1
|
Eltokhy AK, El-Shaer RAA, El-Deeb OS, Farghal EE, Ibrahim RR, Elesawy R, Awad MM, Ismail R, Motawea SM, Shatat D, Hafez YM, El Hanafy HA, Atef MM. Synergistic effects of AgNPs and zileuton on PCOS via ferroptosis and inflammation mitigation. Redox Rep 2025; 30:2445398. [PMID: 39723580 DOI: 10.1080/13510002.2024.2445398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND The most prevalent endocrine disorder affecting women is PCOS. Programmed death of ovarian cells has yet to be elucidated. Ferroptosis is a kind of iron-dependent necrosis featured by significantly Fe+2-dependent lipid peroxidation. The ongoing study aimed to reinforce fertility by combining therapy with AgNPs and (Zileuton) in PCOS rats' model. METHODS The study included 75 adult female rats divided into 5 groups; control, PCOS, PCOS treated with AgNPs, PCOS treated with Zileuton, and PCOS group treated with AgNPs and Zileuton. The study investigated the anti-ferroptotic, anti-inflammatory, antioxidant, antiapoptotic, histopathological and immunohistochemical examinations of COX-2 and VEGF. RESULTS The combination of AgNPs and Zileuton showed significant reduction of inflammatory mediators (IL-6, TNF-α, NFk-B) compared with diseased group (P-value < 0.05), regression of ferroptosis marks (Panx1 and TLR4 expression, Fe+2 levels) compared with diseased group (P-value < 0.05), depression of apoptotic marker caspase 3 level compared with diseased animals (P-value < 0.05), depression of MDA level, elevation of HO-1, GPx4 activity, and reduction of Cox2 and VEGF as compared with the diseased, AgNPs or zileuton-treated groups (P-value < 0.05). CONCLUSION The study showed that the combination of AgNPs and zileuton guards against, inflammation, apoptosis, and ferroptosis in PCO.
Collapse
Affiliation(s)
- Amira K Eltokhy
- Department of Medical Biochemistry, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Omnia Safwat El-Deeb
- Department of Medical Biochemistry, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman E Farghal
- Department of Clinical Pathology, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rowida Raafat Ibrahim
- Department of Medical Biochemistry, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha Elesawy
- Department of Pharmacology, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa Mahmoud Awad
- Department of Medical Physiology, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Radwa Ismail
- Department of Anatomy, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shaimaa M Motawea
- Department of Anatomy, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa Shatat
- Department of Gynecology and Obstetrics, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hend Ahmed El Hanafy
- Department of Anatomy, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Marwa Mohamed Atef
- Department of Medical Biochemistry, Tanta Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Arfeen M, Dhaked DK, Mani V. Multipotent Effect of Clozapine on Lipopolysaccharide-Induced Acetylcholinesterase, Cyclooxygenase-2,5-Lipoxygenase, and Caspase-3: In Vivo and Molecular Modeling Studies. Molecules 2025; 30:266. [PMID: 39860136 PMCID: PMC11767763 DOI: 10.3390/molecules30020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD. Structure-based virtual screening of US-FDA-approved molecules from the ZINC15 database identified clozapine (CLOZ) as the dual inhibitor of COX-2 and AChE, with significant binding affinity. Further molecular docking of CLOZ in the active site of LOX and Caspase-3 also showed significant binding potential. Further, the results from molecular docking were validated using molecular dynamics simulation (MDS) studies, confirming the results from molecular docking. The results from MDS showed good binding potential and interactions with key residues. The CLOZ was further assessed using lipopolysaccharide (LPS)-challenged rats treated for thirty days at doses of 5 and 10 mg/kg, p.o. The results demonstrated modulation of COX-2, 5-LOX, AChE, Caspase-3, and MDA in LPS-induced brains. Additionally, the expression level of IL-10 was also measured. Our results showed a significant decrease in the levels of COX-2, 5-LOX, AChE, Caspase-3, and MDA. Our results also showed a significant decrement in the pro-inflammatory markers NF-κB, TNF-α, and IL-6 and an improvement in the levels of anti-inflammatory markers IL-10 and TGF-β1. Overall, the findings indicate that CLOZ has potential for neuroprotective effects against LPS-treated rats and can be explored.
Collapse
Affiliation(s)
- Minhajul Arfeen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata 700054, India;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
| |
Collapse
|
3
|
Goudarzi S, Mohammad Jafari R, Farsiu N, Amini B, Manavi MA, Fahanik-Babaei J, Ejtemaei-Mehr S, Dehpour AR. Protective effects of licofelone on scopolamine-induced spatial learning and memory impairment by enhancing parkin-dependent mitophagy and promotion of neural regeneration and in adult mice. Eur J Pharmacol 2024; 984:177025. [PMID: 39395583 DOI: 10.1016/j.ejphar.2024.177025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024]
Abstract
Inhibition of COX and LOX could contribute to memory formation and prevention of neurodegeneration, by alleviation of neuroinflammation and improvement of mitochondrial homeostasis. We aimed to assess the effect of licofelone, a dual COX and 5-LOX inhibitor on memory formation, neural apoptosis, neural regeneration, and mitophagy in acute and chronic dosages, given that licofelone could regulate nitric oxide levels. Y-maze and Passive Avoidance tests were used to evaluate memory function in NMRI mice using the EthoVision setting, following scopolamine administration (1 mg/kg, i.p.) as an acute amnestic drug. Hippocampi were used to evaluate the levels of apoptosis via TUNEL assay, neural regeneration via immunohistochemistry method detecting doublecortin and nestin, and mitophagy via Western blot of mitophagy proteins Parkin and ATG5. While acute high-dose licofelone (20 mg/kg) could reverse amnestic effects of scopolamine in passive avoidance test (p = 0.0001), Chronic licofelone (10 mg/kg for 10 consecutive days) could improve performance in Y-maze (p = 0.0007). Molecular analysis revealed that the chronic form of the drug could enhance neural regeneration in CA1 and SGZ regions, reset mitophagy levels as much as the healthy state, and reduce apoptosis rate. Licofelone appears to show a desirable anti-amnestic profile in a low dose chronically; it is hence recommended for future clinical studies on the prevention of neuroinflammation and memory deficit.
Collapse
Affiliation(s)
- Sepideh Goudarzi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nikou Farsiu
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Amini
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei-Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
He Y, Wang J, Ying C, Xu KL, Luo J, Wang B, Gao J, Yin Z, Zhang Y. The interplay between ferroptosis and inflammation: therapeutic implications for cerebral ischemia-reperfusion. Front Immunol 2024; 15:1482386. [PMID: 39582857 PMCID: PMC11583640 DOI: 10.3389/fimmu.2024.1482386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
Stroke ranks as the second most significant contributor to mortality worldwide and is a major factor in disability. Ischemic strokes account for 71% of all stroke incidences globally. The foremost approach to treating ischemic stroke prioritizes quick reperfusion, involving methods such as intravenous thrombolysis and endovascular thrombectomy. These techniques can reduce disability but necessitate immediate intervention. After cerebral ischemia, inflammation rapidly arises in the vascular system, producing pro-inflammatory signals that activate immune cells, which in turn worsen neuronal injury. Following reperfusion, an overload of intracellular iron triggers the Fenton reaction, resulting in an excess of free radicals that cause lipid peroxidation and damage to cellular membranes, ultimately leading to ferroptosis. The relationship between inflammation and ferroptosis is increasingly recognized as vital in the process of cerebral ischemia-reperfusion (I/R). Inflammatory processes disturb iron balance and encourage lipid peroxidation (LPO) through neuroglial cells, while also reducing the activity of antioxidant systems, contributing to ferroptosis. Furthermore, the lipid peroxidation products generated during ferroptosis, along with damage-associated molecular patterns (DAMPs) released from ruptured cell membranes, can incite inflammation. Given the complex relationship between ferroptosis and inflammation, investigating their interaction in brain I/R is crucial for understanding disease development and creating innovative therapeutic options. Consequently, this article will provide a comprehensive introduction of the mechanisms linking ferroptosis and neuroinflammation, as well as evaluate potential treatment modalities, with the goal of presenting various insights for alleviating brain I/R injury and exploring new therapeutic avenues.
Collapse
Affiliation(s)
- Yuxuan He
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingyi Wang
- Faculty of Chinese Medicine of Macau University of Science and
Technology, Macao, Macao SAR, China
| | - Chunmiao Ying
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kang Li Xu
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingwen Luo
- Faculty of Chinese Medicine of Macau University of Science and
Technology, Macao, Macao SAR, China
| | - Baiqiao Wang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Gao
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zaitian Yin
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yunke Zhang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Tanaka M, Sokabe M, Asai M. Progesterone Receptor Agonist, Nestorone, Exerts Long-Term Neuroprotective Effects Against Permanent Focal Cerebral Ischemia in Adult and Aged Male Rats. Transl Stroke Res 2024:10.1007/s12975-024-01288-z. [PMID: 39172309 DOI: 10.1007/s12975-024-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Stroke is a leading cause of death and disability worldwide. Tissue plasminogen activator (tPA) is currently the most effective medicine for stroke; however, it has a narrow therapeutic time window (4.5 h after symptom onset). We demonstrated that nestorone, a progesterone (P4) receptor agonist, exerted neuroprotective effects against transient focal cerebral ischemia 6 h post-ischemic administration in adult male rats. This study examines its effects on permanent focal cerebral ischemia in adult and aged male rats, which are better models for evaluating treatment outcomes in typical stroke patients. Adult (6-month-old) or aged (18-month-old) male rats subjected to permanent middle cerebral artery occlusion (pMCAO) were continuously administered nestorone (10µg/day) or its vehicle (30% hydroxypropyl-β-cyclodextrin) for 7 days via an osmotic pump subcutaneously implanted, starting at 18 h post-pMCAO. Nestorone-treated adult male rats showed marked improvements in behavioral outcomes in the adhesive removal and rotarod tests and a significant reduction in infarct size compared to vehicle-treated rats 9 and 30 days post-pMCAO. The same administration of nestorone resulted in apparently comparable neuroprotective effects in aged male rats. The inflammatory mediator NF-κB/p65 was increased in Iba-1 positive cells 24 h post-pMCAO, but was significantly suppressed by subcutaneous injection of nestorone. These results suggested that nestorone exerts long-term neuroprotective effects against permanent focal cerebral ischemia in adult and aged male rats. Nestorone is thus a promising agent for post-stroke treatment owing to its wide age-independent therapeutic time window (18 h after symptom onset), which is longer than that of tPA therapy.
Collapse
Affiliation(s)
- Motoki Tanaka
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-Cho, Kasugai, 480-0392, Japan.
| | - Masahiro Sokabe
- Human Information Systems Laboratories, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-Cho, Kasugai, 480-0392, Japan
| |
Collapse
|
6
|
Age-linked suppression of lipoxin A4 associates with cognitive deficits in mice and humans. Transl Psychiatry 2022; 12:439. [PMID: 36216800 PMCID: PMC9551034 DOI: 10.1038/s41398-022-02208-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Age increases the risk for cognitive impairment and is the single major risk factor for Alzheimer's disease (AD), the most prevalent form of dementia in the elderly. The pathophysiological processes triggered by aging that render the brain vulnerable to dementia involve, at least in part, changes in inflammatory mediators. Here we show that lipoxin A4 (LXA4), a lipid mediator of inflammation resolution known to stimulate endocannabinoid signaling in the brain, is reduced in the aging central nervous system. We demonstrate that genetic suppression of 5-lipoxygenase (5-LOX), the enzyme mediating LXA4 synthesis, promotes learning impairment in mice. Conversely, administration of exogenous LXA4 attenuated cytokine production and memory loss induced by inflammation in mice. We further show that cerebrospinal fluid LXA4 is reduced in patients with dementia and positively associated with cognitive performance, brain-derived neurotrophic factor (BDNF), and AD-linked amyloid-β. Our findings suggest that reduced LXA4 levels may lead to vulnerability to age-related cognitive disorders and that promoting LXA4 signaling may comprise an effective strategy to prevent early cognitive decline in AD.
Collapse
|
7
|
Zileuton, a 5-Lipoxygenase Inhibitor, Attenuates Haemolysate-Induced BV-2 Cell Activation by Suppressing the MyD88/NF-κB Pathway. Int J Mol Sci 2022; 23:ijms23094910. [PMID: 35563304 PMCID: PMC9104905 DOI: 10.3390/ijms23094910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
M1 microglia induce neuroinflammation-related neuronal death in animal models of spontaneous subarachnoid haemorrhage. Zileuton is a 5-lipoxygenase inhibitor that reduces the levels of downstream pro-inflammatory cytokines. This study aimed to investigate whether zileuton inhibits microglial activation and describe its underlying mechanisms. BV-2 cells were exposed to 1 mg/mL haemolysate for 30 min, followed by treatment with different concentrations (5, 10, 15, or 20 μM) of zileuton for 24 h. The cells were then assessed for viability, polarisation, and protein expression levels. Haemolysate increases the viability of BV-2 cells and induces M1 polarisation. Subsequent exposure to high concentrations of zileuton decreased the viability of BV-2 cells, shifted the polarisation to the M2 phenotype, suppressed the expression of 5-lipoxygenase, decreased tumour necrosis factor α levels, and increased interleukin-10 levels. Furthermore, high concentrations of zileuton suppressed the expression of myeloid differentiation primary response protein 88 and reduced the phosphorylated-nuclear factor-kappa B (NF-kB)/NF-kB ratio. Therefore, phenotype reversal from M1 to M2 is a possible mechanism by which zileuton attenuates haemolysate-induced neuroinflammation after spontaneous subarachnoid haemorrhage.
Collapse
|
8
|
Xia Y, Wu Q, Mak S, Liu EYL, Zheng BZY, Dong TTX, Pi R, Tsim KWK. Regulation of acetylcholinesterase during the lipopolysaccharide-induced inflammatory responses in microglial cells. FASEB J 2022; 36:e22189. [PMID: 35129858 DOI: 10.1096/fj.202101302rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
The non-classical function of acetylcholine (ACh) has been reported in neuroinflammation that represents the modulating factor in immune responses via activation of α7 nicotinic acetylcholine receptor (α7 nAChR), i.e., a cholinergic anti-inflammatory pathway (CAP). Acetylcholinesterase (AChE), an enzyme for ACh hydrolysis, has been proposed to have a non-classical function in immune cells. However, the involvement of AChE in neuroinflammation is unclear. Here, cultured BV2 cell, a microglial cell line, and primary microglia from rats were treated with lipopolysaccharide (LPS) to induce inflammation and to explore the regulation of AChE during this process. The expression profiles of AChE, α7 nAChR, and choline acetyltransferase (ChAT) were revealed in BV2 cells. The expression of AChE (G4 form) was induced significantly in LPS-treated BV2 cells: the induction was triggered by NF-κB and cAMP signaling. Moreover, ACh or α7 nAChR agonist suppressed the LPS-induced production of pro-inflammatory cytokines, as well as the phagocytosis of microglia, by activating α7 nAChR and followed by the regulation of NF-κB and CREB signaling. The ACh-induced suppression of inflammation was abolished in AChE overexpressed cells, but did not show a significant change in AChE mutant (enzymatic activity knockout) transfected cells. These results indicate that the neuroinflammation-regulated function of AChE may be mediated by controlling the ACh level in the brain system.
Collapse
Affiliation(s)
- Yingjie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiyun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shinghung Mak
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Etta Y L Liu
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Brody Z Y Zheng
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
9
|
Lee H, Lee JJ, Park NY, Dubey SK, Kim T, Ruan K, Lim SB, Park SH, Ha S, Kovlyagina I, Kim KT, Kim S, Oh Y, Kim H, Kang SU, Song MR, Lloyd TE, Maragakis NJ, Hong YB, Eoh H, Lee G. Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS. Nat Neurosci 2021; 24:1673-1685. [PMID: 34782793 PMCID: PMC8639773 DOI: 10.1038/s41593-021-00944-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disorder in which motor neurons degenerate, the causes of which remain unclear. In particular, the basis for selective vulnerability of spinal motor neurons (sMNs) and resistance of ocular motor neurons to degeneration in ALS has yet to be elucidated. Here, we applied comparative multi-omics analysis of human induced pluripotent stem cell-derived sMNs and ocular motor neurons to identify shared metabolic perturbations in inherited and sporadic ALS sMNs, revealing dysregulation in lipid metabolism and its related genes. Targeted metabolomics studies confirmed such findings in sMNs of 17 ALS (SOD1, C9ORF72, TDP43 (TARDBP) and sporadic) human induced pluripotent stem cell lines, identifying elevated levels of arachidonic acid. Pharmacological reduction of arachidonic acid levels was sufficient to reverse ALS-related phenotypes in both human sMNs and in vivo in Drosophila and SOD1G93A mouse models. Collectively, these findings pinpoint a catalytic step of lipid metabolism as a potential therapeutic target for ALS.
Collapse
Affiliation(s)
- Hojae Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Robert Packard Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jae Jin Lee
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Na Young Park
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Korea
| | - Sandeep Kumar Dubey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taeyong Kim
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Kai Ruan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea
| | - Seong-Hyun Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shinwon Ha
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irina Kovlyagina
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kyung-Tai Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Seongjun Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yohan Oh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hyesoo Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Ung Kang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas J Maragakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Young Bin Hong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Korea.
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Korea.
| | - Hyungjin Eoh
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA.
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Robert Packard Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Yan M, Zhang S, Li C, Liu Y, Zhao J, Wang Y, Yang Y, Zhang L. 5-Lipoxygenase as an emerging target against age-related brain disorders. Ageing Res Rev 2021; 69:101359. [PMID: 33984528 DOI: 10.1016/j.arr.2021.101359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022]
Abstract
Neuroinflammation is a common feature of age-related brain disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and cerebral ischemia. 5-lipoxygenase (5-LOX), a proinflammatory enzyme, modulates inflammation by generating leukotrienes. Abnormal activation of 5-LOX and excessive production of leukotrienes have been detected in the development of age-related brain pathology. In this review, we provide an update on the current understanding of 5-LOX activation and several groups of functionally related inhibitors. In addition, the modulatory roles of 5-LOX in the pathogenesis and progression of the age-related brain disorders have been comprehensively highlighted and discussed. Inhibition of 5-LOX activation may represent a promising therapeutic strategy for AD, PD and cerebral ischemia.
Collapse
|
11
|
Zhang T, Yang C, Chu J, Ning LN, Zeng P, Wang XM, Shi Y, Qin BJ, Qu N, Zhang Q, Tian Q. Emodin Prevented Depression in Chronic Unpredicted Mild Stress-Exposed Rats by Targeting miR-139-5p/5-Lipoxygenase. Front Cell Dev Biol 2021; 9:696619. [PMID: 34381778 PMCID: PMC8350171 DOI: 10.3389/fcell.2021.696619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background The use of medicinal plant ingredients is one of the goals of developing potential drugs for treating depression. Compelling evidence suggests that anti-inflammatory medicines may block the occurrence of depression. We studied the effect of a natural compound, emodin, on the development of psychosocial stress-induced depression and the underlying mechanisms. Methods Chronic unpredicted mild stress (CUMS) for 7 weeks was performed to replicate psychosocial stress in rats. The sucrose preference test, force swimming test, and open field test were used to evaluate their behaviors. The differentially expressed proteins in the hippocampus were analyzed using proteomics. Nissl staining and Golgi staining were used to detect the loss of neurons and synapses, immunohistochemical staining was used to detect the activation of microglia, and the enzyme-linked immunosorbent assay was used to detect the levels of pro-inflammatory cytokines. Western blotting, immunofluorescence, and quantitative polymerase chain reaction were also performed. Results Hippocampal inflammation with up-regulated 5-lipoxygenase (5-LO) was observed in the depressed rats after CUMS exposure. The upregulation of 5-LO was caused by decreased miR-139-5p. To observe the effect of emodin, we screened out depression-susceptible (DeS) rats during CUMS and treated them with emodin (80 mg/kg/day). Two weeks later, emodin prevented the depression behaviors in DeS rats along with a series of pathological changes in their hippocampi, such as loss of neurons and spines, microglial activation, increased interleukin-1β and tumor necrosis factor-α, and the activation of 5-LO. Furthermore, we demonstrated that emodin inhibited its excess inflammatory response, possibly by targeting miR-139-5p/5-LO and modulating glycogen synthase kinase 3β and nuclear factor erythroid 2-related factor 2. Conclusion These results provide important evidence that emodin may be a candidate agent for the treatment of depression and established a key role of miR-139-5p/5-LO in the inflammation of depression.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurology, Shanxian Central Hospital, the Affiliated Huxi Hospital of Jining Medical College, Heze, China
| | - Can Yang
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chu
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Na Ning
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathology, Gannan Medical University Pingxiang Hospital, Pingxiang, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ming Wang
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shi
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bao-Jian Qin
- Department of Neurology, Shanxian Central Hospital, the Affiliated Huxi Hospital of Jining Medical College, Heze, China
| | - Na Qu
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Psychological Trauma, Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, China
| | - Qi Zhang
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Psychiatry, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, Key Laboratory of Neurological Disease of National Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
13
|
Liu L, Zhang P, Zhang Z, Liang Y, Chen H, He Z, Sun X, Guo Z, Deng Y. 5-Lipoxygenase inhibition reduces inflammation and neuronal apoptosis via AKT signaling after subarachnoid hemorrhage in rats. Aging (Albany NY) 2021; 13:11752-11761. [PMID: 33878031 PMCID: PMC8109136 DOI: 10.18632/aging.202869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/14/2021] [Indexed: 01/20/2023]
Abstract
Early brain injury (EBI) is a major contributor to the high mortality and morbidity after subarachnoid hemorrhage (SAH). Inflammatory responses and neuronal apoptosis are important causes of EBI. Because 5- lipoxygenase (5-LOX) is known to be involved various central nervous system diseases, we investigated the effects of 5-LOX inhibition during EBI after SAH. Zileuton and LY294002 were used to inhibit expression of 5-LOX and Akt, respectively. We found that 5-LOX expression was significantly increased in the cytoplasm of cortical neurons after SAH and was accompanied by upregulated expression of the inflammatory factors LTB4, TNF-α, IL-1β and IL-6; upregulation of the pro-apoptotic factor Bax; downregulation of the anti-apoptotic factor Bcl-2; and an increased apoptosis rate. Gastric Zileuton administration significantly suppressed all of those effects and improved neurological function. Zileuton also upregulated activated (phosphorylated) AKT levels, and these beneficial effects of Zileuton were abolished by intracerebroventricular infusion of the PI3K inhibitor LY294002. Taken together, these findings indicate that 5-LOX mediates pro-inflammatory and pro-apoptotic effects that contribute to EBI after SAH and that those effects are suppressed by activation of PI3K/Akt signaling. This suggests targeting 5-LOX may be an effective approach to treating EBI after SAH.
Collapse
Affiliation(s)
- Liu Liu
- Department of Neurosurgery, Chongqing Emergency Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ping Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaosi Zhang
- Department of Cerebrovascular Diseases, The First Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yidan Liang
- Department of Neurosurgery, Chongqing Emergency Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongduo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Center, Chongqing University Center Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Mechanistic insight on the role of leukotriene receptors in ischemic-reperfusion injury. Pharmacol Rep 2021; 73:1240-1254. [PMID: 33818747 DOI: 10.1007/s43440-021-00258-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Leukotrienes (LT) are a class of inflammatory mediators produced by the 5-lipoxygenase (5-LO) enzyme from arachidonic acid (AA). We discussed the various LT inhibitors and downstream pathway modulators, such as Mitogen-Activated Protein Kinases (MAPK), Phosphatidylinositol 3-Kinase/Protein Kinase B (PI3K/Akt), 5'-Adenosine Monophosphate-Activated Protein Kinase (AMPK), Protein Kinase C (PKC), Nitric Oxide (NO), Bradykinin, Early Growth Response-1 (Egr-1), Nuclear Factor-κB (NF-κB), and Tumor Necrosis Factor-Alpha (TNF-α), which in turn regulate various metabolic and physiological processes involving I/R injury. A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to understand the nature and mechanistic interventions of the leukotriene receptor modulations in ischemic injury. In the pathophysiology of I/R injuries, LT has been found to play an important role. I/R injury affects most of the vital organs and is characterized by inflammation, oxidative stress, cell death, and apoptosis leading to morbidity and mortality. sThis present review focuses on the various LT receptors, i.e., CysLT, LTC4, LTD4, and LTE4, involved in developing I/R injury in organs, such as the brain, spinal cord, heart, kidney, liver, and intestine.
Collapse
|
15
|
Yeh YT, Liang CC, Chang CL, Hsu CY, Li PC. Increased risk of knee osteoarthritis in patients using oral N-acetylcysteine: a nationwide cohort study. BMC Musculoskelet Disord 2020; 21:531. [PMID: 32778089 PMCID: PMC7418329 DOI: 10.1186/s12891-020-03562-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background Knee osteoarthritis (OA) is known to be a progressive degenerative disorder; however, recent evidence suggests that inflammatory mediators contribute to cartilage degradation. Studies have reported that N-acetylcysteine (NAC) had a promising effect on the reduction of the synthesis of proinflammatory and structural mediators by synovial cells. Given the lack of relevant clinical trials, we conducted this study to determine the relationship between NAC use and risk of knee OA. Methods We designed a retrospective cohort study from 2000 to 2013. Patients who received oral NAC over 28 days within 1 year after the first prescription were defined as the case group, whereas those without NAC use were considered as candidates of the control group. We adopted 1:4 propensity-score matching by age, sex, index year, and comorbidities to obtain the control group. The primary outcome was a new diagnosis of knee OA during the follow-up period. Results Our study sample comprised 12,928 people who used NAC and 51,715 NAC nonusers. NAC users had a significantly higher incidence of osteoarthritis (adjusted hazard ratio: 1.42, P < .001) than did NAC nonusers. Also, in analyses stratified by age group and sex, all subgroups exhibited a significantly higher incidence of knee osteoarthritis (P < .0001) among NAC users than among NAC nonusers. The use of oral NAC was associated with nearly four-fold increased the risk of knee OA in the young age group. Conclusions Long-term use of oral NAC is associated with a higher risk of knee OA.
Collapse
Affiliation(s)
- Ying-Ting Yeh
- Department of Physical Medicine and Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chung-Chao Liang
- Department of Physical Medicine and Rehabilitation Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Ling Chang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Y Hsu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Pei-Chen Li
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| |
Collapse
|
16
|
Hijioka M, Futokoro R, Ohto-Nakanishi T, Nakanishi H, Katsuki H, Kitamura Y. Microglia-released leukotriene B 4 promotes neutrophil infiltration and microglial activation following intracerebral hemorrhage. Int Immunopharmacol 2020; 85:106678. [PMID: 32544870 DOI: 10.1016/j.intimp.2020.106678] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Intracerebral hemorrhage (ICH) from blood vessel rupture results in parenchymal hematoma formation and neuroinflammation, ultimately leading to neurodegeneration. Several lines of evidence suggest that the severity of ICH-induced neural damage is exacerbated by infiltration of T-cells, monocytes, and especially neutrophils into the hematoma. Neutrophil migration is regulated by chemokines, formyl peptides, and leukotriene B4 (LTB4), a metabolite of arachidonic acid. In this study, we demonstrate that LTB4 is a key signaling factor promoting microglial activity and leukocyte infiltration into hematoma and thus a potentially critical determinant of ICH pathogenesis and clinical outcome. Lipidomic analysis revealed markedly increased LTB4 concentration in the hematoma-containing brain tissues 6-24 h after experimental ICH in mice. Expression of 5-lipoxygenase, a rate-limiting enzyme for LTB4 production, was upregulated in activated microglia and neutrophils within the hematoma following ICH. Treatment of cultured BV-2 microglia with thrombin, which is abundant in hematoma, promoted activation, proinflammatory cytokine expression, and LTB4 secretion. Further, conditioned medium from thrombin-stimulated BV-2 cells potentiated the transwell migration of neutrophil-like cells, a response blocked by a LTB4 receptor antagonist. These results suggest that arachidonic acid conversion to LTB4 following ICH contributes to neuroinflammation and ensuing neural tissue damage by inducing microglial activation and neutrophil recruitment.
Collapse
Affiliation(s)
- Masanori Hijioka
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan.
| | - Risa Futokoro
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | | | - Hiroki Nakanishi
- Lipidome Lab Co., Ltd., Akita 010-0825, Japan; Research Center for Biosignaling, Akita University, Akita 010-8543, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yoshihisa Kitamura
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
17
|
Atone J, Wagner K, Hashimoto K, Hammock BD. Cytochrome P450 derived epoxidized fatty acids as a therapeutic tool against neuroinflammatory diseases. Prostaglandins Other Lipid Mediat 2020; 147:106385. [PMID: 31698143 PMCID: PMC7067627 DOI: 10.1016/j.prostaglandins.2019.106385] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 (CYP) metabolism of arachidonic acid (ARA) produces epoxy fatty acids (EpFAs) such as epoxyeicosatrienoic acids (EETs) that are known to exert protective effects in inflammatory disorders. Endogenous EpFAs are further metabolized into corresponding diols by the soluble epoxide hydrolase (sEH). Through inhibition of sEH, many studies have demonstrated the cardioprotective and renoprotective effects of EpFAs; however, the role of sEH inhibition in modulating the pathogenesis of neuroinflammatory disorders is less well described. In this review, we discuss the current knowledge surrounding the effects of sEH inhibition and EpFA action in neuroinflammatory disorders such as Parkinson's Disease (PD), stroke, depression, epilepsy, and Alzheimer's Disease (AD), as well as the potential mechanisms that underlie the therapeutic effects of sEH inhibition.
Collapse
Affiliation(s)
- Jogen Atone
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Karen Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, United States.
| |
Collapse
|
18
|
Chan SJ, Ng MPE, Zhao H, Ng GJL, De Foo C, Wong PTH, Seet RCS. Early and Sustained Increases in Leukotriene B 4 Levels Are Associated with Poor Clinical Outcome in Ischemic Stroke Patients. Neurotherapeutics 2020; 17:282-293. [PMID: 31520306 PMCID: PMC7007445 DOI: 10.1007/s13311-019-00787-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Leukotriene B4 (LTB4) has been implicated in ischemic stroke pathology. We examined the prognostic significance of LTB4 levels in patients with acute middle cerebral artery (MCA) infarction and their mechanisms in rat stroke models. In ischemic stroke patients with middle cerebral artery infarction, plasma LTB4 levels were found to increase rapidly, roughly doubling within 24 h when compared to initial post-stroke levels. Further analyses indicate that poor functional recovery is associated with early and more sustained increase in LTB4 rather than the peak levels. Results from studies using a rat embolic stroke model showed increased 5-lipoxygenase (5-LOX) expression in the ipsilateral infarcted cortex compared with sham control or respective contralateral regions at 24 h post-stroke with a concomitant increase in LTB4 levels. In addition, neutrophil influx was also observed in the infarcted cortex. Double immunostaining indicated that neutrophils express 5-LOX and leukotriene A4 hydrolase (LTA4H), highlighting the pivotal contributions of neutrophils as a source of LTB4. Importantly, rise in plasma LTB4 levels corresponded with an increase in LTB4 amount in the infarcted cortex, thereby supporting the use of plasma as a surrogate for brain LTB4 levels. Pre-stroke LTB4 loading increased brain infarct volume in tMCAO rats. Conversely, administration of the 5-LOX-activating protein (FLAP) inhibitor BAY-X1005 or B-leukotriene receptor (BLTR) antagonist LY255283 decreased the infarct volume by a similar extent. To conclude, targeted interruption of the LTB4 pathway might be a viable treatment strategy for acute ischemic stroke.
Collapse
Affiliation(s)
- Su Jing Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD3, 16 Medical Drive, Singapore, 117600, Singapore
| | - Mary P E Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Hui Zhao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD3, 16 Medical Drive, Singapore, 117600, Singapore
| | - Geelyn J L Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Chuan De Foo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD3, 16 Medical Drive, Singapore, 117600, Singapore
| | - Peter T-H Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, MD3, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Raymond C S Seet
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
19
|
HMGB1-C1q complexes regulate macrophage function by switching between leukotriene and specialized proresolving mediator biosynthesis. Proc Natl Acad Sci U S A 2019; 116:23254-23263. [PMID: 31570601 DOI: 10.1073/pnas.1907490116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macrophage polarization is critical to inflammation and resolution of inflammation. We previously showed that high-mobility group box 1 (HMGB1) can engage receptor for advanced glycation end product (RAGE) to direct monocytes to a proinflammatory phenotype characterized by production of type 1 IFN and proinflammatory cytokines. In contrast, HMGB1 plus C1q form a tetramolecular complex cross-linking RAGE and LAIR-1 and directing monocytes to an antiinflammatory phenotype. Lipid mediators, as well as cytokines, help establish a milieu favoring either inflammation or resolution of inflammation. This study focuses on the induction of lipid mediators by HMGB1 and HMGB1 plus C1q and their regulation of IRF5, a transcription factor critical for the induction and maintenance of proinflammatory macrophages. Here, we show that HMGB1 induces leukotriene production through a RAGE-dependent pathway, while HMGB1 plus C1q induces specialized proresolving lipid mediators lipoxin A4, resolvin D1, and resolvin D2 through a RAGE- and LAIR-1-dependent pathway. Leukotriene exposure contributes to induction of IRF5 in a positive-feedback loop. In contrast, resolvins (at 20 nM) block IRF5 induction and prevent the differentiation of inflammatory macrophages. Finally, we have generated a molecular mimic of HMGB1 plus C1q, which cross-links RAGE and LAIR-1 and polarizes monocytes to an antiinflammatory phenotype. These findings may provide a mechanism to control nonresolving inflammation in many pathologic conditions.
Collapse
|
20
|
Wu J, Wang B, Li M, Shi YH, Wang C, Kang YG. Network pharmacology identification of mechanisms of cerebral ischemia injury amelioration by Baicalin and Geniposide. Eur J Pharmacol 2019; 859:172484. [PMID: 31229537 DOI: 10.1016/j.ejphar.2019.172484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
Abstract
Cerebral ischemia is one of the main causes of human neurological dysfunction. Baicalin (BC) and Geniposide (GP) and their combination (BC/GP) have an ameliorative effect on cerebral ischemia. Here, we use network pharmacology to predict the targets of BC, GP and BC/GP, then explored the protective mechanisms of the drugs on cerebral ischemia injury caused by abnormal activation of microglia cells in vitro. The results indicate that 45 targets related to cerebral ischemic injury were predicted by network pharmacology, and 26 cerebral ischemia related pathways were extracted by the KEGG database. In vitro lipopolysaccharide (LPS) stimulated BV-2 cells to establish a model of inflammatory injury induced by microglia. The effects of BC, GP and BC/GP on the expression of TNF-α, IL-1β and IL-10, TGF-β and TNF-α were verified. Network pharmacology predicts the regulation of the 5-LOX/CysLTs inflammatory pathway. Finally, we found that GP and BC/GP exert anti-inflammatory and neuroprotective effects by regulating the polarization state of microglia and down-regulating 5-LOX/CysLTs, and has certain protective effects on nerve damage following cerebral ischemia.
Collapse
Affiliation(s)
- Jie Wu
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Bin Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Min Li
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yong-Heng Shi
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Chuan Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ya-Guo Kang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|
21
|
Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem 2019; 150:113-137. [PMID: 30802950 DOI: 10.1111/jnc.14687] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a typical progressive, chronic neurodegenerative disorder with worldwide prevalence. Its clinical manifestation involves the presence of extracellular plaques and intracellular neurofibrillary tangles (NFTs). NFTs occur in brain tissues as a result of both Aβ agglomeration and Tau phosphorylation. Although there is no known cure for AD, research into possible cures and treatment options continues using cell-cultures and model animals/organisms. The nuclear factor-kappa β (NF-κβ) plays an active role in the progression of AD. Impairment to this signaling module triggers undesirable phenotypic changes such as neuroinflammation, activation of microglia, oxidative stress related complications, and apoptotic cell death. These imbalances further lead to homeostatic abnormalities in the brain or in initial stages of AD essentially pushing normal neurons toward the degeneration process. Interestingly, the role of NF-κβ signaling associated receptor-interacting protein kinase is currently observed in apoptotic and necrotic cell death, and has been reported in brains. Conversely, the NF-κβ signaling pathway has also been reported to be involved in normal brain functioning. This pathway plays a crucial role in maintaining synaptic plasticity and balancing between learning and memory. Since any impairment in the pathways associated with NF-κβ signaling causes altered neuronal dynamics, neurotherapeutics using compounds including, antioxidants, bioflavonoids, and non-steroidal anti-inflammatory drugs against such abnormalities offer possibilities to rectify aberrant excitatory neuronal activity in AD. In this review, we have provided an extensive overview of the crucial role of NF-κβ signaling in normal brain homeostasis. We have also thoroughly outlined several established pathomechanisms associated with NF-κβ pathways in AD, along with their respective therapeutic approaches.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Rohan Kar
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Kumari Swati
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Vineet Kumar Goswami
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
22
|
Lapchak PA, Boitano PD, Bombien R, Cook DJ, Doyan S, Lara JM, Schubert DR. CNB-001, a pleiotropic drug is efficacious in embolized agyrencephalic New Zealand white rabbits and ischemic gyrencephalic cynomolgus monkeys. Exp Neurol 2018; 313:98-108. [PMID: 30521790 DOI: 10.1016/j.expneurol.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 01/10/2023]
Abstract
Ischemic stroke is an acute neurodegenerative disease that is extremely devastating to patients, their families and society. Stroke is inadequately treated even with endovascular procedures and reperfusion therapy. Using an extensive translational screening process, we have developed a pleiotropic cytoprotective agent with the potential to positively impact a large population of brain ischemia patients and revolutionize the process used for the development of new drugs to treat complex brain disorders. In this unique translational study article, we document that the novel curcumin-based compound, CNB-001, when administered as a single intravenous dose, has significant efficacy to attenuate clinically relevant behavioral deficits following ischemic events in agyrencephalic rabbits when administered 1 h post-embolization and reduces infarct growth in gyrencephalic non-human primates, when administered 5 min after initiation of middle cerebral artery occlusion. CNB-001 is safe and does not increase morbidity or mortality in either research species. Mechanistically, CNB-001 inhibits human 5- and 15-lipoxygenase in vitro, and can attenuate ischemia-induced inflammatory markers, and oxidative stress markers, while potentially promoting synaptic plasticity mediated by enhanced brain-derived neurotrophic factor (BDNF).
Collapse
Affiliation(s)
- Paul A Lapchak
- Neurocore LLC, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | | | | - Douglas J Cook
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| | | | | | - David R Schubert
- Cellular Neurobiology Laboratories, The Salk Institute, La Jolla, CA, USA
| |
Collapse
|
23
|
Rahman SO, Singh RK, Hussain S, Akhtar M, Najmi AK. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer's disease. Eur J Pharmacol 2018; 842:208-220. [PMID: 30389631 DOI: 10.1016/j.ejphar.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are member of eicosanoid inflammatory lipid mediators family produced by oxidation of arachidonic acid by action of the enzyme 5-lipoxygenase (5-LOX). 5-LOX is activated by enzyme 5-Lipoxygenase-activating protein (FLAP), which further lead to production of cysLTs i.e. leukotriene C4 (LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4). CysLTs then produce their potent inflammatory actions by activating CysLT1 and CysLT2 receptors. Inhibitors of cysLTs are indicated in asthma, allergic rhinitis and other inflammatory disorders. Earlier studies have associated cysLTs and their receptors in several neurodegenerative disorders diseases like, multiple sclerosis, Parkinson's disease, Huntington's disease, epilepsy and Alzheimer's disease (AD). These inflammatory lipid mediators have previously shown effects on various aggravating factors of AD. However, not much data has been elucidated to test their role against AD clinically. Herein, through this review, we have provided the current and emerging information on the role of cysLTs and their receptors in various neurological complications responsible for the development of AD. In addition, literature evidences for the effect of cysLT inhibitors on distinct aspects of abnormalities in AD has also been reviewed. Promising advancement in understanding on the role of cysLTs on the various neuromodulatory processes and mechanisms may contribute to the development of newer and safer therapy for the treatment of AD in future.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rakesh Kumar Singh
- School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon 122013, Haryana, India.
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
24
|
Khan M, Shunmugavel A, Dhammu TS, Khan H, Singh I, Singh AK. Combined treatment with GSNO and CAPE accelerates functional recovery via additive antioxidant activities in a mouse model of TBI. J Neurosci Res 2018; 96:1900-1913. [PMID: 30027580 DOI: 10.1002/jnr.24279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is the major cause of physical disability and emotional vulnerability. Treatment of TBI is lacking due to its multimechanistic etiology, including derailed mitochondrial and cellular energy metabolism. Previous studies from our laboratory show that an endogenous nitric oxide (NO) metabolite S-nitrosoglutathione (GSNO) provides neuroprotection and improves neurobehavioral function via anti-inflammatory and anti-neurodegenerative mechanisms. To accelerate the rate and enhance the degree of recovery, we investigated combining GSNO with caffeic acid phenethyl ester (CAPE), a potent antioxidant compound, using a male mouse model of TBI, controlled cortical impact in mice. The combination therapy accelerated improvement of cognitive and depressive-like behavior compared with GSNO or CAPE monotherapy. Separately, both GSNO and CAPE improved mitochondrial integrity/function and decreased oxidative damage; however, the combination therapy had greater effects on Drp1 and MnSOD. Additionally, while CAPE alone activated AMPK, this activation was heightened in combination with GSNO. CAPE treatment of normal animals also significantly increased the expression levels of pAMPK, pACC (activation of AMPK substrate ACC), and pLKB1 (activation of upstream to AMPK kinase LKB1), indicating that CAPE activates AMPK via LKB1. These results show that while GSNO and CAPE provide neuroprotection and improve functional recovery separately, the combination treatment invokes greater recovery by significantly improving mitochondrial functions and activating the AMPK enzyme. Both GSNO and CAPE are in human consumption without any known adverse effects; therefore, a combination therapy-based multimechanistic approach is worthy of investigation in human TBI.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | | | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Hamza Khan
- College of Medicine, University of South Carolina, Columbia, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| | - Avtar K Singh
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
25
|
Sasmita AO, Ling APK, Voon KGL, Koh RY, Wong YP. Madecassoside activates anti‑neuroinflammatory mechanisms by inhibiting lipopolysaccharide‑induced microglial inflammation. Int J Mol Med 2018; 41:3033-3040. [PMID: 29436598 DOI: 10.3892/ijmm.2018.3479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
Neurodegeneration is typically preceded by neuroinflammation generated by the nervous system to protect itself from tissue damage, however, excess neuroinflammation may inadvertently cause more harm to the surrounding tissues. Attenuating neuroinflammation with non‑steroidal anti‑inflammatory drugs can inhibit neurodegeneration. However, such treatments induce chronic side effects, including stomach ulcers. Madecassoside, a triterpene derived from Centella asiatica, is considered to be an alternative treatment of inflammation. In the present study, the anti‑neuroinflammatory properties of madecassoside were assessed in BV2 microglia cells, which were pre‑treated with madecassoside at a maximum non‑toxic dose (MNTD) of 9.50 µg/ml and a ½ MNTD of 4.75 µg/ml for 3 h and stimulated with 0.1 µg/ml lipopolysaccharide (LPS). The effect of madecassoside was assessed by determining reactive oxygen species (ROS) levels in all groups. Furthermore, the expression of pro‑ and anti‑neuroinflammatory genes and proteins were analyzed using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that ROS levels in cells treated with the MNTD of madecassoside were significantly reduced compared with cells treated with LPS alone (P<0.05). The expression of pro‑neuroinflammatory genes, including inducible nitric oxide synthase, cyclooxygenase‑2, signal transducer and activator of transcription 1 and nuclear factor‑κB, were significantly downregulated in a dose‑independent manner following treatment with madecassoside. Conversely, the anti‑neuroinflammatory component heme oxygenase 1 was significantly upregulated by 175.22% in the MNTD‑treated group, compared with cells treated with LPS alone (P<0.05). The gene expression profiles of pro‑ and anti‑inflammatory genes were also consistent with the results of western blotting. The results of the present study suggest that madecassoside may be a potent anti‑neuroinflammatory agent. The antioxidative properties of madecassoside, which serve a major role in anti‑neuroinflammation, indicate that this compound may be a functional natural anti‑neuroinflammatory agent, therefore, further in vivo or molecular studies are required.
Collapse
Affiliation(s)
- Andrew Octavian Sasmita
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kenny Gah Leong Voon
- Division of Pathology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ying Pei Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
26
|
Liao D, Qian B, Zhang Y, Wu K, Xu M. Inhibition of 5-lipoxygenase represses neutrophils activation and activates apoptosis in pancreatic tissues during acute necrotizing pancreatitis. Biochem Biophys Res Commun 2018; 498:79-85. [PMID: 29421656 DOI: 10.1016/j.bbrc.2018.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 11/29/2022]
Abstract
Pancreatic glandular necrosis is rapid inflammation of the pancreas and contributes to severe acute pancreatitis in humans. The pathogenesis of pancreatic tissue inflammation during acute pancreatitis is still largely unknown. Recent studies suggest that 5-lipoxygenase (5-LOX) is an essential mediator in modulating cell death pathways in human diseases. In this study, we aimed to evaluate the effects of a 5-LOX inhibitor, zileuton, on tissue apoptosis and neutrophils activation in pancreatic tissues during acute necrotizing pancreatitis (ANP) in a rat model. In this present study, both mRNA and protein levels of 5-LOX are upregulated during ANP and zileuton treatment is shown to repress ANP-induced upregulation of 5-LOX levels. In addition, zileuton treatment is found to repress blood biomarkers of neutrophils activation such as soluble intercellular adhesive molecular 1 (ICAM-1), soluble E-selectin (E-selectin), soluble P-selectin (P-selectin), leukotriene B4 (LTB4), and myeloperoxidase (MPO). Also, zileuton treatment attenuates pancreatic tissue pathology, upregulates caspase-3, downregulates B-cell lymphoma 2 (Bcl-2), and activates tissue apoptosis evaluated by TUNEL staining. Our results show that 5-LOX plays an important role in activating apoptosis and repressing neutrophils activation during ANP. The current study suggests that 5-LOX can be used as a potential target for the treatment of ANP.
Collapse
Affiliation(s)
- Dan Liao
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Bo Qian
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yefei Zhang
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Kai Wu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Min Xu
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
27
|
Lopes DEM, Jabr CL, Dejani NN, Saraiva AC, de Aquino SG, Medeiros AI, Rossa Junior C. Inhibition of 5-lipoxygenase attenuates inflammation and BONE resorption in lipopolysaccharide-induced periodontal disease. J Periodontol 2017; 89:235-245. [PMID: 29381190 DOI: 10.1902/jop.2017.170210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Arachidonate-5-lipoxygenase (5-LO) activity and increased leukotriene B4 (LTB4) production have been implicated in various inflammatory conditions. Increased production of leukotrienes has been associated with periodontal diseases; however, their relative contribution to tissue destruction is unknown. In this study, an orally active specific 5-LO inhibitor is used to assess its role in inflammation and bone resorption in a murine model of lipopolysaccharide (LPS)-induced periodontal disease. METHODS Periodontal disease was induced in Balb/c mice by direct injections of LPS into the palatal gingival tissues adjacent to the maxillary first molars three times per week for 4 weeks. Animals were treated with biochemical inhibitor (2 mg/kg/daily) or the same volume of the vehicle by oral gavage. Microcomputed tomography analysis was used to assess bone resorption. Enzyme immunoassay determined LTB4, and enzyme-linked immunosorbent assays quantified tumor necrosis factor (TNF), interleukin (IL)-12, and IL-10 in gingival tissues. Histologic sections were used for the morphometric analysis (number of neutrophils and mononuclear cells). Osteoclasts were counted in tartrate-resistant acid phosphatase-stained sections. RESULTS Administration of 5-LO inhibitor effectively reduced production of LTB4 (23.7% decrease) and significantly reduced TNF and IL-12 levels in gingival tissues. Moreover, reduction of LTB4 levels in gingival tissues was associated with a significant decrease in bone resorption and a marked reduction in number of osteoclasts and inflammatory cells. CONCLUSION 5-LO activity plays a relevant role in inflammation and bone resorption associated with the LPS model of experimental periodontal disease.
Collapse
Affiliation(s)
- Debora E M Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, Araraquara, Sao Paulo, Brazil
| | - Camila L Jabr
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, Araraquara, Sao Paulo, Brazil
| | - Naiara N Dejani
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University
| | - Amanda C Saraiva
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University
| | - Sabrina G de Aquino
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, Araraquara, Sao Paulo, Brazil
- Health Sciences Center, School of Dentistry, Federal University of Paraiba, Joao Pessoa, Paraíba, Brazil
| | - Alexandra I Medeiros
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University
| | - Carlos Rossa Junior
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
28
|
Hwang JS, Jung EH, Kwon MY, Han IO. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α. J Neuroimmunol 2016; 298:165-71. [DOI: 10.1016/j.jneuroim.2016.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
|
29
|
Liu Y, Wang W, Li Y, Xiao Y, Cheng J, Jia J. The 5-Lipoxygenase Inhibitor Zileuton Confers Neuroprotection against Glutamate Oxidative Damage by Inhibiting Ferroptosis. Biol Pharm Bull 2016; 38:1234-9. [PMID: 26235588 DOI: 10.1248/bpb.b15-00048] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5-Lipoxygenase (5-LOX) inhibitors have been shown to be protective in several neurodegenerative disease models; however, the underlying mechanisms remain unclear. We investigated whether 5-LOX inhibitor zileuton conferred direct neuroprotection against glutamate oxidative toxicity by inhibiting ferroptosis, a newly identified iron-dependent programmed cell death. Treatment of HT22 mouse neuronal cell line with glutamate resulted in significant cell death, which was inhibited by zileuton in a dose-dependent manner. Consistently, zileuton decreased glutamate-induced production of reactive oxygen species but did not restore glutamate-induced depletion of glutathione. Moreover, the pan-caspase inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone (ZVAD-fmk) neither prevented HT22 cell death induced by glutamate nor affected zileuton protection against glutamate oxidative toxicity, suggesting that zileuton did not confer neuroprotection by inhibiting caspase-dependent apoptosis. Interestingly, glutamate-induced HT22 cell death was significantly inhibited by the ferroptosis inhibitor ferrostatin-1. Moreover, zileuton protected HT22 neuronal cells from erastin-induced ferroptosis. However, we did not observe synergic protective effects of zileuton and ferrostatin-1 on glutamate-induced cell death. These results suggested that both the 5-LOX inhibitor zileuton and the ferropotosis inhibitor ferrostatin-1 acted through the same cascade to protect against glutamate oxidative toxicity. In conclusion, our results suggested that zileuton protected neurons from glutamate-induced oxidative stress at least in part by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University
| | | | | | | | | | | |
Collapse
|
30
|
Zhang L, Zhang X, Zhang C, Bai X, Zhang J, Zhao X, Chen L, Wang L, Zhu C, Cui L, Chen R, Zhao T, Zhao Y. Nobiletin promotes antioxidant and anti-inflammatory responses and elicits protection against ischemic stroke in vivo. Brain Res 2016; 1636:130-141. [PMID: 26874072 DOI: 10.1016/j.brainres.2016.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Post-ischemic oxidative stress and inflammation play pivotal roles in the pathogenesis of ischemic stroke and may represent therapeutic targets. Nobiletin (NOB) has been reported to elicit a variety of biological effects through its anti-oxidant and anti-inflammatory properties. Our previous study has demonstrated the beneficial effect of NOB in ischemic stroke, but the underlying mechanisms remain poorly defined. We therefore further investigated the role of NOB in cerebral ischemia and its potential mechanisms. METHODS Adult male Sprague-Dawley rats were randomly assigned to five groups: Sham (sham-operated+0.05% Tween-80), permanent middle cerebral artery occlusion (pMCAO+0.9% saline), Vehicle (pMCAO+0.05% Tween-80), NOB-L (pMCAO+NOB 10mg/kg) and NOB-H (pMCAO+NOB 25mg/kg) groups. Rats were pre-administered intraperitoneally once daily for 3 days prior to ischemia and then received once again immediately after surgery. Neurological deficit, brain edema and infarct volume were evaluated at 24h after stroke. Immunohistochemistry, western blot and RT-qPCR were used to detect the expression of Nrf2, HO-1, SOD1, NF-κB and MMP-9. SOD1, GSH and MDA were measured by spectrophotometer. RESULTS Compared with Vehicle group, neurological deficits and brain edema were relieved in NOB-H group, infarct volume was lessened in both NOB-L and NOB-H groups (P<0.05). NOB significantly increased the expression of Nrf2, HO-1, SOD1 and GSH, while decreased the levels of NF-κB, MMP-9 and MDA (P<0.05). CONCLUSION NOB may have a neuroprotective effect on cerebral ischemia, and this protection may be through upregulating Nrf2, HO-1 and downregulating NF-κB expression.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China.
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Xue Bai
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Jian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Xumeng Zhao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Linyu Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Lina Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Chunhua Zhu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Lili Cui
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Rong Chen
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| | - Ting Zhao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Yuan Zhao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, Hebei 050000, PR China
| |
Collapse
|
31
|
CysLT 2 receptor mediates lipopolysaccharide-induced microglial inflammation and consequent neurotoxicity in vitro. Brain Res 2015; 1624:433-445. [DOI: 10.1016/j.brainres.2015.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/17/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
|
32
|
A COX/5-LOX Inhibitor Licofelone Revealed Anticonvulsant Properties Through iNOS Diminution in Mice. Neurochem Res 2015. [DOI: 10.1007/s11064-015-1669-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
33
|
Khan M, Dhammu TS, Matsuda F, Singh AK, Singh I. Blocking a vicious cycle nNOS/peroxynitrite/AMPK by S-nitrosoglutathione: implication for stroke therapy. BMC Neurosci 2015; 16:42. [PMID: 26174015 PMCID: PMC4502912 DOI: 10.1186/s12868-015-0179-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stroke immediately sets into motion sustained excitotoxicity and calcium dysregulation, causing aberrant activity in neuronal nitric oxide synthase (nNOS) and an imbalance in the levels of nitric oxide (NO). Drugs targeting nNOS-originated toxicity may therefore reduce stroke-induced damage. Recently, we observed that a redox-modulating agent of the NO metabolome, S-nitrosoglutathione (GSNO), confers neurovascular protection by reducing the levels of peroxynitrite, a product of aberrant NOS activity. We therefore investigated whether GSNO-mediated neuroprotection and improved neurological functions depend on blocking nNOS/peroxynitrite-associated injurious mechanisms using a rat model of cerebral ischemia reperfusion (IR). RESULTS IR increased the activity of nNOS, the levels of neuronal peroxynitrite and phosphorylation at Ser(1412) of nNOS. GSNO treatment of IR animals decreased IR-activated nNOS activity and neuronal peroxynitrite levels by reducing nNOS phosphorylation at Ser(1412). The Ser(1412) phosphorylation is associated with increased nNOS activity. Supporting the notion that nNOS activity and peroxynitrite are deleterious following IR, inhibition of nNOS by its inhibitor 7-nitroindazole or reducing peroxynitrite by its scavenger FeTPPS decreased IR injury. GSNO also decreased the activation of AMP Kinase (AMPK) and its upstream kinase LKB1, both of which were activated in IR brain. AMPK has been implicated in nNOS activation via Ser(1412) phosphorylation. To determine whether AMPK activation is deleterious in the acute phase of IR, we treated animals after IR with AICAR (an AMPK activator) and compound c (an AMPK inhibitor). While AICAR potentiated, compound c reduced the IR injury. CONCLUSIONS Taken together, these results indicate an injurious nNOS/peroxynitrite/AMPK cycle following stroke, and GSNO treatment of IR inhibits this vicious cycle, resulting in neuroprotection and improved neurological function. GSNO is a natural component of the human body, and its exogenous administration to humans is not associated with any known side effects. Currently, the FDA-approved thrombolytic therapy suffers from a lack of neuronal protective activity. Because GSNO provides neuroprotection by ameliorating stroke's initial and causative injuries, it is a candidate of translational value for stroke therapy.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA. .,School of Health Science, Kagoshima University, Kagoshima, Japan.
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
34
|
Liang G, Shi B, Luo W, Yang J. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. Behav Brain Funct 2015; 11:18. [PMID: 25907417 PMCID: PMC4407787 DOI: 10.1186/s12993-015-0064-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/14/2015] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability all over the world. Ischemic stroke results from a temporary or permanent reduction of cerebral blood flow that leads to functional and structural damage in different brain regions. Despite decades of intense research, the beneficial treatment of stroke remains limited. In light of this, the search for effective means ameliorating cerebral ischemia-reperfusion injury (CIRI) is one of the major problems of experimental medicine and biology. Recently, the 5-Lipoxygenase (5-LO, a key enzyme metabolizing arachidonic acid to produce leukotrienes) inhibitors have been showed to protect brain against ischemic damage in animal model of cerebral ischemia. Caffeic acid, an inhibitor of 5-LO, is a phenolic compound widely distributed in medicinal plants. The aim of this study was to investigate the effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. The study was carried out on 45 rats that were randomly divided into five groups: the sham group (n = 9), I/R non-treated group (n = 9), I/R-caffeic acid group (10 mg · kg−1) (n = 9), I/R-caffeic acid group (30 mg · kg−1) (n = 9) and I/R-caffeic acid group (50 mg · kg−1) (n = 9). Global cerebral ischemia was induced by bilateral carotid artery occlusion for 20 min followed by reperfusion. Spatial learning and memory was evaluated using Morris water maze. Histopathological changes of hippocampus neurons was observed using HE staining. Superoxide dismutase (SOD, the antioxidant enzyme) activities and malondialdehyde (MDA, an oxidative stress biomarker) contents were detected. NF-κBp65 expression was detected by the methods of immunohistochemistry. Caffeic acid markedly reduced the escape latency, relieved hippocampal neurons injury and increased neuron count compared with those of I/R non-treated rat. NF-κBp65 expression and MDA content decreased significantly, and SOD activities increased significantly in hippocampus. Compared with sham group, 5-LO expression increase significantly in I/R non-treated group rat, and caffeic acid markedly reduced 5-LO expression. The results of the study suggest that caffeic acid has a significant protective effect on global cerebral ischemia-reperfusion injury in rats. The neuroprotective effects is likely to be mediated through the inhibition of 5-LO.
Collapse
Affiliation(s)
- Guojuan Liang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Medical College Rd. No 1, Chongqing, 400016, P. R. China.
| | - Bin Shi
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Medical College Rd. No 1, Chongqing, 400016, P. R. China.
| | - Weinan Luo
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Medical College Rd. No 1, Chongqing, 400016, P. R. China.
| | - Junqing Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Medical College Rd. No 1, Chongqing, 400016, P. R. China.
| |
Collapse
|
35
|
Khan M, Dhammu TS, Matsuda F, Baarine M, Dhindsa TS, Singh I, Singh AK. Promoting endothelial function by S-nitrosoglutathione through the HIF-1α/VEGF pathway stimulates neurorepair and functional recovery following experimental stroke in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2233-47. [PMID: 25945035 PMCID: PMC4408969 DOI: 10.2147/dddt.s77115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background For stroke patients, stimulating neurorepair mechanisms is necessary to reduce morbidity and disability. Our previous studies on brain and spinal cord trauma show that exogenous treatment with the S-nitrosylating agent S-nitrosoglutathione (GSNO) – a nitric oxide and glutathione metabolite of the human body – stimulates neurorepair and aids functional recovery. Using a rat model of cerebral ischemia and reperfusion (IR) in this study, we tested the hypothesis that GSNO invokes the neurorepair process and improves neurobehavioral functions through the angiogenic HIF-1α/VEGF pathway. Methods Stroke was induced by middle cerebral artery occlusion for 60 minutes followed by reperfusion in adult male rats. The injured animals were treated with saline (IR group, n=7), GSNO (0.25 mg/kg, GSNO group, n=7), and GSNO plus the HIF-1α inhibitor 2-methoxyestra-diol (2-ME) (0.25 mg/kg GSNO + 5.0 mg/kg 2-ME, GSNO + 2-ME group, n=7). The groups were studied for either 7 or 14 days to determine neurorepair mediators and functional recovery. Brain capillary endothelial cells were used to show that GSNO promotes angiogenesis and that GSNO-mediated induction of VEGF and the stimulation of angiogenesis are dependent on HIF-1α activity. Results IR injury increased the expression of neurorepair mediators HIF-1α, VEGF, and PECAM-1 and vessel markers to a limited degree that correlate well with significantly compromised neurobehavioral functions compared with sham animals. GSNO treatment of IR not only remarkably enhanced further the expression of HIF-1α, VEGF, and PECAM-1 but also improved functioning compared with IR. The GSNO group also had a higher degree of vessel density than the IR group. Increased expression of VEGF and the degree of tube formation (angiogenesis) by GSNO were reduced after the inhibition of HIF-1α by 2-ME in an endothelial cell culture model. 2-ME treatment of the GSNO group also blocked not only GSNO’s effect of reduced infarct volume, decreased neuronal loss, and enhanced expression of PECAM-1 (P<0.001), but also its improvement of motor and neurological functions (P<0.001). Conclusion GSNO stimulates the process of neurorepair, promotes angiogenesis, and aids functional recovery through the HIF-1α-dependent pathway, showing therapeutic and translational promise for stroke.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA ; School of Health Sciences, Kagoshima University, Kagoshima, Japan
| | - Mauhammad Baarine
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Tejbir Singh Dhindsa
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA ; Ralph H Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
36
|
Landgraf SS, Silva LS, Peruchetti DB, Sirtoli GM, Moraes-Santos F, Portella VG, Silva-Filho JL, Pinheiro CS, Abreu TP, Takiya CM, Benjamin CF, Pinheiro AAS, Canetti C, Caruso-Neves C. 5-Lypoxygenase products are involved in renal tubulointerstitial injury induced by albumin overload in proximal tubules in mice. PLoS One 2014; 9:e107549. [PMID: 25302946 PMCID: PMC4193734 DOI: 10.1371/journal.pone.0107549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022] Open
Abstract
The role of albumin overload in proximal tubules (PT) in the development of tubulointerstitial injury and, consequently, in the progression of renal disease has become more relevant in recent years. Despite the importance of leukotrienes (LTs) in renal disease, little is known about their role in tubulointerstitial injury. The aim of the present work was to investigate the possible role of LTs on tubulointerstitial injury induced by albumin overload. An animal model of tubulointerstitial injury challenged by bovine serum albumin was developed in SV129 mice (wild-type) and 5-lipoxygenase-deficient mice (5-LO–/–). The changes in glomerular morphology and nestin expression observed in wild-type mice subjected to kidney insult were also observed in 5-LO–/– mice. The levels of urinary protein observed in the 5-LO–/– mice subjected or not to kidney insult were lower than those observed in respective wild-type mice. Furthermore, the increase in lactate dehydrogenase activity, a marker of tubule damage, observed in wild-type mice subjected to kidney insult did not occur in 5-LO–/– mice. LTB4 and LTD4, 5-LO products, decreased the uptake of albumin in LLC-PK1 cells, a well-characterized porcine PT cell line. This effect correlated with activation of protein kinase C and inhibition of protein kinase B. The level of proinflammatory cytokines, tumor necrosis factor-α and interleukin (IL)-6, increased in mice subjected to kidney insult but this effect was not modified in 5-LO–/– mice. However, 5-LO–/– mice subjected to kidney insult presented lower macrophage infiltration and higher levels of IL-10 than wild-type mice. Our results reveal that LTs have an important role in tubulointerstitial disease induced by albumin overload.
Collapse
Affiliation(s)
- Sharon Schilling Landgraf
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Souza Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Barros Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela Modenesi Sirtoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Moraes-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviane Gomes Portella
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Silva Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Pereira Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Farias Benjamin
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Fisiologia e Biofísica, Instituto Nacional de Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia e Bioimagem, CCS, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
37
|
Zhang XY, Chen L, Yang Y, Xu DM, Zhang SR, Li CT, Zheng W, Yu SY, Wei EQ, Zhang LH. Regulation of rotenone-induced microglial activation by 5-lipoxygenase and cysteinyl leukotriene receptor 1. Brain Res 2014; 1572:59-71. [DOI: 10.1016/j.brainres.2014.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
|
38
|
Flores JJ, Zhang Y, Klebe DW, Lekic T, Fu W, Zhang JH. Small molecule inhibitors in the treatment of cerebral ischemia. Expert Opin Pharmacother 2014; 15:659-80. [PMID: 24491068 DOI: 10.1517/14656566.2014.884560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke is the world's second leading cause of death. Although recombinant tissue plasminogen activator is an effective treatment for cerebral ischemia, its limitations and ischemic stroke's complex pathophysiology dictate an increased need for the development of new therapeutic interventions. Small molecule inhibitors (SMIs) have the potential to be used as novel therapeutic modalities for stroke, since many preclinical and clinical trials have established their neuroprotective capabilities. AREAS COVERED This paper provides a summary of the pathophysiology of stroke as well as clinical and preclinical evaluations of SMIs as therapeutic interventions for cerebral ischemia. Cerebral ischemia is broken down into four mechanisms in this article: thrombosis, ischemic insult, mitochondrial injury and immune response. Insight is provided into preclinical and current clinical assessments of SMIs targeting each mechanism as well as a summary of reported results. EXPERT OPINION Many studies demonstrated that pre- or post-treatment with certain SMIs significantly ameliorated adverse effects from stroke. Although some of these promising SMIs moved on to clinical trials, they generally failed, possibly due to the poor translation of preclinical to clinical experiments. Yet, there are many steps being taken to improve the quality of experimental research and translation to clinical trials.
Collapse
Affiliation(s)
- Jerry J Flores
- Loma Linda University School of Medicine, Department of Physiology and Pharmacology , Risley Hall, Room 223, Loma Linda, CA 92354 , USA
| | | | | | | | | | | |
Collapse
|
39
|
Cocchi E, Drago A, de Ronchi D, Serretti A. The genetics of vascular incidents associated with second-generation antipsychotic administration. Expert Rev Clin Pharmacol 2013; 7:75-90. [PMID: 24325740 DOI: 10.1586/17512433.2014.865515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Second-generation antipsychotics (SGA) have been associated with risk of stroke in elderly patients, but the molecular and genetic background under this association has been poorly investigated. The aim of the present study was to prioritize a list of genes with an SGA altered expression in order to characterize the genetic background of the SGA-associated stroke risk. Genes with evidence of an altered expression after SGA treatments in genome-wide investigations, both in animals and men, were identified. The Genetic Association Database (GAD) served to verify which of these genes had a proven positive association with an increased stroke risk, and along with it each evidence was tested and recorded. Seven hundred and forty five genes had evidence of a change of their expression profile after SGA administration in various studies. Nine out of them have also been significantly related to an increased strokes risk. We identified and described nine genes as potential candidates for future genetic studies aimed at identifying the genetic background of the SGA-related stroke risk. Further, we identify the molecular pathways in which these genes operate in order to provide a molecular framework to understand on which basis SGA may enhance the risk for stroke.
Collapse
Affiliation(s)
- Enrico Cocchi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Italy
| | | | | | | |
Collapse
|
40
|
Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacol Rep 2013; 64:1179-88. [PMID: 23238474 DOI: 10.1016/s1734-1140(12)70914-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 05/30/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxidative stress is a component of many pathological conditions including neurodegenerative diseases and inflammation. An important source of reactive oxygen species (ROS) are lipoxygenases (LOX) - enzymes responsible for the metabolism of arachidonic acid and other polyunsaturated fatty acids. LOX inhibitors have a protective effect in inflammatory diseases and in neurodegenerative disorders because of their anti-inflammatory activity. However, the molecular mechanism of the protective action of LOX inhibitors has not yet been fully elucidated. METHODS The aim of this study was to compare the antioxidative potential of widely used LOX inhibitors: BWB70C, AA-861, zileuton, baicalein and NDGA. The antioxidative properties were evaluated in cell-free systems. We measured the effect of the tested compounds on iron/ascorbate-induced lipid peroxidation and on carbonyl group formation in the rat brain homogenate. Direct free radical scavenging was analyzed by using DPPH assay. RESULTS Our data showed that the inhibitor of all LOXs, i.e., NDGA, 5-LOX inhibitor BWB70C and the inhibitor of 12/15-LOX, baicalein, significantly decreased the level of lipid and protein oxidation. The free radical scavenging activity of these inhibitors was comparable to known ROS scavengers, i.e., resveratrol and trolox. Zileuton (the inhibitor of 5-LOX) slightly prevented lipid and protein oxidation, it also scavenged the DPPH radical. AA-861 (the inhibitor of 5 and 12/15-LOX) slightly protected lipids against Fe/asc-evoked lipid peroxidation at high concentrations, but had no effect on carbonyl group formation and DPPH scavenging. CONCLUSIONS Our results indicate that some LOX inhibitors demonstrate potent anti-oxidative, free radical scavenging properties. AA-861, whose antioxidative potential is very weak, may be a specific tool to be used in experimental and perhaps even clinical applications.
Collapse
|
41
|
Tu XK, Yang WZ, Shi SS, Chen CM, Wang CH. 5-lipoxygenase inhibitor zileuton attenuates ischemic brain damage: involvement of matrix metalloproteinase 9. Neurol Res 2013; 31:848-52. [DOI: 10.1179/174313209x403913] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
42
|
Kang KH, Liou HH, Hour MJ, Liou HC, Fu WM. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor. Neuropharmacology 2013; 73:380-7. [PMID: 23800665 DOI: 10.1016/j.neuropharm.2013.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/29/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023]
Abstract
Neuroinflammation and oxidative stress are important factors that induce neurodegeneration in age-related neurological disorders. 5-Lipoxygenase (5-LOX) is the enzyme responsible for catalysing the synthesis of leukotriene or 5-HETE from arachidonic acid. 5-LOX is expressed in the central nervous system and may cause neurodegenerative disease. In this study, we investigated the effect of the pharmacological inhibition of 5-lipoxygenase on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/MPP(+)-induced dopaminergic neuronal death in midbrain neuron-glia co-cultures and in mice. It was found that 5-LOX was over-expressed in astrocytes after the injection of MPTP into C57BL6 mice. MK-886, a specific inhibitor of 5-LOX activating protein (FLAP), significantly increased [(3)H]-dopamine uptake, a functional indicator of the integrity of dopaminergic neurons, in midbrain cultures or the SH-SY5Y human dopaminergic cell line following MPP(+) treatment. In addition, LTB₄, one of 5-LOX's downstream products, was increased in the striatum and substantia nigra following MPTP injection in mice. LTB₄ but not LTD₄ and 5-HETE enhanced MPP(+)-induced neurotoxicity in primary midbrain cultures. MK-886 administration increased the number of tyrosine hydroxylase-positive neurons in the substantia nigra and the dopamine content in the striatum in MPTP-induced parkinsonian mice. Furthermore, the MPTP-induced upregulation of LTB₄ in the striatum and substantia nigra was antagonised by MK-886. These results suggest that 5-LOX inhibitors may be developed as novel neuroprotective agents and LTB₄ may play an important pathological role in Parkinson's disease.
Collapse
Affiliation(s)
- Kai-Hsiang Kang
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
43
|
5-Lipoxygenase Inhibitor Zileuton Inhibits Neuronal Apoptosis Following Focal Cerebral Ischemia. Inflammation 2013; 36:1209-17. [DOI: 10.1007/s10753-013-9657-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Lim JY, Sul D, Hwang BY, Hwang KW, Yoo KY, Park SY. Suppression of LPS-induced inflammatory responses by inflexanin B in BV2 microglial cells. Can J Physiol Pharmacol 2013; 91:141-8. [PMID: 23458198 DOI: 10.1139/cjpp-2012-0242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Microglia are a type of resident macrophage that functions as an inflammation modulator in the central nervous system. Over-activation of microglia by a range of stimuli disrupts the physiological homeostasis of the brain, and induces inflammatory response and degenerative processes, such as those implicated in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, we investigated the possible anti-inflammatory mechanisms of inflexanin B in murine microglial BV2 cells. Lipopolysaccharide (LPS) activated BV2 cells and induced the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and cytokines (interleukins-1β and -6, and tumour necrosis factor α). The LPS-induced production of pro-inflammatory mediators was associated with the enhancement of nuclear factor-kappaB (NF-κB) nuclear translocation and the activation of mitogen-activated protein kinase (MAPK) including ERK1/2 and JNK. Conversely, pretreatment of cells with inflexanin B (10 and 20 μg/mL) significantly reduced the production of pro-inflammatory mediators. This was accompanied with the reduced nuclear translocation of NF-κB and reduced activation of MAPKs. These results suggest that inflexanin B attenuated the LPS-induced inflammatory process by inhibiting the activation of NF-κB and MAPKs.
Collapse
Affiliation(s)
- Ji-Youn Lim
- Environmental Toxico-Genomic & Proteomic Center, College of Medicine, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
45
|
Ström JO, Strid T, Hammarström S. Disruption of the alox5ap gene ameliorates focal ischemic stroke: possible consequence of impaired leukotriene biosynthesis. BMC Neurosci 2012. [PMID: 23194405 PMCID: PMC3557197 DOI: 10.1186/1471-2202-13-146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Leukotrienes are potent inflammatory mediators, which in a number of studies have been found to be associated with ischemic stroke pathology: gene variants affecting leukotriene synthesis, including the FLAP (ALOX5AP) gene, have in human studies shown correlation to stroke incidence, and animal studies have demonstrated protective properties of various leukotriene-disrupting drugs. However, no study has hitherto described a significant effect of a genetic manipulation of the leukotriene system on ischemic stroke. Therefore, we decided to compare the damage from focal cerebral ischemia between wild type and FLAP knockout mice. Damage was evaluated by infarct staining and a functional test after middle cerebral artery occlusion in 20 wild type and 20 knockout male mice. Results Mortality-adjusted median infarct size was 18.4 (3.2-76.7) mm3 in the knockout group, compared to 72.0 (16.7-174.0) mm3 in the wild type group (p < 0.0005). There was also a tendency of improved functional score in the knockout group (p = 0.068). Analysis of bone marrow cells confirmed that knockout animals had lost their ability to form leukotrienes. Conclusions Since the local inflammatory reaction after ischemic stroke is known to contribute to the brain tissue damage, the group difference seen in the current study could be a consequence of a milder inflammatory reaction in the knockout group. Our results add evidence to the notion that leukotrienes are important in ischemic stroke, and that blocked leukotriene production ameliorates cerebral damage.
Collapse
Affiliation(s)
- Jakob O Ström
- Division of Clinical Chemistry, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
46
|
Khan M, Dhammu TS, Sakakima H, Shunmugavel A, Gilg AG, Singh AK, Singh I. The inhibitory effect of S-nitrosoglutathione on blood-brain barrier disruption and peroxynitrite formation in a rat model of experimental stroke. J Neurochem 2012; 123 Suppl 2:86-97. [PMID: 23050646 PMCID: PMC3481195 DOI: 10.1111/j.1471-4159.2012.07947.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hallmark of stroke injury is endothelial dysfunction leading to blood-brain barrier (BBB) leakage and edema. Among the causative factors of BBB disruption are accelerating peroxynitrite formation and the resultant decreased bioavailability of nitric oxide (NO). S-nitrosoglutathione (GSNO), an S-nitrosylating agent, was found not only to reduce the levels of peroxynitrite but also to protect the integrity of BBB in a rat model of cerebral ischemia and reperfusion (IR). A treatment with GSNO (3 μmol/kg) after IR reduced 3-nitrotyrosine levels in and around vessels and maintained NO levels in brain. This mechanism protected endothelial function by reducing BBB leakage, increasing the expression of Zonula occludens-1 (ZO-1), decreasing edema, and reducing the expression of matrix metalloproteinase-9 and E-selectin in the neurovascular unit. An administration of the peroxynitrite-forming agent 3-morpholino sydnonimine (3 μmol/kg) at reperfusion increased BBB leakage and decreased the expression of ZO-1, supporting the involvement of peroxynitrite in BBB disruption and edema. Mechanistically, the endothelium-protecting action of GSNO was invoked by reducing the activity of nuclear factor kappa B and increasing the expression of S-nitrosylated proteins. Taken together, the results support the ability of GSNO to improve endothelial function by reducing nitroxidative stress in stroke.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Harutoshi Sakakima
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | | | - Anne G Gilg
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
47
|
Neuroprotective effect of Pycnogenol® following traumatic brain injury. Exp Neurol 2012; 239:183-91. [PMID: 23059456 DOI: 10.1016/j.expneurol.2012.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 01/16/2023]
Abstract
Traumatic brain injury (TBI) involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Oxidative stress is one of the most celebrated secondary injury mechanisms. A close relationship exists between levels of oxidative stress and the pathogenesis of TBI. However, other cascades, such as an increase in proinflammatory cytokines, also play important roles in the overall response to the trauma. Pharmacologic intervention, in order to be successful, requires a multifaceted approach. Naturally occurring flavonoids are unique in possessing not only tremendous free radical scavenging properties but also the ability to modulate cellular homeostasis leading to a reduction in inflammation and cell toxicity. This study evaluated the therapeutic role of Pycnogenol (PYC), a patented combinational bioflavonoid. Young adult Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion and treated post injury with PYC or vehicle. At either 48 or 96 h post trauma, the animals were killed and the cortex and hippocampus analyzed for changes in enzymatic and non-enzymatic oxidative stress markers. In addition, possible changes in both pre- and post-synaptic proteins (synapsin-1, PSD-95, drebrin, synapse associated protein-97) were analyzed. Finally, a separate cohort of animals was used to evaluate two proinflammatory cytokines (IL-6, TNF-α). Following the trauma there was a significant increase in oxidative stress in both the injured cortex and the ipsilateral hippocampus. Animals treated with PYC significantly ameliorated levels of protein carbonyls, lipid peroxidation, and protein nitration. The PYC treatment also significantly reduced the loss of key pre- and post-synaptic proteins with some levels in the hippocampus of PYC treated animals not significantly different from sham operated controls. Although levels of the proinflammatory cytokines were significantly elevated in both injury groups, the cohort treated with PYC showed a significant reduction compared to vehicle treated controls. These results are the first to show a neuroprotective effect of PYC following TBI. They also suggest that the diverse effects of bioflavonoids may provide a unique avenue for possible therapeutic intervention following head trauma.
Collapse
|
48
|
Wu L, Miao S, Zou LB, Wu P, Hao H, Tang K, Zeng P, Xiong J, Li HH, Wu Q, Cai L, Ye DY. Lipoxin A4 inhibits 5-lipoxygenase translocation and leukotrienes biosynthesis to exert a neuroprotective effect in cerebral ischemia/reperfusion injury. J Mol Neurosci 2012; 48:185-200. [PMID: 22661361 DOI: 10.1007/s12031-012-9807-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/07/2012] [Indexed: 12/31/2022]
Abstract
Lipoxin A(4) (LXA(4)), a biologically active eicosanoid with anti-inflammatory and pro-resolution properties, was recently found to have neuroprotective effects in brain ischemia. As 5-lipoxygenase (5-LOX) and leukotrienes are generally considered to aggravate cerebral ischemia/reperfusion (I/R) injury, we investigated their effects on LXA(4)-mediated neuroprotection by studying middle cerebral artery occlusion (MCAO)/reperfusion in rats and oxygen-glucose deprivation (OGD)/recovery in neonatal rat astrocyte primary cultures. LXA(4) effectively reduced infarct volumes and brain edema, and improved neurological scores in the MCAO/reperfusion experiments; this effect was partially blocked by butoxycarbonyl-Phe-Leu-Phe-Leu-Phe (Boc2), a specific antagonist of the LXA(4) receptor (ALXR). Total 5-LOX expression did not change, regardless of treatment, but LXA(4) could inhibit nuclear translocation induced by MCAO or OGD. We also found that LXA(4) inhibits the upregulation of both leukotriene B(4) (LTB(4)) and leukotriene C(4) (LTC(4)) and the phosphorylation of extracellular signal-regulated kinase (ERK) induced by MCAO or OGD. The phosphorylation of the 38-kDa protein kinase (p38) and c-Jun N-terminal kinase (JNK) was not altered throughout the experiment. These results suggest that the neuroprotective effects of LXA(4) are probably achieved by anti-inflammatory mechanisms that are partly mediated by ALXR and through an ERK signal transduction pathway.
Collapse
Affiliation(s)
- Le Wu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ruparel S, Henry MA, Akopian A, Patil M, Zeldin DC, Roman L, Hargreaves KM. Plasticity of cytochrome P450 isozyme expression in rat trigeminal ganglia neurons during inflammation. Pain 2012; 153:2031-2039. [PMID: 22633978 DOI: 10.1016/j.pain.2012.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Recently, specific oxidized linoleic acid metabolites (OLAMs) have been identified as transient receptor potential vanilloid 1 (TRPV1) channel agonists that contribute to inflammatory and heat hyperalgesia mechanisms, yet the specific mechanism responsible for OLAM synthesis in sensory neurons is unknown. Here, we use molecular, anatomical, calcium imaging, and perforated patch electrophysiology methods to demonstrate the specific involvement of cytochrome P450 enzymes (CYPs) in the oxidation of linoleic acid leading to neuronal activation and show that this is enhanced under inflammatory conditions. Additional studies evaluated CYP expressions in the native rat trigeminal ganglia (TG) tissue and cultures as well as changes in their expression pattern following the induction of peripheral inflammation. Fourteen of 20 candidate transcripts were detected in native TG, and 7 of these displayed altered expression under cultured conditions. Moreover, complete Freund's adjuvant-induced inflammation of vibrissal pad selectively increased expression of CYP3A23/3A1 and CYP2J4 transcripts in TG. In situ hybridization studies demonstrated broad expression pattern of CYP3A23/3A1 and CYP2J4 within TG neurons. Anatomical studies characterized the expression of CYP3A1 and the CYP2J families within TG sensory neurons, including those with TRPV1, with about half of all TRPV1-positive neurons showing more prominent CYP3A1 and CYP2J expression. Together, these findings show that CYP enzymes play a primary role in mediating linoleic acid-evoked activation of sensory neurons and furthermore, implicate the involvement of specific CYPs as contributing to the formation of OLAMs that act as TRPV1 agonists within this subpopulation of nociceptors.
Collapse
Affiliation(s)
- Shivani Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA Division of Intramural Research, National Institute of Environmental Health Science (NIEHS), National Institutes of Health, Research Triangle Park, NC, USA Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Voigt C, Donat CK, Hartig W, Förschler A, Skardelly M, Stichtenoth D, Arendt T, Meixensberger J, Schuhmann MU. Effect of leukotriene inhibitors on evolution of experimental brain contusions. Neuropathol Appl Neurobiol 2012; 38:354-66. [DOI: 10.1111/j.1365-2990.2011.01211.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|