1
|
Kheirouri S, Alizadeh M. The Association Between Diets With High Inflammatory Potential and Sleep Quality and Its Parameters: A Systematic Review. Nutr Rev 2025; 83:e392-e411. [PMID: 38849315 DOI: 10.1093/nutrit/nuae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
CONTEXT Dietary components or its overall properties can influence an individual's sleep status. OBJECTIVE The aim for this study was to critically search, appraise, and synthesize research evidence on the association between dietary inflammatory index (DII) and sleep quality and its parameters. DATA SOURCES Original published studies on adults were obtained from the PubMed, SCOPUS, ScienceDirect, Cochrane Library, and Google Scholar databases. DATA EXTRACTION The search was conducted without date limitation until April 2023. Duplicated and irrelevant investigations were screened out, and the results of the remaining articles were descriptively summarized, then critically appraised and analyzed. Possible mechanistic pathways regarding diet, systemic inflammation, and sleep status were discussed. DATA ANALYSIS Of the 102 studies searched, 23 articles (n = 4 cohort studies, 18 cross-sectional studies, and 1 intervention study) were included in the final review. The association between DII and sleep status was investigated subjectively in 21 studies and objectively in 6 studies. The main studied sleep outcomes were sleep quality, duration, latency, efficiency, apnea, disturbances, the use of sleeping medications, daytime dysfunctions, wakefulness after sleep onset, and rapid eye movement. CONCLUSIONS According to most of the evidence, DII may not be related to overall sleep quality, sleep duration, latency, efficiency, and the use of sleeping medications. The evidence of positive association was greater between a high DII score (pro-inflammatory diet) with daytime dysfunctions, wakefulness after sleep onset, and sleep apnea. There is insufficient evidence to make any conclusion regarding sleep disturbances and rapid eye movement.
Collapse
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, 5166614711 Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Nutrition, Tabriz University of Medical Sciences, 5166614711 Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, 5166614711 Tabriz, Iran
| |
Collapse
|
2
|
Mammarella V, Orecchio S, Cameli N, Occhipinti S, Marcucci L, De Meo G, Innocenti A, Ferri R, Bruni O. Using pharmacotherapy to address sleep disturbances in autism spectrum disorders. Expert Rev Neurother 2023; 23:1261-1276. [PMID: 37811652 DOI: 10.1080/14737175.2023.2267761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Sleep disorders are the second most common medical comorbidity in autism spectrum disorder (ASD), with effects on daytime behavior and functioning, mood and anxiety, and autism core features. In children with ASD, insomnia also has a negative impact on the whole family's quality of life. Therefore, treatment of sleep disturbances should be considered as a primary goal in the management of ASD patients, and it is important to clarify the scientific evidence to inappropriate treatments. AREAS COVERED The authors review the current literature concerning the pharmacological treatment options for the management of sleep-related disorders in patients with ASD (aged 0-18 years) using the PubMed and Cochrane Library databases with the search terms: autism, autistic, autism spectrum disorder, ASD, drug, drug therapy, drug intervention, drug treatment, pharmacotherapy, pharmacological treatment, pharmacological therapy, pharmacological intervention, sleep, sleep disturbance, and sleep disorder. EXPERT OPINION Currently, clinicians tend to select medications for the treatment of sleep disorders in ASD based on the first-hand experience of psychiatrists and pediatricians as well as expert opinion. Nevertheless, at the present time, the only compound for which there is sufficient evidence is melatonin, although antihistamines, trazodone, clonidine, ramelteon, gabapentin, or suvorexant can also be considered for selection.
Collapse
Affiliation(s)
- Valeria Mammarella
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Silvia Orecchio
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Noemi Cameli
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Sara Occhipinti
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Lavinia Marcucci
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Giuliano De Meo
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Alice Innocenti
- Child Neuropsychiatry Unit, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| | - Oliviero Bruni
- Department of Social and Developmental Psychology, Sapienza University, Rome, Italy
| |
Collapse
|
3
|
Ishihara A, Courville AB, Chen KY. The Complex Effects of Light on Metabolism in Humans. Nutrients 2023; 15:nu15061391. [PMID: 36986120 PMCID: PMC10056135 DOI: 10.3390/nu15061391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Light is an essential part of many life forms. The natural light–dark cycle has been the dominant stimulus for circadian rhythms throughout human evolution. Artificial light has restructured human activity and provided opportunities to extend the day without reliance on natural day–night cycles. The increase in light exposure at unwanted times or a reduced dynamic range of light between the daytime and nighttime has introduced negative consequences for human health. Light exposure is closely linked to sleep–wake regulation, activity and eating patterns, body temperature, and energy metabolism. Disruptions to these areas due to light are linked to metabolic abnormalities such as an increased risk of obesity and diabetes. Research has revealed that various properties of light influence metabolism. This review will highlight the complex role of light in human physiology, with a specific emphasis on metabolic regulation from the perspective of four main properties of light (intensity, duration, timing of exposure, and wavelength). We also discuss the potential influence of the key circadian hormone melatonin on sleep and metabolic physiology. We explore the relationship between light and metabolism through circadian physiology in various populations to understand the optimal use of light to mitigate short and long-term health consequences.
Collapse
|
4
|
Manti F, Giovannone F, Aceti F, Giacchetti N, Fioriello F, Maugeri A, Sogos C. Unraveling the Relationship between Sleep Problems, Emotional Behavior Disorders, and Stressful Life Events in Preschool Children. J Clin Med 2022; 11:jcm11185419. [PMID: 36143065 PMCID: PMC9503080 DOI: 10.3390/jcm11185419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: The aims of this study were to: (1) explore sleep problems in preschool children with generalized anxiety disorder (GAD), selective mutism (SM), and oppositional defiant disorder (ODD) and (2) examine the relationship between stressful life events, sleep problems, and emotional behavior disorders in preschoolers. Methods: The parents of 213 preschool children with SM, GAD, ODD, and TD (typical development, age range 2–6 years) completed the Children’s Sleep Habits Questionnaire (CSHQ), the Coddington Life Events Scale, preschool version (CLES-P), and the CBCL 1½–5. Results: Eighty-three subjects reported sleep problems before the age of 2 years. Seventy-five children (86.14%) with a clinical diagnosis and eight children with TD (8.4%) exceeded the threshold level on the CSHQ. For the bedtime resistance (p = 0.042) and sleep duration subscales (p = 0.038), the SM group had significantly higher scores in comparison to the ODD group. The same pattern was also true for the sleep onset (p = 0.024) and sleep anxiety subscales (p = 0.019). The linear regression analysis model showed that the impact of stressful life events and internalizing problems could predict sleep habits in children. Conclusions: Emotional behavior disorders and stress factors should be regularly investigated in children who are referred to clinics for sleep problems. Clinicians should consider how these symptoms may exacerbate sleep problems and/or interfere with treatment.
Collapse
Affiliation(s)
- Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-4997-2972
| | - Federica Giovannone
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
| | - Franca Aceti
- Department of Human Neuroscience, Unit of Post-Partum Disorders, Sapienza University of Rome, 00185 Rome, Italy
| | - Nicoletta Giacchetti
- Department of Human Neuroscience, Unit of Post-Partum Disorders, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fioriello
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Maugeri
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Sogos
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Ricketts EJ, Joyce DS, Rissman AJ, Burgess HJ, Colwell CS, Lack LC, Gradisar M. Electric lighting, adolescent sleep and circadian outcomes, and recommendations for improving light health. Sleep Med Rev 2022; 64:101667. [PMID: 36064209 PMCID: PMC10693907 DOI: 10.1016/j.smrv.2022.101667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/26/2023]
Abstract
Light is a potent circadian entraining agent. For many people, daily light exposure is fundamentally dysregulated with reduced light during the day and increased light into the late evening. This lighting schedule promotes chronic disruption to circadian physiology resulting in a myriad of impairments. Developmental changes in sleep-wake physiology suggest that such light exposure patterns may be particularly disruptive for adolescents and further compounded by lifestyle factors such as early school start times. This narrative review describes evidence that reduced light exposure during the school day delays the circadian clock, and longer exposure durations to light-emitting electronic devices in the evening suppress melatonin. While home lighting in the evening can suppress melatonin secretion and delay circadian phase, the patterning of light exposure across the day and evening can have moderating effects. Photic countermeasures may be flexibly and scalably implemented to support sleep-wake health; including manipulations of light intensity, spectra, duration and delivery modality across multiple contexts. An integrative approach addressing physiology, attitudes, and behaviors will support optimization of light-driven sleep-wake outcomes in adolescents.
Collapse
Affiliation(s)
- Emily J Ricketts
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States.
| | - Daniel S Joyce
- Department of Psychology, University of Nevada, Reno, NV, United States; School of Psychology and Wellbeing, The University of Southern Queensland, Ipswich, QLD, Australia
| | - Ariel J Rissman
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, United States
| | - Leon C Lack
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; College of Education, Psychology and Social Work, Flinders University, Adelaide, SA, Australia
| | - Michael Gradisar
- WINK Sleep Pty Ltd, Adelaide, SA, Australia; Sleep Cycle AB, Gothenburg, Sweden
| |
Collapse
|
6
|
Özata Uyar G, Yildiran H. The association among circadian rhythm, circadian genes and chrononutrition, its effect on obesity: a review of current evidence. BIOL RHYTHM RES 2022. [DOI: 10.1080/09291016.2022.2044631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Gizem Özata Uyar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Hilal Yildiran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Utilizing Genomically Targeted Molecular Data to Improve Patient-Specific Outcomes in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23042167. [PMID: 35216282 PMCID: PMC8879068 DOI: 10.3390/ijms23042167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular biology combined with genomics can be a powerful tool for developing potential intervention strategies for improving outcomes in children with autism spectrum disorders (ASD). Monogenic etiologies rarely cause autism. Instead, ASD is more frequently due to many polygenic contributing factors interacting with each other, combined with the epigenetic effects of diet, lifestyle, and environment. One limitation of genomics has been identifying ways of responding to each identified gene variant to translate the information to something clinically useful. This paper will illustrate how understanding the function of a gene and the effects of a reported variant on a molecular level can be used to develop actionable and targeted potential interventions for a gene variant or combinations of variants. For illustrative purposes, this communication highlights a specific genomic variant, SHANK3. The steps involved in developing molecularly genomically targeted actionable interventions will be demonstrated. Cases will be shared to support the efficacy of this strategy and to show how clinicians utilized these targeted interventions to improve ASD-related symptoms significantly. The presented approach demonstrates the utility of genomics as a part of clinical decision-making.
Collapse
|
8
|
|
9
|
Effects of glucoraphanin-rich broccoli sprout extracts on sleep quality in healthy adults: An exploratory study. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
10
|
Simper T, Gilmartin M, Allwood D, Taylor L, Chappell A. The effects of a sleep/recovery supplement: 'Night Time Recharge' on sleep parameters in young adults. Nutr Health 2019; 25:265-274. [PMID: 31512550 DOI: 10.1177/0260106019875911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Concentrated cherry juice reportedly contains melatonin which, in turn, has been highlighted as an important regulator in initiating sleep. AIM The present investigation aims to clarify whether Night Time Recharge (NTR), a marketed sleep aid containing cherry extract, improves key sleep parameters in young, active adults with mildly poor sleep. METHODS A double-blind, randomized, placebo-controlled, cross-over study design was employed. Twenty participants (nine female) consumed either NTR or a placebo for seven days. Accelerometers were used to assess sleep quality and physical activity levels. Urinary levels of 6-sulphatoxymelatonin (6-SMT), a marker of melatonin synthesis, was assessed via enzyme-linked immunosorbent assay. RESULTS 6-SMT levels increased following NTR treatment (28.95 ng/ml) compared with placebo (4.0 ng/ml) (p < 0.001). There was also a significant difference (p = 0.047) in dietary tryptophan consumption during the NTR treatment (1236 mg) versus placebo (1149 mg). No trace of melatonin was detected from our analysis of the supplement. NTR had no significant effect on any sleep parameters with the exception of sleep latency (p = 0.001). CONCLUSIONS As chemical analysis of NTR by liquid-chromatography mass-spectrometry identified no detectable melatonin, the tryptophan content of the supplement is a likely reason for improvement in sleep latency. These results are in contrast to previous studies which have found a positive effect on sleep following cherry supplementation. Future work should focus on sleep latency and investigating whether cherry juice is effective in participants with problems in initiating sleep.
Collapse
Affiliation(s)
- Trevor Simper
- Food and Nutrition group, Sheffield Hallam University, Sheffield, UK
| | - Molly Gilmartin
- Food and Nutrition group, Sheffield Hallam University, Sheffield, UK
| | - Daniel Allwood
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| | - Luke Taylor
- School of Pharmacy and Life Science, Robert Gordon University, Aberdeen, UK
| | - Andrew Chappell
- School of Pharmacy and Life Science, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
11
|
Effects of High vs. Low Glycemic Index of Post-Exercise Meals on Sleep and Exercise Performance: A Randomized, Double-Blind, Counterbalanced Polysomnographic Study. Nutrients 2018; 10:nu10111795. [PMID: 30453682 PMCID: PMC6267571 DOI: 10.3390/nu10111795] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 02/02/2023] Open
Abstract
The aim of the current study was to investigate the effect of the glycemic index of post-exercise meals on sleep quality and quantity, and assess whether those changes could affect the next day’s exercise performance. Following a baseline/familiarization phase, 10 recreationally trained male volunteers (23.2 ± 1.8 years) underwent two double-blinded, randomized, counterbalanced crossover trials. In both trials, participants performed sprint interval training (SIT) in the evening. Post-exercise, participants consumed a meal with a high (HGI) or low (LGI) glycemic index. Sleep parameters were assessed by a full night polysomnography (PSG). The following morning, exercise performance was evaluated by the countermovement jump (CMJ) test, a visual reaction time (VRT) test and a 5-km cycling time trial (TT). Total sleep time (TST) and sleep efficiency were greater in the HGI trial compared to the LGI trial (p < 0.05), while sleep onset latency was shortened by four-fold (p < 0.05) and VRT decreased by 8.9% (p < 0.05) in the HGI trial compared to the LGI trial. The performance in both 5-km TT and CMJ did not differ between trials. A moderate to strong correlation was found between the difference in TST and the VRT between the two trials (p < 0.05). In conclusion, this is the first study to show that a high glycemic index meal, following a single spring interval training session, can improve both sleep duration and sleep efficiency, while reducing in parallel sleep onset latency. Those improvements in sleep did not affect jumping ability and aerobic endurance performance. In contrast, the visual reaction time performance increased proportionally to sleep improvements.
Collapse
|
12
|
Jo K, Choi HS, Jeon S, Ahn CW, Suh HJ. Nelumbo nucifera Seed Extract Promotes Sleep in Drosophila melanogaster. Biol Pharm Bull 2018; 41:399-408. [PMID: 29491217 DOI: 10.1248/bpb.b17-00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sleep-promoting effects of the water extract of Nelumbo nucifera seeds (NNE) were investigated in an invertebrate model. The effects of NNE on the subjective nighttime activity, sleep episodes, and sleep time were determined using Drosophila melanogaster and locomotor activity monitoring systems in basal and caffeine-induced arousal conditions. The movements of fruit flies were analyzed using the Noldus EthoVision-XT system, and the levels of neuromodulators were analyzed using HPLC. Expression of neuromodulator receptors was analyzed using real-time PCR. NNE was shown to contain neurotransmission-related components; γ-aminobutyric acid (GABA) (2.33±0.22 mg/g), tryptophan (2.00±0.06 mg/g), quinidine (0.55±0.33 mg/g), and neferine (0.16±0.01 mg/g). The total activity of flies during nighttime was decreased by 52% with 1.0% NNE treatment. In the individual and collective conditions, the subjective nighttime activities (45/38%) and sleep bouts (20/14%) of flies was significantly decreased with NNE treatment, while total sleep times (10/27%) were significantly increased. This sleep-promoting effect is more pronounced in caffeine-treated conditions; the nighttime activity of flies was reduced by 53%, but total sleep time was increased by 60%. Our video-tracking analysis showed a significant decrease of the moving distance and velocity of flies by NNE. This NNE-mediated sleep-promoting effect was associated with up-regulation of GABAA/GABAB and serotonin receptors. The NNE-mediated increase of GABA content was identified in flies. These results demonstrate that NNE effectively promotes sleep in flies by regulating the GABAergic/serotonergic neuromodulators, and could be an alternative agent for sleep promotion.
Collapse
Affiliation(s)
- Kyungae Jo
- Department of Public Health Science, Korea University
| | - Hyeon-Son Choi
- Department of Food Science and Technology, Seoul Women's University
| | | | | | - Hyung Joo Suh
- Department of Public Health Science, Korea University
| |
Collapse
|
13
|
Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS, Bjørklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr 2017; 59:72-88. [PMID: 28799778 DOI: 10.1080/10408398.2017.1357534] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tryptophan (Trp) is an amino acid and an essential component of the human diet. It plays a crucial role in many metabolic functions. Clinicians can use Trp levels in the course of diagnosing various metabolic disorders and the symptoms associated with those diseases. Furthermore, supplementation with this amino acid is considered in the treatment of depression and sleep disorders, mainly due to the Trp relationship with the synthesis of serotonin (5-HT) and melatonin. It is also used in helping to resolve cognitive disorders, anxiety, or neurodegenerative diseases. Reduced secretion of serotonin is associated with autism spectrum disorder, obesity, anorexia and bulimia nervosa, and other diseases presenting peripherals symptoms. The literature strongly suggests that Trp has a significant role in the correct functionality of the brain-gut axis and immunology. This information leads to the consideration of Trp as an essential dietary component due to its role in the serotonin pathway. A reduced availability of Trp in diet and nutraceutical supplementation should be considered with greater concern than one might expect. This paper constitutes a review of the more salient aspects gleaned from the current knowledge base about the role of Trp in diseases, associated nutritional disorders, and food science, in general.
Collapse
Affiliation(s)
- Joanna Kałużna-Czaplińska
- a Department of Chemistry, Institute of General and Ecological Chemistry , Lodz University of Technology , Lodz , Poland
| | - Paulina Gątarek
- a Department of Chemistry, Institute of General and Ecological Chemistry , Lodz University of Technology , Lodz , Poland
| | - Salvatore Chirumbolo
- b Department of Neurological and Movement Sciences , University of Verona , Italy
| | | | - Geir Bjørklund
- d Council for Nutritional and Environmental Medicine , Mo i Rana , Norway
| |
Collapse
|
14
|
Nagashima S, Yamashita M, Tojo C, Kondo M, Morita T, Wakamura T. Can tryptophan supplement intake at breakfast enhance melatonin secretion at night? J Physiol Anthropol 2017; 36:20. [PMID: 28245865 PMCID: PMC5331733 DOI: 10.1186/s40101-017-0135-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/22/2017] [Indexed: 11/10/2022] Open
Abstract
Background Tryptophan (TRP) is an essential amino acid, and it has been suggested that TRP intake at breakfast combined with daytime bright light exposure can increase nocturnal melatonin secretion. However, the mechanisms involved are not yet clear. The aim of this study was to examine the effect of TRP supplement intake at breakfast on nocturnal melatonin secretion under different daytime light intensities in humans. Method Twelve subjects (aged 21.3 ± 3.0 years, mean ± standard deviation) participated in a random order in experimental sessions lasting 3 days under four conditions in a laboratory setting. The four conditions were TRP*Bright, Placebo*Bright, TRP*Dim, and Placebo*Dim. A TRP capsule (1000 mg) or a placebo starch capsule (1000 mg) were taken at breakfast. In addition, during the daytime (07:00–18:00), the subjects were asked to stay under different light intensities: >5000 lx (bright) or <50 lx (dim). Saliva samples were collected for measuring the concentration of melatonin. The time courses of melatonin concentration and dim light melatonin onset (DLMO) were compared among the four conditions using repeated measurements analysis of variance (ANOVA). Result Nocturnal melatonin concentrations in the bright light condition tended to be higher than in the dim light condition (main effect of light: p = .099). Moreover, in the bright light condition, the change in DLMO between baseline and after the intervention was significantly higher than that in the dim light condition (main effect of light: p <.001). However, the ANOVA results indicated no significant effect of TRP intake on melatonin secretion. Conclusion Our findings indicated that intake of 1000 mg of TRP at breakfast on 1 day did not change nocturnal melatonin secretion, even though TRP is the precursor of melatonin. In contrast, daytime bright light exposure increased nocturnal melatonin secretion and advanced the phase of melatonin onset. Therefore, TRP supplementation, unlike exposure to daytime bright light, does not acutely affect biological rhythm and sleep in humans. Trial registration UMIN Clinical Trial Registry: UMIN000024121 Electronic supplementary material The online version of this article (doi:10.1186/s40101-017-0135-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shunsuke Nagashima
- Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | | | - Chiaki Tojo
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Kondo
- Comprehensive Housing R&D Institute, Sekisui House, Ltd., Kyoto, Japan
| | - Takeshi Morita
- Department of Environmental Science, Fukuoka Women's University, Fukuoka, Japan
| | - Tomoko Wakamura
- Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
15
|
Harada T, Wada K, Tsuji F, Krejci M, Kawada T, Noji T, Nakade M, Takeuchi H. Intervention study using a leaflet entitled ‘three benefits of “go to bed early! get up early! and intake nutritionally rich breakfast!” a message for athletes’ to improve the soccer performance of university soccer team. Sleep Biol Rhythms 2015. [DOI: 10.1007/s41105-015-0035-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Cho Y, Ryu SH, Lee BR, Kim KH, Lee E, Choi J. Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment. Chronobiol Int 2015; 32:1294-310. [DOI: 10.3109/07420528.2015.1073158] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
|
18
|
Takeuchi H, Yamazaki Y, Oki K, Wada K, Noji T, Kawada T, Nakade M, Krejci M, Harada T. Effects of chronotype and environmental factors upon sleep and mental health in Japanese students aged 18–40 yrs. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1048952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Fukushige H, Fukuda Y, Tanaka M, Inami K, Wada K, Tsumura Y, Kondo M, Harada T, Wakamura T, Morita T. Effects of tryptophan-rich breakfast and light exposure during the daytime on melatonin secretion at night. J Physiol Anthropol 2014; 33:33. [PMID: 25407790 PMCID: PMC4247643 DOI: 10.1186/1880-6805-33-33] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of the present study is to investigate effects of tryptophan intake and light exposure on melatonin secretion and sleep by modifying tryptophan ingestion at breakfast and light exposure during the daytime, and measuring sleep quality (by using actigraphy and the OSA sleep inventory) and melatonin secretion at night. Methods Thirty three male University students (mean ± SD age: 22 ± 3.1 years) completed the experiments lasting 5 days and 4 nights. The subjects were randomly divided into four groups: Poor*Dim (n = 10), meaning a tryptophan-poor breakfast (55 mg/meal) in the morning and dim light environment (<50 lx) during the daytime; Rich*Dim (n = 7), tryptophan-rich breakfast (476 mg/meal) and dim light environment; Poor*Bright (n = 9), tryptophan-poor breakfast and bright light environment (>5,000 lx); and Rich*Bright (n = 7), tryptophan-rich breakfast and bright light. Results Saliva melatonin concentrations on the fourth day were significantly lower than on the first day in the Poor*Dim group, whereas they were higher on the fourth day in the Rich*Bright group. Creatinine-adjusted melatonin in urine showed the same direction as saliva melatonin concentrations. These results indicate that the combination of a tryptophan-rich breakfast and bright light exposure during the daytime could promote melatonin secretion at night; further, the observations that the Rich*Bright group had higher melatonin concentrations than the Rich*Dim group, despite no significant differences being observed between the Poor*Dim and Rich*Dim groups nor the Poor*Bright and Rich*Bright groups, suggest that bright light exposure in the daytime is an important contributor to raised melatonin levels in the evening. Conclusions This study is the first to report the quantitative effects of changed tryptophan intake at breakfast combined with daytime light exposure on melatonin secretion and sleep quality. Evening saliva melatonin secretion changed significantly and indicated that a tryptophan-rich breakfast and bright light exposure during the daytime promoted melatonin secretion at this time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Takeshi Morita
- Department of Environmental Science, Fukuoka Women's University, 1-1-1, Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan.
| |
Collapse
|