1
|
Xiong XF, Zhu M, Wu HX, Wu ZH, Fan LL, Cheng DY. T-cell immune status in patients with acute exacerbation of chronic obstructive pulmonary disease: a case-control study. Front Med (Lausanne) 2025; 12:1433844. [PMID: 39926428 PMCID: PMC11802415 DOI: 10.3389/fmed.2025.1433844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Immune inflammatory response plays an important role in chronic obstructive pulmonary disease (COPD). However, the cellular immune status of patients with COPD at different phases is unclear. Herein, we aim to investigate the distribution and functional status of T cell subsets in different phases of COPD (acute exacerbation of COPD [AECOPD] and stable COPD [SCOPD]). Methods This is an observational case-control study undertaken in West China Hospital. The distribution of T cell subsets in peripheral blood of AECOPD, SCOPD, and healthy controls (HCs) was measured using multi-color flow cytometry, and the functional status was analyzed by additional staining of activation markers. Results A total of 43 HCs, 43 SCOPD patients, and 64 AECOPD patients were evaluated. The total number and percentage of lymphocytes and the CD4+/CD8+ T cells ratio were significantly lower in AECOPD patients when compared to HCs. HLA-DR expression in CD3+, CD4+, CD8+, CD8+ TCR aβ, and CD4+ TCR aβ T cells was upregulated in the AECOPD group. Similarly, the expressions of HLA-DR, CD57, and PD-1 were higher in T cell subsets in the AECOPD group. Compared with the SCOPD and HC groups, the AECOPD had a significantly lower proportion of CD4+CD27+CD28+ T cells, but opposite results were found for CD4+CD27-CD28- T cells. In addition, the proportion of CD4+CD39+ T cells and CD4+CD25+FoxP3+ T cells was significantly higher in the AECOPD and SCOPD groups when compared to the HC group (P < 0.05). Discussion The distribution of nearly half the T cell subsets in AECOPD patients was significantly different from that in SCOPD patients and HCs. AECOPD patients may have cellular immune suppression, immune dysfunction, abnormal activation, and higher senescence depletion of T cells.
Collapse
Affiliation(s)
- Xiao-feng Xiong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| | - Min Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu, China
| | - Hong-xia Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zuo-hong Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li-li Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - De-yun Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Tang Y, Ma T, Jia S, Zhang Q, Liu S, Qi L, Yang L. The Mechanism of Interleukin-35 in Chronic Hepatitis B. Semin Liver Dis 2021; 41:516-524. [PMID: 34233371 DOI: 10.1055/s-0041-1731708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interleukin-35 (IL-35) is a newly identified inhibitory cytokine. It has recently been found to play an extremely important role in chronic hepatitis B disease, which makes it likely to be a target for new therapies for hepatitis B malady. IL-35 modulates a variety of immune mechanisms to cause persistent viral infections, such as affecting the ratio of helper T cells, reducing the activity of cytotoxic T cells, hindering the antigen presentation capacity for dendritic cells, and increasing the transcription level of hepatitis B virus. On the other hand, IL-35 can control the inflammation caused by hepatitis B liver injury. Therefore, to seek a breakthrough in curing hepatitis B disease, the contradictory part of IL-35 in the occurrence and development of this sickness is worthy of further discussion and research. This article will systematically review the biological effects of IL-35 and the specific mechanisms affecting the disease.
Collapse
Affiliation(s)
- Ying Tang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Tianyi Ma
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Shengnan Jia
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Qian Zhang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Siqi Liu
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| | - Ling Qi
- Department of Core Medical Laboratory, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lanlan Yang
- Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
3
|
Ross JA, Malyshkina A, Otto L, Liu J, Dittmer U. Inhibition of IL-2 or NF- κB Subunit c-Rel-Dependent Signaling Inhibits Expansion of Regulatory T Cells During Acute Friend Retrovirus Infection. Viral Immunol 2020; 33:353-360. [PMID: 32315584 DOI: 10.1089/vim.2019.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In retroviral infections, different immunological mechanisms are involved in the development of a chronic infection. In the Friend virus (FV) model, regulatory T cells (Tregs) were found to induce CD8+ T cell dysfunction before viral clearance is achieved and thus contribute to viral chronicity. Although studied for decades, the exact suppressive mechanisms of Tregs in the FV model remain elusive and an unavailable therapeutic target. However, extracellular IL-2 and intracellular NF-κB signaling were shown to be important pathways for Treg expansion and activation. Therefore, we decided to focus on these two pathways to test therapeutic approaches inhibiting Treg activation during FV infection. In this study, we show that the inhibition of either IL-2 or the NF-κB subunit c-Rel, impaired Treg expansion and activation at 2 weeks post-FV infection. Total numbers of Tregs as well as activated Tregs were reduced in FV-infected mice after treatment with anti-IL-2 antibodies or the c-Rel blocking reagent pentoxifylline. Surprisingly, this did not affect the expansion or function of virus-specific CD8+ T cells nor viral loads in the spleen. However, our data suggest that neutralization of IL-2 as well as blocking c-Rel efficiently inhibits virus-induced Treg expansion.
Collapse
Affiliation(s)
- Jean Alexander Ross
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Immunization with a murine cytomegalovirus based vector encoding retrovirus envelope confers strong protection from Friend retrovirus challenge infection. PLoS Pathog 2019; 15:e1008043. [PMID: 31568492 PMCID: PMC6786657 DOI: 10.1371/journal.ppat.1008043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/10/2019] [Accepted: 08/25/2019] [Indexed: 02/04/2023] Open
Abstract
Immunization vectors based on cytomegalovirus (CMV) have attracted a lot of interest in recent years because of their high efficacy in the simian immunodeficiency virus (SIV) macaque model, which has been attributed to their ability to induce strong, unusually broad, and unconventionally restricted CD8+ T cell responses. To evaluate the ability of CMV-based vectors to mediate protection by other immune mechanisms, we evaluated a mouse CMV (MCMV)-based vector encoding Friend virus (FV) envelope (Env), which lacks any known CD8+ T cell epitopes, for its protective efficacy in the FV mouse model. When we immunized highly FV-susceptible mice with the Env-encoding MCMV vector (MCMV.env), we could detect high frequencies of Env-specific CD4+ T cells after a single immunization. While the control of an early FV challenge infection was highly variable, an FV infection applied later after immunization was tightly controlled by almost all immunized mice. Protection of mice correlated with their ability to mount a robust anamnestic neutralizing antibody response upon FV infection, but Env-specific CD4+ T cells also produced appreciable levels of interferon γ. Depletion and transfer experiments underlined the important role of antibodies for control of FV infection but also showed that while no Env-specific CD8+ T cells were induced by the MCMV.env vaccine, the presence of CD8+ T cells at the time of FV challenge was required. The immunity induced by MCMV.env immunization was long-lasting, but was restricted to MCMV naïve animals. Taken together, our results demonstrate a novel mode of action of a CMV-based vaccine for anti-retrovirus immunization that confers strong protection from retrovirus challenge, which is conferred by CD4+ T cells and antibodies. CMV-based vectors have attracted a lot of attention in the vaccine development field, since they were shown to induce unconventionally restricted CD8+ T cell responses and strong protection in the SIV rhesus macaque model. In a mouse retrovirus model, we show now that immunization with a mouse CMV-based vector encoding retrovirus envelope conferred very strong protection, even though it was not designed to induce any CD8+ T cell responses. In this MCMV.env immunization, protection relied on the induction of CD4+ T cells and the ability to mount a strong anamnestic neutralizing antibody response upon retrovirus infection, but it was restricted to MCMV pre-naïve mice. In our model system, the MCMV based vector shows very high efficacy that is comparable to an attenuated retrovirus-based vaccine, and encourages the pursuit of this vaccination strategy.
Collapse
|
5
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
6
|
Malyshkina A, Littwitz-Salomon E, Sutter K, Ross JA, Paschen A, Windmann S, Schimmer S, Dittmer U. Chronic retroviral infection of mice promotes tumor development, but CD137 agonist therapy restores effective tumor immune surveillance. Cancer Immunol Immunother 2019; 68:479-488. [PMID: 30635687 PMCID: PMC11028158 DOI: 10.1007/s00262-019-02300-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/06/2019] [Indexed: 12/29/2022]
Abstract
T cell responses are crucial for anti-tumor immunity. In chronic viral infections, anti-tumor T cell responses can be compromised due to various immunological mechanisms, including T cell exhaustion. To study mechanisms of anti-tumor immunity during a chronic viral infection, we made use of the well-established Friend virus (FV) mouse model. Chronically FV-infected mice are impaired in their ability to reject FBL-3 cells-a virus-induced tumor cell line of C57BL/6 origin. Here we aimed to explore therapeutic strategies to overcome the influence of T cell exhaustion during chronic viral infection, and reactivate effector CD8+ and CD4+ T cells to eliminate tumor cells. For T cell stimulation, agonistic antibodies against the tumor necrosis factor receptor (TNFR) superfamily members CD137 and CD134 were used, because they were reported to augment the cytotoxic program of T cells. αCD137 agonistic therapy, but not αCD134 agonistic therapy, resulted in FBL-3 tumor elimination in chronically FV-infected mice. CD137 stimulation significantly enhanced the cytotoxic activity of both CD4+ and CD8+ T cells, which were both required for efficient tumor control. Our study suggests that agonistic antibodies to CD137 can efficiently enhance anti-tumor immunity even in the setting of chronic viral infection, which might have promising therapeutic applications.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany.
| | - Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Jean Alexander Ross
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sonja Windmann
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Virchowstraße 179, 45147, Essen, Germany
| |
Collapse
|
7
|
Infection of B Cell Follicle-Resident Cells by Friend Retrovirus Occurs during Acute Infection and Is Maintained during Viral Persistence. mBio 2019; 10:mBio.00004-19. [PMID: 30782653 PMCID: PMC6381274 DOI: 10.1128/mbio.00004-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B cell follicles of the spleen and lymph nodes are immune privileged sites and serve as sanctuaries for infected CD4+ cells in HIV infection. It is assumed that CD8+ T cell responses promote the establishment of the reservoir, as B cell follicles do not permit CD8+ T cell entry. Here we analyzed the infected cell population in the Friend retrovirus (FV) infection and investigated whether FV can similarly infect follicular cells. For analysis of FV-infected cells, we constructed a recombinant FV encoding the bright fluorescent protein mWasabi and performed flow cytometry with cells isolated from spleens, lymph nodes and bone marrow of FV-mWasabi-infected mice. Using t-stochastic neighbor embedding for data exploration, we demonstrate how the target cell population changes during the course of infection. While FV was widely distributed in erythrocytes, myeloid cells, B cells, and CD4+ T cells in the acute phase of infection, the bulk viral load in the late phase was carried by macrophages and follicular B and CD4+ T cells, suggesting that FV persists in cells that are protected from CD8+ T cell killing. Importantly, seeding into follicular cells was equally observed in CD8+ T cell-depleted mice and in highly FV-susceptible mice that mount a very weak immune response, demonstrating that infection of follicular cells is not driven by immune pressure. Our data demonstrate that infection of cells in the B cell follicle is a characteristic of the FV infection, making this murine retrovirus an even more valuable model for development of retrovirus immunotherapy approaches.IMPORTANCE Human immunodeficiency virus is notorious for its ability to avoid clearance by therapeutic interventions, which is partly attributed to the establishment of reservoirs in latently infected cells and cells that reside in immunologically privileged B cell follicles. In the work presented here, we show that cells of the B cell follicle are equally infected by a simple mouse gammaretrovirus. Using fluorescently labeled Friend retrovirus, we found that B cells and T cells in the B cell follicle, while not carrying the bulk of the virus load, were indeed infected by Friend virus in the early acute phase of the infection and persisted in the chronic infection. Our results suggest that infection of follicular cells may be a shared property of lymphotropic viruses and propose the FV infection of mice as a useful model to study strategies for follicular reservoir elimination.
Collapse
|
8
|
Araujo Furlan CL, Tosello Boari J, Rodriguez C, Canale FP, Fiocca Vernengo F, Boccardo S, Beccaria CG, Adoue V, Joffre O, Gruppi A, Montes CL, Acosta Rodriguez EV. Limited Foxp3 + Regulatory T Cells Response During Acute Trypanosoma cruzi Infection Is Required to Allow the Emergence of Robust Parasite-Specific CD8 + T Cell Immunity. Front Immunol 2018; 9:2555. [PMID: 30455700 PMCID: PMC6230662 DOI: 10.3389/fimmu.2018.02555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
While it is now acknowledged that CD4+ T cells expressing CD25 and Foxp3 (Treg cells) regulate immune responses and, consequently, influence the pathogenesis of infectious diseases, the regulatory response mediated by Treg cells upon infection by Trypanosoma cruzi was still poorly characterized. In order to understand the role of Treg cells during infection by this protozoan parasite, we determined in time and space the magnitude of the regulatory response and the phenotypic, functional and transcriptional features of the Treg cell population in infected mice. Contrary to the accumulation of Treg cells reported in most chronic infections in mice and humans, experimental T. cruzi infection was characterized by sustained numbers but decreased relative frequency of Treg cells. The reduction in Treg cell frequency resulted from a massive accumulation of effector immune cells, and inversely correlated with the magnitude of the effector immune response as well as with emergence of acute immunopathology. In order to understand the causes underlying the marked reduction in Treg cell frequency, we evaluated the dynamics of the Treg cell population and found a low proliferation rate and limited accrual of peripheral Treg cells during infection. We also observed that Treg cells became activated and acquired a phenotypic and transcriptional profile consistent with suppression of type 1 inflammatory responses. To assess the biological relevance of the relative reduction in Treg cells frequency observed during T. cruzi infection, we transferred in vitro differentiated Treg cells at early moments, when the deregulation of the ratio between regulatory and conventional T cells becomes significant. Intravenous injection of Treg cells dampened parasite-specific CD8+ T cell immunity and affected parasite control in blood and tissues. Altogether, our results show that limited Treg cell response during the acute phase of T. cruzi infection enables the emergence of protective anti-parasite CD8+ T cell immunity and critically influences host resistance.
Collapse
Affiliation(s)
- Cintia L Araujo Furlan
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Jimena Tosello Boari
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Constanza Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Fernando P Canale
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Santiago Boccardo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Cristian G Beccaria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Véronique Adoue
- Institut National de la Santé et de la Recherche Médicale, Toulouse, France.,Centre National de la Recherche Scientifique, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Olivier Joffre
- Institut National de la Santé et de la Recherche Médicale, Toulouse, France.,Centre National de la Recherche Scientifique, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Carolina L Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| | - Eva V Acosta Rodriguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina
| |
Collapse
|
9
|
Abstract
Tight regulation of immune responses is not only critical for preventing autoimmune diseases but also for preventing immunopathological damage during infections in which overactive immune responses may be more harmful for the host than the pathogen itself. Regulatory T cells (Tregs) play a critical role in this regulation, which was discovered using the Friend retrovirus (FV) mouse model. Subsequent FV studies revealed basic biological information about Tregs, including their suppressive activity on effector cells as well as the molecular mechanisms of virus-induced Treg expansion. Treg suppression not only limits immunopathology but also prevents complete elimination of pathogens contributing to chronic infections. Therefore, Tregs play a complex role in the pathogenesis of persistent retroviral infections. New therapeutic concepts to reactivate effector T-cell responses in chronic viral infections by manipulating Tregs also came from work with the FV model. This knowledge initiated many studies to characterize the role of Tregs in HIV pathogenesis in humans, where a complex picture is emerging. On one hand, Tregs suppress HIV-specific effector T-cell responses and are themselves targets of infection, but on the other hand, Tregs suppress HIV-induced immune hyperactivation and thus slow the infection of conventional CD4+ T cells and limit immunopathology. In this review, the basic findings from the FV mouse model are put into perspective with clinical and basic research from HIV studies. In addition, the few Treg studies performed in the simian immunodeficiency virus (SIV) monkey model will also be discussed. The review provides a comprehensive picture of the diverse role of Tregs in different retroviral infections and possible therapeutic approaches to treat retroviral chronicity and pathogenesis by manipulating Treg responses. Regulatory T cells (Tregs) play a very complex role in retroviral infections, and the balance of beneficial versus detrimental effects from Tregs can change between the acute and chronic phase of infection. Therefore, the development of therapeutics to treat chronic retroviral infections via modulation of Tregs requires detailed information regarding both the positive and negative contributions of Tregs in a particular phase of a specific infection. Here, we review the molecular mechanisms that initiate and control Treg responses in retroviral infections as well as the target cells that are functionally manipulated by Tregs. Basic findings from the Friend retrovirus mouse model that initiated this area of research are put into perspective with clinical and basic research from HIV studies. The targeted manipulation of Treg responses holds a bright future for enhancing immune responses to infections, vaccine responses, and for cure or functional cure of chronic retroviral infections.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
10
|
Shen L, Tenzer S, Hess M, Distler U, Tubbe I, Montermann E, Schimmer S, Dittmer U, Grabbe S, Bros M. Friend virus limits adaptive cellular immune responses by imprinting a maturation-resistant and T helper type 2-biased immunophenotype in dendritic cells. PLoS One 2018; 13:e0192541. [PMID: 29425215 PMCID: PMC5806892 DOI: 10.1371/journal.pone.0192541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/25/2018] [Indexed: 12/28/2022] Open
Abstract
The murine Friend virus (FV) retrovirus model has been widely used to study anti-viral immune responses, and virus-induced cancer. Here we analyzed FV immune evasion mechanisms on the level of dendritic cells (DC) essential for the induction of primary adaptive immune responses. Comparative quantitative proteome analysis of FV-infected DC (FV-DC) of different genotypes (BALB/c, C57BL/6) and non-infected DC revealed numerous genotype-independently regulated proteins rergulating metabolic activity, cytoskeletal rearrangements, and antigen processing/presentation. These alterations may promote virion production in FV-DC. Stimulation of FV-DC with LPS resulted in strongly enhanced IL-10 production which was partially responsible for their attenuated T cell (CD4+, CD8+) stimulatory capacity. Stimulated FV-DC induced less IFN-γ production in T cells required for cellular anti-viral responses, but more T helper cell type 2 (Th2)-associated cytokines (IL-4, IL-5, IL-13). We conclude that FV reprograms DC to promote viral spreading and immune deviation by imprinting a largely maturation-resistant, Th2-biased immunophenotype.
Collapse
Affiliation(s)
- Limei Shen
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Mainz, Germany
| | - Moritz Hess
- Institute for Medical Biometry, Epidemiology and Informatics, University Medical Center, Mainz, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center, Mainz, Germany
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Simone Schimmer
- Institute for Virology of the University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology of the University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Mainz, Germany
- * E-mail:
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Mainz, Germany
| |
Collapse
|
11
|
Matavele Chissumba R, Namalango E, Maphossa V, Macicame I, Bhatt N, Polyak C, Robb M, Michael N, Jani I, Kestens L. Helios + Regulatory T cell frequencies are correlated with control of viral replication and recovery of absolute CD4 T cells counts in early HIV-1 infection. BMC Immunol 2017; 18:50. [PMID: 29246111 PMCID: PMC5732399 DOI: 10.1186/s12865-017-0235-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/06/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The acute phase of HIV infection is characterized by massive depletion of CD4 T cells, high viral plasma levels and pronounced systemic immune activation. Regulatory T cells (Tregs) have the potential to control systemic immune activation but also to suppress antigen specific T and B cell response. The co-expression of FoxP3 and Helios transcription factors, has been described for identification of highly suppressive Tregs. The aim of this study was to characterize the phenotype of classic Tregs during early HIV infection, and to assess the correlations between the frequencies and phenotype of Tregs with the plasma viral load, CD4 counts, immune activation and the frequency of antibodies reactive to HIV-1 proteins, measured by an immunochromatographic test. RESULTS The relative frequency of classic Tregs cells in peripheral blood correlated positively with HIV viral load and immune activation of CD8 T cells, and inversely with absolute CD4 counts and development of anti-HIV antibodies in subjects with early HIV infection. However, the expression of Helios in classic Tregs was inversely correlated with viral replication and immune activation, and positively with recovery of CD4 T cell counts and appearance of antibodies reactive to HIV-1 proteins. CONCLUSION These results raise the hypothesis that classic Tregs are inefficient at controlling systemic immune activation in subjects with early HIV infection and may be associated with delayed production of antibodies against HIV proteins, delaying the control of viral replication. Conversely, Helios expressing Tregs might contribute to control of viral replication by mechanisms involving the limitation of systemic immune activation.
Collapse
Affiliation(s)
- Raquel Matavele Chissumba
- Instituto Nacional de Saúde, Maputo, Mozambique. .,Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | - Christina Polyak
- Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
| | - Merlin Robb
- Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
| | - Nelson Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, MD, USA
| | - Ilesh Jani
- Instituto Nacional de Saúde, Maputo, Mozambique
| | - Luc Kestens
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Malyshkina A, Littwitz-Salomon E, Sutter K, Zelinskyy G, Windmann S, Schimmer S, Paschen A, Streeck H, Hasenkrug KJ, Dittmer U. Fas Ligand-mediated cytotoxicity of CD4+ T cells during chronic retrovirus infection. Sci Rep 2017; 7:7785. [PMID: 28798348 PMCID: PMC5552859 DOI: 10.1038/s41598-017-08578-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
CD4+ helper T cells and cytotoxic CD8+ T cells are key players for adaptive immune responses against acute infections with retroviruses. Similar to textbook knowledge the most important function of CD4+ T cells during an acute retrovirus infection seems to be their helper function for other immune cells. Whereas there was no direct anti-viral activity of CD4+ T cells during acute Friend Virus (FV) infection, they were absolutely required for the control of chronic infection. During chronic FV infection a population of activated FV-specific CD4+ T cells did not express cytotoxic molecules, but Fas Ligand that can induce Fas-induced apoptosis in target cells. Using an MHC II-restricted in vivo CTL assay we demonstrated that FV-specific CD4+ T cells indeed mediated cytotoxic effects against FV epitope peptide loaded targets. CD4 + CTL killing was also detected in FV-infected granzyme B knockout mice confirming that the exocytosis pathway was not involved. However, killing could be blocked by antibodies against FasL, which identified the Fas/FasL pathway as critical cytotoxic mechanism during chronic FV infection. Interestingly, targeting the co-stimulatory receptor CD137 with an agonistic antibody enhanced CD4+ T cell cytotoxicity. This immunotherapy may be an interesting new approach for the treatment of chronic viral infections.
Collapse
Affiliation(s)
- Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | | | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sonja Windmann
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, Venereology, and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hendrik Streeck
- Institute for HIV Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Knuschke T, Rotan O, Bayer W, Sokolova V, Hansen W, Sparwasser T, Dittmer U, Epple M, Buer J, Westendorf AM. Combination of nanoparticle-based therapeutic vaccination and transient ablation of regulatory T cells enhances anti-viral immunity during chronic retroviral infection. Retrovirology 2016; 13:24. [PMID: 27076190 PMCID: PMC4831142 DOI: 10.1186/s12977-016-0258-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 02/05/2023] Open
Abstract
Background Regulatory T cells (Tregs) have been shown to limit anti-viral immunity during chronic retroviral infection and to restrict vaccine-induced T cell responses. The objective of the study was to assess whether a combinational therapy of nanoparticle-based therapeutic vaccination and concomitant transient ablation of Tregs augments anti-viral immunity and improves virus control in chronically retrovirus-infected mice. Therefore, chronically Friend retrovirus (FV)-infected mice were immunized with calcium phosphate (CaP) nanoparticles functionalized with TLR9 ligand CpG and CD8+ or CD4+ T cell epitope peptides (GagL85–93 or Env gp70123–141) of FV. In addition, Tregs were ablated during the immunization process. Reactivation of CD4+ and CD8+ effector T cells was analysed and the viral loads were determined. Results Therapeutic vaccination of chronically FV-infected mice with functionalized CaP nanoparticles transiently reactivated cytotoxic CD8+ T cells and significantly reduced the viral loads. Transient ablation of Tregs during nanoparticle-based therapeutic vaccination strongly enhanced anti-viral immunity and further decreased viral burden. Conclusion Our data illustrate a crucial role for CD4+ Foxp3+ Tregs in the suppression of anti-viral T cell responses during therapeutic vaccination against chronic retroviral infection. Thus, the combination of transient Treg ablation and therapeutic nanoparticle-based vaccination confers robust and sustained anti-viral immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0258-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Olga Rotan
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Wibke Bayer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Viktoriya Sokolova
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Medicine, 30625, Hannover, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry and Center for Nanointegration (CeNIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
14
|
Mutnal MB, Hu S, Schachtele SJ, Lokensgard JR. Infiltrating regulatory B cells control neuroinflammation following viral brain infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:6070-80. [PMID: 25385825 DOI: 10.4049/jimmunol.1400654] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous studies have demonstrated the existence of a subset of B lymphocytes, regulatory B cells (Bregs), which modulate immune function. In this study, in vivo and in vitro experiments were undertaken to elucidate the role of these Bregs in controlling neuroinflammation following viral brain infection. We used multicolor flow cytometry to phenotype lymphocyte subpopulations infiltrating the brain, along with in vitro cocultures to assess their anti-inflammatory and immunoregulatory roles. This distinctive subset of CD19(+)CD1d(hi)CD5(+) B cells was found to infiltrate the brains of chronically infected animals, reaching highest levels at the latest time point tested (30 d postinfection). B cell-deficient Jh(-/-) mice were found to develop exacerbated neuroimmune responses as measured by enhanced accumulation and/or retention of CD8(+) T cells within the brain, as well as increased levels of microglial activation (MHC class II). Conversely, levels of Foxp3(+) regulatory T cells were found to be significantly lower in Jh(-/-) mice when compared with wild-type (Wt) animals. Further experiments showed that in vitro-generated IL-10-secreting Bregs (B10) were able to inhibit cytokine responses from microglia following stimulation with viral Ags. These in vitro-generated B10 cells were also found to promote proliferation of regulatory T cells in coculture studies. Finally, gain-of-function experiments demonstrated that reconstitution of Wt B cells into Jh(-/-) mice restored neuroimmune responses to levels exhibited by infected Wt mice. Taken together, these results demonstrate that Bregs modulate T lymphocyte as well as microglial cell responses within the infected brain and promote CD4(+)Foxp3(+) T cell proliferation in vitro.
Collapse
Affiliation(s)
- Manohar B Mutnal
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Shuxian Hu
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Scott J Schachtele
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - James R Lokensgard
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
15
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
16
|
Bonney EA, Brown SA. To drive or be driven: the path of a mouse model of recurrent pregnancy loss. Reproduction 2014; 147:R153-67. [PMID: 24472815 DOI: 10.1530/rep-13-0583] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review is an example of the use of an animal model to try to understand the immune biology of pregnancy. A well-known model of recurrent spontaneous pregnancy loss is put in clinical, historical, and theoretical context, with emphasis on T cell biology.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Division of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building, 89 Beaumont Avenue, Burlington, Vermont 05404, USA
| | | |
Collapse
|