1
|
Starling T, Padilla-Parra S. HIV-1 Induced Cell-to-Cell Fusion or Syncytium Formation. Results Probl Cell Differ 2024; 71:319-328. [PMID: 37996684 DOI: 10.1007/978-3-031-37936-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
HIV-1 cell-free infection has been thoroughly investigated; however, its relevance and importance in vitro are questionable. Cell-cell transmission is now thought to be the dominant mode of transmission within the host; however precise molecular details remain elusive. The considerable potency of cell-cell transmission hinges upon its ability to hijack and manipulate host immunological function to target uninfected cells, along with overcoming restriction factors and increasing the speed of latent pool formation. Another question of relevance is virus induced cell-cell fusion and how this process is regulated. How often HIV-1 induces the formation of syncytia? Is cell-cell function a potential process for HIV-1 transmission? These questions are discussed and reviewed together with a description of the most common ways of HIV-1 entry and transinfection.
Collapse
Affiliation(s)
- Tobias Starling
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, UK
| | - Sergi Padilla-Parra
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences & Medicine, London, UK.
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
2
|
Brücksken KA, Loreto Palacio P, Hanschmann EM. Thiol Modifications in the Extracellular Space-Key Proteins in Inflammation and Viral Infection. Front Immunol 2022; 13:932525. [PMID: 35833136 PMCID: PMC9271835 DOI: 10.3389/fimmu.2022.932525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Posttranslational modifications (PTMs) allow to control molecular and cellular functions in response to specific signals and changes in the microenvironment of cells. They regulate structure, localization, stability, and function of proteins in a spatial and temporal manner. Among them, specific thiol modifications of cysteine (Cys) residues facilitate rapid signal transduction. In fact, Cys is unique because it contains the highly reactive thiol group that can undergo different reversible and irreversible modifications. Upon inflammation and changes in the cellular microenvironment, many extracellular soluble and membrane proteins undergo thiol modifications, particularly dithiol-disulfide exchange, S-glutathionylation, and S-nitrosylation. Among others, these thiol switches are essential for inflammatory signaling, regulation of gene expression, cytokine release, immunoglobulin function and isoform variation, and antigen presentation. Interestingly, also the redox state of bacterial and viral proteins depends on host cell-mediated redox reactions that are critical for invasion and infection. Here, we highlight mechanistic thiol switches in inflammatory pathways and infections including cholera, diphtheria, hepatitis, human immunodeficiency virus (HIV), influenza, and coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
| | | | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
3
|
Bechtel TJ, Weerapana E. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 2017; 17. [PMID: 28044432 DOI: 10.1002/pmic.201600391] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of the functional roles of disulfide bonds and their relevance to human disease. The critical roles of disulfide bonds in protein structure stabilization and redox regulation of protein activity are addressed. Disulfide bonds are essential to the structural stability of many proteins within the secretory pathway and can exist as intramolecular or inter-domain disulfides. The proper formation of these bonds often relies on folding chaperones and oxidases such as members of the protein disulfide isomerase (PDI) family. Many of the PDI family members catalyze disulfide-bond formation, reduction, and isomerization through redox-active disulfides and perturbed PDI activity is characteristic of carcinomas and neurodegenerative diseases. In addition to catalytic function in oxidoreductases, redox-active disulfides are also found on a diverse array of cellular proteins and act to regulate protein activity and localization in response to oxidative changes in the local environment. These redox-active disulfides are either dynamic intramolecular protein disulfides or mixed disulfides with small-molecule thiols generating glutathionylation and cysteinylation adducts. The oxidation and reduction of redox-active disulfides are mediated by cellular reactive oxygen species and activity of reductases, such as glutaredoxin and thioredoxin. Dysregulation of cellular redox conditions and resulting changes in mixed disulfide formation are directly linked to diseases such as cardiovascular disease and Parkinson's disease.
Collapse
Affiliation(s)
- Tyler J Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
4
|
High thioredoxin-1 levels in rheumatoid arthritis patients diminish binding and signalling of the monoclonal antibody Tregalizumab. Clin Transl Immunology 2016; 5:e121. [PMID: 28090323 PMCID: PMC5192061 DOI: 10.1038/cti.2016.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/21/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022] Open
Abstract
The humanized non-depleting anti-CD4 monoclonal antibody Tregalizumab (BT-061) is able to selectively activate the suppressive function of regulatory T cells and has been investigated up to phase IIb in clinical trials in patients suffering from rheumatoid arthritis (RA). A pharmacokinetic–pharmacodynamic model based on clinical data from RA and healthy volunteers, which used the cell surface CD4 downmodulation as marker of activity, confirmed a stronger effect in healthy volunteers compared with RA patients. We tried to understand this phenomenon and evaluated the influence of the small oxidoreductase thioredoxin-1 (Trx1). To counteract oxidative stress that is strongly associated with RA pathophysiology, the organism employs Trx1. Therefore, increased expression and secretion of Trx1 is found in the synovial fluid and plasma of RA patients. Moreover, the binding site of Tregalizumab is in close proximity to a disulphide bond in domain 2 (D2) of CD4, which is a known target for a reduction by oxidoreductase Trx1. With the experiments reported herein, we demonstrated that specific reduction of the D2 disulphide bond by Trx1 led to diminished binding of Tregalizumab to recombinant human soluble CD4 and membrane-bound CD4 on T cells. Moreover, we showed that this caused changes in the Tregalizumab-induced CD4 signalling pathway via the lymphocyte-specific protein tyrosine kinase p56Lck and CD4 downmodulation. In summary, we provide evidence that high Trx1 levels in RA patients compared with healthy subjects are a potential reason for diminished binding of Tregalizumab to CD4-positive T cells and offer an explanation for the observed decreased CD4 downmodulation in RA patients in comparison to healthy subjects.
Collapse
|
5
|
Abstract
Disulfide bonds represent versatile posttranslational modifications whose roles encompass the structure, catalysis, and regulation of protein function. Due to the oxidizing nature of the extracellular environment, disulfide bonds found in secreted proteins were once believed to be inert. This notion has been challenged by the discovery of redox-sensitive disulfides that, once cleaved, can lead to changes in protein activity. These functional disulfides are twisted into unique configurations, leading to high strain and potential energy. In some cases, cleavage of these disulfides can lead to a gain of function in protein activity. Thus, these motifs can be referred to as switches. We describe the couples that control redox in the extracellular environment, examine several examples of proteins with switchable disulfides, and discuss the potential applications of disulfides in molecular biology.
Collapse
Affiliation(s)
- Michael C Yi
- Department of Chemical Engineering, Stanford University, Stanford, California 94305; ,
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305; , .,Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
6
|
Cerutti N, Killick M, Jugnarain V, Papathanasopoulos M, Capovilla A. Disulfide reduction in CD4 domain 1 or 2 is essential for interaction with HIV glycoprotein 120 (gp120), which impairs thioredoxin-driven CD4 dimerization. J Biol Chem 2014; 289:10455-10465. [PMID: 24550395 PMCID: PMC4036167 DOI: 10.1074/jbc.m113.539353] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/12/2014] [Indexed: 11/06/2022] Open
Abstract
Human CD4 is a membrane-bound glycoprotein expressed on the surface of certain leukocytes, where it plays a key role in the activation of immunostimulatory T cells and acts as the primary receptor for human immunodeficiency virus (HIV) glycoprotein (gp120). Although growing evidence suggests that redox exchange reactions involving CD4 disulfides, potentially catalyzed by cell surface-secreted oxidoreductases such as thioredoxin (Trx) and protein disulfide isomerase, play an essential role in regulating the activity of CD4, their mechanism(s) and biological utility remain incompletely understood. To gain more insights in this regard, we generated a panel of recombinant 2-domain CD4 proteins (2dCD4), including wild-type and Cys/Ala variants, and used these to show that while protein disulfide isomerase has little capacity for 2dCD4 reduction, Trx reduces 2dCD4 highly efficiently, catalyzing the formation of conformationally distinct monomeric 2dCD4 isomers, and a stable, disulfide-linked 2dCD4 dimer. Moreover, we show that HIV gp120 is incapable of binding a fully oxidized, monomeric 2dCD4 in which both domain 1 and 2 disulfides are intact, but binds robustly to reduced counterparts that are the ostensible products of Trx-mediated isomerization. Finally, we demonstrate that Trx-driven dimerization of CD4, a process believed to be critical for the establishment of functional MHCII-TCR-CD4 antigen presentation complexes, is impaired when CD4 is bound to gp120. These observations reinforce the importance of cell surface redox activity for HIV entry and posit the intriguing possibility that one of the many pathogenic effects of HIV may be related to gp120-mediated inhibition of oxidoreductive CD4 isomerization.
Collapse
Affiliation(s)
- Nichole Cerutti
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of Witwatersrand Medical School, 7 York Road Parktown, 2193 Johannesburg, South Africa
| | - Mark Killick
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of Witwatersrand Medical School, 7 York Road Parktown, 2193 Johannesburg, South Africa
| | - Vinesh Jugnarain
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of Witwatersrand Medical School, 7 York Road Parktown, 2193 Johannesburg, South Africa
| | - Maria Papathanasopoulos
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of Witwatersrand Medical School, 7 York Road Parktown, 2193 Johannesburg, South Africa
| | - Alexio Capovilla
- HIV Pathogenesis Research Laboratory, Department of Molecular Medicine and Haematology, University of Witwatersrand Medical School, 7 York Road Parktown, 2193 Johannesburg, South Africa.
| |
Collapse
|
7
|
Abstract
Protein action in nature is largely controlled by the level of expression and by post-translational modifications. Post-translational modifications result in a proteome that is at least two orders of magnitude more diverse than the genome. There are three basic types of post-translational modifications: covalent modification of an amino acid side chain, hydrolytic cleavage or isomerization of a peptide bond, and reductive cleavage of a disulfide bond. This review addresses the modification of disulfide bonds. Protein disulfide bonds perform either a structural or a functional role, and there are two types of functional disulfide: the catalytic and allosteric bonds. The allosteric disulfide bonds control the function of the mature protein in which they reside by triggering a change when they are cleaved. The change can be in ligand binding, substrate hydrolysis, proteolysis, or oligomer formation. The allosteric disulfides are cleaved by oxidoreductases or by thiol/disulfide exchange, and the configurations of the disulfides and the secondary structures that they link share some recurring features. How these bonds are being identified using bioinformatics and experimental screens and what the future holds for this field of research are also discussed.
Collapse
Affiliation(s)
- Kristina M Cook
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney NSW2052, Australia
| | | |
Collapse
|
8
|
Azimi I, Wong JWH, Hogg PJ. Control of mature protein function by allosteric disulfide bonds. Antioxid Redox Signal 2011; 14:113-26. [PMID: 20831445 DOI: 10.1089/ars.2010.3620] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein disulfide bonds are the links between the sulfur atoms of two cysteine amino acids. All the known life forms appear to make this bond. Most disulfide bonds perform a structural role by stabilizing the tertiary and quaternary structures. Some perform a functional role and can be characterized as either catalytic or allosteric disulfides. Catalytic disulfides/dithiols transfer electrons between proteins, whereas the allosteric bonds control the function of the protein in which they reside when they undergo redox change. There are currently five clear examples of allosteric disulfide bonds and a number of potential allosteric disulfides at various stages of characterization. The features of these bonds and how they control the activity of the respective proteins are discussed. A common aspect of the allosteric disulfides identified to date is that they all link β-strands or β-loops.
Collapse
Affiliation(s)
- Iman Azimi
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
9
|
Matthias LJ, Azimi I, Tabrett CA, Hogg PJ. Reduced monomeric CD4 is the preferred receptor for HIV. J Biol Chem 2010; 285:40793-9. [PMID: 20974843 PMCID: PMC3003380 DOI: 10.1074/jbc.m110.190579] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Indexed: 11/06/2022] Open
Abstract
CD4 is a co-receptor for binding of T cells to antigen-presenting cells and the primary receptor for the human immunodeficiency virus type 1 (HIV). CD4 exists in three different forms on the cell surface defined by the state of the domain 2 cysteine residues: an oxidized monomer, a reduced monomer, and a covalent dimer linked through the domain 2 cysteines. The disulfide-linked dimer is the preferred immune co-receptor. The form of CD4 that is preferred by HIV was examined in this study. HIV entry and envelope-mediated cell-cell fusion were tested using cells expressing comparable levels of wild-type or disulfide bond mutant CD4 in which the domain 2 cysteines were mutated to alanine. Eliminating the domain 2 disulfide bond increased entry of HIV reporter viruses and enhanced HIV envelope-mediated cell-cell fusion 2-4-fold. These observations suggest that HIV enters susceptible cells preferably through monomeric reduced CD4, whereas dimeric CD4 is the preferred receptor for binding to antigen-presenting cells. Cleavage of the domain 2 disulfide bond is possibly involved in the conformational change in CD4 associated with fusion of the HIV and cell membranes.
Collapse
Affiliation(s)
- Lisa J. Matthias
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Iman Azimi
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Catherine A. Tabrett
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Philip J. Hogg
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
10
|
Azimi I, Matthias LJ, Center RJ, Wong JWH, Hogg PJ. Disulfide bond that constrains the HIV-1 gp120 V3 domain is cleaved by thioredoxin. J Biol Chem 2010; 285:40072-80. [PMID: 20943653 PMCID: PMC3000989 DOI: 10.1074/jbc.m110.185371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/10/2010] [Indexed: 11/06/2022] Open
Abstract
A functional disulfide bond in both the HIV envelope glycoprotein, gp120, and its immune cell receptor, CD4, is involved in viral entry, and compounds that block cleavage of the disulfide bond in these proteins inhibit HIV entry and infection. The disulfide bonds in both proteins are cleaved at the cell surface by the small redox protein, thioredoxin. The target gp120 disulfide and its mechanism of cleavage were determined using a thioredoxin kinetic trapping mutant and mass spectrometry. A single disulfide bond was cleaved in isolated and cell surface gp120, but not the gp160 precursor, and the extent of the reaction was enhanced when gp120 was bound to CD4. The Cys(32) sulfur ion of thioredoxin attacks the Cys(296) sulfur ion of the gp120 V3 domain Cys(296)-Cys(331) disulfide bond, cleaving the bond. Considering that V3 sequences largely determine the chemokine receptor preference of HIV, we propose that cleavage of the V3 domain disulfide, which is facilitated by CD4 binding, regulates chemokine receptor binding. There are 20 possible disulfide bond configurations, and, notably, the V3 domain disulfide has the same unusual -RHStaple configuration as the functional disulfide bond cleaved in CD4.
Collapse
Affiliation(s)
- Iman Azimi
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia and
| | - Lisa J. Matthias
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia and
| | - Rob J. Center
- the Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jason W. H. Wong
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia and
| | - Philip J. Hogg
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia and
| |
Collapse
|
11
|
Zhukovsky MA, Basmaciogullari S, Pacheco B, Wang L, Madani N, Haim H, Sodroski J. Thermal stability of the human immunodeficiency virus type 1 (HIV-1) receptors, CD4 and CXCR4, reconstituted in proteoliposomes. PLoS One 2010; 5:e13249. [PMID: 20967243 PMCID: PMC2954141 DOI: 10.1371/journal.pone.0013249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/13/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The entry of human immunodeficiency virus (HIV-1) into host cells involves the interaction of the viral exterior envelope glycoprotein, gp120, and receptors on the target cell. The HIV-1 receptors are CD4 and one of two chemokine receptors, CCR5 or CXCR4. METHODOLOGY/PRINCIPAL FINDINGS We created proteoliposomes that contain CD4, the primary HIV-1 receptor, and one of the coreceptors, CXCR4. Antibodies against CD4 and CXCR4 specifically bound the proteoliposomes. CXCL12, the natural ligand for CXCR4, and the small-molecule CXCR4 antagonist, AMD3100, bound the proteoliposomes with affinities close to those associated with the binding of these molecules to cells expressing CXCR4 and CD4. The HIV-1 gp120 exterior envelope glycoprotein bound tightly to proteoliposomes expressing only CD4 and, in the presence of soluble CD4, bound weakly to proteoliposomes expressing only CXCR4. The thermal stability of CD4 and CXCR4 inserted into liposomes was examined. Thermal denaturation of CXCR4 followed second-order kinetics, with an activation energy (E(a)) of 269 kJ/mol (64.3 kcal/mol) and an inactivation temperature (T(i)) of 56°C. Thermal inactivation of CD4 exhibited a reaction order of 1.3, an E(a) of 278 kJ/mol (66.5 kcal/mol), and a T(i) of 52.2°C. The second-order denaturation kinetics of CXCR4 is unusual among G protein-coupled receptors, and may result from dimeric interactions between CXCR4 molecules. CONCLUSIONS/SIGNIFICANCE Our studies with proteoliposomes containing the native HIV-1 receptors allowed an examination of the binding of biologically important ligands and revealed the higher-order denaturation kinetics of these receptors. CD4/CXCR4-proteoliposomes may be useful for the study of virus-target cell interactions and for the identification of inhibitors.
Collapse
Affiliation(s)
- Mikhail A. Zhukovsky
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Structural Dynamics of (Bio)chemical Systems, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stéphane Basmaciogullari
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Pacheco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liping Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hillel Haim
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
12
|
Fournier M, Peyrou M, Bourgoin L, Maeder C, Tchou I, Foti M. CD4 dimerization requires two cysteines in the cytoplasmic domain of the molecule and occurs in microdomains distinct from lipid rafts. Mol Immunol 2010; 47:2594-603. [DOI: 10.1016/j.molimm.2010.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 05/06/2010] [Accepted: 06/21/2010] [Indexed: 01/27/2023]
|
13
|
Melikyan GB. Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm. Retrovirology 2008; 5:111. [PMID: 19077194 PMCID: PMC2633019 DOI: 10.1186/1742-4690-5-111] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/10/2008] [Indexed: 12/20/2022] Open
Abstract
Enveloped viruses encode specialized fusion proteins which promote the merger of viral and cell membranes, permitting the cytosolic release of the viral cores. Understanding the molecular details of this process is essential for antiviral strategies. Recent structural studies revealed a stunning diversity of viral fusion proteins in their native state. In spite of this diversity, the post-fusion structures of these proteins share a common trimeric hairpin motif in which the amino- and carboxy-terminal hydrophobic domains are positioned at the same end of a rod-shaped molecule. The converging hairpin motif, along with biochemical and functional data, implies that disparate viral proteins promote membrane merger via a universal "cast-and-fold" mechanism. According to this model, fusion proteins first anchor themselves to the target membrane through their hydrophobic segments and then fold back, bringing the viral and cellular membranes together and forcing their merger. However, the pathways of protein refolding and the mechanism by which this refolding is coupled to membrane rearrangements are still not understood. The availability of specific inhibitors targeting distinct steps of HIV-1 entry permitted the identification of key conformational states of its envelope glycoprotein en route to fusion. These studies provided functional evidence for the direct engagement of the target membrane by HIV-1 envelope glycoprotein prior to fusion and revealed the role of partially folded pre-hairpin conformations in promoting the pore formation.
Collapse
Affiliation(s)
- Gregory B Melikyan
- Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 725 W, Lombard St, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Baker AM, Saulière A, Gaibelet G, Lagane B, Mazères S, Fourage M, Bachelerie F, Salomé L, Lopez A, Dumas F. CD4 interacts constitutively with multiple CCR5 at the plasma membrane of living cells. A fluorescence recovery after photobleaching at variable radii approach. J Biol Chem 2007; 282:35163-8. [PMID: 17855336 DOI: 10.1074/jbc.m705617200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The entry of human immunodeficiency virus into target cells requires successive interactions of the viral envelope glycoprotein gp120 with CD4 and the chemokine receptors CCR5 or CXCR4. We previously demonstrated, by Förster resonance energy transfer experiments, the constitutive association of CD4 and CCR5 at the surface of living cells. We therefore speculated that this interaction may correlate with compartmentalization of CD4 and CCR5 within the plasma membrane. Here, we characterize the lateral distribution, the dynamics, and the stoichiometry of these receptors in living cells stably expressing CD4 and/or CCR5 by means of fluorescence recovery after photobleaching at variable radii experiments. We found that (i) these receptors expressed alone are confined into 1-microm-sized domains, (ii) CD4-CCR5 associations occur outside and inside smaller domains, and (iii) these interactions involve multiple CCR5 molecules per CD4.
Collapse
Affiliation(s)
- Aurélie-Marie Baker
- Institut de Pharmacologie et Biologie Structurale, UMR CNRS-Université Paul Sabatier 5089, 205 Route de Narbonne, 31062 Toulouse cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|