1
|
Wang S, Xue M, Wang J, Wu R, Shao Y, Luo K, Liu J, Zhu M. Effects of intravenous pulse methylprednisolone in neuromyelitis optica during the acute phase. Ann Clin Transl Neurol 2024; 11:2731-2744. [PMID: 39222472 PMCID: PMC11514921 DOI: 10.1002/acn3.52188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an anti-aquaporin 4 (anti-AQP4) autoantibodies-mediated idiopathic inflammatory demyelinating disease of the central nervous system. While intravenous pulse methylprednisolone (IVMP) is the recommended initial treatment option for acute onset NMOSD, its therapeutic mechanism remains unclear. We hypothesized that IVMP would reduce the expression of pro-inflammatory factors and increase the resolution of inflammation in patients with NMOSD. METHODS Mendelian randomization (MR) analysis was used to screen meaningful inflammatory and resolution factors for inclusion. Three MR methods with inverse variance weighting (IVW) were primarily used to identify positive results. Interleukin (IL)-10, IL-1β, IL-6, C-X-C motif chemokine ligand 12 (CXCL12), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) were screened from 41 inflammatory factors, and resolvin D1 (RvD1), maresin 1 (MaR1), and lipoxin A4 (LXA4) were screened from 6 resolution markers for inclusion. Subsequently, 12 patients with NMOSD were enrolled and treated with IVMP. Serum levels of the aforementioned inflammatory and resolution markers were measured by enzyme-linked immunosorbent assay before and after IVMP treatment. RESULTS High levels of TRAIL, CXCL12, and IL-1β were associated with an increased risk of NMOSD (TRAIL: odds ratio [OR], 1.582; 95% confidence interval [CI], 1.003-2.495; CXCL12: OR, 3.610; 95% CI, 1.011-12.889; IL-1β: OR, 4.500; 95% CI, 1.129-17.927). High levels of RvD1, MaR1, and LXA4 were associated with a reduced risk of NMOSD (RvD1: OR, 0.725; 95% CI, 0.538-0.976; MaR1: OR, 0.985; 95% CI, 0.970-0.999; LXA4: OR, 0.849; 95% CI, 0.727-0.993). Among patients with NMOSD, serum levels of IL-6, CXCL12, and TRAIL significantly decreased following IVMP treatment, compared with pretreatment levels, while levels of IL-1β, LXA4, and MaR1 significantly increased after IVMP treatment (p < 0.05). A significant positive correlation was observed between CXCL12 levels and Expanded Disability Status Scale (EDSS) scores (r = 0.451, p < 0.05). CONCLUSION Several systemic inflammatory regulators associated with the pathogenesis of NMOSD were identified. The protective roles of LXA4 and MaR1 may be indispensable components of glucocorticoid treatment. Therefore, the use of resolution markers may be a potential strategy for improving central nervous system injury in individuals with NMOSD.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mengru Xue
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Jianglong Wang
- First Operating RoomThe First Hospital of Jilin UniversityChangchunChina
| | - Rui Wu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Yanqing Shao
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Ke Luo
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Jiacheng Liu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mingqin Zhu
- Department of Neurology, Neuroscience CenterThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
2
|
Ye XF, Huang ZP, Li MM, Liu SF, Huang WL, Hamud AMS, Ye LC, Li LY, Wu SJ, Zhuang JL, Chen YH, Chen XR, Lin S, Wei XF, Chen CN. Update on aquaporin-4 antibody detection: the early diagnosis of neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2024; 90:105803. [PMID: 39128164 DOI: 10.1016/j.msard.2024.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/06/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-mediated primary inflammatory myelinopathy of the central nervous system that primarily affects the optic nerve and spinal cord. The aquaporin 4 antibody (AQP4-Ab) is a specific autoantibody marker for NMOSD. Most patients with NMOSD are seropositive for AQP4-Ab, thus aiding physicians in identifying ways to treat NMOSD. AQP4-Ab has been tested in many clinical and laboratory studies, demonstrating effectiveness in diagnosing NMOSD. Recently, novel assays have been developed for the rapid and accurate detection of AQP4-Ab, providing further guidance for the diagnosis and treatment of NMOSD. This article summarizes the importance of rapid and accurate diagnosis for treating NMOSD based on a review of the latest relevant literature. We discussed current challenges and methods for improvement to offer new ideas for exploring rapid and accurate AQP4-Ab detection methods, aiming for early diagnosis of NMOSD.
Collapse
Affiliation(s)
- Xiao-Fang Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Zheng-Ping Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Mi-Mi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Shu-Fen Liu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Wan-Li Huang
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Abdullahi Mukhtar Sheik Hamud
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Li-Chao Ye
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Lin-Yi Li
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Shu-Juan Wu
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China
| | - Jian-Long Zhuang
- Prenatal Diagnosis Centre, Quanzhou Women's and Children's Hospital, Quanzhou 362000, Fujian China
| | - Yan-Hong Chen
- Department of Neurology, Shishi General Hospital, Quanzhou 362000, Fujian Province, China
| | - Xiang-Rong Chen
- The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China; Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Xiao-Feng Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian Province, China.
| | - Chun-Nuan Chen
- Department of Neurology, The Second Affiliated Hospital, Fujian Medical University, Quanzhou 362000, Fujian Province, China; The Second Clinical Medical College of Fujian Medical University, Quanzhou 362000Fujian Province, China.
| |
Collapse
|
3
|
Qiao H, Mao Z, Wang W, Chen X, Wang S, Fan H, Zhao T, Hou H, Dong M. Changes in the BTK/NF-κB signaling pathway and related cytokines in different stages of neuromyelitis optica spectrum disorders. Eur J Med Res 2022; 27:96. [PMID: 35729649 PMCID: PMC9210047 DOI: 10.1186/s40001-022-00723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Neuromyelitis optica spectrum disorders (NMOSDs) are blindness-causing neuritis; their pathogenesis is still not fully elucidated. Although it has been determined that Bruton tyrosine kinase (BTK) and NF-κB are associated with NMOSD, the changes that occur in different periods remain unknown. The study aimed to demonstrate the changes in the BTK/NF-κB pathway and related chemokines in different stages of NMOSDs. Methods A total of 32 patients with NMOSD were selected as the experimental group, and 32 healthy volunteers were included in the control group. In this study, the BTK/NF-κB pathway and related chemokines in the cerebrospinal fluid and peripheral blood samples of patients with NMOSD were analyzed in the acute or remission phase. Results BTK, NF-κB, PI3K, IKK, CXCL2, and CXCL12 levels in the NMOSD group in the acute or remission phase were significantly higher than those in the control group (p < 0.05). Conclusion The BTK/NF-κB pathway plays a vital role in the progression of NMOSD pathology. Our results shed light on its important role as a therapeutic target for NMOSD.
Collapse
Affiliation(s)
- Huimin Qiao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Zhuofeng Mao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Wei Wang
- Department of Neurology, Xingtai People's Hospital, Xingtai, Hebei, 054000, People's Republic of China
| | - Xin Chen
- Department of Neurology, Xingtai People's Hospital, Xingtai, Hebei, 054000, People's Republic of China
| | - Suhuan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Haolong Fan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Tianyi Zhao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Huiqing Hou
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Mei Dong
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
4
|
Alkabie S, Budhram A. Testing for Antibodies Against Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein in the Diagnosis of Patients With Suspected Autoimmune Myelopathy. Front Neurol 2022; 13:912050. [PMID: 35669883 PMCID: PMC9163833 DOI: 10.3389/fneur.2022.912050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune myelopathies are immune-mediated disorders of the spinal cord that can cause significant neurologic disability. Discoveries of antibodies targeting aquaporin-4 (AQP4-IgG) and myelin oligodendrocyte glycoprotein (MOG-IgG) have facilitated the diagnosis of autoimmune myelopathies that were previously considered to be atypical presentations of multiple sclerosis (MS) or idiopathic, and represent major advancements in the field of autoimmune neurology. The detection of these antibodies can substantially impact patient diagnosis and management, and increasing awareness of this has led to a dramatic increase in testing for these antibodies among patients with suspected autoimmune myelopathy. In this review we discuss test methodologies used to detect these antibodies, the role of serum vs. cerebrospinal fluid testing, and the value of antibody titers when interpreting results, with the aim of helping laboratorians and clinicians navigate this testing when ordered as part of the diagnostic evaluation for suspected autoimmune myelopathy.
Collapse
Affiliation(s)
- Samir Alkabie
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
| | - Adrian Budhram
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
- Deparment of Pathology and Laboratory Medicine, London Health Sciences Centre, Western University, London, ON, Canada
- *Correspondence: Adrian Budhram
| |
Collapse
|
5
|
Lateral geniculate nucleus volume changes after optic neuritis in neuromyelitis optica: A longitudinal study. NEUROIMAGE-CLINICAL 2021; 30:102608. [PMID: 33735786 PMCID: PMC7974320 DOI: 10.1016/j.nicl.2021.102608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/17/2021] [Indexed: 12/03/2022]
Abstract
LGN correlates with structural markers of the anterior and posterior visual pathway. LGN volume may reduce after an episode of ON, shown in four patients. LGN volume does not change over time in the absence of ON episodes. Our findings argue against occult neurodegeneration in the visual pathway in NMO.
Objectives Lateral geniculate nucleus (LGN) volume is reduced after optic neuritis (ON) in neuromyelitis optica spectrum disorders (NMOSD). We aimed at a longitudinal assessment of LGN volume in NMOSD. Methods Twenty-nine patients with aquaporin 4-IgG seropositive NMOSD (age: 47.8 ± 14.6 years (y), female: n = 27, history of ON (NMO-ON): n = 17, median time since ON: 3[1.2–12.1]y) and 18 healthy controls (HC; age: 39.3 ± 15.8y; female: n = 13) were included. Median follow-up was 4.1[1.1–4.7]y for patients and 1.7[0.9–3.2]y for HC. LGN volume was measured using a multi-atlas-based approach of automated segmentation on 3 Tesla magnetic resonance images. Retinal optical coherence tomography and probabilistic tractography of the optic radiations (OR) were also performed. Results At baseline, NMO-ON patients had lower LGN volumes (395.4 ± 48.9 mm3) than patients without ON (NMO-NON: 450.7 ± 55.6 mm3; p = 0.049) and HC (444.5 ± 61.5 mm3, p = 0.025). LGN volume was associated with retinal neuroaxonal loss and microstructural OR damage. Longitudinally, there was no change in LGN volumes in the absence of ON, neither in all patients (B = −0.6, SE = 1.4, p = 0.670), nor in NMO-ON (B = −0.8, SE = 1.6, p = 0.617) and NMO-NON (B = 1.7, SE = 3.5, p = 0.650). However, in four patients with new ON during follow-up, LGN volume was reduced at last visit (median time since ON: 2.6 [1.8–3.9] y) compared to the measurement before ON (352 ± 52.7 vs. 371.1 ± 55.9 mm3; t = −3.6, p = 0.036). Conclusion Although LGN volume is reduced after ON in NMOSD, this volume loss is not progressive over longer follow-up or independent of ON. Thus, our findings -at least in this relatively small cohort- do not support occult neurodegeneration of the afferent visual pathway in NMOSD.
Collapse
|
6
|
Ceglie G, Papetti L, Valeriani M, Merli P. Hematopoietic Stem Cell Transplantation in Neuromyelitis Optica-Spectrum Disorders (NMO-SD): State-of-the-Art and Future Perspectives. Int J Mol Sci 2020; 21:ijms21155304. [PMID: 32722601 PMCID: PMC7432050 DOI: 10.3390/ijms21155304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromyelitis optica (NMO) and neuromyelitis optica spectrum disorders (NMOSD) are a group of autoimmune inflammatory disorders of the central nervous system (CNS). Understanding of the molecular basis of these diseases in the last decades has led to an important improvement in the treatment of this disease, in particular, to the use of immunotherapeutic approaches, such as monoclonal antibodies and Hematopoietic Stem Cell Transplantation (HSCT). The aim of this review is to summarize the pathogenesis, biological basis and new treatment options of these disorders, with a particular focus on HSCT applications. Different HSCT strategies are being explored in NMOSD, both autologous and allogeneic HSCT, with the new emergence of therapeutic effects such as an induction of tolerance to auto-antigens and graft versus autoimmunity effects that can be exploited to hopefully treat a disease that still has prognosis.
Collapse
Affiliation(s)
- Giulia Ceglie
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Laura Papetti
- Department of Neurology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.P.); (M.V.)
| | - Massimiliano Valeriani
- Department of Neurology, Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (L.P.); (M.V.)
| | - Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
- Correspondence: ; Tel.: +39-06-6859-2623
| |
Collapse
|
7
|
Asgari N, Lillevang ST, Skejoe HPB, Kyvik KO. Epidemiology of neuromyelitis optica spectrum disorder in Denmark (1998-2008, 2007-2014). Brain Behav 2019; 9:e01338. [PMID: 31187587 PMCID: PMC6625475 DOI: 10.1002/brb3.1338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies of the uncommon disorder neuromyelitis optica spectrum disorder (NMOSD) may be difficult to interpret because of the evolving nature of diagnostic criteria, differences in the definition and accuracy of NMOSD diagnosis, the completeness of case ascertainment, and variability in assays for the disease-specific biomarker aquaporin-4 (AQP4)-IgG. A sub-group of patients with the clinical syndrome NMOSD lack detectable AQP4-IgG and in these cases an accurate diagnosis requires precise diagnostic algorithms and longitudinal follow-up. Consecutive sets of criteria for NMO/NMOSD have been introduced during the two last decades. Such criteria need validation in different populations. Detection of other autoantibodies, such as IgG specific for myelin oligodendrocyte glycoprotein or for glial fibrillary acidic protein in a sub-group of AQP4-IgG-negative NMOSD patients, has improved over the past decade and may lead to overlap of the clinical syndromes/phenotypes. This review begins by summarizing current knowledge on the widening clinical spectrum of NMOSD. Subsequently, we describe two epidemiological studies from Denmark carried out in two different decades (1998-2008 and 2007-2014) and comment on the differences in study design, patient ascertainment, and interpretation of results. These factors may explain some of the observed differences, reflecting the complexity and providing a clear example of this development.
Collapse
Affiliation(s)
- Nasrin Asgari
- Department of Regional Health Research, Odense, Denmark.,Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Soeren T Lillevang
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Hanne P B Skejoe
- Department of Radiology, Aleris-Hamlet Hospital, Copenhagen, Denmark
| | - Kirsten O Kyvik
- OPEN (Odense Patient data Explorative Network), Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Palazzo C, Buccoliero C, Mola MG, Abbrescia P, Nicchia GP, Trojano M, Frigeri A. AQP4ex is crucial for the anchoring of AQP4 at the astrocyte end-feet and for neuromyelitis optica antibody binding. Acta Neuropathol Commun 2019; 7:51. [PMID: 30935410 PMCID: PMC6444679 DOI: 10.1186/s40478-019-0707-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
Brain water homeostasis is essential for the appropriate control of neuronal activity. Furthermore, the encasement of the central nervous system (CNS) by a hard structure, greatly limits its tolerance for the volume changes occurring with acute brain edema, which quickly leads to severe damage or death. The recent discovery of the extended isoform of AQP4 (AQP4ex), generated by translational readthrough, revealed a potential new mechanism of water transport regulation and polarization at the blood-brain-barrier level. In the present study we used CRISPR/Cas9 technology to generate an AQP4ex−/− mouse model and evaluate the effect on the overall AQP4 expression, polarization, supramolecular organization in orthogonal arrays of particles (OAPs) and neuromyelitis optica (NMO-IgG) autoantibodies binding. AQP4ex removal did not cause a decrease in total AQP4 protein expression but completely suppressed the specific location of AQP4 at the astrocyte endfeet. Without AQP4ex, AQP4 was mislocalized and α-syntrophin expression, the selective partner for AQP4 localization, was partially altered. The supramolecular organization of AQP4 in OAPs was subtly altered. Indeed, the absence of AQP4ex reduced the size of AQP4-OAPs but the number of AQP4-OAP pools remained largely the same. More importantly, AQP4ex resulted critical for the binding of pathogenic human NMO-IgG autoantibodies to the brain. Indeed, the absence of AQP4ex completely abolished the binding of NMO-IgG at the perivascular astrocyte endfeet. This study provides the first direct evidence in vivo on the specific role of AQP4ex in AQP4 perivascular OAPs assembly and confinement and reveals AQP4ex as new and important player in neuromyelitis optica.
Collapse
|
9
|
Pisani F, Simone L, Mola MG, De Bellis M, Mastrapasqua M, Ruggieri M, Trojano M, Nicchia GP, Svelto M, Frigeri A. Host-Cell Type Dependent Features of Recombinant Human Aquaporin-4 Orthogonal Arrays of Particles-New Insights for Structural and Functional Studies. Cells 2019; 8:cells8020119. [PMID: 30717425 PMCID: PMC6406603 DOI: 10.3390/cells8020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/26/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
The CNS plasma-membrane water channel aquaporin-4 (AQP4) is expressed as two major isoforms able to aggregate into supramolecular assemblies known as ‘orthogonal arrays of particles’ (OAPs). OAP subnanometric features are largely unknown mainly because a method for the expression, isolation, and crystallization of integral human OAPs has not been developed. Here, the human OAP-forming isoform M23-AQP4 was expressed in insect and mammalian cell lines and AQP4 and OAP features evaluated. Native size exclusion chromatography was employed to isolate and analyze authentically folded OAPs, and neuromyelitis optica (NMO)-specific sandwich ELISA was developed to test OAP-integrity. The results demonstrate that in insect cells most AQP4 remains intracellular and unfolded and that OAPs are largely disassembled after the detergent extraction step. In mammalian cells, AQP4 showed regular plasma membrane targeting and OAPs exhibited strong post-extraction stability. Starting from the mammalian cell expression system, we isolated authentically folded OAPs. Together these data suggest a new strategy for expressing and isolating integral recombinant human OAPs and providing new insights into the cell-type dependent OAP-assembly and post-extraction stability, potentially useful to design new approaches for structural and functional studies of OAP and for other plasma membrane proteins organized into supramolecular structures.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Laura Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, 71013 San Giovanni Rotondo (FG), Italy.
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Manuela De Bellis
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Mastrapasqua
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maddalena Ruggieri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Trojano
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| | - Maria Svelto
- Department of Bioscience, Biotechnologies and Biopharmaceutic, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 70126 Bari, Italy.
| | - Antonio Frigeri
- School of Medicine, Basic Medical Sciences, Neuroscience and Sense Organs, Univ. of Bari "Aldo Moro", 70124 Bari, Italy.
| |
Collapse
|
10
|
Ai N, Liu H, Zhou H, Lin D, Wang J, Yang M, Song H, Sun M, Xu Q, Wei S. Cytokines and chemokines expression in serum of patients with neuromyelitis optica. Neuropsychiatr Dis Treat 2019; 15:303-310. [PMID: 30718956 PMCID: PMC6345185 DOI: 10.2147/ndt.s185336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To study the differences in immunopathogenesis based on chemokine profile in neuromyelitis optica patients positive for AQP4 antibodies or MOG antibodies. PATIENTS AND METHODS We measured 52 cytokines/chemokines using ELISA in 59 serum samples, which were divided into three groups according to CBA results: HCs (n=16), AQP4+ (n=20) and MOG+ (n=23). The regression equation (R 2>0.98) of the standard curve was calculated according to the standard concentration and the corresponding A value. And then the corresponding sample concentration was calculated according to the A value of the sample. RESULTS Eleven of 52 measured serum cytokine/chemokines (CCL22/MDC, CCL13/MCP-4, CCL21/6Ckine, CCL27/CTACK, CCL8/MCP-2, CXCL14/BRAK, Contactin-1, Kallilrein 6/Neurosin, Midkine, VCAM-1 and Fas) were significantly different between MOG+ group and controls. Ten of 52 measured serum cytokine/chemokines (CCL1/I-309, CCL22/MDC, CCL28, CCL17/TARC, CCL27/CTACK, CXCL2/GRO beta, Contactin-1, Midkine, Chemerin and Synuclein-alpha) were significantly different between AQP4+ group and controls. There was no difference between serum AQP4+ and MOG+ groups for CC chemokines. All measured chemokines CXC except CXCL6/GCP-2 showed no significant differences in serum AQP4+ group compared to MOG+ group. However, there was significant difference between serum AQP4+ and MOG+ groups for C5/C5a and Midkine. C5/C5a and Midkine were significantly higher in AQP4+ group compared to MOG+ group (P<0.05). CONCLUSION Our findings suggest that the differences of mean concentration in CXCL6/GCP-2, Midkine and C5/C5a probably reveal different immunologic mechanism between AQP4+ NMO and MOG+ NMO. This cytokine/chemokine profiling provides new insight into NMO pathogenesis associated with MOG antibody seropositivity and provides guidance to monitor inflammation and response to treatment in a way.
Collapse
Affiliation(s)
- Nanping Ai
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China,
| | - Hongjuan Liu
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China,
| | - Huanfen Zhou
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China,
| | - Dahe Lin
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China,
| | - Junqing Wang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China,
| | - Mo Yang
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China,
| | - Honglu Song
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China,
| | - Mingming Sun
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China,
| | - Quangang Xu
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China,
| | - Shihui Wei
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, People's Republic of China,
| |
Collapse
|
11
|
Oertel FC, Zimmermann HG, Brandt AU, Paul F. Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Rev Neurother 2018; 19:31-43. [PMID: 30587061 DOI: 10.1080/14737175.2019.1559051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Multiple Sclerosis (MS) is the most common chronic autoimmune neuroinflammatory condition in young adults. It is often accompanied by optic neuritis (ON) and retinal neuro-axonal damage causing visual disturbances. Optical coherence tomography (OCT) is a sensitive non-invasive method for quantifying intraretinal layer volumes. Recently, OCT not only showed to be a reliable marker for ON-associated damage, but also proved its high prognostic value for functional outcome and disability accrual in patients with MS. Consequently, OCT is discussed as a potential marker for monitoring disease severity and therapeutic response in individual patients. Areas covered: This article summarizes our current understanding of structural retinal changes in MS and describes the future potential of OCT for differential diagnosis, monitoring of the disease course and for clinical trials. Expert commentary: Today, OCT is used in clinical practice in specialized MS centers. Standardized parameters across devices are urgently needed for supporting clinical utility. Novel parameters are desirable to increase sensitivity and specificity in terms of MS.
Collapse
Affiliation(s)
- Frederike C Oertel
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Hanna G Zimmermann
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Alexander U Brandt
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,b Department of Neurology , University of California Irvine , Irvine , CA , USA
| | - Friedemann Paul
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,c Department of Neurology , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,d Experimental and Clinical Research Center , Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| |
Collapse
|
12
|
Oertel FC, Havla J, Roca-Fernández A, Lizak N, Zimmermann H, Motamedi S, Borisow N, White OB, Bellmann-Strobl J, Albrecht P, Ruprecht K, Jarius S, Palace J, Leite MI, Kuempfel T, Paul F, Brandt AU. Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. J Neurol Neurosurg Psychiatry 2018; 89:1259-1265. [PMID: 29921610 DOI: 10.1136/jnnp-2018-318382] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Neuromyelitis optica spectrum disorders (NMOSD) are inflammatory conditions of the central nervous system and an important differential diagnosis of multiple sclerosis (MS). Unlike MS, the course is usually relapsing, and it is unclear, if progressive neurodegeneration contributes to disability. Therefore, we aimed to investigate if progressive retinal neuroaxonal damage occurs in aquaporin4-antibody-seropositive NMOSD. METHODS Out of 157 patients with NMOSD screened, 94 eyes of 51 patients without optic neuritis (ON) during follow-up (F/U) and 56 eyes of 28 age-matched and sex-matched healthy controls (HC) were included (median F/U 2.3 years). The NMOSD cohort included 60 eyes without (EyeON -) and 34 eyes with a history of ON prior to enrolment (EyeON+). Peripapillary retinal nerve fibre layer thickness (pRNFL), fovea thickness (FT), volumes of the combined ganglion cell and inner plexiform layer (GCIP) and the inner nuclear layer (INL) and total macular volume (TMV) were acquired by optical coherence tomography (OCT). RESULTS At baseline, GCIP, FT and TMV were reduced in EyeON+ (GCIP p<2e-16; FT p=3.7e-4; TMV p=3.7e-12) and in EyeON - (GCIP p=0.002; FT p=0.040; TMV p=6.1e-6) compared with HC. Longitudinally, we observed GCIP thinning in EyeON- (p=0.044) but not in EyeON+. Seven patients had attacks during F/U; they presented pRNFL thickening compared with patients without attacks (p=0.003). CONCLUSION This study clearly shows GCIP loss independent of ON attacks in aquaporin4-antibody-seropositive NMOSD. Potential explanations for progressive GCIP thinning include primary retinopathy, drug-induced neurodegeneration and retrograde neuroaxonal degeneration from lesions or optic neuropathy. pRNFL thickening in the patients presenting with attacks during F/U might be indicative of pRNFL susceptibility to inflammation.
Collapse
Affiliation(s)
- Frederike C Oertel
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, Munich, Germany
| | | | - Nathaniel Lizak
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Monash School of Medicine, Monash University & The Alfred Hospital, Melbourne, Victoria, Australia
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Seyedamirhosein Motamedi
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nadja Borisow
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Owen B White
- Central Clinical School, Department of Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maria Isabel Leite
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tania Kuempfel
- Institute of Clinical Neuroimmunology, Ludwig Maximilians University, Munich, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany .,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
13
|
Aktas O, Wattjes MP, Stangel M, Hartung HP. Diagnose der Multiplen Sklerose: Revision der McDonald-Kriterien 2017. DER NERVENARZT 2018; 89:1344-1354. [DOI: 10.1007/s00115-018-0550-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Abstract
This document presents the guidelines for anti-aquaporin-4 (AQP4) antibody testing that has been developed following a consensus process built on questionnaire-based surveys, internet contacts, and discussions at workshops of the sponsoring Italian Association of Neuroimmunology (AINI) congresses. Essential clinical information on neuromyelitis optica spectrum disorders, indications and limits of anti-AQP4 antibody testing, instructions for result interpretation, and an agreed laboratory protocol (Appendix) are reported for the communicative community of neurologists and clinical pathologists.
Collapse
|
15
|
Oertel FC, Zimmermann H, Paul F, Brandt AU. Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA J 2018; 9:21-33. [PMID: 29515685 PMCID: PMC5833887 DOI: 10.1007/s13167-017-0123-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are mostly relapsing inflammatory disorders of the central nervous system (CNS). Optic neuritis (ON) is the first NMOSD-related clinical event in 55% of the patients, which causes damage to the optic nerve and leads to visual impairment. Retinal optical coherence tomography (OCT) has emerged as a promising method for diagnosis of NMOSD and potential individual monitoring of disease course and severity. OCT not only detects damage to the afferent visual system caused by ON but potentially also NMOSD-specific intraretinal pathology, i.e. astrocytopathy. This article summarizes retinal involvement in NMOSD and reviews OCT methods that could be used now and in the future, for differential diagnosis, for monitoring of disease course, and in clinical trials.
Collapse
Affiliation(s)
- Frederike C. Oertel
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin und Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander U. Brandt
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
16
|
Jarius S, König FB, Metz I, Ruprecht K, Paul F, Brück W, Wildemann B. Pattern II and pattern III MS are entities distinct from pattern I MS: evidence from cerebrospinal fluid analysis. J Neuroinflammation 2017; 14:171. [PMID: 28851393 PMCID: PMC5576197 DOI: 10.1186/s12974-017-0929-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023] Open
Abstract
Background The diagnosis of multiple sclerosis (MS) is currently based solely on clinical and magnetic resonance imaging features. However, histopathological studies have revealed four different patterns of lesion pathology in patients diagnosed with MS, suggesting that MS may be a pathologically heterogeneous syndrome rather than a single disease entity. Objective The aim of this study was to investigate whether patients with pattern I MS differ from patients with pattern II or III MS with regard to cerebrospinal fluid (CSF) findings, especially with reference to intrathecal IgG synthesis, which is found in most patients with MS but is frequently missing in MS mimics such as aquaporin-4-IgG-positive neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein-IgG-positive encephalomyelitis. Methods Findings from 68 lumbar punctures in patients who underwent brain biopsy as part of their diagnostic work-up and who could be unequivocally classified as having pattern I, pattern II or pattern III MS were analysed retrospectively. Results Oligoclonal bands (OCBs) were present in 88.2% of samples from pattern I MS patients but in only 27% of samples from patients with pattern II or pattern III MS (P < 0.00004); moreover, OCBs were present only transiently in some of the latter patients. A polyspecific intrathecal IgG response to measles, rubella and/or varicella zoster virus (so-called MRZ reaction) was previously reported in 60–80% of MS patients, but was absent in all pattern II or III MS patients tested (P < 0.00001 vs. previous cohorts). In contrast, the albumin CSF/serum ratio (QAlb), a marker of blood–CSF barrier function, was more frequently elevated in samples from pattern II and III MS patients (P < 0.002). Accordingly, QAlb values and albumin and total protein levels were higher in pattern II and III MS samples than in pattern I MS samples (P < 0.005, P < 0.009 and P < 0.006, respectively). Conclusions Patients with pattern II or pattern III MS differ significantly from patients with pattern I MS as well as from previous, histologically non-classified MS cohorts with regard to both intrathecal IgG synthesis and blood–CSF barrier function. Our findings strongly corroborate the notion that pattern II and pattern III MS are entities distinct from pattern I MS.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - F B König
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - I Metz
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - K Ruprecht
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - F Paul
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany.,NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Berlin, Germany
| | - W Brück
- Department of Neuropathology, University of Göttingen, Göttingen, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Neuromyelitis Optica Spectrum Disorder: Disease Course and Long-Term Visual Outcome. J Neuroophthalmol 2016; 36:356-362. [DOI: 10.1097/wno.0000000000000403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Long Y, Liang J, Zhong R, Wu L, Qiu W, Lin S, Gao C, Chen X, Zheng X, Yang N, Gao M, Wang Z. Aquaporin-4 antibody in neuromyelitis optica: re-testing study in a large population from China. Int J Neurosci 2016; 127:790-799. [PMID: 27838939 DOI: 10.1080/00207454.2016.1259226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Aquaporin-4 (AQP4) antibody sero-positivity is critically important in neuromyelitis optica (NMO). However, the sensitivity of different assays is highly variable. Repeating detection with a highly sensitive assay in a large population is necessary in the case of so-called negative NMO. METHODS Retrospective analysis where AQP4 antibodies were detected by commercial cell-based assay (CBA), in-house M23-CBA and in-house M1-CBA. RESULTS Of the 1011 serum samples, 206 (20.4%) were sero-positive by primary commercial CBA. In the retest, all 206 participants positive by primary commercial CBA also yielded positive results by in-house M23-CBA and the second commercial CBA again, but only 124 positive in in-house M1-CBA. Among the 805 participants negative by primary commercial CBA, 71 participants were positive for in-house M23-CBA, of which 20 participants were positive for the second commercial CBA, and none were positive by in-house M1-CBA. Of the 171 cerebral spinal fluid samples, 75 (43.9%) were positive by primary commercial CBA. All 75 participants positive by primary commercial CBA also yielded positive results by in-house M23-CBA and the second commercial CBA. Forty-nine (65.3%) of these 75 participants were positive by in-house M1-CBA. Among the 96 participants negative by primary commercial CBA, 15 participants were positive for in-house M23-CBA and none were positive by in-house M1-CBA and the second commercial CBA. CONCLUSIONS Different AQP4 isoforms in CBA result in different detection effects, and in-house M23-CBA is the most sensitive method. Some AQP4 antibody-negative NMO may be subject to diagnostic uncertainty due to limitations of the assays.
Collapse
Affiliation(s)
- Youming Long
- a Department of Neurology , The Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China.,b Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China
| | - Junyan Liang
- a Department of Neurology , The Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China.,b Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China
| | - Rong Zhong
- a Department of Neurology , The Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China.,b Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China
| | - Linzhan Wu
- a Department of Neurology , The Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China.,b Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China
| | - Wei Qiu
- c Department of Neurology , The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou , China
| | - Shaopeng Lin
- a Department of Neurology , The Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China.,b Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China
| | - Cong Gao
- a Department of Neurology , The Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China.,b Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and The Ministry of Education of China , Institute of Neuroscience and the Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China
| | - Xiaohui Chen
- d Department of Emergency , The Second Affiliated Hospital of GuangZhou Medical University , GuangZhou , China
| | - Xueping Zheng
- e Department of Neurology , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Ning Yang
- f Department of Neurology , The Fifth Affiliated Hospital of GuangZhou Medical University , GuangZhou , China
| | - Min Gao
- g Department of Neurology , The Second Chinese Medicine Hospital of Guangdong Province , Guangzhou , China
| | - Zhanhang Wang
- h Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| |
Collapse
|
19
|
Jarius S, Kleiter I, Ruprecht K, Asgari N, Pitarokoili K, Borisow N, Hümmert MW, Trebst C, Pache F, Winkelmann A, Beume LA, Ringelstein M, Stich O, Aktas O, Korporal-Kuhnke M, Schwarz A, Lukas C, Haas J, Fechner K, Buttmann M, Bellmann-Strobl J, Zimmermann H, Brandt AU, Franciotta D, Schanda K, Paul F, Reindl M, Wildemann B. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement - frequency, presentation and outcome. J Neuroinflammation 2016; 13:281. [PMID: 27802825 PMCID: PMC5088671 DOI: 10.1186/s12974-016-0719-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022] Open
Abstract
Background Myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) are present in a subset of aquaporin-4 (AQP4)-IgG-negative patients with optic neuritis (ON) and/or myelitis. Little is known so far about brainstem involvement in MOG-IgG-positive patients. Objective To investigate the frequency, clinical and paraclinical features, course, outcome, and prognostic implications of brainstem involvement in MOG-IgG-positive ON and/or myelitis. Methods Retrospective case study. Results Among 50 patients with MOG-IgG-positive ON and/or myelitis, 15 (30 %) with a history of brainstem encephalitis were identified. All were negative for AQP4-IgG. Symptoms included respiratory insufficiency, intractable nausea and vomiting (INV), dysarthria, dysphagia, impaired cough reflex, oculomotor nerve palsy and diplopia, nystagmus, internuclear ophthalmoplegia (INO), facial nerve paresis, trigeminal hypesthesia/dysesthesia, vertigo, hearing loss, balance difficulties, and gait and limb ataxia; brainstem involvement was asymptomatic in three cases. Brainstem inflammation was already present at or very shortly after disease onset in 7/15 (47 %) patients. 16/21 (76.2 %) brainstem attacks were accompanied by acute myelitis and/or ON. Lesions were located in the pons (11/13), medulla oblongata (8/14), mesencephalon (cerebral peduncles; 2/14), and cerebellar peduncles (5/14), were adjacent to the fourth ventricle in 2/12, and periaqueductal in 1/12; some had concomitant diencephalic (2/13) or cerebellar lesions (1/14). MRI or laboratory signs of blood-brain barrier damage were present in 5/12. Cerebrospinal fluid pleocytosis was found in 11/14 cases, with neutrophils in 7/11 (3-34 % of all CSF white blood cells), and oligoclonal bands in 4/14. Attacks were preceded by acute infection or vaccination in 5/15 (33.3 %). A history of teratoma was noted in one case. The disease followed a relapsing course in 13/15 (87 %); the brainstem was involved more than once in 6. Immunosuppression was not always effective in preventing relapses. Interferon-beta was followed by new attacks in two patients. While one patient died from central hypoventilation, partial or complete recovery was achieved in the remainder following treatment with high-dose steroids and/or plasma exchange. Brainstem involvement was associated with a more aggressive general disease course (higher relapse rate, more myelitis attacks, more frequently supratentorial brain lesions, worse EDSS at last follow-up). Conclusions Brainstem involvement is present in around one third of MOG-IgG-positive patients with ON and/or myelitis. Clinical manifestations are diverse and may include symptoms typically seen in AQP4-IgG-positive neuromyelitis optica, such as INV and respiratory insufficiency, or in multiple sclerosis, such as INO. As MOG-IgG-positive brainstem encephalitis may take a serious or even fatal course, particular attention should be paid to signs or symptoms of additional brainstem involvement in patients presenting with MOG-IgG-positive ON and/or myelitis.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| | - Ingo Kleiter
- Department of Neurology, Ruhr University Bochum, Bochum, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Nasrin Asgari
- Department of Neurology and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Nadja Borisow
- Department of Neurology, NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florence Pache
- Department of Neurology, NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | | | - Oliver Stich
- Department of Neurology, Albert Ludwigs University, Freiburg, Germany
| | - Orhan Aktas
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - Mirjam Korporal-Kuhnke
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Alexander Schwarz
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Carsten Lukas
- Department of Neuroradiology, Ruhr University Bochum, Bochum, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Kai Fechner
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Lübeck, Germany
| | - Mathias Buttmann
- Department of Neurology, Julius Maximilians University, Würzburg, Germany
| | - Judith Bellmann-Strobl
- Department of Neurology, NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Hanna Zimmermann
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Alexander U Brandt
- Department of Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | | | - Kathrin Schanda
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Friedemann Paul
- Department of Neurology, NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Markus Reindl
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | | |
Collapse
|
20
|
Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, Pache F, Stich O, Beume LA, Hümmert MW, Trebst C, Ringelstein M, Aktas O, Winkelmann A, Buttmann M, Schwarz A, Zimmermann H, Brandt AU, Franciotta D, Capobianco M, Kuchling J, Haas J, Korporal-Kuhnke M, Lillevang ST, Fechner K, Schanda K, Paul F, Wildemann B, Reindl M. MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation 2016; 13:279. [PMID: 27788675 PMCID: PMC5084340 DOI: 10.1186/s12974-016-0717-1] [Citation(s) in RCA: 329] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/09/2016] [Indexed: 01/18/2023] Open
Abstract
Background Antibodies to myelin oligodendrocyte glycoprotein (MOG-IgG) have been suggested to play a role in a subset of patients with neuromyelitis optica and related disorders. Objective To assess (i) the frequency of MOG-IgG in a large and predominantly Caucasian cohort of patients with optic neuritis (ON) and/or myelitis; (ii) the frequency of MOG-IgG among AQP4-IgG-positive patients and vice versa; (iii) the origin and frequency of MOG-IgG in the cerebrospinal fluid (CSF); (iv) the presence of MOG-IgG at disease onset; and (v) the influence of disease activity and treatment status on MOG-IgG titers. Methods 614 serum samples from patients with ON and/or myelitis and from controls, including 92 follow-up samples from 55 subjects, and 18 CSF samples were tested for MOG-IgG using a live cell-based assay (CBA) employing full-length human MOG-transfected HEK293A cells. Results MOG-IgG was detected in 95 sera from 50 patients with ON and/or myelitis, including 22/54 (40.7 %) patients with a history of both ON and myelitis, 22/103 (21.4 %) with a history of ON but no myelitis and 6/45 (13.3 %) with a history of longitudinally extensive transverse myelitis but no ON, and in 1 control patient with encephalitis and a connective tissue disorder, all of whom were negative for AQP4-IgG. MOG-IgG was absent in 221 further controls, including 83 patients with AQP4-IgG-seropositive neuromyelitis optica spectrum disorders and 85 with multiple sclerosis (MS). MOG-IgG was found in 12/18 (67 %) CSF samples from MOG-IgG-seropositive patients; the MOG-IgG-specific antibody index was negative in all cases, indicating a predominantly peripheral origin of CSF MOG-IgG. Serum and CSF MOG-IgG belonged to the complement-activating IgG1 subclass. MOG-IgG was present already at disease onset. The antibodies remained detectable in 40/45 (89 %) follow-up samples obtained over a median period of 16.5 months (range 0–123). Serum titers were higher during attacks than during remission (p < 0.0001), highest during attacks of simultaneous myelitis and ON, lowest during acute isolated ON, and declined following treatment. Conclusions To date, this is the largest cohort studied for IgG to human full-length MOG by means of an up-to-date CBA. MOG-IgG is present in a substantial subset of patients with ON and/or myelitis, but not in classical MS. Co-existence of MOG-IgG and AQP4-IgG is highly uncommon. CSF MOG-IgG is of extrathecal origin. Serum MOG-IgG is present already at disease onset and remains detectable in the long-term course. Serum titers depend on disease activity and treatment status.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Otto Meyerhof Center, Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| | - Klemens Ruprecht
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Ingo Kleiter
- Department of Neurology, Ruhr University Bochum, Bochum, Germany
| | - Nadja Borisow
- NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Nasrin Asgari
- Department of Neurology and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Florence Pache
- NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Oliver Stich
- Department of Neurology, Albert Ludwigs University, Freiburg, Germany
| | | | - Martin W Hümmert
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Corinna Trebst
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Orhan Aktas
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Mathias Buttmann
- Department of Neurology, Julius Maximilians University, Würzburg, Germany
| | - Alexander Schwarz
- Molecular Neuroimmunology Group, Otto Meyerhof Center, Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Hanna Zimmermann
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Alexander U Brandt
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | | | - Marco Capobianco
- Centro di Riferimento Regionale SM, Azienda Ospedaliero Universitaria San Luigi Gonzaga, Orbassano, Italy
| | - Joseph Kuchling
- Department of Neurology, Charité-University Medicine Berlin, Berlin, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Otto Meyerhof Center, Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Mirjam Korporal-Kuhnke
- Molecular Neuroimmunology Group, Otto Meyerhof Center, Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | | | - Kai Fechner
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Lübeck, Germany
| | - Kathrin Schanda
- Clinical Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Friedemann Paul
- NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Otto Meyerhof Center, Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Markus Reindl
- Clinical Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
21
|
Accuracy of the Fluorescence-Activated Cell Sorting Assay for the Aquaporin-4 Antibody (AQP4-Ab): Comparison with the Commercial AQP4-Ab Assay Kit. PLoS One 2016; 11:e0162900. [PMID: 27658059 PMCID: PMC5033450 DOI: 10.1371/journal.pone.0162900] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The aquaporin-4 antibody (AQP4-Ab) is a disease-specific autoantibody to neuromyelitis optica (NMO). We aimed to evaluate the accuracy of the FACS assay in detecting the AQP4-Ab compared with the commercial cell-based assay (C-CBA) kit. METHODS Human embryonic kidney-293 cells were transfected with human aquaporin-4 (M23) cDNA. The optimal cut off values of FACS assay was tested using 1123 serum samples from patients with clinically definite NMO, those at high risk for NMO, patients with multiple sclerosis, patients with other idiopathic inflammatory demyelinating diseases, and negative controls. The accuracy of FACS assay and C-CBA were compared in consecutive 225 samples that were collected between January 2014 and June 2014. RESULTS With a cut-off value of MFIi of 3.5 and MFIr of 2.0, the receiver operating characteristic curve for the FACS assay showed an area under the curve of 0.876. Among 225 consecutive sera, the FACS assay and C-CBA had a sensitivity of 77.3% and 69.7%, respectively, in differentiating the sera of definite NMO patients from sera of controls without IDD or of MS. Both assay had a good specificity of 100% in it. The overall positivity of the C-CBA among FACS-positive sera was 81.5%; moreover, its positivity was low as 50% among FACS-positive sera with relatively low MFIis. CONCLUSIONS Both the FACS assay and C-CBA are sensitive and highly specific assays in detecting AQP4-Ab. However, in some sera with relatively low antibody titer, FACS-assay can be a more sensitive assay option. In real practice, complementary use of FACS assay and C-CBA will benefit the diagnosis of NMO patients, because the former can be more sensitive among low titer sera and the latter are easier to use therefore can be widely used.
Collapse
|
22
|
Sinmaz N, Nguyen T, Tea F, Dale RC, Brilot F. Mapping autoantigen epitopes: molecular insights into autoantibody-associated disorders of the nervous system. J Neuroinflammation 2016; 13:219. [PMID: 27577085 PMCID: PMC5006540 DOI: 10.1186/s12974-016-0678-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/17/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Our knowledge of autoantibody-associated diseases of the central (CNS) and peripheral (PNS) nervous systems has expanded greatly over the recent years. A number of extracellular and intracellular autoantigens have been identified, and there is no doubt that this field will continue to expand as more autoantigens are discovered as a result of improved clinical awareness and methodological practice. In recent years, interest has shifted to uncover the target epitopes of these autoantibodies. MAIN BODY The purpose of this review is to discuss the mapping of the epitope targets of autoantibodies in CNS and PNS antibody-mediated disorders, such as N-methyl-D-aspartate receptor (NMDAR), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), leucine-rich glioma-inactivated protein 1 (Lgi1), contactin-associated protein-like 2 (Caspr2), myelin oligodendrocyte glycoprotein (MOG), aquaporin-4 (AQP4), 65 kDa glutamic acid decarboxylase (GAD65), acetylcholine receptor (AChR), muscle-specific kinase (MuSK), voltage-gated calcium channel (VGCC), neurofascin (NF), and contactin. We also address the methods used to analyze these epitopes, the relevance of their determination, and how this knowledge can inform studies on autoantibody pathogenicity. Furthermore, we discuss triggers of autoimmunity, such as molecular mimicry, ectopic antigen expression, epitope spreading, and potential mechanisms for the rising number of double autoantibody-positive patients. CONCLUSIONS Molecular insights into specificity and role of autoantibodies will likely improve diagnosis and treatment of CNS and PNS neuroimmune diseases.
Collapse
Affiliation(s)
- Nese Sinmaz
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Tina Nguyen
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Institute for Neuroscience and Muscle Research, The Kids Research Institute at the Children's Hospital at Westmead, University of Sydney, Locked Bag 4001, Westmead, NSW, 2145, Australia.
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
23
|
Jarius S, Metz I, König FB, Ruprecht K, Reindl M, Paul F, Brück W, Wildemann B. Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in 'pattern II multiple sclerosis' and brain biopsy findings in a MOG-IgG-positive case. Mult Scler 2016; 22:1541-1549. [PMID: 26869529 DOI: 10.1177/1352458515622986] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Histopathological studies have revealed four different immunopathological patterns of lesion pathology in early multiple sclerosis (MS). Pattern II MS is characterised by immunoglobulin and complement deposition in addition to T-cell and macrophage infiltration and is more likely to respond to plasma exchange therapy, suggesting a contribution of autoantibodies. OBJECTIVE To assess the frequency of anti-myelin oligodendrocyte glycoprotein (MOG), anti-M1-aquaporin-4 (AQP4), anti-M23-AQP4, anti-N-methyl-d-aspartate-type glutamate receptors (NMDAR) and 25 other anti-neural antibodies in pattern II MS. METHODS Thirty-nine serum samples from patients with MS who had undergone brain biopsy (n = 24; including 13 from patients with pattern II MS) and from histopathologically non-classified MS patients (n = 15) were tested for anti-MOG, anti-M1-AQP4, anti-M23-AQP4, anti-NMDAR, anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-type glutamate receptors (AMPAR), anti-gamma-aminobutyric acid receptors (GABABR), anti-leucine-rich, glioma-activated protein 1 (LGI1), anti-contactin-associated protein 2 (CASPR2), anti-dipeptidyl-peptidase-like protein-6 (DPPX), anti-Tr/Delta/notch-like epidermal growth factor-related receptor (DNER), anti-Hu, anti-Yo, anti-Ri, anti-Ma1/Ma2, anti-CV2/collapsin response mediator protein 5 (CRMP5), anti-glutamic acid decarboxylase (GAD), anti-amphiphysin, anti-Ca/RhoGTPase-activating protein 26 (ARHGAP26), anti-Sj/inositol-1,4,5-trisphosphate receptor 1 (ITPR1), anti-Homer3, anti-carbonic anhydrase-related protein (CARPVIII), anti-protein kinase gamma (PKCgamma), anti-glutamate receptor delta 2 (GluRdelta2), anti-metabotropic glutamate receptor 1 (mGluR1) and anti-mGluR5, as well as for anti-glial nuclei antibodies (AGNA) and Purkinje cell antibody 2 (PCA2). RESULTS Antibodies to MOG belonging to the complement-activating immunoglobulin G1 (IgG1) subclass were detected in a patient with pattern II MS. Detailed brain biopsy findings are shown. CONCLUSION This is the largest study on established anti-neural antibodies performed in MS so far. MOG-IgG may play a role in a small percentage of patients diagnosed with pattern II MS.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Imke Metz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Fatima Barbara König
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Friedemann Paul
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Berlin, Germany
| | - Wolfgang Brück
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Jarius S, Wildemann B, Stöcker W, Moser A, Wandinger K. Psychotic syndrome associated with anti-Ca/ARHGAP26 and voltage-gated potassium channel antibodies. J Neuroimmunol 2015; 286:79-82. [DOI: 10.1016/j.jneuroim.2015.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
|
25
|
Sinnecker T, Kuchling J, Dusek P, Dörr J, Niendorf T, Paul F, Wuerfel J. Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA J 2015; 6:16. [PMID: 26312125 PMCID: PMC4549950 DOI: 10.1186/s13167-015-0038-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/20/2015] [Indexed: 12/29/2022]
Abstract
Conventional magnetic resonance imaging (MRI) at 1.5 Tesla (T) is limited by modest spatial resolution and signal-to-noise ratio (SNR), impeding the identification and classification of inflammatory central nervous system changes in current clinical practice. Gaining from enhanced susceptibility effects and improved SNR, ultrahigh field MRI at 7 T depicts inflammatory brain lesions in great detail. This review summarises recent reports on 7 T MRI in neuroinflammatory diseases and addresses the question as to whether ultrahigh field MRI may eventually improve clinical decision-making and personalised disease management.
Collapse
Affiliation(s)
- Tim Sinnecker
- NeuroCure Clinical Research Center (NCRC), Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Department of Neurology, Asklepios Fachklinikum Teupitz, Buchholzer Str. 21, 15755 Teupitz, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center (NCRC), Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Petr Dusek
- Institute of Neuroradiology, Universitaetsmedizin Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany.,Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Kateřinská 30, 128 21 Praha 2, Czech Republic
| | - Jan Dörr
- NeuroCure Clinical Research Center (NCRC), Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center (NCRC), Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany.,Department of Neurology, Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Wuerfel
- NeuroCure Clinical Research Center (NCRC), Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Institute of Neuroradiology, Universitaetsmedizin Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany.,Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany.,Medical Image Analysis Center, Mittlere Strasse 83, CH-4031 Basel, Switzerland
| |
Collapse
|
26
|
Kitley J, Woodhall M, Leite MI, Palace J, Vincent A, Waters P. Aquaporin-4 antibody isoform binding specificities do not explain clinical variations in NMO. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2015; 2:e121. [PMID: 26140280 PMCID: PMC4476052 DOI: 10.1212/nxi.0000000000000121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/20/2015] [Indexed: 11/15/2022]
Abstract
Objective: To assess the clinical relevance of the differential binding of antibodies against the 2 main aquaporin-4 (AQP4) isoforms in neuromyelitis optica (NMO) patient sera using stably transfected human embryonic kidney cells. Methods: Flow cytometry of human embryonic kidney cells stably transfected with either M23 or M1 AQP4 was used to measure antibody endpoint titers in 52 remission samples and 26 relapse samples from 34 patients with clinically well-characterized AQP4 antibody–positive NMO/NMO spectrum disorder. Results: The AQP4 M23 (40–61,440) and AQP4 M1 (<20–20,480) titers varied widely between patients, as did the M23:M1 antibody ratio (1–192). In 76 of 78 samples, binding to M23 was higher than binding to M1, including during relapses and remissions (p < 0.0001), and the M23:M1 ratio was relatively constant within an individual patient. Titers usually fell after immunosuppression, but the titers at which relapses occurred varied markedly; no threshold level for relapses could be identified, and relapses could occur without a rise in titers. Relapse severity did not correlate with M23 or M1 antibody titers, although there was a correlation between the earliest M23 titers and annualized relapse rates. The M23:M1 ratio and absolute M23 and M1 titers did not relate to age at disease onset, ethnicity, disease severity, phenotype, or relapses at different anatomical sites. Conclusion: Relative AQP4 antibody binding to M23 and M1 isoforms differs between patients but there is no consistent association between these differences and clinical characteristics of disease. Nevertheless, the M23 isoform provided a slightly more sensitive substrate for AQP4-antibody assays, particularly for follow-up studies.
Collapse
Affiliation(s)
- Joanna Kitley
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mark Woodhall
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - M Isabel Leite
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jackie Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|