1
|
Friedel EBN, Beringer M, Endres D, Runge K, Maier S, Küchlin S, Kornmeier J, Domschke K, Heinrich SP, Tebartz van Elst L, Nickel K. Optical coherence tomography in patients with major depressive disorder. BMC Psychiatry 2025; 25:356. [PMID: 40205425 PMCID: PMC11983771 DOI: 10.1186/s12888-025-06775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Optical coherence tomography (OCT) has emerged as a significant non-invasive imaging technique in psychiatric research, allowing for detailed structural assessment of the retinal layers. While OCT has been promising for monitoring neurodegeneration in Alzheimer's and Parkinson's diseases, results in major depressive disorder (MDD) remain inconsistent. Building on findings of attenuated electroretinogram (ERG) responses in MDD, indicating functional retinal alterations, this study investigated whether structural retinal changes, such as thinning of retinal layers, also occur in patients with MDD and whether these changes are associated with the severity of depressive symptoms. METHODS OCT examinations were conducted on 31 MDD patients and 60 healthy controls (HC). The thickness and volumes of macular retinal layers were analyzed and correlated with depressive symptoms. RESULTS The thickness of the outer nuclear layer (ONL) was significantly reduced in MDD patients (p = 0.003) and negatively correlated with depressive symptoms (BDI-II scores; p = 0.001). The thickness and volume of the ganglion cell and inner plexiform layer were further inversely associated with depressive symptoms in MDD patients (BDI-II and MADRS scores; p < 0.02). CONCLUSIONS ONL thinning in MDD suggests possible neurodegenerative processes that may disturb signal transmission downstream, as indicated by altered ERG responses in MDD. Further research is essential to determine the reversibility of these structural changes following remission. Structural retinal analysis with OCT offers the potential to complement functional ERG examinations and represents a promising approach for developing diagnostic and therapeutic monitoring tools for MDD.
Collapse
Affiliation(s)
- Evelyn B N Friedel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Malina Beringer
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Küchlin
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kornmeier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
| | - Sven P Heinrich
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
McInnis JJ, LeComte MD, Reed LF, Torsney EE, Del Rio-Guerra R, Poynter ME, Spees JL. Microglial cell proliferation is regulated, in part, by reactive astrocyte ETB R signaling after ischemic stroke. Exp Neurol 2025; 385:115125. [PMID: 39716588 PMCID: PMC11781953 DOI: 10.1016/j.expneurol.2024.115125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/01/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Reciprocal communication between reactive astrocytes and microglial cells provides local, coordinated control over critical processes such as neuroinflammation, neuroprotection, and scar formation after CNS injury, but is poorly understood. The vasoactive peptide hormone endothelin (ET) is released and/or secreted by endothelial cells, microglial cells and astrocytes early after ischemic stroke and other forms of brain injury. To better understand glial cell communication after stroke, we sought to identify paracrine effectors produced and secreted downstream of astroglial endothelin receptor B (ETBR) signaling. Using a genetic loss-of-function screen, we identified angiopoietin-2 (Ang-2) as a factor produced by reactive astrocytes in response to ET. In experiments with primary adult astrocytes stimulated by IRL1620, a specific ETBR agonist, we found that ERK1/2 and NFkB mediated the effects of ET on Ang-2 production. To determine astroglial Ang-2 levels in vivo, reactive astrocytes expressing the high affinity glutamate transporter (GLAST, EAAT1) were isolated by magnetic-activated cell sorting 3 days after stroke. Astrocytes obtained from the ipsilateral hemisphere expressed significantly more Ang-2 compared with astrocytes isolated from the contralateral hemisphere, or from cortices of sham-operated (control) mice. Notably, analysis of microglia sorted from CX3CR1-eGFP mice demonstrated increased cell surface expression of Tie-2, the Ang-2 receptor, on cells obtained from ipsilateral versus contralateral tissue. Addition of recombinant Ang-2 to astrocyte-conditioned medium significantly increased the number of SIM-A9 murine microglial cells cultured under hypoxic conditions (1 % oxygen for 48 h). In transgenic GFAP-CreER™-EDNRB-fl/fl mice with stroke, conditional knockout of astroglial ETBR significantly decreased the number of proliferating cells in the peri-infarct area with a microglial phenotype (Ki67+/CD11b+). Our results indicate that Ang-2, and possibly other paracrine effectors functioning downstream of astroglial ETBR signaling, are important mediators of microglial cell dynamics after stroke.
Collapse
Affiliation(s)
- John J McInnis
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA
| | - Matthew D LeComte
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA
| | - Leah F Reed
- Department of Medicine, Pulmonary Disease and Critical Care, University of Vermont, Burlington, VT 05405, USA
| | - Emily E Torsney
- Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA
| | - Roxana Del Rio-Guerra
- Harry Hood Bassett Flow Cytometry and Cell Sorting Facility, University of Vermont, Burlington, VT 05401, USA
| | - Matthew E Poynter
- Department of Medicine, Pulmonary Disease and Critical Care, University of Vermont, Burlington, VT 05405, USA
| | - Jeffrey L Spees
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA.
| |
Collapse
|
3
|
Wang W, Yu L, Li S, Han L, Zheng H. NFAT3-FasL axis synchronously regulates apoptosis and necroptosis in murine cochlear outer hair cells after noise trauma. Front Mol Neurosci 2024; 17:1422646. [PMID: 39077755 PMCID: PMC11284637 DOI: 10.3389/fnmol.2024.1422646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Existing studies have indicated that noise induces apoptosis and necroptosis in cochlear outer hair cells (OHCs). However, the role of the extrinsic cell death pathway, initiated by death ligands in the cochlea, remains unknown. In this study, we hypothesized that noise could induce the NFAT3/FasL axis-mediated extrinsic death pathway in the cochlea. We found that NFAT3/FasL signaling was silent in normal OHCs. Noise exposure induced apoptosis and necroptosis in OHCs with specifically high FasL expression. Multiplex immunofluorescence staining revealed that NFAT3 nuclear translocation and FasL upregulation were colocalized in the apoptotic and necroptotic OHCs following noise trauma. Administration of FK506 or 11R-vivit (an specific NFAT inhibitor) blocked NFAT3 nuclear translocation, inhibited FasL expression, mitigated apoptosis and necroptosis, and protected against noise-induced hearing loss (NIHL). Finally, FasL knockdown by delivering siRNA intratympanically attenuated apoptosis and necroptosis in OHCs and alleviated NIHL, confirming the role of FasL in OHC death. Collectively, our study demonstrates that the NFAT3/FasL axis mediates noise-induced extrinsic death pathway in OHCs, leading to their apoptosis and necroptosis.
Collapse
Affiliation(s)
- Wenlun Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People’s Hospital, Beijing, China
- Department of Otorhinolaryngology, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lisheng Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People’s Hospital, Beijing, China
| | - Shichang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lin Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People’s Hospital, Beijing, China
| | - Hongwei Zheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
4
|
Fan Z, Wang K, Zhao X, Sun X. P2X7 receptor: A receptor closely linked with sepsis-associated encephalopathy. Open Life Sci 2024; 19:20220775. [PMID: 38585633 PMCID: PMC10998679 DOI: 10.1515/biol-2022-0775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 04/09/2024] Open
Abstract
Sepsis is defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis-associated encephalopathy (SAE) is the main manifestation of sepsis. Inflammation, peroxidation stress injury, and apoptosis are the main factors involved in the pathogenesis of SAE. A growing body of evidence has proved that P2X7 receptor (P2X7R), a cationic channel receptor that is widely distributed in the body, plays a major role in the occurrence and development of inflammatory injury. Therefore, this review mainly describes the activation of P2X7R in sepsis, which leads to the recruitment of inflammatory cells to the cerebral vasculature, the destruction of the blood-brain barrier, the activation of microglial cells in the brain, the apoptosis of brain cells, and other damage processes. This review also illustrates the potential therapeutic value of P2X7R inhibition in SAE.
Collapse
Affiliation(s)
- Zhao Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
| | - Xiaoyong Zhao
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
- The Affiliated Hospital of Weifang Medical University, Weifang261021, Shandong, China
| | - Xude Sun
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang261053, Shandong, China
- Department of Anesthesiology, Tangdu Hospital, Air Force Military Medical University, Xian710038, Shanxi, China
| |
Collapse
|
5
|
Xiao Q, Li F, Jiang F, Zhang Z, Xu B. The prospects for early detection with optical coherence tomography (OCT) and OCT angiography in major depressive disorder. J Affect Disord 2024; 347:8-14. [PMID: 37984693 DOI: 10.1016/j.jad.2023.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Research has shown the diagnostic potential of optical coherence tomography (OCT) and OCT angiography (OCTA) in various psychiatric disorders. However, there is few research focusing on changes specific to Major Depressive Disorder (MDD), and the diagnostic value of OCT combined with OCTA parameters for MDD remains unclear. METHODS In this study, we investigated microvascular and morphology changes in the retina of MDD patients using a combination of OCTA and OCT parameters, and to examine their correlation with MDD mood and cognitive function in order to assess their diagnostic capability. RESULTS Our findings revealed a significant decline in macular vessel density (MVD) in the superficial retinal capillary plexus (SRCP) across all subfields, except the NO area. We also observed a significant positive correlation between fovea and Stroop-1, as well as between temporal inner (TI) and Stroop-3 in MDD patients. Furthermore, we identified a negative correlation between fovea and Self-Rating Depression Scale, as well as between Superior outer (SO) and Difficulties in Emotion Regulation Scale-C in MDD patients. LIMITATIONS The sample size was small. Anatomical variables in blood flow may contribute to variability between subjects and outcomes. CONCLUSIONS The diagnostic value of OCTA suggests their potential as valuable tools for monitoring and diagnosing MDD.
Collapse
Affiliation(s)
- Qian Xiao
- Mental Health Center of Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fangling Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Eye Center of Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China; National Key Clinical Ophthalmology Specialist, Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Branch of the National Clinical Medical Research Center for Eye Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Furong Jiang
- Mental Health Center of Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhejia Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bei Xu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Eye Center of Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China; National Key Clinical Ophthalmology Specialist, Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial Branch of the National Clinical Medical Research Center for Eye Diseases, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Pulukool SK, Srimadh Bhagavatham SK, Kannan V, Parim B, Challa S, Karnatam V, V.M DD, Ahmad Mir I, Sukumar P, Venkateshan V, Sharma A, Sivaramakrishnan V. Elevated ATP, cytokines and potential microglial inflammation distinguish exfoliation glaucoma from exfoliation syndrome. Cytokine 2022; 151:155807. [DOI: 10.1016/j.cyto.2022.155807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022]
|
7
|
Shokoples BG, Paradis P, Schiffrin EL. P2X7 Receptors: An Untapped Target for the Management of Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2020; 41:186-199. [PMID: 32998520 PMCID: PMC7752223 DOI: 10.1161/atvbaha.120.315116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic low-grade inflammation contributes to the development of several diseases, including cardiovascular disease. Adequate strategies to target inflammation in cardiovascular disease are in their infancy and remain an avenue of great interest. The purinergic receptor P2X7 is a ubiquitously expressed receptor that predominately mediates inflammation and cellular death. P2X7 is a ligand-gated cation channel that is activated in response to high concentrations of extracellular ATP, triggering the assembly and activation of the NLRP3 (nuclear oligomerization domain like receptor family pyrin domain containing 3) inflammasome and subsequent release of proinflammatory cytokines IL (interleukin)-1β and IL-18. Increased P2X7 activation and IL-1β and IL-18 concentrations have been implicated in the development of many cardiovascular conditions including hypertension, atherosclerosis, ischemia/reperfusion injury, and heart failure. P2X7 receptor KO (knockout) mice exhibit a significant attenuation of the inflammatory response, which corresponds with reduced disease severity. P2X7 antagonism blunts blood pressure elevation in hypertension and progression of atherosclerosis in animal models. IL-1β and IL-18 inhibition has shown efficacy in clinical trials reducing major adverse cardiac events, including myocardial infarction, and heart failure. With several P2X7 antagonists available with proven safety margins, P2X7 antagonism could represent an untapped potential for therapeutic intervention in cardiovascular disorders.
Collapse
Affiliation(s)
- Brandon G. Shokoples
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Pierre Paradis
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Ernesto L. Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research (B.G.S., P.P., E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Department of Medicine (E.L.S.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Boks MP, He Y, Schubart CD, Gastel WV, Elkrief L, Huguet G, Eijk KV, Vinkers CH, Kahn RS, Paus T, Conrod P, Hol EM, de Witte LD. Cannabinoids and psychotic symptoms: A potential role for a genetic variant in the P2X purinoceptor 7 (P2RX7) gene. Brain Behav Immun 2020; 88:573-581. [PMID: 32330591 DOI: 10.1016/j.bbi.2020.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
To investigate the biological mechanisms underlying the higher risk for psychosis in those that use cannabis, we conducted a genome-wide environment-interaction study (GWEIS). In a sample of individuals without a psychiatric disorder (N = 1262), we analyzed the interactions between regular cannabis use and genotype with psychotic-like experiences (PLE) as outcome. PLE were measured using the Community Assessment of Psychic Experiences (CAPE). The sample was enriched for those at the extremes of both cannabis use and PLE to increase power. A single nucleotide polymorphism in the P2RX7 gene (rs7958311) was associated with risk for a high level of psychotic experiences in regular cannabis users (p = 1.10 x10-7) and in those with high levels of lifetime cannabis use (p = 4.5 × 10-6). This interaction was replicated in individuals with high levels of lifetime cannabis use in the IMAGEN cohort (N = 1217, p = 0.020). Functional relevance of P2RX7 in cannabis users was suggested by in vitro experiments on activated monocytes. Exposure of these cells to tetrahydrocannabinol (THC) or cannabidiol (CBD) reduced the immunological response of the P2X7 receptor, which was dependent on the identified genetic variant. P2RX7 variants have been implicated in psychiatric disorders before and the P2X7 receptor is involved in pathways relevant to psychosis, such as neurotransmission, synaptic plasticity and immune regulation. We conclude that P2RX7 plays a role in vulnerability to develop psychotic symptoms when using cannabis and point to a new pathway that can potentially be targeted by newly developed P2X7 antagonists.
Collapse
Affiliation(s)
- Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands
| | - Yujie He
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands
| | - Chris D Schubart
- Department of Psychiatry, Tergooi Hospital, Blaricum, The Netherlands
| | | | - Laurent Elkrief
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Guillaume Huguet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Kristel van Eijk
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, The Netherlands
| | - Christiaan H Vinkers
- Department of Psychiatry, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands; Department of psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Tomás Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Conrod
- Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Psychiatry, University of Montreal, Montréal, QC, Canada
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, The Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Lot D de Witte
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, The Netherlands; Department of psychiatry, Icahn School of Medicine at Mount Sinai, New York City, USA.
| |
Collapse
|
9
|
Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Yao KX, Lyu H, Liao MH, Yang L, Gao YP, Liu QB, Wang CK, Lu YM, Jiang GJ, Han F, Wang P. Effect of low-dose Levamlodipine Besylate in the treatment of vascular dementia. Sci Rep 2019; 9:18248. [PMID: 31796756 PMCID: PMC6890753 DOI: 10.1038/s41598-019-47868-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Vascular dementia (VaD) is a complex disorder caused by reduced blood flow in the brain. However, there is no effective pharmacological treatment option available until now. Here, we reported that low-dose levamlodipine besylate could reverse the cognitive impairment in VaD mice model of right unilateral common carotid arteries occlusion (rUCCAO). Oral administration of levamlodipine besylate (0.1 mg/kg) could reduce the latency to find the hidden platform in the MWM test as compared to the vehicle group. Furthermore, vehicle-treated mice revealed reduced phospho-CaMKII (Thr286) levels in the hippocampus, which can be partially restored by levamlodipine besylate (0.1 mg/kg and 0.5 mg/kg) treatment. No significant outcome on microglia and astrocytes were observed following levamlodipine besylate treatment. This data reveal novel findings of the therapeutic potential of low-dose levamlodipine besylate that could considerably enhance the cognitive function in VaD mice.
Collapse
Affiliation(s)
- Kai-Xin Yao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hang Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mei-Hua Liao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Yang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yin-Ping Gao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Qi-Bing Liu
- School of Pharmacy, Hainan Medical College, Haikou, China
| | - Cheng-Kun Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Guo-Jun Jiang
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang, China.
| | - Feng Han
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
11
|
Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2019; 317:195-215. [PMID: 31794799 DOI: 10.1016/j.jconrel.2019.11.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
In recent years, nanomedicines have emerged as a promising method for central nervous system drug delivery, enabling the drugs to overcome the blood-brain barrier and accumulate preferentially in the brain. Despite the current success of brain-targeted nanomedicines, limitations still exist in terms of the targeting specificity. Based on the molecular mechanism, the exact cell populations and subcellular organelles where the injury occurs and the drugs take effect have been increasingly accepted as a more specific target for the next generation of nanomedicines. Dual and multi-targeted nanoparticles integrate different targeting functionalities and have provided a paradigm for precisely delivering the drug to the pathological site inside the brain. The targeting process often involves the sequential or synchronized navigation of the targeting moieties, which allows highly controlled drug delivery compared to conventional targeting strategies. Herein, we focus on the up-to-date design of pathological site-specific nanoparticles for brain drug delivery, highlighting the dual and multi-targeting strategies that were employed and their impact on improving targeting specificity and therapeutic effects. Furthermore, the background discussion of the basic properties of a brain-targeted nanoparticle and the common lesion features classified by neurological pathology are systematically summarized.
Collapse
Affiliation(s)
- Yan Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Cheng J, Li D, Sun M, Wang Y, Xu QQ, Liang XG, Lu YB, Hu Y, Han F, Li X. Physicochemical-property guided design of a highly sensitive probe to image nitrosative stress in the pathology of stroke. Chem Sci 2019; 11:281-289. [PMID: 34040723 PMCID: PMC8133006 DOI: 10.1039/c9sc03798e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vivo real-time imaging of nitrosative stress in the pathology of stroke has long been a formidable challenge due to both the presence of the blood–brain barrier (BBB) and the elusive nature of reactive nitrogen species, while this task is also informative to gain a molecular level understanding of neurovascular injury caused by nitrosative stress during the stroke episode. Herein, using a physicochemical property-guided probe design strategy in combination with the reaction-based probe design rationale, we have developed an ultrasensitive probe for imaging nitrosative stress evolved in the pathology of stroke. This probe demonstrates an almost zero background fluorescence signal but a maximum 1000-fold fluorescence enhancement in response to peroxynitrite, the nitrosative stress marker. Due to its good physicochemical properties, the probe readily penetrates the BBB after intravenous administration, and quickly accumulates in mice brain to sense local vascular injuries. After accomplishing its imaging mission, the probe is easily metabolized and therefore won't cause safety concerns. These desirable features make the probe competent for the straightforward visualization of nitrosative stress progression in stroke pathology. A brain–blood barrier permeable probe was developed for fluorogenically sensing nitrosative stress caused by brain vascular injury.![]()
Collapse
Affiliation(s)
- Juan Cheng
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Dan Li
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Meiling Sun
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Yi Wang
- School of Medicine, Zhejiang University Hangzhou 310058 China
| | - Qiao-Qin Xu
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Xing-Guang Liang
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China .,School of Medicine, Zhejiang University Hangzhou 310058 China
| | - Yun-Bi Lu
- School of Medicine, Zhejiang University Hangzhou 310058 China
| | - Yongzhou Hu
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| | - Feng Han
- School of Pharmacy, Nanjing Medical University Nanjing 211166 China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
13
|
Wu Q, Qin M, Zhang K. Synthesis of sevoflurane loaded reduced graphene oxide nanoparticles system for neuroprotective effects for preconditioning against focal cerebral ischaemia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3517-3523. [PMID: 31452399 DOI: 10.1080/21691401.2019.1624557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Qinjuan Wu
- Department of Anesthesiology, The Second People’s Hospital of Chengdu, Chengdu, Sichuan, P. R. China
| | - Mingfeng Qin
- Department of Anesthesiology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, P. R. China
| | - Kun Zhang
- Department of Anesthesiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei, P. R. China
| |
Collapse
|
14
|
Chen DY, Sun NH, Lu YP, Hong LJ, Cui TT, Wang CK, Chen XH, Wang SS, Feng LL, Shi WX, Fukunaga K, Chen Z, Lu YM, Han F. GPR124 facilitates pericyte polarization and migration by regulating the formation of filopodia during ischemic injury. Theranostics 2019; 9:5937-5955. [PMID: 31534530 PMCID: PMC6735362 DOI: 10.7150/thno.34168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022] Open
Abstract
Prolonged occlusion of multiple microvessels causes microvascular injury. G protein-coupled receptor 124 (GPR124) has been reported to be required for maintaining central nervous system (CNS) angiogenesis and blood-brain barrier integrity. However, the molecular mechanisms by which GPR124 regulates pericytes during ischemia have remained elusive. Methods: A microsphere embolism-induced ischemia model was used to evaluate the expression of GPR124 following microsphere embolism. Immunocytochemistry and stochastic optical reconstruction microscopy imaging were used to assess the expression and distribution of GPR124 in human brain vascular pericytes (HBVPs) and after the treatment with 3-morpholino-sydnonimine (SIN-1) or oxygen-glucose deprivation (OGD). The effect of GPR124 knockdown or overexpression on HBVP migration was analyzed in vitro using wound healing assays and a microfluidic device. GPR124 loss-of-function studies were performed in HBVPs and HEK293 cells using CRISPR-Cas9-mediated gene deletion. Time-lapse imaging was used to assess dynamic changes in the formation of filopodia in an individual cell. Finally, to explore the functional domains required for GPR124 activity, deletion mutants were constructed for each of the N-terminal domains. Results: GPR124 expression was increased in pericytes following microsphere embolism. Morphological analysis showed localization of GPR124 to focal adhesions where GPR124 bound directly to the actin binding protein vinculin and upregulated Cdc42. SIN-1 or OGD treatment redistributed GPR124 to the leading edges of HBVPs where GPR124 signaling was required for pericyte filopodia formation and directional migration. Partial deletion of GPR124 domains decreased SIN-1-induced filopodia formation and cell migration. Conclusion: Taken together, our results provide the first evidence for a role of GPR124 in pericyte migration under ischemic conditions and suggest that GPR124 was essential for Cdc42 activation and filopodia formation.
Collapse
|
15
|
Liaw K, Zhang Z, Kannan S. Neuronanotechnology for brain regeneration. Adv Drug Deliv Rev 2019; 148:3-18. [PMID: 31668648 DOI: 10.1016/j.addr.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/16/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Abstract
Identifying and harnessing regenerative pathways while suppressing the growth-inhibiting processes of the biological response to injury is the central goal of stimulating neurogenesis after central nervous system (CNS) injury. However, due to the complexity of the mature CNS involving a plethora of cellular pathways and extracellular cues, as well as difficulties in accessibility without highly invasive procedures, clinical successes of regenerative medicine for CNS injuries have been extremely limited. Current interventions primarily focus on stabilization and mitigation of further neuronal death rather than direct stimulation of neurogenesis. In the past few decades, nanotechnology has offered substantial innovations to the field of regenerative medicine. Their nanoscale features allow for the fine tuning of biological interactions for enhancing drug delivery and stimulating cellular processes. This review gives an overview of nanotechnology applications in CNS regeneration organized according to cellular and extracellular targets and discuss future directions for the field.
Collapse
|
16
|
Naveed M, Zhou QG, Han F. Cerebrovascular inflammation: A critical trigger for neurovascular injury? Neurochem Int 2019; 126:165-177. [PMID: 30890409 DOI: 10.1016/j.neuint.2019.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
The cerebrovascular system is not only inert bystandard that support the metabolic demands of the brain but also elicit the barrier functions against risk factors mediated neurovascular injury. The onsets of cerebrovascular inflammation are considered as stimuli that can provoke the host defense system and trigger the development of neurological disorders. Homeostasis of the brain function is regulated by the movement of endothelial, glial, and neuronal cells within the neurovascular unit (NVU), which acts as a "platform" for the coordinated action of anti- and pro-inflammatory mechanisms. The cerebrovascular system plays an integral role in the inflammatory response by either producing or expressing a variety of cytokines, adhesion molecules, metalloproteinases, and serine proteases. Excessive inflammatory cytokine production can further be affecting the blood-brain barrier (BBB) integrity and lead to brain tissue damage. In this review, we summarize the more recent evidence highlighting the importance of cerebrovascular injury in terms of risk prediction, and the mechanisms mediating the upregulation of inflammatory mediators in cerebrovascular dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Muhammad Naveed
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China; Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China
| | - Feng Han
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, PR China.
| |
Collapse
|
17
|
Komnig D, Gertz K, Habib P, Nolte KW, Meyer T, Brockmann MA, Endres M, Rathkolb B, Hrabě de Angelis M, Schulz JB, Falkenburger BH, Reich A. Faim2 contributes to neuroprotection by erythropoietin in transient brain ischemia. J Neurochem 2018; 145:258-270. [PMID: 29315561 DOI: 10.1111/jnc.14296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 11/28/2022]
Abstract
Delayed cell death in the penumbra region of acute ischemic stroke occurs through apoptotic mechanisms, making it amenable to therapeutic interventions. Fas/CD95 mediates apoptotic cell death in response to external stimuli. In mature neurons, Fas/CD95 signaling is modulated by Fas-apoptotic inhibitory molecule 2 (Faim2), which reduces cell death in animal models of stroke, meningitis, and Parkinson disease. Erythropoietin (EPO) has been studied as a therapeutic strategy in ischemic stroke. Erythropoietin stimulates the phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway, which regulates Faim2 expression. Therefore, up-regulation of Faim2 may contribute to neuroprotection by EPO. Male Faim2-deficient mice (Faim2-/- ) and wild-type littermates (WT) were subjected to 30 min of middle cerebral artery occlusion (MCAo) followed by 72 h of reperfusion. EPO was applied before (30 min) and after (24 and 48 h) MCAo. In WT mice application of EPO at a low dose (5000 U/kg) significantly reduced stroke volume, whereas treatment with high dose (90 000 U/kg) did not. In Faim2-/- animals administration of low-dose EPO did not result in a significant reduction in stroke volume. Faim2 expression as measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) increased after low-dose EPO but not with high dose. An extensive phenotyping including analysis of cerebral vessel architecture did not reveal confounding differences between the genotypes. In human post-mortem brain Faim2 displayed a differential expression in areas of penumbral ischemia. Faim2 up-regulation may contribute to the neuroprotective effects of low-dose erythropoietin in transient brain ischemia. The dose-dependency may explain mixed effects of erythropoietin observed in clinical stroke trials.
Collapse
Affiliation(s)
- Daniel Komnig
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Karen Gertz
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Pardes Habib
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Kay W Nolte
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Tareq Meyer
- Department of Diagnostic and Interventional Neuroradiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Endres
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany.,Excellence Cluster NeuroCure, Berlin, Germany.,German Center for Neurodegenerative Disease (DZNE), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Ludwig-Maximilians-Universität München, Gene Center, Institute of Molecular Animal Breeding and Biotechnology, München, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | | | - Jörg B Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Björn H Falkenburger
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| | - Arno Reich
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Stress-responsive heme oxygenase-1 isoenzyme participates in Toll-like receptor 4-induced inflammation during brain ischemia. Neuroreport 2016; 27:445-54. [PMID: 26966782 DOI: 10.1097/wnr.0000000000000561] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Toll-like receptors (TLRs) are involved in the progression of ischemic brain injury and hence vascular dementia; however, the underlying mechanisms are largely unknown. Here, we have investigated the interrelationship between stress-responsive heme oxygenase (HO)-1 isoenzyme and TLR4 during chronic brain hypoperfusion. The right unilateral common carotid artery occlusion was performed by ligation of the right common carotid artery in C57BL/6J mice. The brain cortex or hippocampus was removed for western blotting and confocal immunofluorescence analysis. The link between HO-1 and TLR4 was further examined by silencing TLR4 and pharmacological inhibition of HO-1 in primary cultured cortical neurons. Cognitive dysfunction and decrease in cerebral blood flow in mice were observed 4 weeks after the occlusion. Our data further show that common carotid artery occlusion induced an increase in TLR4 and HO-1 protein levels. Although the administration of CoPP (10 mg/kg), HO-1 agonist, improved the cognitive dysfunction in a mice model of occlusion, western blot analysis in primary cultured cortical neurons showed that HO-1 was upregulated after lipopolysaccharide treatment; this was partially abolished by the TLR4 siRNA interference. The flow cytometry analysis showed that pharmacological inhibition of HO-1 by ZnPP (100 μM) further exaggerated lipopolysaccharide-induced neuronal cell death. Hence, stress-responsive HO-1 isoenzyme participates in TLR4-induced inflammation during chronic brain ischemia. The pharmacological manipulation of TLR4 or the HO-1 antioxidant defense pathway may represent a novel treatment strategy for neuronal protection in vascular dementia.
Collapse
|
19
|
NLRP3 Inflammasome Activation in the Brain after Global Cerebral Ischemia and Regulation by 17 β-Estradiol. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8309031. [PMID: 27843532 PMCID: PMC5097821 DOI: 10.1155/2016/8309031] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective factor in the brain. Recently, our lab demonstrated that the neuroprotective and cognitive effects of E2 require mediation by the estrogen receptor (ER) coregulator protein and proline-, glutamic acid-, and leucine-rich protein 1 (PELP1). In the current study, we examined whether E2, acting via PELP1, can exert anti-inflammatory effects in the ovariectomized rat and mouse hippocampus to regulate NLRP3 inflammasome activation after global cerebral ischemia (GCI). Activation of the NLRP3 inflammasome pathway and expression of its downstream products, cleaved caspase-1 and IL-1β, were robustly increased in the hippocampus after GCI, with peak levels observed at 6-7 days. Expression of P2X7 receptor, an upstream regulator of NLRP3, was also increased after GCI. E2 markedly inhibited NLRP3 inflammasome pathway activation, caspase-1, and proinflammatory cytokine production, as well as P2X7 receptor expression after GCI (at both the mRNA and protein level). Intriguingly, the ability of E2 to exert these anti-inflammatory effects was lost in PELP1 forebrain-specific knockout mice, indicating a key role for PELP1 in E2 anti-inflammatory signaling. Collectively, our study demonstrates that NLRP3 inflammasome activation and proinflammatory cytokine production are markedly increased in the hippocampus after GCI, and that E2 signaling via PELP1 can profoundly inhibit these proinflammatory effects.
Collapse
|
20
|
Meng HL, Li XX, Chen YT, Yu LJ, Zhang H, Lao JM, Zhang X, Xu Y. Neuronal Soluble Fas Ligand Drives M1-Microglia Polarization after Cerebral Ischemia. CNS Neurosci Ther 2016; 22:771-81. [PMID: 27283206 DOI: 10.1111/cns.12575] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/13/2022] Open
Abstract
AIMS This study explored sFasL expression in neurons and the potential role of neuronal sFasL in modulating the microglial phenotypes. METHODS In vivo, middle cerebral artery occlusion (MCAO) was induced in both FasL-mutant (gld) and wild-type (wt) mice. In vitro, primary cortical neuron or microglia or coculture from wt/gld mice was subjected to oxygen glucose deprivation (OGD). sFasL level in the supernatant was evaluated by ELISA. Neuronal-conditioned medium (NCM) or exogenous sFasL was applied to primary microglia with or without FasL neutralizing antibody. Protein expression of JAK2/STAT3 and NF-κB pathways were determined by Western blot. The effect of microglia phenotype from wt/gld mice on the fate of ischemic neurons was further elucidated. RESULTS In vivo, compared with wild-type mice, M1 markers (CD16, CD32 and iNOS) were attenuated in gld mice after MCAO. In vitro, post-OGD neuron released more sFasL. Both post-OGD NCM and exogenous sFasL could trigger M1-microglial polarization. However, this M1 phenotype shift was partially blocked by utilization of FasL neutralizing antibody or gld NCM. Consistently, JAK2/STAT3 and NF-κB signal pathways were both activated in microglia after exogenous sFasL treatment. Compared with wild-type mice, M1-conditioned medium prepared from gld mice protected neuron against OGD injury. CONCLUSIONS Ischemic neurons release sFasL, which contributes to M1-microglial polarization. The underlying mechanisms may involve the activation of JAK2/STAT3 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Hai-Lan Meng
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiao-Xi Li
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yan-Ting Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - He Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jia-Min Lao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
21
|
Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull 2015; 31:717-34. [PMID: 26625873 DOI: 10.1007/s12264-015-1567-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023] Open
Abstract
Stroke, including cerebral ischemia, intracerebral hemorrhage, and subarachnoid hemorrhage, is the leading cause of long-term disability and death worldwide. Animal models have greatly contributed to our understanding of the risk factors and the pathophysiology of stroke, as well as the development of therapeutic strategies for its treatment. Further development and investigation of experimental models, however, are needed to elucidate the pathogenesis of stroke and to enhance and expand novel therapeutic targets. In this article, we provide an overview of the characteristics of commonly-used animal models of stroke and focus on the inflammatory responses to cerebral stroke, which may provide insights into a framework for developing effective therapies for stroke in humans.
Collapse
|
22
|
Mouhieddine TH, Itani MM, Nokkari A, Ren C, Daoud G, Zeidan A, Mondello S, Kobeissy FH. Nanotheragnostic applications for ischemic and hemorrhagic strokes: improved delivery for a better prognosis. Curr Neurol Neurosci Rep 2015; 15:505. [PMID: 25394858 DOI: 10.1007/s11910-014-0505-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stroke is the second leading cause of death worldwide and a major cause of long-term severe disability representing a global health burden and one of the highly researched medical conditions. Nanostructured material synthesis and engineering have been recently developed and have been largely integrated into many fields including medicine. Recent studies have shown that nanoparticles might be a valuable tool in stroke. Different types, shapes, and sizes of nanoparticles have been used for molecular/biomarker profiling and imaging to help in early diagnosis and prevention of stroke and for drug/RNA delivery for improved treatment and neuroprotection. However, these promising applications have limitations, including cytotoxicity, which hindered their adoption into clinical use. Future research is warranted to fully develop and effectively and safely translate nanoparticles for stroke diagnosis and treatment into the clinic. This work will discuss the emerging role of nanotheragnostics in stroke diagnosis and treatment applications.
Collapse
Affiliation(s)
- Tarek H Mouhieddine
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang H, Hong LJ, Huang JY, Jiang Q, Tao RR, Tan C, Lu NN, Wang CK, Ahmed MM, Lu YM, Liu ZR, Shi WX, Lai EY, Wilcox CS, Han F. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy. Cell Res 2015; 25:674-90. [PMID: 25998681 PMCID: PMC4456628 DOI: 10.1038/cr.2015.61] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/10/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022] Open
Abstract
Septic encephalopathy (SE) is a critical factor determining sepsis mortality. Vascular inflammation is known to be involved in SE, but the molecular events that lead to the development of encephalopathy remain unclear. Using time-lapse in vivo two-photon laser scanning microscopy, we provide the first direct evidence that cecal ligation and puncture in septic mice induces microglial trafficking to sites adjacent to leukocyte adhesion on inflamed cerebral microvessels. Our data further demonstrate that septic injury increased the chemokine CXCL1 level in brain endothelial cells by activating endothelial P2RX7 and eventually enhanced the binding of Mac-1 (CD11b/CD18)-expressing leukocytes to endothelial ICAM-1. In turn, leukocyte adhesion upregulated endothelial CX3CL1, thereby triggering microglia trafficking to the injured site. The sepsis-induced increase in endothelial CX3CL1 was abolished in CD18 hypomorphic mutant mice. Inhibition of the P2RX7 pathway not only decreased endothelial ICAM-1 expression and leukocyte adhesion but also prevented microglia overactivation, reduced brain injury, and consequently doubled the early survival of septic mice. These results demonstrate the role of the P2RX7 pathway in linking neurovascular inflammation to brain damage in vivo and provide a rationale for targeting endothelial P2RX7 for neurovascular protection during SE.
Collapse
Affiliation(s)
- Huan Wang
- 1] Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China [2] Key Laboratory of Carbohydrate and Lipid Metabolism Research, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, China
| | - Ling-Juan Hong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ji-Yun Huang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rong-Rong Tao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chao Tan
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Nan-Nan Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cheng-Kun Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Muhammad M Ahmed
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, China
| | - Zhi-Rong Liu
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Wei-Xing Shi
- Department of Basic Sciences, Loma Linda University Health Schools of Medicine, Pharmacy, and Behavioral Health, Loma Linda, CA 92350, USA
| | - En-Yin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Christopher S Wilcox
- Hypertension, Kidney, and Vascular Research Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Feng Han
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
24
|
Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2014; 66:638-75. [PMID: 24928329 DOI: 10.1124/pr.113.008003] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The P2X7 receptor is a trimeric ATP-gated cation channel found predominantly, but not exclusively, on immune cells. P2X7 activation results in a number of downstream events, including the release of proinflammatory mediators and cell death and proliferation. As such, P2X7 plays important roles in various inflammatory, immune, neurologic and musculoskeletal disorders. This review focuses on the use of P2X7 antagonists in rodent models of neurologic disease and injury, inflammation, and musculoskeletal and other disorders. The cloning and characterization of human, rat, mouse, guinea pig, dog, and Rhesus macaque P2X7, as well as recent observations regarding the gating and permeability of P2X7, are discussed. Furthermore, this review discusses polymorphic and splice variants of P2X7, as well as the generation and use of P2X7 knockout mice. Recent evidence for emerging signaling pathways downstream of P2X7 activation and the growing list of negative and positive modulators of P2X7 activation and expression are also described. In addition, the use of P2X7 antagonists in numerous rodent models of disease is extensively summarized. Finally, the use of P2X7 antagonists in clinical trials in humans and future directions exploring P2X7 as a therapeutic target are described.
Collapse
Affiliation(s)
- Rachael Bartlett
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Leanne Stokes
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| |
Collapse
|
25
|
De Astis S, Corradini I, Morini R, Rodighiero S, Tomasoni R, Lenardi C, Verderio C, Milani P, Matteoli M. Nanostructured TiO2 surfaces promote polarized activation of microglia, but not astrocytes, toward a proinflammatory profile. NANOSCALE 2013; 5:10963-10974. [PMID: 24065287 DOI: 10.1039/c3nr03534d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Activation of glial cells, including astrocytes and microglia, has been implicated in the inflammatory responses underlying brain injury and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The classic activation state (M1) is characterized by high capacity to present antigens, high production of nitric oxide (NO) and reactive oxygen species (ROS) and proinflammatory cytokines. Classically activated cells act as potent effectors that drive the inflammatory response and may mediate detrimental effects on neural cells. The second phenotype (M2) is an alternative, apparently beneficial, activation state, more related to a fine tuning of inflammation, scavenging of debris, promotion of angiogenesis, tissue remodeling and repair. Specific environmental chemical signals are able to induce these different polarization states. We provide here evidence that nanostructured substrates are able, exclusively in virtue of their physical properties, to push microglia toward the proinflammatory activation phenotype, with an efficacy which reflects the graded nanoscale rugosity. The acquisition of a proinflammatory phenotype appears specific for microglia and not astrocytes, indicating that these two cell types, although sharing common innate immune responses, respond differently to external physical stimuli.
Collapse
|
26
|
Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials 2013; 35:530-7. [PMID: 24120040 DOI: 10.1016/j.biomaterials.2013.09.093] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/24/2013] [Indexed: 12/27/2022]
Abstract
The translation of experimental stroke research from the laboratory to successful clinical practice remains a formidable challenge. We previously reported that PEGylated-lipid nanoparticles (PLNs) effectively transport across the blood-brain barrier along with less inflammatory responses. In the present study, PLNs conjugated to Fas ligand antibody that selectively present on brain ischaemic region were used for therapeutic targeting. Fluorescent analysis of the mice brain show that encapsulated 3-n-Butylphthalide (dl-NBP) in PLNs conjugated with Fas ligand antibody effectively delivered to ipsilateral region of ischaemic brain. Furthermore, the confocal immunohistochemical study demonstrated that brain-targeted nanocontainers specifically accumulated on OX42 positive microglia cells in ischaemic region of mice model. Finally, dl-NBP encapsulated nano-drug delivery system is resulted in significant improvements in brain injury and in neurological deficit after ischaemia, with the significantly reduced dosages versus regular dl-NBP. Overall, these data suggests that PLNs conjugated to an antibody specific to the Fas ligand constituted an ideal brain targeting drug delivery system for brain ischaemia.
Collapse
|
27
|
Huang JY, Lu YM, Wang H, Liu J, Liao MH, Hong LJ, Tao RR, Ahmed MM, Liu P, Liu SS, Fukunaga K, Du YZ, Han F. The effect of lipid nanoparticle PEGylation on neuroinflammatory response in mouse brain. Biomaterials 2013; 34:7960-70. [DOI: 10.1016/j.biomaterials.2013.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
28
|
Bai HY, Li AP. P2X(7) receptors in cerebral ischemia. Neurosci Bull 2013; 29:390-8. [PMID: 23640286 DOI: 10.1007/s12264-013-1338-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/16/2012] [Indexed: 12/25/2022] Open
Abstract
Cerebral ischemia is one of the most common diseases resulting in death and disability in aged people. It leads immediately to rapid energy failure, ATP depletion, and ionic imbalance, which increase extracellular ATP levels and accordingly activate P2X7 receptors. These receptors are ATP-gated cation channels and widely distributed in nerve cells, especially in the immunocompetent cells of the brain. Currently, interest in the roles of P2X7 receptors in ischemic brain injury is growing. In this review, we discuss recent research progress on the actions of P2X7 receptors, their possible mechanisms in cerebral ischemia, and the potential therapeutic value of P2X7 receptor antagonists which may provide a new target both for clinical and for research purposes.
Collapse
Affiliation(s)
- Hui-Yu Bai
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | | |
Collapse
|
29
|
Domercq M, Vázquez-Villoldo N, Matute C. Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci 2013; 7:49. [PMID: 23626522 PMCID: PMC3630369 DOI: 10.3389/fncel.2013.00049] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/05/2013] [Indexed: 01/09/2023] Open
Abstract
Microglial cells are the resident immune cells of the central nervous system. In the resting state, microglia are highly dynamic and control the environment by rapidly extending and retracting motile processes. Microglia are closely associated with astrocytes and neurons, particularly at the synapses, and more recent data indicate that neurotransmission plays a role in regulating the morphology and function of surveying/resting microglia, as they are endowed with receptors for most known neurotransmitters. In particular, microglia express receptors for ATP and glutamate, which regulate microglial motility. After local damage, the release of ATP induces microgliosis and activated microglial cells migrate to the site of injury, proliferate, and phagocytose cells, and cellular compartments. However, excessive activation of microglia could contribute to the progression of chronic neurodegenerative diseases, though the underlying mechanisms are still unclear. Microglia have the capacity to release a large number of substances that can be detrimental to the surrounding neurons, including glutamate, ATP, and reactive oxygen species. However, how altered neurotransmission following acute insults or chronic neurodegenerative conditions modulates microglial functions is still poorly understood. This review summarizes the relevant data regarding the role of neurotransmitter receptors in microglial physiology and pathology.
Collapse
Affiliation(s)
- María Domercq
- Departamento de Neurociencias, Universidad del País Vasco-UPV/EHU Leioa, Spain ; Achucarro Basque Center for Neuroscience-UPV/EHU Zamudio, Spain ; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas Leioa, Spain
| | | | | |
Collapse
|