aad.2018.74009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Exercise training reverses the negative effects of chronic L-arginine supplementation on insulin sensitivity. Life Sci 2017; 191:17-23. [DOI: 10.1016/j.lfs.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/24/2017] [Accepted: 10/01/2017] [Indexed: 12/14/2022]
|
14
|
Yavari A, Javadi M, Mirmiran P, Bahadoran Z. Exercise-induced oxidative stress and dietary antioxidants. Asian J Sports Med 2015; 6:e24898. [PMID: 25883776 PMCID: PMC4393546 DOI: 10.5812/asjsm.24898] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/22/2014] [Indexed: 12/23/2022] Open
Abstract
Context: Overproduction of reactive oxygen and nitrogen species during physical exercise, exercise induced oxidative stress and antioxidant supplementation is interesting and controversial concepts that have been considered during the past decades. Evidence Acquisition: In this review, we aimed to summarize current evidence in relation to antioxidant supplementation outcomes during exercise and physical activity. For this aim, we obtained relevant articles through searches of the Medline and PubMed databases between 1980 to 2013. Although major studies have indicated that antioxidants could attenuate biomarkers of exercise-induced oxidative stress and the use of antioxidant supplement is a common phenomenon among athletes and physically active people, there are some doubts regarding the benefits of these. Results: It seems that the best recommendations regarding antioxidants and exercise are having a balanced diet rich in natural antioxidants and phytochemicals. Conclusions: Regular consumption of various fresh fruits and vegetables, whole grains, legumes and beans, sprouts and seeds is an effective and safe way to meet all antioxidant requirements in physically active persons and athletes.
Collapse
Affiliation(s)
- Abbas Yavari
- Department of Physical Education, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Maryam Javadi
- Department of Nutrition, Faculty of Health, Qazvin University of Medical Sciences, Qazvin, IR Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Parvin Mirmiran, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel: +98-2122432500, E-mail:
| | - Zahra Bahadoran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
15
|
Yavuz HU, Turnagol H, Demirel AH. Pre-exercise arginine supplementation increases time to exhaustion in elite male wrestlers. Biol Sport 2014; 31:187-91. [PMID: 25177096 PMCID: PMC4135062 DOI: 10.5604/20831862.1111436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2014] [Indexed: 11/24/2022] Open
Abstract
Dietary supplements containing arginine are among the most popular ergogenics intended to enhance strength, power and muscle recovery associated with both anaerobic and aerobic exercise. The aim of the present study was to evaluate the possible effect of pre-exercise acute intake of arginine on performance and exercise metabolism during incremental exhaustive exercise in elite male wrestlers. Nine volunteer elite male wrestlers (24.7±3.8 years) participated in this study. The test-retest protocol was used on the same subjects. The study was conducted using a cross-over design. A single dose of arginine (1.5 g · 10 kg-1 body weight) or placebo was given to the subjects after 12 hours fasting (during the night) for both test and retest. Subjects were allowed to drink water but not allowed to eat anything between arginine or placebo ingestion and the exercise protocol. An incremental exercise protocol was applied and oxygen consumption was measured during the exercise. Heart rate and plasma lactate levels were measured during the exercise and recovery. Results showed that in the same working loads there was no significant difference for the mean lactate levels and no difference in maximum oxygen consumption (arginine 52.47±4.01 mL · kg-1 · min-1, placebo 52.07±5.21 mL · kg-1 · min-1) or in maximum heart rates (arginine 181.09±13.57 bpm, placebo 185.89±7.38 bpm) between arginine and placebo trials. Time to exhaustion was longer with arginine supplementation (1386.8±69.8 s) compared to placebo (1313±90.8 s) (p < 0.05). These results suggest that L-arginine supplementation can have beneficial effects on exercise performance in elite male wrestlers but cannot explain the metabolic pathways which are responsible from these effects.
Collapse
Affiliation(s)
- H U Yavuz
- Department of Sports Medicine, Near East University Medical School, Nicosia, North Cyprus
| | - H Turnagol
- School of Sport Sciences and Technology, Hacettepe University, Ankara, Turkey
| | - A H Demirel
- Department of Sports Medicine, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
16
|
Yi M, Fu J, Zhou L, Gao H, Fan C, Shao J, Xu B, Wang Q, Li J, Huang G, Lapsley K, Blumberg JB, Chen CYO. The effect of almond consumption on elements of endurance exercise performance in trained athletes. J Int Soc Sports Nutr 2014; 11:18. [PMID: 24860277 PMCID: PMC4031978 DOI: 10.1186/1550-2783-11-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 04/30/2014] [Indexed: 12/16/2022] Open
Abstract
Background Almonds are a healthy tree nut food with high nutrient density. Their consumption has been shown to ameliorate oxidative stress, inflammation, etc. The objective of the study was to examine the effect of almonds on elements of endurance exercise performance in trained athletes. Methods A 10-week crossover, placebo controlled study was conducted. Eight trained male cyclists and two triathletes were randomly assigned to consume 75 g/d whole almonds (ALM) or isocaloric cookies (COK) with equal subject number. They consumed the assigned food for 4 wks and then the alternate food for another 4 wks. They underwent 3 performance tests including 125-min steady status exercise (SS) and 20-min time trial (TT) on an indoor stationary trainer at the start of the study (BL) and at the end of each intervention phase. Venous blood was collected in the morning prior to the performance test for biochemical measurements and finger blood during the test for glucose determination. Carbohydrate and fat oxidation, energy expenditure, and oxygen use were calculated using respiratory gas analysis. Results ALM increased cycling distance during TT by 1.7 km as compared BL (21.9 vs. 20.2 km, P = 0.053) and COK increased 0.6 km (20.8 vs. 20.2 km, P > 0.05). ALM, but not COK, led to higher CHO and lower fat oxidation and less oxygen consumption during TT than BL (P < 0.05), whereas there was no significant difference in heart rate among BL, ALM and COK. ALM maintained higher blood glucose level after TT than COK (P < 0.05). ALM had higher vitamin E and haemoglobin and lower serum free fatty acid (P < 0.05), slightly elevated serum arginine and nitric oxide and plasma insulin (P > 0.05) than BL, and a higher total antioxidant capacity than COK (P < 0.05). Conclusions Whole almonds improved cycling distance and the elements related to endurance performance more than isocaloric cookies in trained athletes as some nutrients in almonds may contribute to CHO reservation and utilization and effective oxygen utilization. The results suggest that almonds can be incorporated into diets of those who undertake exercise training for performance improvement.
Collapse
Affiliation(s)
- Muqing Yi
- Center for Sports Nutrition, National Institute of Sports Medicine, 1st Anding Road, Chaoyang District, Beijing 100029, China
| | - Jinde Fu
- Center for Sports Nutrition, National Institute of Sports Medicine, 1st Anding Road, Chaoyang District, Beijing 100029, China
| | - Lili Zhou
- Center for Sports Nutrition, National Institute of Sports Medicine, 1st Anding Road, Chaoyang District, Beijing 100029, China
| | - Hong Gao
- Center for Sports Nutrition, National Institute of Sports Medicine, 1st Anding Road, Chaoyang District, Beijing 100029, China
| | - Chenguang Fan
- Chinese Baiyi Cycling Team, Fengtai District, Beijing 100072, China
| | - Jing Shao
- Center for Sports Nutrition, National Institute of Sports Medicine, 1st Anding Road, Chaoyang District, Beijing 100029, China
| | - Baohua Xu
- Center for Sports Nutrition, National Institute of Sports Medicine, 1st Anding Road, Chaoyang District, Beijing 100029, China
| | - Qirong Wang
- Center for Sports Nutrition, National Institute of Sports Medicine, 1st Anding Road, Chaoyang District, Beijing 100029, China
| | - Juntao Li
- Center for Sports Nutrition, National Institute of Sports Medicine, 1st Anding Road, Chaoyang District, Beijing 100029, China
| | | | | | - Jeffrey B Blumberg
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - C-Y Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
17
|
Hristina K, Langerholc T, Trapecar M. Novel metabolic roles of L-arginine in body energy metabolism and possible clinical applications. J Nutr Health Aging 2014; 18:213-8. [PMID: 24522477 DOI: 10.1007/s12603-014-0015-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although the body can synthesize L-arginine, exogenous supplementation may be sometimes necessary, especially in particular conditions which results in depleted endogenous source. Among diseases and states when exogenous supplementation may be necessary are: burns, severe wounds, infections, insufficient circulation, intensive physical activity or sterility. In recent time, the attention was paid to the use of L-arginine supplementation by athletes during intensive sport activity, to enhance tissue growth and general performance, to potentiate the ergogenic potential and muscle tolerance to high intensive work and gas exchange threshold, to decrease ammonia liberation and recovery performance period and to improve wound healing. High-intensity exercise produces transient hyperammoniemia, presumably due to AMP catabolism. Catabolic pathways of AMP may involve its deamination or dephosphorylation, mainly in order to compensate fall in adenylate enrgy charge (AEC), due to AMP rise. The enzymes of purine metabolism have been documented to be particularly sensitive to the effect of dietary L-arginine supplementation. L-arginine supplementation leads to redirection of AMP deamination on account of increased AMP dephosphorylation and subsequent adenosine production and may increase ATP regeneration via activation of AMP kinase (AMPK) pathway. The central role of AMPK in regulating cellular ATP regeneration, makes this enzyme as a central control point in energy homeostasis. The effects of L-arginine supplementation on energy expenditure were successful independently of age or previous disease, in young sport active, elderly, older population and patients with angina pectoris.
Collapse
Affiliation(s)
- K Hristina
- Christina Kocic, University Maribor Medical Faculty, Biochemistry, Slomskov trg 5, Maribor, 2000, Slovenia,
| | | | | |
Collapse
|
18
|
L-arginine does not improve biochemical and hormonal response in trained runners after 4 weeks of supplementation. Nutr Res 2013; 34:31-9. [PMID: 24418244 DOI: 10.1016/j.nutres.2013.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 10/03/2013] [Accepted: 10/10/2013] [Indexed: 11/21/2022]
Abstract
It has been hypothesized that L-arginine improves exercise performance by increasing nitric oxide synthesis and levels of insulin and growth hormone (GH). Metabolic and hormonal responses to chronic L-arginine supplementation may clarify the mechanisms underlying its putative physiologic effects on physical performance. Therefore, the aim of this study was to investigate the effects that 4 weeks of supplementation with L-arginine would have on metabolic and hormonal parameters at rest and in response to exercise. Fifteen healthy runners were divided into treatment (ARG; 6 g L-arginine) and placebo (PLA; 6 g cornstarch) groups. On the first visit, blood samples were collected for baseline, and the supplement or placebo was provided. After 4 weeks of supplementation (second visit), blood samples were collected at the following intervals: at rest, immediately after the first 5-km time-trial running test (5km-TT), immediately after the second 5km-TT, and after 20 minutes of recovery (+20). In addition to exercise performance (total running time), plasma nitrate, nitrite, nitrate plus nitrite, cyclic guanosine monophosphate, lactate, ammonia and serum insulin, GH, insulin-like growth factor 1, and cortisol concentrations were evaluated. There were significant increases in plasma nitrite, cyclic guanosine monophosphate, lactate, ammonia and serum GH, and cortisol at the first 5km-TT, immediately after the second 5km-TT, and +20 in both ARG and PLA. Nitrate plus nitrite and nitrate increased only at +20. No significant change was observed in serum insulin and insulin-like growth factor 1 in any sample period. Total running time did not differ significantly between the 2 tests, in either ARG or PLA. Thus, according to our results, 4 weeks of L-arginine supplementation did not cause beneficial changes in metabolic and hormonal parameters, beyond those achieved with exercise alone.
Collapse
|
19
|
Bescós R, Sureda A, Tur JA, Pons A. The effect of nitric-oxide-related supplements on human performance. Sports Med 2012; 42:99-117. [PMID: 22260513 DOI: 10.2165/11596860-000000000-00000] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nitric oxide (NO) has led a revolution in physiology and pharmacology research during the last two decades. This labile molecule plays an important role in many functions in the body regulating vasodilatation, blood flow, mitochondrial respiration and platelet function. Currently, it is known that NO synthesis occurs via at least two physiological pathways: NO synthase (NOS) dependent and NOS independent. In the former, L-arginine is the main precursor. It is widely recognized that this amino acid is oxidized to NO by the action of the NOS enzymes. Additionally, L-citrulline has been indicated to be a secondary NO donor in the NOS-dependent pathway, since it can be converted to L-arginine. Nitrate and nitrite are the main substrates to produce NO via the NOS-independent pathway. These anions can be reduced in vivo to NO and other bioactive nitrogen oxides. Other molecules, such as the dietary supplement glycine propionyl-L-carnitine (GPLC), have also been suggested to increase levels of NO, although the physiological mechanisms remain to be elucidated. The interest in all these molecules has increased in many fields of research. In relation with exercise physiology, it has been suggested that an increase in NO production may enhance oxygen and nutrient delivery to active muscles, thus improving tolerance to physical exercise and recovery mechanisms. Several studies using NO donors have assessed this hypothesis in a healthy, trained population. However, the conclusions from these studies showed several discrepancies. While some reported that dietary supplementation with NO donors induced benefits in exercise performance, others did not find any positive effect. In this regard, training status of the subjects seems to be an important factor linked to the ergogenic effect of NO supplementation. Studies involving untrained or moderately trained healthy subjects showed that NO donors could improve tolerance to aerobic and anaerobic exercise. However, when highly trained subjects were supplemented, no positive effect on performance was indicated. In addition, all this evidence is mainly based on a young male population. Further research in elderly and female subjects is needed to determine whether NO supplements can induce benefit in exercise capacity when the NO metabolism is impaired by age and/or estrogen status.
Collapse
Affiliation(s)
- Raúl Bescós
- National Institute of Physical Education INEFC-Barcelona, Physiology Laboratory, University of Barcelona, Barcelona, Spain.
| | | | | | | |
Collapse
|
20
|
Álvares TS, Meirelles CM, Bhambhani YN, Paschoalin VM, Gomes PS. L-Arginine as a Potential Ergogenic Aid in Healthy Subjects. Sports Med 2011; 41:233-48. [DOI: 10.2165/11538590-000000000-00000] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|