1
|
Ortiz-Román MI, Casiano-Muñiz IM, Román-Velázquez FR. Ecotoxicological Effects of TiO 2 P25 Nanoparticles Aqueous Suspensions on Zebrafish ( Danio rerio) Eleutheroembryos. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:373. [PMID: 38392747 PMCID: PMC10893039 DOI: 10.3390/nano14040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Among nanoparticles (NPs), titanium dioxide is one of the most highly manufactured worldwide and widely used in multiple products for both industrial use and personal care products. This increases the probability of release into aquatic environments, potentially affecting these ecosystems. The present study aimed to evaluate TiO2 P25 NP toxicity in zebrafish embryos and eleutheroembryos by evaluating LC50, hatching rate, embryo development, and chemical analysis of the TiO2 concentration accumulated in eleutheroembryo tissues. Zebrafish embryos ~2 h post-fertilization (hpf) were exposed to 75, 100, 150, 200, and 250 mg/L TiO2 P25 NPs for 48 and 96 h. A total of 40-60 embryos were placed in each Petri dish for the respective treatments. Three replicates were used for each treatment group. Ti4+ concentrations were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), and a conversion factor was used to calculate the TiO2 concentrations in the tissues. The highest calculated concentrations of TiO2 in zebrafish larvae were 1.0199 mg/L after 48 h and 1.2679 mg/L after 96 h of exposure. The toxicological results indicated that these NPs did not have a significant effect on the mortality and hatching of zebrafish embryos but did have an effect on their development. LC20 and LC30 were determined experimentally, and LC50 and LC80 were estimated using four different methods. Up to 11% of embryos also presented physical malformations. These effects can be detrimental to a species and affect ecosystems. Physical malformations were observed in all treatments, indicating teratogenic effects.
Collapse
Affiliation(s)
- Melissa I. Ortiz-Román
- Department of Chemistry, University of Puerto Rico, Mayaguez Campus, Mayaguez, PR 00681, USA;
| | | | | |
Collapse
|
2
|
Karunakaran H, Krithikadatta J, Doble M. Local and systemic adverse effects of nanoparticles incorporated in dental materials- a critical review. Saudi Dent J 2024; 36:158-167. [PMID: 38375379 PMCID: PMC10874805 DOI: 10.1016/j.sdentj.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Nanotechnology is the science and engineering of nanoparticles whose dimensions range from 1 to 100 nm. Nanoparticles have special characteristics like increased surface area, high reactivity, and enhanced mechanical, thermal, and optical properties that make them attractive for use in dental applications. However, the use of nanoparticles in dental materials can have toxic effects on the human body. The objective of this paper is to discuss the toxic effects of various nanoparticles in dental materials, their adverse effect on human health, and measures to overcome such effects. Objectives Nanoparticles are used in the diagnosis, prevention, and treatment of oral diseases like dental caries, pulpo periodontal lesions, oral cancer, denture stomatitis, and candidiasis. Exposure to nanoparticles may occur to the dental professional, and the patient during procedures like restoration, finishing, and polishing. Such exposure to nanoparticles through inhalation, and ingestion causes toxic effects in the lungs, skin, brain, liver, and kidney. Proper risk assessment methods and preventive measures may help reduce these toxic effects to some extent. Significance Toxic effects of nanoparticles that are released during dental procedures, their route of exposure, and the concentration at which nanoparticles can induce toxic effects on the human body are discussed in detail in this review. The paper also aims to create awareness among dental professionals, students, and patients regarding nanoparticle exposure and its adverse effects, and methods to prevent and overcome these effects. Currently, it is ignored or taken lightly by the stakeholders and this review may throw light.
Collapse
Affiliation(s)
- Harini Karunakaran
- Department of Conservative Dentistry and Endodontics, SIMATS University, Chennai, India
| | | | - Mukesh Doble
- Department of Cariology, SIMATS University, Chennai, India
| |
Collapse
|
3
|
Peng L, Chen S, Lin H, Wan C, Li X, Xu S, Li S. Bisphenol A exposure exacerbates tracheal inflammatory injury in selenium-deficient chickens by regulating the miR-155/TRAF3/ROS pathway. Int J Biol Macromol 2023; 253:127501. [PMID: 37866585 DOI: 10.1016/j.ijbiomac.2023.127501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor. Excessive BPA intake can damage the structure and function of the respiratory tract. Dietary selenium (Se) deficiency may also cause immune tissue damage. To investigate the potential mechanism of BPA on tracheal damage in selenium-deficient chickens and the role of microRNAs (miRNAs) in this process, we established in vitro and in vivo Se deficiency and BPA exposure models and screened out miR-155 for follow-up experiments. We further predicted and confirmed the targeting relationship between miR-155 and TRAF3 using TargetScan and dual luciferase assays and found that miR-155 was highly expressed and caused inflammatory damage. Further studies showed that BPA exposure increased airway oxidative stress, activated the NF-κB pathway, and caused inflammation and immune damage in selenium-deficient chickens, but down-regulating miR-155 and NAC treatment could reverse this phenomenon. This suggested that these pathways are regulated by the miR-155/TRAF3/ROS axis. In conclusion, BPA exposure aggravates airway inflammation in selenium-deficient chickens by regulating miR-155/TRAF3/ROS. This study revealed the mechanism of BPA exposure combined with Se deficiency in tracheal inflammatory injury in chickens and enriched the theoretical basis of BPA injury in poultry.
Collapse
Affiliation(s)
- Lin Peng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shasha Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chunyan Wan
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi 445000, PR China
| | - Xiang Li
- National Selenium-rich Product Quality Supervision and Inspection Center, Enshi 445000, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
4
|
Sun X, Yang Q, Jing M, Jia X, Tian L, Tao J. Environmentally relevant concentrations of organic (benzophenone-3) and inorganic (titanium dioxide nanoparticles) UV filters co-exposure induced neurodevelopmental toxicity in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114343. [PMID: 36508829 DOI: 10.1016/j.ecoenv.2022.114343] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
UV filters, widely used in personal care products, are ubiquitous environmental pollutants detected and pose a significant public health concern. Benzophenone-3 (BP3) and titanium dioxide nanoparticles (nano-TiO2) are the predominant organic and inorganic UV filters in environmental media. However, few studies have explored the combined developmental neurotoxic (DNT) effects and the underlying mechanisms when co-exposed to BP3 and nano-TiO2. In the present study, zebrafish (Danio rerio) embryos were exposed to environmentally relevant concentrations of BP3 (10 μg/L), nano-TiO2 (100 μg/L), and mixtures starting from 6 h post fertilization (hpf), respectively. Developmental indicators and motor behaviors were investigated at various developmental stages. Our results showed that BP3 alone or co-exposed with nano-TiO2 increased spontaneous movement at 24 hpf, co-exposure decreased touch response at 30 hpf and hatching rate at 60 hpf. Consistent with these motor deficits, co-exposure to BP3 and nano-TiO2 inhibited relative axon length of primary motor neuron during the early developmental stages, disturbed the expression of axonal growth-related genes at 30 and 48 hpf, increased cell apoptosis on the head region and mRNA levels of apoptosis-related genes, and also increased reactive oxygen species (ROS) levels in zebrafish, suggesting the functional relevance of structural changes. Taken together, our findings demonstrated that BP3 alone or in combination with nano-TiO2 at environmentally relevant concentrations induced evident neurotoxic effects on the developing embryos in zebrafish.
Collapse
Affiliation(s)
- Xiaowei Sun
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qinyuan Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Min Jing
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xinrui Jia
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Linxuan Tian
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Junyan Tao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
5
|
Martin N, Wassmur B, Baun A, Lammel T. Availability and effects of n-TiO 2 and PCB77 in fish in vitro models of the intestinal barrier and liver under single- and/or co-exposure scenarios. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106343. [PMID: 36327689 DOI: 10.1016/j.aquatox.2022.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) and polychlorinated biphenyls (PCBs) can be present in the food of fish, leading to intestinal exposure uptake, and accumulation in inner organs. This study examined combination effects of n-TiO2 and PCB77 in vitro models of the fish intestinal epithelium and liver, i.e., RTgut-GC cell cultures grown in ThinCerts™ and RTL-W1 cell cultures grown in standard tissue culture plates. Mass spectrometry and microscopy techniques were used to obtain information on nanoparticle translocation across the intestinal barrier model. In addition, the substances' effect on intestinal barrier permeability, cell viability, expression of dioxin - and antioxidant response element -controlled genes, and induction of cytochrome P450 1a (Cyp1a)-dependent ethoxyresorufin-O-deethylase (EROD) activity were assessed. TiO2 nanoparticles were taken up by RTgut-GC cells and detected in the bottom compartment of the intestinal epithelial barrier model. It was not possible to conclude definitively if n-TiO2 translocation occurred via transcytosis or paracellular migration but observations of nanoparticles in the lateral space between adjacent epithelial cells were rare. PCB77 (1 and 10 µM, 24 h) did not affect barrier permeability, i.e., n-TiO2 translocation is probably not facilitated in case of co-exposure. Furthermore, previous and simultaneous exposure to n-TiO2 (1 and 10 mg/L, 24 h) did not have any influence on PCB77-induced Cyp1a mRNA and enzyme activity levels in RTL-W1 cells. Furthermore, there were no significant differences in expression of antioxidant response element-controlled genes comparing control, single substance, and mixture treatments, not even following long-term exposure (0.01-1 mg/L n-TiO2 + 1 nM PCB77, 4 weeks). While an underestimation of the effects of n-TiO2 and PCB77 cannot be fully excluded as concentration losses due to sorption to cell culture plastics were not measured, the results suggest that the test substances probably have a low potential to exhibit combination effects on the assessed endpoints when co-existing in fish tissues.
Collapse
Affiliation(s)
- Nicolas Martin
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18 A, Box 463, Göteborg 413 90, Sweden
| | - Britt Wassmur
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18 A, Box 463, Göteborg 413 90, Sweden
| | - Anders Baun
- Department of Environmental and Resource Engineering, Technical University of Denmark, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Tobias Lammel
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18 A, Box 463, Göteborg 413 90, Sweden.
| |
Collapse
|
6
|
Qiu X, Liu L, Xu W, Chen C, Li M, Shi Y, Wu X, Chen K, Wang C. Zeolitic Imidazolate Framework-8 Nanoparticles Exhibit More Severe Toxicity to the Embryo/Larvae of Zebrafish ( Danio rerio) When Co-Exposed with Cetylpyridinium Chloride. Antioxidants (Basel) 2022; 11:945. [PMID: 35624808 PMCID: PMC9138101 DOI: 10.3390/antiox11050945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
The combined application of nanoparticles and surfactants has attracted tremendous attention in basic research and industry. However, knowledge of their combined toxicity remains scarce. In this study, we exposed zebrafish embryos to cetylpyridinium chloride (CPC, a cationic surfactant, at 0 and 20 μg/L), zeolitic imidazolate framework nanoparticles (ZIF-NPs, at 0, 30, and 60 mg/L), and their mixtures until 120 h post-fertilization (hpf). Within the used concentration range, both single and combined exposures exhibited limited effects on the survival and hatching of zebrafish. However, the combined exposure of ZIF-NPs and CPC caused more severe effects on the heart rate at both 48 and 72 hpf. The combined exposure also induced significant hyperactivity (i.e., increasing the average swimming velocity) and oxidative stress in zebrafish larvae (at 120 hpf), although all single exposure treatments exhibited limited impacts. Furthermore, the level of reactive oxygen species (or malondialdehyde) exhibited a significantly positive correlation with the heart rate (or average swimming velocity) of zebrafish, suggesting that oxidative stress plays a role in mediating the combined toxicity of CPC and ZIF-NPs to zebrafish. Our findings suggest that the interaction of CPC and ZIF-NPs should not be ignored when assessing the potential risks of their mixtures.
Collapse
Affiliation(s)
- Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lei Liu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Wei Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Yanhong Shi
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (X.Q.); (L.L.); (W.X.); (C.C.); (M.L.); (Y.S.); (X.W.)
| | - Chongchen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
7
|
d'Amora M, Schmidt TJN, Konstantinidou S, Raffa V, De Angelis F, Tantussi F. Effects of Metal Oxide Nanoparticles in Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3313016. [PMID: 35154565 PMCID: PMC8837465 DOI: 10.1155/2022/3313016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Metal oxide nanoparticles (MO NPs) are increasingly employed in many fields with a wide range of applications from industries to drug delivery. Due to their semiconducting properties, metal oxide nanoparticles are commonly used in the manufacturing of several commercial products available in the market, including cosmetics, food additives, textile, paint, and antibacterial ointments. The use of metallic oxide nanoparticles for medical and cosmetic purposes leads to unavoidable human exposure, requiring a proper knowledge of their potentially harmful effects. This review offers a comprehensive overview of the possible toxicity of metallic oxide nanoparticles in zebrafish during both adulthood and growth stages, with an emphasis on the role of oxidative stress.
Collapse
Affiliation(s)
- Marta d'Amora
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy
| | | | | | - Vittoria Raffa
- Department of Biology, University of Pisa, S.S. 12 Abetone e Brennero 4, 56127 Pisa, Italy
| | | | | |
Collapse
|
8
|
Li X, Dang J, Li Y, Wang L, Li N, Liu K, Jin M. Developmental neurotoxicity fingerprint of silica nanoparticles at environmentally relevant level on larval zebrafish using a neurobehavioral-phenomics-based biological warning method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141878. [PMID: 32890834 DOI: 10.1016/j.scitotenv.2020.141878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Larval zebrafish (Danio rerio) is not only an ideal vertebrate applied in Fish Embryos Toxicity (FET) test but also a well-accepted model in behavioral neurotoxicity research. By applying the commercial standard behavioral tracking system (Zebrabox), the locomotion profiles (neurobehavioral-phenomics) of larval zebrafish can be comprehensively monitored and systematically analyzed to probe ecotoxicological neurotoxicity of nano-pollutants at environmental relevant concentration level. RESULTS Herein, the potential toxicity of at environment relevant concentration level on embryonic zebrafish was evaluated by FET and neurobehavioral-phenomics (NBP). The embryos were exposed to the environmental relevant concentration (0.05, 0.1,1, 5, 10, 100 μg/L). The FET criteria were utilized to evaluate the ecotoxicological effect induced by silica NPs. Subsequently, behavioral neurotoxicity of silica NPs was further quantified via locomotion response (LMR). Specifically, the alteration of Light/Dark challenge (LDC) evoked by light/dark stimulation was detected and analyzed by commercially standard behavioral protocols using zebrabox. We revealed that the exposures of silica NPs at environmental relevant concentration (0.05, 0.1, 1, 5, 10,100 μg/L) significantly disturbed locomotion profiles of larval zebrafish. Additionally, it was obviously noted that low, environmentally relevant silica concentrations might result in altering the total behavioral profiles in developing zebrafish. CONCLUSIONS In sum, neurobehavior phenomics profiling based on LMR and LDC is a potent methodology for the evaluation of sub-lethal or sub-teratogenic toxicity. Compared with the FET tests characterized by the detection of embryonic teratogenicity, the neurobehavior phenomics based method can be more sensitive to determine sub-teratogenic toxicity of silica NPs at environmental concentrations. With the combination of multivariate data analysis, this approach would offer effective technical reference for environmental nano-toxicology research.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, NO. 44 West Culture Road, Ji'nan 250012, Shandong Province, PR China
| | - Jiao Dang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Yan Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Ji'nan 250353, Shandong Province, PR China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China.
| |
Collapse
|
9
|
Trinh TX, Kim J. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity. NANOMATERIALS 2021; 11:nano11010124. [PMID: 33430414 PMCID: PMC7826902 DOI: 10.3390/nano11010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Co-exposure of nanomaterials and chemicals can cause mixture toxicity effects to living organisms. Predictive models might help to reduce the intensive laboratory experiments required for determining the toxicity of the mixtures. Previously, concentration addition (CA), independent action (IA), and quantitative structure–activity relationship (QSAR)-based models were successfully applied to mixtures of organic chemicals. However, there were few studies concerning predictive models for toxicity of nano-mixtures before June 2020. Previous reviews provided comprehensive knowledge of computational models and mechanisms for chemical mixture toxicity. There is a gap in the reviewing of datasets and predictive models, which might cause obstacles in the toxicity assessment of nano-mixtures by using in silico approach. In this review, we collected 183 studies of nano-mixture toxicity and curated data to investigate the current data and model availability and gap and to derive research challenges to facilitate further experimental studies for data gap filling and the development of predictive models.
Collapse
Affiliation(s)
- Tung X. Trinh
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Correspondence: ; Tel.: +82-(0)42-860-7482
| |
Collapse
|
10
|
Jiang D, Hu X, Jin X, Ma A, Yin D. Oxidized nanoscale zero-valent iron changed the bioaccumulation and distribution of chromium in zebrafish. CHEMOSPHERE 2021; 263:128001. [PMID: 32828050 DOI: 10.1016/j.chemosphere.2020.128001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Influences of colloidal stabilities of nanoparticles (NPs) on the bioaccumulation of co-existing pollutants remains largely unknown. In this study, two oxidation products of nanoscale zero-valent iron (nZVI) with totally varied colloidal stabilities, termed highly oxidized nZVI (HO-nZVI) and lowly oxidized nZVI (LO-nZVI), were exposed to zebrafish with chromium (Cr); this approach was used to investigate the impacts of colloidal stability of oxidized nZVI on the bioaccumulation of Cr in zebrafish. A significant increase in the Cr and NP content in the viscera of fish in the presence of the oxidized nZVI after 20 days of exposure was confirmed, which indicated that Cr was consumed by fish through the uptake of the NPs. Furthermore, a significantly higher level of the HO-nZVI accumulated in the viscera in contrast to LO-nZVI, which suggested that the colloidal stability of NP is a crucial factor when evaluating the accessibility of NPs to zebrafish. Thus, HO-nZVI induced a significantly stronger enhancement of Cr content in fish than LO-nZVI. Our results suggest that oxidized nZVI will act as the carrier of co-existing heavy metals and change the transportation and distribution of heavy metals in zebrafish; moreover, the colloidal stability of NP will have a significant influence on the bioaccumulation of coexisting Cr.
Collapse
Affiliation(s)
- Danlie Jiang
- School of Materials and Chemical Engineering, Xi'an Technological University, 4 Jinhua Road, Xi'an, 710021, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xialin Hu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, 4 Jinhua Road, Xi'an, 710021, China
| | - Aijie Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, 4 Jinhua Road, Xi'an, 710021, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
11
|
Haghighat F, Kim Y, Sourinejad I, Yu IJ, Johari SA. Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio). CHEMOSPHERE 2021; 262:127805. [PMID: 32750593 DOI: 10.1016/j.chemosphere.2020.127805] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 05/24/2023]
Abstract
The present study assessed the individual and combined toxicity effects of Ag- and TiO2- nanoparticles (NPs) on Ag bioaccumulation, oxidative stress, and gill histopathology in common carp as an aquatic animal model. The 96-h acute toxicity tests showed that TiO2NPs enhanced the toxicity of AgNPs deducted from the decreased LC50 in co-exposure to these NPs. Chronic toxicity tests included a 10-day exposure and a 10-day recovery period. In most cases, histological damages were more severe in co-exposure to Ag- and TiO2- NPs compared with the individual AgNPs however, they were reduced in some cases and also after the recovery period. In co-exposure to Ag- and TiO2- NPs, the Ag bioaccumulation was decreased in the gills but increased in the liver and intestine compared with the singular exposure. After the recovery period, Ag bioaccumulation decreased especially in the liver. Decreased levels of antioxidant enzymes were observed in the AgNPs exposed groups, which were partially alleviated by TiO2NPs. The reduction of condition factor (CF) and hepatosomatic index (HSI) and a severe decrease of weight gain (WG) were observed in co-exposure to Ag- and TiO2- NPs. After the recovery period, the CF and HSI increased but the WG decreased less compared with the exposure period. The present results emphasize the importance of considering the co-existence and interaction of NPs in realizing their bioavailability and toxicity in aquatic environments.
Collapse
Affiliation(s)
- Fatemeh Haghighat
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Younghun Kim
- Chemicals Research Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Iman Sourinejad
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Il Je Yu
- HCTm CO.,LTD., Icheon, Republic of Korea
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran; Department of Zrebar Lake Environmental Research, Kurdistan Studies Institute, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
12
|
Wiemann JT, Shen Z, Ye H, Li Y, Yu Y. Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic Janus nanoparticles. NANOSCALE 2020; 12:20326-20336. [PMID: 33006360 DOI: 10.1039/d0nr05355d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Building upon our previous studies on interactions of amphiphilic Janus nanoparticles with glass-supported lipid bilayers, we study here how these Janus nanoparticles perturb the structural integrity and induce shape instabilities of membranes of giant unilamellar vesicles (GUVs). We show that 100 nm amphiphilic Janus nanoparticles disrupt GUV membranes at a threshold particle concentration similar to that in supported lipid bilayers, but cause drastically different membrane deformations, including membrane wrinkling, protrusion, poration, and even collapse of entire vesicles. By combining experiments with molecular simulations, we reveal how Janus nanoparticles alter local membrane curvature and collectively compress the membrane to induce shape transformation of vesicles. Our study demonstrates that amphiphilic Janus nanoparticles disrupt vesicle membranes differently and more effectively than uniform amphiphilic particles.
Collapse
Affiliation(s)
- Jared T Wiemann
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ying Li
- Department of Mechanical Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
13
|
Lai EP, Kersten H, Benter T. Ion-Trap Mass Spectrometric Analysis of Bisphenol A Interactions With Titanium Dioxide Nanoparticles and Milk Proteins. Molecules 2020; 25:E708. [PMID: 32041367 PMCID: PMC7037553 DOI: 10.3390/molecules25030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 11/21/2022] Open
Abstract
Quantitative analysis of endocrine-disrupting molecules such as bisphenol A (BPA) in freshwater to determine their widespread occurrence in environmental resources has been challenged by various adsorption and desorption processes. In this work, ion trap mass spectrometry (ITMS) analysis of BPA was aimed at studying its molecular interactions with titanium dioxide (TiO2) nanoparticles and milk whey proteins. Addition of sodium formate prevented TiO2 nanoparticles from sedimentation while enhancing the electrospray ionization (ESI) efficiency to produce an abundance of [BPA + Na]+ ions at m/z 251.0. More importantly, the ESI-ITMS instrument could operate properly during a direct infusion of nanoparticles up to 500 μg/mL without clogging the intake capillary. Milk protein adsorption of BPA could decrease the [BPA + Na]+ peak intensity significantly unless the proteins were partially removed by curdling to produce whey, which allowed BPA desorption during ESI for quantitative analysis by ITMS.
Collapse
Affiliation(s)
- Edward P.C. Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hendrik Kersten
- Institute for Pure and Applied Mass Spectrometry, Physical and Theoretical Chemistry, Bergische Universität Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany; (H.K.); (T.B.)
| | - Thorsten Benter
- Institute for Pure and Applied Mass Spectrometry, Physical and Theoretical Chemistry, Bergische Universität Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany; (H.K.); (T.B.)
| |
Collapse
|
14
|
Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol 2019; 40:37-63. [DOI: 10.1002/jat.3910] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|
15
|
Ji K, Seo J, Kho Y, Choi K. Co-exposure to ketoconazole alters effects of bisphenol A in Danio rerio and H295R cells. CHEMOSPHERE 2019; 237:124414. [PMID: 31352099 DOI: 10.1016/j.chemosphere.2019.124414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/22/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Chemicals are present in combination in ambient water, however toxicities of their mixtures are not well understood. This study investigated the effects of ketoconazole (KCZ) on the responses induced by bisphenol A (BPA) in zebrafish and in human adrenocarcinoma (H295R) cells. After exposure to BPA alone or mixed with KCZ for 21 d, egg production, relative tissue weights, sex hormone levels, cytochrome P450 (CYP)3a activity, and transcriptions of genes related to CYP metabolism, vitellogenesis, and steroidogenesis were determined in zebrafish. Male fish were more sensitive to the adverse effects of BPA than females, and the presence of KCZ potentiated the BPA-induced estrogenic responses in the male and anti-estrogenic responses in the female fish. In male zebrafish exposed to BPA, a significant reduction in egg number and relative gonad weight, an increase in 17β-estradiol (E2) to testosterone (T) ratio, and an upregulation of vtg, erα, and cyp19a genes were observed. Under KCZ, BPA exposure resulted in a significant downregulation of cyp3a65 and pxr genes and an increase in estrogenic responses in males. In female fish, anti-estrogenic effects, such as a decrease in E2 concentration, were observed following the combined exposure. These results indicate that KCZ could increase the toxicity of the chemicals that depend on the given CYP metabolism for their elimination or other crucial functions such as steroidogenesis. Co-exposure to BPA and KCZ in H295R cells also increased E2 and decreased T production. Release and presence of this azole compound warrant caution, because it could modify adverse effects of BPA.
Collapse
Affiliation(s)
- Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin, 17092, Republic of Korea.
| | - Jihyun Seo
- School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea; Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, 52834, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam, Gyeonggi, 13135, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Lammel T, Wassmur B, Mackevica A, Chen CEL, Sturve J. Mixture toxicity effects and uptake of titanium dioxide (TiO 2) nanoparticles and 3,3',4,4'-tetrachlorobiphenyl (PCB77) in juvenile brown trout following co-exposure via the diet. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105195. [PMID: 31203167 DOI: 10.1016/j.aquatox.2019.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) are among the man-made nanomaterials that are predicted to be found at high concentrations in the aquatic environment. There, they likely co-exist with other chemical pollutants. Thus, n-TiO2 and other chemical pollutants can be taken up together or accumulate independently from each other in prey organisms of fish. This can lead to dietary exposure of fish to n-TiO2-chemical pollutant mixtures. In this study, we examine if simultaneous dietary exposure to n-TiO2 and 3,3',4,4'-Tetrachlorobiphenyl (PCB77) -used as a model compound for persistent organic pollutants with dioxin-like properties- can influence the uptake and toxicological response elicited by the respective other substance. Juvenile brown trout (Salmo trutta) were fed custom-made food pellets containing n-TiO2, PCB77 or n-TiO2+PCB77 mixtures for 15 days. Ti and PCB77 concentrations in the liver were measured by ICP-MS and GC-MS, respectively. Besides, n-TiO2 uptake was assessed using TEM. Combination effects on endpoints specific for PCB77 (i.e., cytochrome P450 1A (CYP1A) induction) and endpoints shared by both PCB77 and n-TiO2 (i.e., oxidative stress-related parameters) were measured in intestine and liver using RT-qPCR and enzyme activity assays. The results show that genes encoding for proteins/enzymes essential for tight junction function (zo-1) and ROS elimination (sod-1) were significantly upregulated in the intestine of fish exposed to n-TiO2 and PCB77 mixtures, but not in the single-substance treatments. Besides, n-TiO2 had a potentiating effect on PCB77-induced CYP1A and glutathione reductase (GR) expression/enzyme activity in the liver. This study shows that simultaneous dietary exposure to nanomaterials and traditional environmental pollutants might result in effects that are larger than observed for the substances alone, but that understanding the mechanistic basis of such effects remains challenging.
Collapse
Affiliation(s)
- Tobias Lammel
- Department of Biological and Environmental Sciences, Gothenburg University, Sweden.
| | - Britt Wassmur
- Department of Biological and Environmental Sciences, Gothenburg University, Sweden
| | - Aiga Mackevica
- TU Environment, Technical University of Denmark, Denmark
| | - Chang-Er L Chen
- Department of Environmental Sciences and Analytical Chemistry, Stockholm University, Sweden; Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, Gothenburg University, Sweden
| |
Collapse
|
17
|
Srinivasan M, Venkatesan M, Arumugam V, Natesan G, Saravanan N, Murugesan S, Ramachandran S, Ayyasamy R, Pugazhendhi A. Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Toxic Effects of TiO₂ NPs on Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040523. [PMID: 30781732 PMCID: PMC6406522 DOI: 10.3390/ijerph16040523] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have become a widely used nanomaterial due to the photocatalytic activity and absorption of ultraviolet light of specific wavelengths. This study investigated the toxic effects of rutile TiO2 NPs on zebrafish by examining its embryos and adults. In the embryo acute toxicity test, exposure to 100 mg/L TiO2 NPs didn’t affect the hatching rate of zebrafish embryos, and there was no sign of deformity. In the adult toxicity test, the effects of TiO2 NPs on oxidative damage in liver, intestine and gill tissue were studied. Enzyme linked immunosorbent assay (ELISA) and fluorescence-based quantitative real-time reverse transcription PCR (qRT-PCR) were used to detect the three antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT) and glutathione S transferase (GSTs) in the above mentioned zebrafish organs at protein and gene levels. The results showed that long-term exposure to TiO2 NPs can cause oxidative damage to organisms; and compared with the control group, the activity of the three kinds of enzyme declined somewhat at the protein level. In addition, long-term exposure to TiO2 NPs could cause high expression of CAT, SOD and GSTs in three organs of adult zebrafish in order to counter the adverse reaction. The effects of long-term exposure to TiO2 NPs to adult zebrafish were more obvious in the liver and gill.
Collapse
|
19
|
Guo Y, Chen L, Wu J, Hua J, Yang L, Wang Q, Zhang W, Lee JS, Zhou B. Parental co-exposure to bisphenol A and nano-TiO 2 causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:557-565. [PMID: 30205345 DOI: 10.1016/j.scitotenv.2018.09.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/31/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
The coexistence of organic toxicants and nanoparticles in the environment influences pollutant bioavailability and toxicity. Using chronic co-exposure to an adult zebrafish model, this study investigated the transfer kinetics and transgenerational effects of bisphenol A (BPA) and titanium dioxide nanoparticles (n-TiO2) exposure in F1 offspring. When single and combined exposure to BPA (0, 2, and 20 μg/L) and n-TiO2 (100 μg/L) were compared, combined exposure was found to reciprocally facilitate bioaccumulation in adult fish while enhancing maternal transfer to offspring. Thyroid endocrine disruption and developmental neurotoxicity were observed in larval offspring by parental exposure to BPA alone or in combination with n-TiO2. Exposure to 20 μg/L BPA significantly decreased the thyroxine (T4) concentration in adult plasma, leading to less transfer into the eggs. The presence of 20 μg/L BPA with n-TiO2 further decreased the level of T4 compared to BPA exposure alone. Additionally, offspring larvae derived from exposed parents exhibited lethargic swimming behavior. Overall, this study examined the interactions of BPA and n-TiO2 with regard to their bioaccumulation, maternal transfer, and developmental effects, which highlighted that co-exposure dynamics are important and need to be considered for accurate environmental risk assessment.
Collapse
Affiliation(s)
- Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Juan Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
20
|
Mass spectrometric analysis of bisphenol A desorption from ceria nanoparticles: l-histidine versus l-lysine as biochemical desorption co-agents. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Samaee SM, Manteghi N, Yokel RA, Mohajeri-Tehrani MR. Morphometric characteristics and time to hatch as efficacious indicators for potential nanotoxicity assay in zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:3063-3076. [PMID: 30183097 DOI: 10.1002/etc.4266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/11/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Although the effects of nano-sized titania (nTiO2 ) on hatching events (change in hatching time and total hatching) in zebrafish have been reported, additional consequences of nTiO2 exposure (i.e., the effects of nTiO2 -induced changes in hatching events and morphometric parameters on embryo-larvae development and survivability) have not been reported. To address this knowledge gap, embryos 4 h postfertilization were exposed to nTiO2 (0, 0.01, 10, and 1000 μg/mL) for 220 h. Hatching rate (58, 82, and 106 h postexposure [hpe]), survival rate (8 times from 34 to 202 hpe), and 21 morphometric characteristics (8 times from 34 to 202 hpe) were recorded. Total hatching (rate at 106 hpe) was significantly and positively correlated to survival rate, but there was no direct association between nTiO2 -induced change in hatching time (hatching rate at 58 and 82 hpe) and survival rate. At 58, 82, and 106 hpe, morphometric characteristics were significantly correlated to hatching rate, suggesting that the nTiO2 -induced change in hatching time can affect larval development. The morphometric characteristics that were associated with change in hatching time were also significantly correlated to survival rate, suggesting an indirect significant influence of the nTiO2 -induced change in hatching time on survivability. These results show a significant influence of nTiO2 -induced change in hatching events on zebrafish embryo-larvae development and survivability. They also show that morphometric maldevelopments can predict later-in-life consequences (survivability) of an embryonic exposure to nTiO2 . This suggests that zebrafish can be sensitive biological predictors of nTiO2 acute toxicity. Environ Toxicol Chem 2018;37:3063-3076. © 2018 SETAC.
Collapse
Affiliation(s)
- Seyed-Mohammadreza Samaee
- Aquatic Lab, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Nafiseh Manteghi
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Robert A Yokel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
22
|
Zhang C, Xie M, Chen J, Zhang Y, Wei S, Ma X, Xiao L, Chen L. UV-B radiation induces DEHP degradation and their combined toxicological effects on Scenedesmus acuminatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 203:172-178. [PMID: 30138801 DOI: 10.1016/j.aquatox.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
The co-contamination discharge of Phthalate esters (PAEs) by human activities and the increased UV radiation is increasing in aquatic ecosystems. However, little information is available about the combined detrimental effects of UV and PAEs on phytoplankton. In this study, the combined effects of UV-B irradiation and di-(2-ethylhexyl) phthalate (DEHP) on photosynthesis and antioxidant system of Scenedesmus acuminatus, and the DEHP degradation were investigated. Results showed that UV-B radiation decreased the chlorophyll a fluorescence yield, photosynthetic activity (Fv/Fm), pigment content and superoxide dismutase activity. This radiation also increased the reactive oxygen species (ROS) production and soluble protein and malondialdehyde contents. UV-B radiation with 10 mg L-1 DEHP improved the Fv/Fm and alleviated the cell damage of S. acuminatus, and the addition of high DEHP concentration (≥50 mg L-1) aggravated cell damage. The ROS generation also decreased with the increased DEHP concentration. UV-B radiation can effectively promote the DEHP degradation, with the highest degradation rate of 89.9% at an initial DEHP concentration of 10 mg L-1 within 6 h. This result may be attributed to that UV-B irradiance induced DEHP degradation under the regulation of ROS generated by S. acuminatus. Our findings will contribute to the understanding of the combined toxic mechanisms of UV-B and DEHP and in the evaluation of ecological environment risks for primary producers in aquatic ecosystems.
Collapse
Affiliation(s)
- Chao Zhang
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, China
| | - Mu Xie
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, China
| | - Jing Chen
- Wuchang Environmental Protection Monitoring Station, No. 17, Gongping Road, Wuchang District, Wuhan, 430061, China
| | - Yurui Zhang
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, China
| | - Sijie Wei
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, China
| | - Xinyue Ma
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, China
| | - Ling Xiao
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, China
| | - Lanzhou Chen
- College of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
23
|
Naasz S, Altenburger R, Kühnel D. Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1170-1181. [PMID: 29710572 DOI: 10.1016/j.scitotenv.2018.04.180] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
The usage of engineered nanomaterials (NM) offers many novel products and applications with advanced features, but at the same time raises concerns with regard to potential adverse biological effects. Upon release and emission, NM may interact with chemicals in the environment, potentially leading to a co-exposure of organisms and the occurrence of mixture effects. A prominent idea is that NM may act as carriers of chemicals, facilitating and enhancing the entry of substances into cells or organisms, subsequently leading to an increased toxicity. In the literature, the term 'Trojan-horse effect' describes this hypothesis. The relevance of this mechanism for organisms is, however, unclear as yet. Here, a review has been performed to provide a more systematic picture on existing evidence. It includes 151 experimental studies investigating the exposure of various NM and chemical mixtures in ecotoxicological in vitro and in vivo model systems. The papers retrieved comprised studies investigating (i) uptake, (ii) toxicity and (iii) investigations considering both, changes in substance uptake and toxicity upon joint exposure of a chemical with an NM. A closer inspection of the studies demonstrated that the existing evidence for interference of NM-chemical mixture exposure with uptake and toxicity points into different directions compared to the original Trojan-horse hypothesis. We could discriminate at least 7 different categories to capture the evidence ranging from no changes in uptake and toxicity to an increase in uptake and toxicity upon mixture exposure. Concluding recommendations for the consideration of relevant processes are given, including a proposal for a nomenclature to describe NM-chemical mixture interactions in consistent terms.
Collapse
Affiliation(s)
- Steffi Naasz
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
24
|
Mass Spectrometric Analysis of Bisphenol A Desorption from Titania Nanoparticles: Ammonium Acetate, Fluoride, Formate, and Hydroxide as Chemical Desorption Agents. Methods Protoc 2018; 1:mps1030026. [PMID: 31164568 PMCID: PMC6481066 DOI: 10.3390/mps1030026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Bisphenol A (BPA) is a widely used chemical in several consumer products and a well-studied environmental toxicant, and therefore, its accurate measurement is highly demanded. However, the co-presence of nanoparticles as an emerging class of contaminants could result in inaccurate determination of BPA due to binding of BPA onto nanoparticle surface. In this study, mass spectrometry (MS) was used to investigate desorption of BPA bound on the surface of titania (TiO2) nanoparticles in water. Ammonium acetate, fluoride, formate, and hydroxide were evaluated as chemical agents for their desorption capabilities. The percentages of recovery, adsorption, and desorption were determined by this new method without requiring any prior separation of nanoparticles from BPA. MS analysis demonstrated the desorption of BPA by 10–20 mM of ammonium hydroxide for a mixture of 5 µg/mL BPA and 10 µg/mL TiO2 nanoparticles, with a desorption efficiency of 72 ± 1%. Due to adsorption of BPA onto the nanoparticle surface that was inefficient for electrospray ionization, the resulting abundance of target ions could be reduced in the detection of BPA by mass spectrometry. As such, these findings collectively promise an accurate determination of the total BPA concentration in water whether it exists in the free or bound form. Efficient desorption of contaminants from the surface of nanoparticles would improve the accuracy of the contaminant analysis by mass spectrometry.
Collapse
|
25
|
Li M, Wu Q, Wang Q, Xiang D, Zhu G. Effect of titanium dioxide nanoparticles on the bioavailability and neurotoxicity of cypermethrin in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:212-219. [PMID: 29656190 DOI: 10.1016/j.aquatox.2018.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
In aquatic environment, the presence of nanoparticles (NPs) has been reported to modify the bioavailability and toxicity of the organic toxicants. Nevertheless, the combined toxicity of NPs and the pesticides that were used world-widely still remains unclear. Cypermethrin (CYP), a synthetic pyrethroid insecticide, is commonly used for controlling agricultural and indoor pests. Therefore, the effects of titanium dioxide NPs (nTiO2) on CYP bioconcentration and its effects on the neuronal development in zebrafish were investigated in our study. Zebrafish embryos (2- hour-post-fertilization, hpf) were exposed to CYP (0, 0.4, 2 and 10 μg/L) alone or co-exposed with nTiO2 (1 mg/L) until 120-hpf. nTiO2 is taken up by zebrafish larvae and also it can adsorb CYP. The zebrafish body burdens of CYP was observed and CYP uptake was increased by nTiO2, indicating that the nTiO2 could accelerate the bioaccumulation of CYP in larvae. Co-exposure of nTiO2 and CYP induced the generation of reactive oxygen species. Exposure to CYP alone significantly decreased the mRNA expression of genes, including glial fibrillary acidic protein (gfap), α1-tubulin, myelin basic protein (mbp) and growth associated protein (gap-43). Besides, reductions of serotonin, dopamine and GABA concentrations were observed in zebrafish and the larval locomotion was significantly decreased in response to the lower level of the neurotransmitters. Moreover, co-exposure of nTiO2 and CYP caused further significantly decreased in the locomotion activity, and enhanced the down-regulation of the mRNA expression of specific genes and the neurotransmitters levels. The results demonstrated that nTiO2 increased CYP accumulation and enhanced CYP-induced developmental neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Meng Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qiong Wu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Dandan Xiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
26
|
Liu J, Zhao Y, Ge W, Zhang P, Liu X, Zhang W, Hao Y, Yu S, Li L, Chu M, Min L, Zhang H, Shen W. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways. Oncotarget 2018; 8:42673-42692. [PMID: 28487501 PMCID: PMC5522097 DOI: 10.18632/oncotarget.17349] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 01/01/2023] Open
Abstract
The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China.,Core Laboratories of Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yong Zhao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Pengfei Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinqi Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Weidong Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yanan Hao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Shuai Yu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Meiqiang Chu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lingjiang Min
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
27
|
Jhamtani RC, Shukla S, Sivaperumal P, Dahiya MS, Agarwal R. Impact of co-exposure of aldrin and titanium dioxide nanoparticles at biochemical and molecular levels in Zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:141-155. [PMID: 29331773 DOI: 10.1016/j.etap.2017.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Aldrin (ALD), a persistent-organic-pollutant (POP), an organochlorine-cyclodiene-pesticide is highly toxic in nature. Titanium dioxide nanoparticles (TNP) are widely used for various industrial applications. Despite the remarkable research on pesticide toxicity, the work with impact of nanoparticles on POP has been dealt with marginally. Chemicals co-exist in the environment and exhibit interactive effects. An investigation was carried out to evaluate the individual and combined effects of ALD (6 ppm) and TNP (60 ppm) exposure at sub-lethal concentration for 24 h in zebrafish. Significant reversal of lipid peroxidation level in liver and brain tissues and restoration in enhanced catalase activity in all examined tissues were observed in combined group. For other parameters, combined exposure of ALD and TNP does not show significant reversal action on ALD toxicity. Further studies are inline to understand combined effects of both to achieve significant reversal of ALD toxicity by TNP nanoparticles with threshold concentration of aldrin.
Collapse
Affiliation(s)
- Reena C Jhamtani
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - Saurabh Shukla
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - P Sivaperumal
- Pesticide Toxicology Division, National Institute of Occupational Health, Ahmedabad, Gujarat, India.
| | - M S Dahiya
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| |
Collapse
|
28
|
Chen L, Guo Y, Hu C, Lam PKS, Lam JCW, Zhou B. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:307-317. [PMID: 29190539 DOI: 10.1016/j.envpol.2017.11.074] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 05/26/2023]
Abstract
Gut microbiota is of critical relevance to host health. However, toxicological understanding of environmental pollutants on gut microbiota is limited, not to mention their combined effects. In the present study, adult zebrafish (Danio rerio) were exposed to titanium dioxide nanoparticles (nano-TiO2; 100 μg/L), bisphenol A (BPA; 0, 2, and 20 μg/L) or their binary mixtures for three months. Sequencing of 16S rRNA amplicons found that nano-TiO2 and BPA coexposure shifted the intestinal microbial community, interacting in an antagonistic manner when the BPA concentration was low but in a synergistic manner at a higher BPA concentration. Sex- and concentration-dependent responses to the coexposure regime were also observed for zebrafish growth and intestinal health (e.g. neurotransmission, epithelial barrier permeability, inflammation, and oxidative stress). Correlation analysis showed that oxidative stress after nano-TiO2 and BPA coexposure was tightly associated with the imbalanced ratio of pathogenic Lawsonia and normal metabolic Hyphomicrobium, where higher abundance of Lawsonia but lower abundance of Hyphomicrobium were induced concurrently. A positive relationship was observed between zebrafish body weight and the abundance of Bacteroides in the gut, which was also closely associated with the genera of Anaerococcus, Finegoldia, and Peptoniphilus. This study revealed, for the first time, the combined effects of nano-TiO2 and BPA coexposure on the dynamics of the gut microbiome, which proved to have toxicological implications for zebrafish host health.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
29
|
Abstract
In the recent times, nanomaterials are used in many sectors of science, medicine and industry, without revealing its toxic effects. Thus, it is in urgent need for exploring the toxicity along with the application of such useful nanomaterials. Nanomaterials are categorized with a particle size of 1-100 nm. They have gained increasing attention because of their novel properties, including a large specific surface area and high reaction activity. The various fundamental and practical applications of nanomaterials include drug delivery, cell imaging, and cancer therapy. Nanosized semiconductors have their versatile applications in different areas such as catalysts, sensors, photoelectronic devices, highly functional and effective devices etc. Metal oxides contribute in many areas of chemistry, physics and materials science. Mechanism of toxicity of metal oxide nanoparticles can occur by different methods like oxidative stress, co-ordination effects, non-homeostasis effects, genotoxicity and others. Factors that affect the metal oxide nanoparticles were size, dissolution and exposure routes. This chapter will explain elaborately the toxicity of metal oxide nano structures in living beings and their effect in ecosystem.
Collapse
|
30
|
Lu CF, Li LZ, Zhou W, Zhao J, Wang YM, Peng SQ. Silica nanoparticles and lead acetate co-exposure triggered synergistic cytotoxicity in A549 cells through potentiation of mitochondria-dependent apoptosis induction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:114-120. [PMID: 28411581 DOI: 10.1016/j.etap.2017.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
The adverse effects of PM2.5 are the results of combined toxicities of finer particles and their adsorbed toxic pollutants. Nevertheless, the combined toxicity of finer particles and air pollutants still remains unclear. The present study was therefore undertaken to investigate the combined cytotoxicity of silica nanoparticles (nano-SiO2, a typical atmospheric ultrafine particle) and lead acetate (Pb, a representative air pollutant) in A549 cells focusing on mitochondria-dependent apoptosis induction. The results showed that Pb exposure alone induced mitochondria-dependent apoptosis in A549 cells, as evidenced by increased apoptotic rate and Bax/Bcl-2 ratio, up-regulated caspases 3 and 9 expressions as well as decreased mitochondrial membrane potential. Non-cytotoxic concentration of nano-SiO2 exposure alone did not trigger apoptosis in A549 cells, but potentialized the apoptotic changes when co-exposure with Pb. Factorial analyses revealed synergistic interactions were responsible for the potentiation of joint apoptotic responses.
Collapse
Affiliation(s)
- Chun-Feng Lu
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China; Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi 154007, PR China
| | - Li-Zhong Li
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Wei Zhou
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Jun Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China
| | - Yi-Mei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China.
| | - Shuang-Qing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, PR China.
| |
Collapse
|
31
|
Fang Q, Shi Q, Guo Y, Hua J, Wang X, Zhou B. Enhanced Bioconcentration of Bisphenol A in the Presence of Nano-TiO2 Can Lead to Adverse Reproductive Outcomes in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1005-13. [PMID: 26694738 DOI: 10.1021/acs.est.5b05024] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Titanium dioxide nanoparticles (n-TiO2) and bisphenol A (BPA) are widespread environmental contaminants in the aquatic environment. We hypothesized that n-TiO2 may adsorb BPA, and thus modify its bioavailability and toxicity to aquatic organisms. In this study, the bioavailability and toxicity of BPA (0, 2, 20, 200 μg/L) was investigated in the presence of n-TiO2 (100 μg/L). The n-TiO2 sorbed BPA and the resulting nanoparticles were taken up by zebrafish, where they translocated to the liver, brain, and gonad tissues. Increased tissue burdens of both BPA and n-TiO2 were observed following coexposure, and they also caused a reduction in plasma concentrations of estradiol (E2), testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Plasma vitellogenin (VTG) concentrations were significantly increased in males and females upon exposure to BPA. Histological examination of the ovary and testes did not show obvious morphological alterations; however, inhibition of egg production was noted in the presence of n-TiO2. The results indicated that n-TiO2 acts as a carrier of BPA and enhances its bioconcentration in zebrafish, leading to endocrine disruption and impairment of reproduction.
Collapse
Affiliation(s)
- Qi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- Laboratory of Quality and Safety Risk Assessment for Citrus Products, Ministry of Agriculture, Institute of Citrus Research, Southwest University , Chongqing 400712, China
| | - Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- Graduate University of Chinese Academy of Sciences , Beijing 100039, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- Graduate University of Chinese Academy of Sciences , Beijing 100039, China
| | - Xianfeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- Graduate University of Chinese Academy of Sciences , Beijing 100039, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| |
Collapse
|
32
|
Ozkan Y, Altinok I, Ilhan H, Sokmen M. Determination of TiO2 and AgTiO2 Nanoparticles in Artemia salina: Toxicity, Morphological Changes, Uptake and Depuration. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 96:36-42. [PMID: 26280834 DOI: 10.1007/s00128-015-1634-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
In this study, aquatic stability and toxic effects of TiO2 and AgTiO2 nanoparticles (NPs) were investigated on Artemia salina nauplii. AgTiO2 was found to be more toxic to nauplii compared to TiO2. The mortality rate in nauplii increased significantly with increasing concentrations and duration of exposure. TiO2 eliminations ranged between 27.8% and 96.5% at 50 and 1 mg/L TiO2 exposed to nauplii, respectively. Accumulation and elimination of Ag in AgTiO2 exposed nauplii were similar except at 1 mg/L AgTiO2. When NPs were mixed with water, the hydrodynamic dimensions of NPs significantly increased because of aggregation in saltwater but NP size decreased over time. NPs-exposed nauplii showed changes in eye formation, enlargement of the intestine, malformations in the outer shell and antennae loss were also observed. Since accumulation and toxicity of AgTiO2 NPs was higher than TiO2 alone, inevitably release of AgTiO2 into aqueous environments can cause ecological risks.
Collapse
Affiliation(s)
- Yesim Ozkan
- Faculty of Art and Sciences, Department of Biology, Ordu University, 52200, Ordu, Turkey
| | - Ilhan Altinok
- Faculty of Marine Sciences, Department Fisheries Technology Engineering, Karadeniz Technical University, 61530, Surmene, Trabzon, Turkey.
| | - Hasan Ilhan
- Nanotechnology and Nanomedicine, Hacettepe University, 06000, Ankara, Turkey
| | - Munevver Sokmen
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
33
|
Canesi L, Ciacci C, Balbi T. Interactive effects of nanoparticles with other contaminants in aquatic organisms: Friend or foe? MARINE ENVIRONMENTAL RESEARCH 2015; 111:128-134. [PMID: 25842999 DOI: 10.1016/j.marenvres.2015.03.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 05/29/2023]
Abstract
The increasing production and use of nanoparticles (NPs) will lead to their release into the aquatic environment, posing a potential threat to the health of aquatic organisms. Both in the water phase and in the sediments NPs could mix and interact with other pollutants, such as organic xenobiotics and heavy metals, leading to possible changes in their bioavailability/bioconcentration/toxicity. However, whether these interactive effects may lead to increased harmful effects in marine organisms is largely unknown. In this work, available data mainly obtained on carbon based NPs and n-TiO2, as examples of widespread NPs, in aquatic organisms are reviewed. Moreover, data are summarized on the interactive effects of n-TiO2 with 2,3,7,8-TCDD and Cd(2+), chosen as examples of common and persistent organic and inorganic contaminants, respectively, in the model marine bivalve Mytilus. The results reveal complex and often unexpected interactive responses of NPs with other pollutants, depending on type of contaminant and the endpoint measured, as well as differences in bioaccumulation. The results are discussed in relation with data obtained in freshwater organisms. Overall, information available so far indicate that interactive effects of NPs with other contaminants do not necessarily lead to increased toxicity or harmful effects in aquatic organisms.
Collapse
Affiliation(s)
- L Canesi
- Dept. of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Italy.
| | - C Ciacci
- Dept. of Earth, Life and Environmental Sciences-DiSTeVA, University of Urbino, Italy
| | - T Balbi
- Dept. of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Italy
| |
Collapse
|