1
|
Tamaddon AM, Bashiri R, Najafi H, Mousavi K, Jafari M, Borandeh S, Aghdaie MH, Shafiee M, Abolmaali SS, Azarpira N. Biocompatibility of graphene oxide nanosheets functionalized with various amino acids towards mesenchymal stem cells. Heliyon 2023; 9:e19153. [PMID: 37664696 PMCID: PMC10469575 DOI: 10.1016/j.heliyon.2023.e19153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Graphene and its derivatives have gained popularity due to their numerous applications in various fields, such as biomedicine. Recent reports have revealed the severe toxic effects of these nanomaterials on cells and organs. In general, the chemical composition and surface chemistry of nanomaterials affect their biocompatibility. Therefore, the purpose of the present study was to evaluate the cytotoxicity and genotoxicity of graphene oxide (GO) synthesized by Hummer's method and functionalized by different amino acids such as lysine, methionine, aspartate, and tyrosine. The obtained nanosheets were identified by FT-IR, EDX, RAMAN, FE-SEM, and DLS techniques. In addition, trypan blue and Alamar blue methods were used to assess the cytotoxicity of mesenchymal stem cells extracted from human embryonic umbilical cord Wharton jelly (WJ-MSCs). The annexin V staining procedure was used to determine apoptotic and necrotic death. In addition, COMET and karyotyping techniques were used to assess the extent of DNA and chromosome damage. The results of the cytotoxicity assay showed that amino acid modifications significantly reduced the concentration-dependent cytotoxicity of GO to varying degrees. The GO modified with aspartic acid had the lowest cytotoxicity. There was no evidence of chromosomal damage in the karyotyping method, but in the comet assay, the samples modified with tyrosine and lysine showed the greatest DNA damage and rate of apoptosis. Overall, the aspartic acid-modified GO caused the least cellular and genetic damage to WJ-MSCs, implying its superior biomedical applications such as cell therapy and tissue engineering over GO.
Collapse
Affiliation(s)
- Ali Mohammad Tamaddon
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Rahman Bashiri
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Khadijeh Mousavi
- Food and Drug Administration, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Mahdokht H. Aghdaie
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, Shiraz, PO Box 7193711351, Iran
| | - Mina Shafiee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, Shiraz, PO Box 7193711351, Iran
| |
Collapse
|
2
|
Abdel-Rahman HG, Alian HA, Mahmoud MMA. Impacts of dietary supplementation with nano-iron and methionine on growth, blood chemistry, liver biomarkers, and tissue histology of heat-stressed broiler chickens. Trop Anim Health Prod 2022; 54:126. [PMID: 35246767 PMCID: PMC8897364 DOI: 10.1007/s11250-022-03130-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022]
Abstract
A 28-day study was done to explore the impact of nano-iron alone or combined with methionine on growth, blood chemistry, liver biomarkers, and tissue histology of heat-stressed chicken. One-day-old Ross 308 chicks were randomly allocated to three groups. Each group was divided into three replicates (13 chicks/replicate). The first group was the control one that was fed a basal diet without supplementation (T0). The second group was fed a basal diet with nano-iron 4 mg kg-1 diet (T1). The third group was fed a basal diet with nano-iron 4 mg kg-1 diet plus methionine 4 g kg-1 diet (T2). The results showed that the birds in the control group had significantly (p < 0.05) higher final weights. Also, a partial relief of heat stress adverse effects was observed on growth by T1 compared to T2. The T2 showed a significantly increased (p < 0.05) free iron (Fe) level and transferrin saturation index. Likewise, T2 significantly (p < 0.05) reduced total iron-binding capacity (TIBC) and transferrin level in comparison with T0 and T1. Also, hepatic impairment and inflammatory response were observed in the T2 group when compared to T0 and T1, besides a bad lipid profile. Further, T2 showed raised levels of Fe and ferritin in their hepatic tissues compared to those T1 and T0. A significant increment of thiobarbituric acid reactive and decrement of reduced glutathione levels in the hepatic tissues of T2 and T1 versus T0 levels were recorded. It is concluded that nano-iron at the level of 4 mg kg-1 in this study is highly absorbed, leading to harmful effects. Further investigations are needed to detect the proper supplemental level.
Collapse
Affiliation(s)
- Haidy G Abdel-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba A Alian
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Manal M A Mahmoud
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
3
|
Antal I, Strbak O, Khmara I, Koneracka M, Kubovcikova M, Zavisova V, Kmetova M, Baranovicova E, Dobrota D. MRI Relaxivity Changes of the Magnetic Nanoparticles Induced by Different Amino Acid Coatings. NANOMATERIALS 2020; 10:nano10020394. [PMID: 32102280 PMCID: PMC7075310 DOI: 10.3390/nano10020394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022]
Abstract
In this study, we analysed the physico-chemical properties of positively charged magnetic fluids consisting of magnetic nanoparticles (MNPs) functionalised by different amino acids (AAs): glycine (Gly), lysine (Lys) and tryptophan (Trp), and the influence of AA-MNP complexes on the MRI relaxivity. We found that the AA coating affects the size of dispersed particles and isoelectric point, as well as the zeta potential of AA-MNPs differently, depending on the AA selected. Moreover, we showed that a change in hydrodynamic diameter results in a change to the relaxivity of AA-MNP complexes. On the one hand, we observed a decrease in the relaxivity values, r1 and r2, with an increase in hydrodynamic diameter (the relaxivity of r1 and r2 were comparable with commercially available contrast agents); on the other hand, we observed an increase in r2* value with an increase in hydrodynamic size. These findings provide an interesting preliminary look at the impact of AA coating on the relaxivity properties of AA-MNP complexes, with a specific application in molecular contrast imaging originating from magnetic nanoparticles and magnetic resonance techniques.
Collapse
Affiliation(s)
- Iryna Antal
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
- Correspondence: ; Tel.: +421-43-2633448
| | - Iryna Khmara
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Martina Koneracka
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Martina Kubovcikova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Vlasta Zavisova
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia; (I.A.); (I.K.); (M.K.); (M.K.); (V.Z.)
| | - Martina Kmetova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (M.K.); (D.D.)
| | - Eva Baranovicova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dusan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; (M.K.); (D.D.)
| |
Collapse
|
4
|
Demin AM, Mekhaev AV, Kandarakov OF, Popenko VI, Leonova OG, Murzakaev AM, Kuznetsov DK, Uimin MA, Minin AS, Shur VY, Belyavsky AV, Krasnov VP. L-Lysine-modified Fe 3O 4 nanoparticles for magnetic cell labeling. Colloids Surf B Biointerfaces 2020; 190:110879. [PMID: 32135495 DOI: 10.1016/j.colsurfb.2020.110879] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
The efficiency of magnetic labeling with L-Lys-modified Fe3O4 magnetic nanoparticles (MNPs) and the stability of magnetization of rat adipose-derived mesenchymal stem cells, lineage-negative (Lin(-)) hematopoietic progenitor cells from mouse bone marrow and human leukemia K562 cells were studied. For this purpose, covalent modification of MNPs with 3-aminopropylsilane and N-di-Fmoc-L-lysine followed by removal of N-protecting groups was carried out. Since the degree of hydroxylation of the surface of the starting nanoparticles plays a crucial role in the silanization reaction and the possibility of obtaining stable colloidal solutions. In present work we for the first time performed a comparative qualitative and quantitative evaluation of the number of adsorbed water molecules and hydroxyl groups on the surface of chemically and physically obtained Fe3O4 MNPs using comprehensive FTIR spectroscopy and thermogravimetric analysis. The results obtained can be further used for magnetic labeling of cells in experiments in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander M Demin
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 22 S. Kovalevskoy St., Yekaterinburg, 620990, Russia.
| | - Alexander V Mekhaev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 22 S. Kovalevskoy St., Yekaterinburg, 620990, Russia
| | - Oleg F Kandarakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow 119991, Russia
| | - Vladimir I Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow 119991, Russia
| | - Olga G Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow 119991, Russia
| | - Aidar M Murzakaev
- Institute of Electrophysics, Russian Academy of Sciences (Ural Branch), 106 Amudsen St., Yekaterinburg, 620016, Russia; Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Ave., Yekaterinburg 620000, Russia
| | - Dmitry K Kuznetsov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Ave., Yekaterinburg 620000, Russia
| | - Mikhail A Uimin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 18 S. Kovalevskoy St., Yekaterinburg, 620990, Russia
| | - Artem S Minin
- Mikheev Institute of Metal Physics, Russian Academy of Sciences (Ural Branch), 18 S. Kovalevskoy St., Yekaterinburg, 620990, Russia
| | - Vladimir Ya Shur
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Ave., Yekaterinburg 620000, Russia
| | - Alexander V Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova St., Moscow 119991, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 22 S. Kovalevskoy St., Yekaterinburg, 620990, Russia; Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russia
| |
Collapse
|
5
|
Microwave-mediated synthesis of iron-oxide nanoparticles for use in magnetic levitation cell cultures. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-00962-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Yang J, Fan L, Xu Y, Xia J. Iron oxide nanoparticles with different polymer coatings for photothermal therapy. JOURNAL OF NANOPARTICLE RESEARCH 2017; 19:333. [DOI: 10.1007/s11051-017-4031-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Chen H, Wang L, Fu H, Wang Z, Xie Y, Zhang Z, Tang Y. Gadolinium functionalized carbon dots for fluorescence/magnetic resonance dual-modality imaging of mesenchymal stem cells. J Mater Chem B 2016; 4:7472-7480. [PMID: 32263747 DOI: 10.1039/c6tb01422d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of multimodal nanoprobes is of great importance in nanomedicine because it integrates the advantages of each imaging modality and offers a significantly enhanced diagnostic effect. In this work, gadolinium(iii) functionalized fluorescent carbon dots (Gd-CDs) are synthesized by means of a one-step hydrothermal approach. As a fluorescent nanomaterial, the obtained Gd-CDs exhibit strong and stable fluorescence with excitation-independent emission behavior. Moreover, as an MRI contrast agent, the Gd-CDs exhibited a longitudinal relaxation rate of 6.06 mM-1 s-1, which is significantly higher than that of the commercially available MRI agent Gadovist (4.24 mM-1 s-1). In addition, the cellular experiment reveals that Gd-CDs promote the proliferation of human mesenchymal stem cells (hMSCs), which is tracked by the fluorescence/Magnetic Resonance dual-modality imaging of hMSCs by the Gd-CDs.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Yu ZZ, Wu QH, Zhang SL, Miao JY, Zhao BX, Su L. Two novel amino acid-coated super paramagnetic nanoparticles at low concentrations label and promote the proliferation of mesenchymal stem cells. RSC Adv 2016. [DOI: 10.1039/c5ra21322c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We identified two amino acid-coated magnetic nanoparticles that promoted mesenchymal stem cell growth without the need for transfection agents by increasing the proportion of cells in the S phase.
Collapse
Affiliation(s)
- Zhe-Zhen Yu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Qing-Hua Wu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Shang-Li Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Jun-Ying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Bao- Xiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
9
|
Zhang L, Wang X, Zou J, Liu Y, Wang J. DMSA-Coated Iron Oxide Nanoparticles Greatly Affect the Expression of Genes Coding Cysteine-Rich Proteins by Their DMSA Coating. Chem Res Toxicol 2015; 28:1961-74. [DOI: 10.1021/acs.chemrestox.5b00161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
- School
of Biomedical Engineering, Hubei University of Science and Technology, Xianning 437000, China
| | - Xin Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinglu Zou
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yingxun Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
10
|
Li L, Gao F, Jiang W, Wu X, Cai Y, Tang J, Gao X, Gao F. Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 2015; 23:1726-33. [PMID: 25715808 DOI: 10.3109/10717544.2015.1006404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been the subject of extensive research due to their potential biomedical applications. In the present investigation, superparamagnetic FA-PEI-Fe3O4 were successfully prepared and evaluated as a targeted MRI contrast agent. FTIR characteristics, TGA, VSM, and MR imaging confirmed the composition and magnetic properties of the synthesized nanoparticles. TEM showed that FA-PEI-Fe3O4 were spherical in shape and well dispersed. The nanoparticles were superparamagnetic at room temperature with a saturation magnetization value of 67.1 emu/g. The nanoparticles showed higher uptake efficiency due to receptor-mediated endocytosis. Moreover, specificity of FA-PEI-Fe3O4 to target tumor cells was demonstrated by the increased nanoparticle uptake and significant contrast enhancement of KB cells over MCF7 cells. The competitive inhibition of FA-PEI-Fe3O4 by free FA further confirmed the specific interaction of this conjugate with FA receptors. In vivo MR imaging studies showed a decreased signal intensity and enhanced tumor contrast post-injection of FA-PEI-Fe3O4. These results indicate that FA-PEI-Fe3O4 can be used as a promising tumor-targeting agent as well as a T2 negative-contrast agent in MR imaging applications.
Collapse
Affiliation(s)
- Lei Li
- a CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing , China .,b Suzhou Science and Technology Town Hostipal , Jiangsu Province , Suzhou , China
| | - Fumei Gao
- c Lvliang People's Hospital , Shanxi Province , Lvliang , China
| | - Weiwei Jiang
- d Patent Examination Cooperation Jiangsu Center of the Patent Office, SIPO , Jiangsu Province , Suzhou , China , and
| | - Xueliang Wu
- b Suzhou Science and Technology Town Hostipal , Jiangsu Province , Suzhou , China
| | - Yuanyuan Cai
- e Key Laboratory of Particle & Radiation Imaging, Department of Engineering Physics , Ministry of Education, Institute of Medical Physics and Engineering, Tsinghua University , Beijing , China
| | - Jintian Tang
- e Key Laboratory of Particle & Radiation Imaging, Department of Engineering Physics , Ministry of Education, Institute of Medical Physics and Engineering, Tsinghua University , Beijing , China
| | - Xueyun Gao
- a CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing , China
| | - Fuping Gao
- a CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|