1
|
Hashemi M, Gholamrezaie H, Ziyaei F, Asadi S, Naeini ZY, Salimian N, Enayat G, Sharifi N, Aliahmadi M, Rezaie YS, Khoushab S, Rahimzadeh P, Miri H, Abedi M, Farahani N, Taheriazam A, Nabavi N, Entezari M. Role of lncRNA PVT1 in the progression of urological cancers: Novel insights into signaling pathways and clinical opportunities. Cell Signal 2025; 131:111736. [PMID: 40081549 DOI: 10.1016/j.cellsig.2025.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Urologic malignancies, encompassing cancers of the kidney, bladder, and prostate, represent approximately 25 % of all cancer cases. Recent advances have enhanced our understanding of PVT1's crucial functions. Long noncoding RNAs influence both the onset and development of cancer, as well as epigenetic alterations. Recent findings have focused on PVT1's mechanism of action across several malignancies, particularly urologic cancers. Understanding the various functions of PVT1 linked to cancer is necessary for the development of cancer detection and treatment when PVT1 is dysregulated. Furthermore, recent advancements in genomic and epigenetic research have elucidated the complex regulatory networks that control PVT1 expression. Comprehending the intricate role of PVT1 Understanding the complex function of PVT1 in urologic cancers has substantial clinical implications. Here, we summarize some of the most recent findings about the carcinogenic effects of PVT1 signaling pathways and the possible treatment strategies for urological malignancies that target these pathways.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faezeh Ziyaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Yousefian Naeini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology,Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Salimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Golnaz Enayat
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Sharifi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Miri
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran,Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Kato H, Tsukahara T, Murata K, Nishikata H, Mizue Y, Sasaya T, Kubo T, Kanaseki T, Hirohashi Y, Oyagi A, Maeda T, Miyazaki A, Torigoe T. Development of a T cell engaging bispecific antibody targeting long non-coding RNA PVT1. Cancer Immunol Immunother 2025; 74:133. [PMID: 40035876 PMCID: PMC11880442 DOI: 10.1007/s00262-025-03976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025]
Abstract
The development of effective immunotherapies for solid tumors remains a significant challenge. In previous studies, we identified PVT1, a long non-coding RNA, with the peptide HF10 derived from PVT1, presented by HLA-A24. This study aims to develop a single-chain variable fragment (scFv) that specifically recognizes the HLA-A24/HF10 complex (HF10 scFv) and to evaluate its specificity, reactivity, and therapeutic potential as part of a T cell engaging bispecific antibody (HF10xCD3) in vitro and in vivo. Using a scFv phage display library, we screened for scFv clones targeting the HLA-A24/HF10 peptide complex. The selected HF10 scFv was engineered into an IgG1 format (HF10-hIgG1), which demonstrated high affinity (KD = 2.18 × 10⁻⁸ M) and specific detection of the HLA-A24/HF10 complex on HLA-A24( +)/PVT1( +) tumor cell lines. Furthermore, HF10 scFv was incorporated into a T cell engaging bispecific antibody (HF10xCD3), which induced cytotoxicity in these tumor cell lines. In a mouse xenograft model, HF10xCD3 administration exhibited significant anti-tumor activity. In conclusion, HF10xCD3 represents a promising candidate for immunotherapy targeting solid tumors.
Collapse
Affiliation(s)
- Hirotaka Kato
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
- Department of Oral Surgery, School of Medicine, Sapporo Medical University, South-1, West-16, Chuo-Ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomohide Tsukahara
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Kenji Murata
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Hiromu Nishikata
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
- MD/PhD Program, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yuka Mizue
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takashi Sasaya
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
- Department of Oral Surgery, School of Medicine, Sapporo Medical University, South-1, West-16, Chuo-Ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Terufumi Kubo
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Atsushi Oyagi
- Oncology Clinical Exploratory Research II, Ono Pharmaceutical, Co., Ltd., 1-8-2, Kyutaro-Machi, Chuo-Ku, Osaka, Osaka, 541-8564, Japan
| | - Tatsuo Maeda
- Research Center of Oncology Group VI, Ono Pharmaceutical, Co., Ltd., 1-8-2, Kyutaro-Machi, Chuo-Ku, Osaka, Osaka, 541-8564, Japan
| | - Akihiro Miyazaki
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
- Department of Oral Surgery, School of Medicine, Sapporo Medical University, South-1, West-16, Chuo-Ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, South-1, West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
3
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
4
|
Abdi E, Latifi-Navid S, Panahi A, Latifi-Navid H. LncRNA polymorphisms and lung cancer risk. Per Med 2023; 20:511-522. [PMID: 37916472 DOI: 10.2217/pme-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Lung cancer (LC) imposes a significant burden, and is associated with high mortality and morbidity among malignant tumors. Aberrant expression of particular lncRNAs is closely linked to LC. LncRNA polymorphisms cause abnormal expression levels and/or structural dysfunction. They can affect the progression of cancer, survival, response to chemotherapy and recurrence rates in cancer patients. The present article provides a comprehensive overview of the effect of lncRNA genetic polymorphisms on LC. It is proposed that lncRNA-related variants can be used to predict cancer risk and therapeutic outcomes. More large-scale trials on diverse ethnic groups are required to validate the results, thus personalizing LC therapy based on lncRNA genotypes.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Alireza Panahi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965/161, Iran
| |
Collapse
|
5
|
Bozgeyik E. Variations in genomic regions encoding long non-coding RNA genes associated with increased prostate cancer risk. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108456. [PMID: 36948485 DOI: 10.1016/j.mrrev.2023.108456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
From a single restriction fragment length polymorphism analysis to next generation sequencing analysis that screens the entire human genome, testing for genomic variations provides a great and robust approach to cancer testing. Non-coding RNAs have been shown to have a major impact on the development and progression of human cancers, including prostate cancer. However, the low stability of these molecules under laboratory conditions has made their clinical utility challenging, as in the case of PCA3 long non-coding RNA. Since testing for variations in genomic regions encoding non-coding RNAs offers a promising approach for cancer testing, identification and interpretation of single nucleotide polymorphisms associated with prostate cancer susceptibility is of great interest. Accordingly, here, for the first time, we review and discuss current available knowledge about genomic variation of long non-coding RNA molecules in prostate cancer.
Collapse
Affiliation(s)
- Esra Bozgeyik
- Department of Medical Services and Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
6
|
Lulli M, Napoli C, Landini I, Mini E, Lapucci A. Role of Non-Coding RNAs in Colorectal Cancer: Focus on Long Non-Coding RNAs. Int J Mol Sci 2022; 23:13431. [PMID: 36362222 PMCID: PMC9654895 DOI: 10.3390/ijms232113431] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer is one of the most common causes of cancer-related deaths worldwide. Despite the advances in the knowledge of pathogenetic molecular mechanisms and the implementation of more effective drug treatments in recent years, the overall survival rate of patients remains unsatisfactory. The high death rate is mainly due to metastasis of cancer in about half of the cancer patients and the emergence of drug-resistant populations of cancer cells. Improved understanding of cancer molecular biology has highlighted the role of non-coding RNAs (ncRNAs) in colorectal cancer development and evolution. ncRNAs regulate gene expression through various mechanisms, including epigenetic modifications and interactions of long non-coding RNAs (lncRNAs) with both microRNAs (miRNAs) and proteins, and through the action of lncRNAs as miRNA precursors or pseudogenes. LncRNAs can also be detected in the blood and circulating ncRNAs have become a new source of non-invasive cancer biomarkers for the diagnosis and prognosis of colorectal cancer, as well as for predicting the response to drug therapy. In this review, we focus on the role of lncRNAs in colorectal cancer development, progression, and chemoresistance, and as possible therapeutic targets.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Section of General Pathology, University of Florence, 50134 Florence, Italy
| | - Cristina Napoli
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy
| | - Ida Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy
| |
Collapse
|
7
|
Yao W, Li S, Liu R, Jiang M, Gao L, Lu Y, Liang X, Zhang H. Long non-coding RNA PVT1: A promising chemotherapy and radiotherapy sensitizer. Front Oncol 2022; 12:959208. [PMID: 35965522 PMCID: PMC9373174 DOI: 10.3389/fonc.2022.959208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
The long non-coding RNA (lncRNA) PVT1 was first found to activate variant translocations in the plasmacytoma of mice. Human lncPVT1 is located on chromosome 8q24.21, at the same locus as the well-known MYC oncogene. LncPVT1 has been found to promote the progression of various malignancies. Chemoresistance and radioresistance seriously affect tumor treatment efficacy and are associated with the dysregulation of physiological processes in cancer cells, including apoptosis, autophagy, stemness (for cancer stem cells, CSC), hypoxia, epithelial–mesenchymal transition (EMT), and DNA damage repair. Previous studies have also implicated lncPVT1 in the regulation of these physiological mechanisms. In recent years, lncPVT1 was found to modulate chemoresistance and radioresistance in some cancers. In this review, we discuss the mechanisms of lncPVT1-mediated regulation of cellular chemoresistance and radioresistance. Due to its high expression in malignant tumors and sensitization effect in chemotherapy and radiotherapy, lncPVT1 is expected to become an effective antitumor target and chemotherapy and radiotherapy sensitizer, which requires further study.
Collapse
Affiliation(s)
- Weiping Yao
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
| | - Ruiqi Liu
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mingyun Jiang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodong Liang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| |
Collapse
|
8
|
Wu F, Zhu Y, Zhou C, Gui W, Li H, Lin X. Regulation mechanism and pathogenic role of lncRNA plasmacytoma variant translocation 1 (PVT1) in human diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
9
|
Naidoo M, Levine F, Gillot T, Orunmuyi AT, Olapade-Olaopa EO, Ali T, Krampis K, Pan C, Dorsaint P, Sboner A, Ogunwobi OO. MicroRNA-1205 Regulation of FRYL in Prostate Cancer. Front Cell Dev Biol 2021; 9:647485. [PMID: 34386489 PMCID: PMC8354587 DOI: 10.3389/fcell.2021.647485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/06/2021] [Indexed: 01/01/2023] Open
Abstract
High mortality rates of prostate cancer (PCa) are associated with metastatic castration-resistant prostate cancer (CRPC) due to the maintenance of androgen receptor (AR) signaling despite androgen deprivation therapies (ADTs). The 8q24 chromosomal locus is a region of very high PCa susceptibility that carries genetic variants associated with high risk of PCa incidence. This region also carries frequent amplifications of the PVT1 gene, a non-protein coding gene that encodes a cluster of microRNAs including, microRNA-1205 (miR-1205), which are largely understudied. Herein, we demonstrate that miR-1205 is underexpressed in PCa cells and tissues and suppresses CRPC tumors in vivo. To characterize the molecular pathway, we identified and validated fry-like (FRYL) as a direct molecular target of miR-1205 and observed its overexpression in PCa cells and tissues. FRYL is predicted to regulate dendritic branching, which led to the investigation of FRYL in neuroendocrine PCa (NEPC). Resistance toward ADT leads to the progression of treatment related NEPC often characterized by PCa neuroendocrine differentiation (NED), however, this mechanism is poorly understood. Underexpression of miR-1205 is observed when NED is induced in vitro and inhibition of miR-1205 leads to increased expression of NED markers. However, while FRYL is overexpressed during NED, FRYL knockdown did not reduce NED, therefore revealing that miR-1205 induces NED independently of FRYL.
Collapse
Affiliation(s)
- Michelle Naidoo
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States.,Department of Biology and Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States
| | - Fayola Levine
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
| | - Tamara Gillot
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
| | - Akintunde T Orunmuyi
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Thahmina Ali
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
| | - Konstantinos Krampis
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
| | - Chun Pan
- Department of Mathematics and Statistics, Hunter College of the City University of New York, New York, NY, United States
| | - Princesca Dorsaint
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Andrea Sboner
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States.,Department of Biology and Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States.,Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
10
|
Yang L, Kraft VAN, Pfeiffer S, Merl‐Pham J, Bao X, An Y, Hauck SM, Schick JA. Nonsense-mediated decay factor SMG7 sensitizes cells to TNFα-induced apoptosis via CYLD tumor suppressor and the noncoding oncogene Pvt1. Mol Oncol 2020; 14:2420-2435. [PMID: 32602581 PMCID: PMC7530794 DOI: 10.1002/1878-0261.12754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Nonsense-mediated decay (NMD) proteins are responsible for the surveillance and degradation of aberrant RNAs. Suppressor with morphogenetic effect on genitalia 7 (SMG7) is an NMD complex protein and a regulator of tumor necrosis factor (TNF)-induced extrinsic apoptosis; however, this unique function has not been explored in detail. In this study, we show that loss of Smg7 leads to unrestricted expression of long noncoding RNAs (lncRNAs) in addition to NMD targets. Functional analysis of Smg7-/- cells showed downregulation of the tumor suppressor cylindromatosis (CYLD) and diminished caspase activity, thereby switching cells to nuclear factor-κB (NF-κB)-mediated protection. This positive relationship between SMG7 and CYLD was found to be widely conserved in human cancer cell lines and renal carcinoma samples from The Cancer Genome Atlas. In addition to CYLD suppression, upregulation of lncRNAs Pvt1 and Adapt33 rendered cells resistant to TNF, while pharmacologic inhibition of NF-κB in Pvt1-overexpressing TNF-resistant cells and Smg7-deficient spheroids re-established TNF-induced lethality. Thus, loss of SMG7 decouples regulation of two separate oncogenic factors with cumulative downstream effects on the NF-κB pathway. The data highlight a novel and specific regulation of oncogenic factors by SMG7 and pinpoint a composite tumor suppressor role in response to TNF.
Collapse
Affiliation(s)
- Limeng Yang
- Genetics and Cellular Engineering GroupInstitute of Molecular Toxicology and PharmacologyHelmholtz Zentrum Munich GmbHGerman Research Center for Environmental HealthNeuherbergGermany
| | - Vanessa A. N. Kraft
- Genetics and Cellular Engineering GroupInstitute of Molecular Toxicology and PharmacologyHelmholtz Zentrum Munich GmbHGerman Research Center for Environmental HealthNeuherbergGermany
| | - Susanne Pfeiffer
- Genetics and Cellular Engineering GroupInstitute of Molecular Toxicology and PharmacologyHelmholtz Zentrum Munich GmbHGerman Research Center for Environmental HealthNeuherbergGermany
| | - Juliane Merl‐Pham
- Research Unit Protein ScienceHelmholtz Zentrum Munich GmbHGerman Research Center for Environmental HealthNeuherbergGermany
| | - Xuanwen Bao
- Institute of Radiation BiologyHelmholtz Zentrum Munich GmbHGerman Research Center for Environmental HealthNeuherbergGermany
| | - Yu An
- Department of Chinese MedicineNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Stefanie M. Hauck
- Research Unit Protein ScienceHelmholtz Zentrum Munich GmbHGerman Research Center for Environmental HealthNeuherbergGermany
| | - Joel A. Schick
- Genetics and Cellular Engineering GroupInstitute of Molecular Toxicology and PharmacologyHelmholtz Zentrum Munich GmbHGerman Research Center for Environmental HealthNeuherbergGermany
| |
Collapse
|
11
|
Increased baseline RASGRP1 signals enhance stem cell fitness during native hematopoiesis. Oncogene 2020; 39:6920-6934. [PMID: 32989257 PMCID: PMC7655557 DOI: 10.1038/s41388-020-01469-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations in RAS genes, like KRASG12D or NRASG12D, trap Ras in the active state and cause myeloproliferative disorder and T cell leukemia (T-ALL) when induced in the bone marrow via Mx1CRE. The RAS exchange factor RASGRP1 is frequently overexpressed in T-ALL patients. In T-ALL cell lines overexpression of RASGRP1 increases flux through the RASGTP/RasGDP cycle. Here we expanded RASGRP1 expression surveys in pediatric T-ALL and generated a RoLoRiG mouse model crossed to Mx1CRE to determine the consequences of induced RASGRP1 overexpression in primary hematopoietic cells. RASGRP1-overexpressing, GFP-positive cells outcompeted wild type cells and dominated the peripheral blood compartment over time. RASGRP1 overexpression bestows gain-of-function colony formation properties to bone marrow progenitors in medium containing limited growth factors. RASGRP1 overexpression enhances baseline mTOR-S6 signaling in the bone marrow, but not in vitro cytokine-induced signals. In agreement with these mechanistic findings, hRASGRP1-ires-EGFP enhances fitness of stem- and progenitor- cells, but only in the context of native hematopoiesis. RASGRP1 overexpression is distinct from KRASG12D or NRASG12D, does not cause acute leukemia on its own, and leukemia virus insertion frequencies predict that RASGRP1 overexpression can effectively cooperate with lesions in many other genes to cause acute T cell leukemia.
Collapse
|
12
|
Laneve P, Caffarelli E. The Non-coding Side of Medulloblastoma. Front Cell Dev Biol 2020; 8:275. [PMID: 32528946 PMCID: PMC7266940 DOI: 10.3389/fcell.2020.00275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor and a primary cause of cancer-related death in children. Until a few years ago, only clinical and histological features were exploited for MB pathological classification and outcome prognosis. In the past decade, the advancement of high-throughput molecular analyses that integrate genetic, epigenetic, and expression data, together with the availability of increasing wealth of patient samples, revealed the existence of four molecularly distinct MB subgroups. Their further classification into 12 subtypes not only reduced the well-characterized intertumoral heterogeneity, but also provided new opportunities for the design of targets for precision oncology. Moreover, the identification of tumorigenic and self-renewing subpopulations of cancer stem cells in MB has increased our knowledge of its biology. Despite these advancements, the origin of MB is still debated, and its molecular bases are poorly characterized. A major goal in the field is to identify the key genes that drive tumor growth and the mechanisms through which they are able to promote tumorigenesis. So far, only protein-coding genes acting as oncogenic drivers have been characterized in each MB subgroup. The contribution of the non-coding side of the genome, which produces a plethora of transcripts that control fundamental biological processes, as the cell choice between proliferation and differentiation, is still unappreciated. This review wants to fill this major gap by summarizing the recent findings on the impact of non-coding RNAs in MB initiation and progression. Furthermore, their potential role as specific MB biomarkers and novel therapeutic targets is also highlighted.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
13
|
Ghetti M, Vannini I, Storlazzi CT, Martinelli G, Simonetti G. Linear and circular PVT1 in hematological malignancies and immune response: two faces of the same coin. Mol Cancer 2020; 19:69. [PMID: 32228602 PMCID: PMC7104523 DOI: 10.1186/s12943-020-01187-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Non coding RNAs (ncRNAs) have emerged as regulators of human carcinogenesis by affecting the expression of key tumor suppressor genes and oncogenes. They are divided into short and long ncRNAs, according to their length. Circular RNAs (circRNAs) are included in the second group and were recently discovered as being originated by back-splicing, joining either single or multiple exons, or exons with retained introns. The human Plasmacytoma Variant Translocation 1 (PVT1) gene maps on the long arm of chromosome 8 (8q24) and encodes for 52 ncRNAs variants, including 26 linear and 26 circular isoforms, and 6 microRNAs. PVT1 genomic locus is 54 Kb downstream to MYC and several interactions have been described among these two genes, including a feedback regulatory mechanism. MYC-independent functions of PVT1/circPVT1 have been also reported, especially in the regulation of immune responses. We here review and discuss the role of both PVT1 and circPVT1 in the hematopoietic system. No information is currently available concerning their transforming ability in hematopoietic cells. However, present literature supports their cooperation with a more aggressive and/or undifferentiated cell phenotype, thus contributing to cancer progression. PVT1/circPVT1 upregulation through genomic amplification or rearrangements and/or increased transcription, provides a proliferative advantage to malignant cells in acute myeloid leukemia, acute promyelocytic leukemia, Burkitt lymphoma, multiple myeloma (linear PVT1) and acute lymphoblastic leukemia (circPVT1). In addition, PVT1 and circPVT1 regulate immune responses: the overexpression of the linear form in myeloid derived suppressor cells induced immune tolerance in preclinical tumor models and circPVT1 showed immunosuppressive properties in myeloid and lymphoid cell subsets. Overall, these recent data on PVT1 and circPVT1 functions in hematological malignancies and immune responses reflect two faces of the same coin: involvement in cancer progression by promoting a more aggressive phenotype of malignant cells and negative regulation of the immune system as a novel potential therapy-resistance mechanism.
Collapse
Affiliation(s)
- Martina Ghetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Ivan Vannini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy.
| | | | - Giovanni Martinelli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy
| |
Collapse
|
14
|
Martínez-Barriocanal Á, Arango D, Dopeso H. PVT1 Long Non-coding RNA in Gastrointestinal Cancer. Front Oncol 2020; 10:38. [PMID: 32083000 PMCID: PMC7005105 DOI: 10.3389/fonc.2020.00038] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Whole genome and transcriptome sequencing technologies have led to the identification of many long non-coding RNAs (lncRNAs) and stimulated the research of their role in health and disease. LncRNAs participate in the regulation of critical signaling pathways including cell growth, motility, apoptosis, and differentiation; and their expression has been found dysregulated in human tumors. Thus, lncRNAs have emerged as new players in the initiation, maintenance and progression of tumorigenesis. PVT1 (plasmacytoma variant translocation 1) lncRNA is located on chromosomal 8q24.21, a large locus frequently amplified in human cancers and predictive of increased cancer risk in genome-wide association studies (GWAS). Combined, colorectal and gastric adenocarcinomas are the most frequent tumor malignancies and also the leading cause of cancer-related deaths worldwide. PVT1 expression is elevated in gastrointestinal tumors and correlates with poor patient prognosis. In this review, we discuss the mechanisms of action underlying PVT1 oncogenic role in colorectal and gastric cancer such as MYC upregulation, miRNA production, competitive endogenous RNA (ceRNA) function, protein stabilization, and epigenetic regulation. We also illustrate the potential role of PVT1 as prognostic biomarker and its relationship with resistance to current chemotherapeutic treatments.
Collapse
Affiliation(s)
- Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Zhang Z, Li H, Li J, Lv X, Yang Z, Gao M, Bi Y, Wang S, Cui Z, Zhou B, Yin Z. Polymorphisms in the PVT1 Gene and Susceptibility to the Lung Cancer in a Chinese Northeast Population: a Case-control Study. J Cancer 2020; 11:468-478. [PMID: 31897242 PMCID: PMC6930418 DOI: 10.7150/jca.34320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Long non-coding RNA (lncRNA) PVT1 has been identified to be related to risk of a variety of cancers, such as gastric cancer, pancreatic cancer and follicular lymphoma. This study assesses the association between genetic polymorphisms of PVT1 and the susceptibility to lung cancer as well as gene-environmental interaction. Method: A hospital-based case-control study, including 515 lung cancer patients and 582 healthy controls, was carried out in Shenyang, China. Unconditional logistic regression analyses calculated the odds ratios (ORs) and their 95% confidence intervals (CIs) to assess the associations between polymorphisms of rs2608053, rs1561927, rs13254990 and susceptibility to lung cancer. The gene-environment interaction was evaluated by additive model and multiplicative model. Results: There were no statistically significant associations between rs2608053 and rs1561927 polymorphisms in PVT1 and risk of lung cancer in the overall population. The relationship between polymorphism rs13254990 in PVT1 gene and lung adenocarcinoma was significant. Composed with individuals carrying CC genotypes, TT genotype carriers were more likely to develop lung adenocarcinoma (adjusted OR=2.095; 95%CI=1.084-4.047, P=0.028). In the recessive model, it also showed a statistically significant difference (TT vs CT+CC: adjusted OR=2.251, 95%CI=1.174-4.318, P=0.015). In nonsmokers, individuals carrying genotype CT had a lower risk of lung cancer than those with CC genotype (adjusted OR=0.673, 95%CI=0.472-0.959, P=0.028). Comparing with the homozygous CC, the patients with the heterozygous CT had a lower risk of NCSLC in the non-smoking group (adjusted OR =0.685, 95%CI=0.477-0.984, P=0.040). Additionally, gene-environment interaction results were not statistically significant in either additive model or multiplicative model. Conclusion: The polymorphism rs13254990 in PVT1 gene is associated with the risk of lung adenocarcinoma in a Chinese northeast population.
Collapse
Affiliation(s)
- Ziwei Zhang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Hang Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Juan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Xiaoting Lv
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Zitai Yang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Min Gao
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Yanhong Bi
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Shengli Wang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Zhigang Cui
- School of Nursing, China Medical University, Shenyang 110122, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, PR China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang 110122, PR China
| |
Collapse
|
16
|
Jin K, Wang S, Zhang Y, Xia M, Mo Y, Li X, Li G, Zeng Z, Xiong W, He Y. Long non-coding RNA PVT1 interacts with MYC and its downstream molecules to synergistically promote tumorigenesis. Cell Mol Life Sci 2019; 76:4275-4289. [PMID: 31309249 PMCID: PMC6803569 DOI: 10.1007/s00018-019-03222-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/22/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
Numerous studies have shown that non-coding RNAs play crucial roles in the development and progression of various tumor cells. Plasmacytoma variant translocation 1 (PVT1) mainly encodes a long non-coding RNA (lncRNA) and is located on chromosome 8q24.21, which constitutes a fragile site for genetic aberrations. PVT1 is well-known for its interaction with its neighbor MYC, which is a qualified oncogene that plays a vital role in tumorigenesis. In the past several decades, increasing attention has been paid to the interaction mechanism between PVT1 and MYC, which will benefit the clinical treatment and prognosis of patients. In this review, we summarize the coamplification of PVT1 and MYC in cancer, the positive feedback mechanism, and the latest promoter competition mechanism of PVT1 and MYC, as well as how PVT1 participates in the downstream signaling pathway of c-Myc by regulating key molecules. We also briefly describe the treatment prospects and research directions of PVT1 and MYC.
Collapse
Affiliation(s)
- Ke Jin
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shufei Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yazhuo Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Mengfang Xia
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yi He
- NHC Key Laboratory of Carcinogenesis (Central South University) and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Huang T, Wang M, Huang B, Chang A, Liu F, Zhang Y, Jiang B. Long noncoding RNAs in the mTOR signaling network: biomarkers and therapeutic targets. Apoptosis 2019; 23:255-264. [PMID: 29556906 DOI: 10.1007/s10495-018-1453-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As an evolutionarily conserved serine/threonine kinase of the phosphoinositide 3-kinase (PI3K) related kinase family, the mechanistic/mammalian target of rapamycin (mTOR) plays vital roles in the PI3K/AKT/mTOR pathway, participating in different cellular processes including cell survival, metabolism and proliferation. Aberrant activity of this signaling pathway may lead to oncogenesis. Over the last two decades, great progress has been made in the understanding of mTOR activation and how its response is counteracted for maintaining tissue homeostasis. Besides regulatory proteins and microRNAs, long noncoding RNA (lncRNA) is another emerging critical layer of the intricate modulatory architecture for the control of the mTOR signaling circuit. Also, the production of numerous lncRNAs is induced by mTOR treatment. These findings offer new perspectives for designing novel diagnostic and therapeutic strategies. In this review, we summarize the interactions between the mTOR signaling pathway and lncRNAs in the development and progression of various types of tumors, focusing on the mechanisms of these interactions, and also discuss the potential use of lncRNAs as biomarkers and therapeutic targets for malignancies.
Collapse
Affiliation(s)
- Tinglei Huang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Meiling Wang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Bo Huang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Augustus Chang
- Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Feng Liu
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China
| | - Yanjie Zhang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China.
| | - Bin Jiang
- Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201900, China.
| |
Collapse
|
18
|
Zhang L, Mao J. Long-Chain Noncoding RNA PVT1 Gene Polymorphisms Are Associated with the Risk and Prognosis of Colorectal Cancer in the Han Chinese Population. Genet Test Mol Biomarkers 2019; 23:728-736. [PMID: 31509024 DOI: 10.1089/gtmb.2019.0078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: To investigate the association between long-chain noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) gene polymorphisms and the risk and prognosis of colorectal cancer (CRC) in the Han Chinese population. Methods: A cohort of 225 Han Chinese CRC patients and 225 healthy controls was analyzed for the PVT1 gene genotypes at the loci rs1221464062, rs1366023633, rs1252200336, and rs1273526412. The levels of PVT1 mRNA, hsa-miR-455-5p, and hsa-miR-455-3p in both cancerous tissues and paracancerous normal tissues of the CRC patients were determined by reverse transcription polymerase chain reaction. The survival rate of CRC patients was recorded after 3 years of follow-up. Results: The risk of developing CRC in subjects with the ID genotype of the PVT1 gene locus rs1252200336 was 2.71 times higher compared with the type II genotype; and the D allele was a risk factor for CRC. The survival of CRC patients with the ID/DD genotypes of the PVT1 gene rs1252200336 locus was significantly lower compared with the II genotype. In both the cancerous tissues and the paracancerous normal tissues of CRC patients, the level of lncRNA PVT1 was negatively correlated with the hsa-miR-455-5p and hsa-miR-455-3p levels. In subjects carrying the ID/DD genotypes of the PVT1 gene rs1252200336 locus, the level of the lncRNA PVT1 in cancerous tissues was significantly higher compared with the II genotype, whereas the hsa-miR-455-3p level was significantly lower compared with the II genotype. Conclusion: The PVT1 gene rs1252200336 locus polymorphisms are associated with the risk of developing CRC in the Han Chinese population. The rs1252200336 locus deletion mutation (D) may impact the binding of hsa-miR-455-5p to the lncRNA PVT1 and its role in the development and progression of CRC.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiehong Mao
- Department of Anorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Ogunwobi OO, Kumar A. Chemoresistance Mediated by ceRNA Networks Associated With the PVT1 Locus. Front Oncol 2019; 9:834. [PMID: 31508377 PMCID: PMC6718704 DOI: 10.3389/fonc.2019.00834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Competitive endogenous RNA (ceRNA) networks have emerged as critical regulators of carcinogenesis. Their activity is mediated by various non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, which competitively bind to targets, thereby modulating gene expression and activity of proteins. Of particular interest, ncRNAs encoded by the 8q24 chromosomal region are associated with the development and progression of several human cancers, most prominently lncPVT1. Chemoresistance presents a significant obstacle in the treatment of cancer and is associated with dysregulation of normal cell processes, including abnormal proliferation, differentiation, and epithelial-mesenchymal transition. CeRNA networks have been shown to regulate these processes via both direct sponging/repression and epigenetic mechanisms. Here we present a review of recent literature examining the contribution of ncRNAs encoded by the PVT1 locus and their associated ceRNA networks to the development of resistance to common chemotherapeutic agents used to treat human cancers.
Collapse
Affiliation(s)
- Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Adithya Kumar
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
| |
Collapse
|
20
|
Wang W, Zhou R, Wu Y, Liu Y, Su W, Xiong W, Zeng Z. PVT1 Promotes Cancer Progression via MicroRNAs. Front Oncol 2019; 9:609. [PMID: 31380270 PMCID: PMC6644598 DOI: 10.3389/fonc.2019.00609] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Non-coding RNA (ncRNA) plays a regulatory role in a variety of cellular activities. And long non-coding RNA (lncRNA) is one of the important kinds of ncRNA. Previous studies have shown that various lncRNAs are involved in the progression of cancer. LncRNA plasmacytoma variant translocation 1 (PVT1) is a newly discovered oncogenic factor that has been confirmed to be overexpressed in many cancer cells. Moreover, the role of PVT1 in cancer development is closely linked to microRNAs (miRNAs). PVT1 can act as a "sponge" for miRNAs to inhibit their activities, thereby affecting proliferation, invasion, and angiogenesis of cancer. In addition, PVT1 itself can be spliced and processed into several miRNAs such as miR-1204 and miR-1207, which can also regulate the development of cancer. This review summarizes various pathways through which PVT1 regulates the progression of cancer via miRNAs. We also propose additional regulatory mechanisms of PVT1 and their potential clinical applications.
Collapse
Affiliation(s)
- Wenxi Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ruoyu Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuwei Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yicong Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wenjia Su
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Wang L, Sun L, Wang Y, Yao B, Liu R, Chen T, Tu K, Liu Q, Liu Z. miR-1204 promotes hepatocellular carcinoma progression through activating MAPK and c-Jun/AP1 signaling by targeting ZNF418. Int J Biol Sci 2019; 15:1514-1522. [PMID: 31337980 PMCID: PMC6643133 DOI: 10.7150/ijbs.33658] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence has indicated that abnormal microRNAs (miRNAs) participated in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). Better understanding the association between miRNAs and HCC may contribute to discover novel therapeutic approaches for diagnosis and treatments. In the current study, we have shown that miR-1204 level was elevated in HCC tissues and cell lines, which was associated with malignant clinical features, including large tumor size and advanced TNM stage. Furthermore, gain-or loss-of function assays demonstrated that miR-1204 promoted cell proliferation in vitro and tumor growth in vivo as well as inhibited apoptosis in vitro. Luciferase reporter gene assays confirmed that ZNF418 was a direct downstream target of miR-1204. Recuse assays showed that ZNF418 mediates the biological function of miR-1204 on HCC cells through regulating MAPK and c-Jun signaling. In conclusion, our results suggest that miR-1204 functions as an oncogene to promote proliferation and inhibit apoptosis through regulating MAPK and c-Jun signaling by targeting ZNF418, and potentially serves as a novel prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Liang Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| | - Liankang Sun
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| | - Bowen Yao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| | - Runkun Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710061
| |
Collapse
|
22
|
Zheng Y, Tian X, Wang T, Xia X, Cao F, Tian J, Xu P, Ma J, Xu H, Wang S. Long noncoding RNA Pvt1 regulates the immunosuppression activity of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Mol Cancer 2019; 18:61. [PMID: 30925926 PMCID: PMC6441229 DOI: 10.1186/s12943-019-0978-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background Myeloid-derived suppressor cells (MDSCs) participate in tumor-elicited immunosuppression by dramatically blocking T-cell-induced antitumor responses, thereby influencing the effectiveness of cancer immunotherapies. Treatments that alter the differentiation and function of MDSCs can partially restore antitumor immune responses. The long noncoding RNA plasmacytoma variant translocation 1 (lncRNA Pvt1) is a potential oncogene in a variety of cancer types. However, whether lncRNA Pvt1 is involved in the regulation of MDSCs has not been thoroughly elucidated to date. Methods MDSCs or granulocytic MDSCs (G-MDSCs) were isolated by microbeads and flow cytometry. Bone marrow derived G-MDSCs were induced by IL-6 and GM-CSF. The expression of lncRNA Pvt1 was measured by qRT-PCR. Specific siRNA was used to knockdown the expression of lncRNA Pvt1 in G-MDSCs. Results In this study, we found that knockdown of lncRNA Pvt1 significantly inhibited the immunosuppressive function of G-MDSCs in vitro. Additionally, lncRNA Pvt1 knockdown reduced the ability of G-MDSCs to delay tumor progression in tumor-bearing mice in vivo. Notably, lncRNA Pvt1 was upregulated by HIF-1α under hypoxia in G-MDSCs. Conclusions Taken together, our results demonstrate a critical role for lncRNA Pvt1 in regulating the immunosuppression activity of G-MDSCs, and lncRNA Pvt1 might thus be a potential antitumor immunotherapy target. Electronic supplementary material The online version of this article (10.1186/s12943-019-0978-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xinyu Tian
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tingting Wang
- Department of Laboratory Medicine, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China
| | - Xueli Xia
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Fenghua Cao
- Department of Laboratory Medicine, Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Ping Xu
- Department of Laboratory Medicine, The Fifth People's Hospital of Suzhou, Suzhou, China.
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China. .,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
23
|
MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer. Oncogene 2019; 38:4820-4834. [PMID: 30808975 PMCID: PMC6565506 DOI: 10.1038/s41388-019-0760-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/06/2019] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
Abstract
The chromosome 8q24.21 locus, which contains the proto-oncogene c-MYC, long non-coding RNA PVT1, and microRNAs (miRs), is the most commonly amplified region in human prostate cancer. A long-range interaction of genetic variants with c-MYC or long non-coding PVT1 at this locus contributes to the genetic risk of prostate cancer. At this locus is a cluster of genes for six miRs (miR-1204, −1205, −1206, −1207–3p, −1207–5p, and −1208), but their functional role remains elusive. Here, the copy numbers and expressions of miRs-1204~1208 were investigated using quantitative PCR for prostate cancer cell lines and primary tumors. The data revealed that copy numbers and expression of miR-1205 were increased in both castration-resistant prostate cancer cell lines and in primary tumors. In castration-resistant prostate cancer specimens, the copy number at the miR-1205 locus correlated with expression of miR-1205. Furthermore, functional analysis with an miR-1205 mimic, an miR-1205 inhibitor, and CRISPR/Cas9 knockout revealed that, in human prostate cancer cells, miR-1205 promoted cell proliferation and cell cycle progression and inhibited hydrogen peroxide-induced apoptosis. In these cells, miR-1205 downregulated expression of the Egl-9 family hypoxia inducible factor 3 (EGLN3) gene and targeted a site in its 3’-untranslated region to downregulate its transcriptional activity. Thus, by targeting EGLN3, miR-1205 has an oncogenic role and may contribute to the genetic risk of castration-resistant prostate cancer.
Collapse
|
24
|
Homer-Bouthiette C, Zhao Y, Shunkwiler LB, Van Peel B, Garrett-Mayer E, Baird RC, Rissman AI, Guest ST, Ethier SP, John MC, Powers PA, Haag JD, Gould MN, Smits BMG. Deletion of the murine ortholog of the 8q24 gene desert has anti-cancer effects in transgenic mammary cancer models. BMC Cancer 2018; 18:1233. [PMID: 30526553 PMCID: PMC6288875 DOI: 10.1186/s12885-018-5109-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/19/2018] [Indexed: 01/20/2023] Open
Abstract
Background The gene desert on human chromosomal band 8q24 harbors multiple genetic variants associated with common cancers, including breast cancer. The locus, including the gene desert and its flanking genes, MYC, PVT1 and FAM84B, is also frequently amplified in human breast cancer. We generated a megadeletion (MD) mouse model lacking 430-Kb of sequence orthologous to the breast cancer-associated region in the gene desert. The goals were to examine the effect of the deletion on mammary cancer development and on transcript level regulation of the candidate genes within the locus. Methods The MD allele was engineered using the MICER system in embryonic stem cells and bred onto 3 well-characterized transgenic models for breast cancer, namely MMTV-PyVT, MMTV-neu and C3(1)-TAg. Mammary tumor growth, latency, multiplicity and metastasis were compared between homozygous MD and wild type mice carrying the transgenes. A reciprocal mammary gland transplantation assay was conducted to distinguish mammary cell-autonomous from non-mammary cell-autonomous anti-cancer effects. Gene expression analysis was done using quantitative real-time PCR. Chromatin interactions were evaluated by 3C. Gene-specific patient outcome data were analysed using the METABRIC and TCGA data sets through the cBioPortal website. Results Mice homozygous for the MD allele are viable, fertile, lactate sufficiently to nourish their pups, but maintain a 10% lower body weight mainly due to decreased adiposity. The deletion interferes with mammary tumorigenesis in mouse models for luminal and basal breast cancer. In the MMTV-PyVT model the mammary cancer-reducing effects of the allele are mammary cell-autonomous. We found organ-specific effects on transcript level regulation, with Myc and Fam84b being downregulated in mammary gland, prostate and mammary tumor samples. Through analysis using the METABRIC and TCGA datasets, we provide evidence that MYC and FAM84B are frequently co-amplified in breast cancer, but in contrast with MYC, FAM84B is frequently overexpressed in the luminal subtype, whereas MYC activity affect basal breast cancer outcomes. Conclusion Deletion of a breast cancer-associated non-protein coding region affects mammary cancer development in 3 transgenic mouse models. We propose Myc as a candidate susceptibility gene, regulated by the gene desert locus, and a potential role for Fam84b in modifying breast cancer development. Electronic supplementary material The online version of this article (10.1186/s12885-018-5109-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Collin Homer-Bouthiette
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Yang Zhao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Lauren B Shunkwiler
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Benjamine Van Peel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon Street, Charleston, SC, 29425, USA
| | - Rachael C Baird
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Anna I Rissman
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Stephen T Guest
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA
| | - Manorama C John
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Patricia A Powers
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jill D Haag
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Michael N Gould
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Bart M G Smits
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA.
| |
Collapse
|
25
|
You L, Wang H, Yang G, Zhao F, Zhang J, Liu Z, Zhang T, Liang Z, Liu C, Zhao Y. Gemcitabine exhibits a suppressive effect on pancreatic cancer cell growth by regulating processing of PVT1 to miR1207. Mol Oncol 2018; 12:2147-2164. [PMID: 30341811 PMCID: PMC6275279 DOI: 10.1002/1878-0261.12393] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 09/01/2018] [Accepted: 09/26/2018] [Indexed: 11/10/2022] Open
Abstract
Gemcitabine serves as a first-line chemotherapy agent for advanced pancreatic cancer (PC). However, the molecular basis by which gemcitabine exerts its effects is not well-established, and the targeted genetic pathways remain unclear. Pvt1 oncogene (non-protein coding) (PVT1) has been reported to be an oncogenic long non-coding RNA in tumorigenesis. In the present study, we show that the expression of PVT1 is correlated with gemcitabine efficacy in PC therapy. Inhibition of PVT1 led to decreased cell growth in PC cells treated with gemcitabine. We also demonstrate that gemcitabine treatment decreases PVT1 levels and increases its encoded miRNAs, such as the miR-1207 pair (miR-1207-5p/3p). Overexpression of the miR-1207 pair enhanced the chemosensitivity of cells to gemcitabine, whereas silencing of miR-1207-5p/3p to prevent its induction by gemcitabine treatment led to increased cell growth. Mechanistic studies revealed that miR-1207-5p and miR-1207-3p target the SRC proto-oncogene (non-receptor tyrosine kinase) and ras homolog family member A in PC cells, respectively. In particular, we observed that gemcitabine induced Drosha ribonuclease III (Drosha) and DGCR8 microprocessor complex subunit (DGCR8) upregulation and then triggered PVT1 processing. Suppression of Drosha and DGCR8 contributed to a dampened efficacy of gemcitabine, indicating that gemcitabine decreased PVT1 expression by promoting its processing into miRNAs, which in turn resulted in blunted oncogenic signaling in PC cells. Moreover, we demonstrate that gemcitabine chemoresistance was a result of decreased expression of Drosha and DGCR8 in AsPC-1 cells and tumor cell-engrafted models. Overall, our findings define a novel mechanism for understanding the efficacy of gemcitabine chemotherapy in PC.
Collapse
Affiliation(s)
- Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huanyu Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jingcheng Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Changzheng Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Wani S, Kaul D. Tumorigenic PVT-1 gene locus is governed by miR-2909 RNomics. Cell Biochem Funct 2018; 36:408-412. [PMID: 30318596 DOI: 10.1002/cbf.3360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/18/2018] [Indexed: 02/03/2023]
Abstract
Genomic regulation and functional significance of PVT-1 gene locus, in the MYC-driven cancers, has remained enigmatic ever since its discovery. With the present study, an attempt is made to establish that cellular AATF genome encoded miR-2909 RNomics pathway involving crucial genes coding for KLF4, Deptor, mTORC1, STAT3, and p53 has the inherent capacity to ensure sustained co-amplification of PVT-1 gene locus together with c-Myc gene. Based upon these results, we propose that miR-2909 RNomics pathway may play a crucial role in the regulation of tumorigenic PVT-1 gene locus.
Collapse
Affiliation(s)
- Sameena Wani
- Molecular Biology Unit, Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Deepak Kaul
- Molecular Biology Unit, Experimental Medicine and Biotechnology Department, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
27
|
Chen X, Yang Y, Cao Y, Wu C, Wu S, Su Z, Jin H, Wang D, Zhang G, Fan W, Lin J, Zeng Y, Hu D. lncRNA PVT1 identified as an independent biomarker for prognosis surveillance of solid tumors based on transcriptome data and meta-analysis. Cancer Manag Res 2018; 10:2711-2727. [PMID: 30147369 PMCID: PMC6101015 DOI: 10.2147/cmar.s166260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Long noncoding RNA PVT1 is dysregulated in some human tumors and has been found to increase the risk of tumor progression and poor prognosis. This study aimed to reanalyze the effect of PVT1 on tumorous prognosis. Materials and methods The effect of PVT1 on metastasis and survival were analyzed by univariate logistic regression and Cox proportional hazards model for 32 types of cancer in the Cancer Genome Atlas database (TCGA), and the relationship between PVT1 level and expression of relative genes was assessed by Pearson correlation analysis. RevMan5.3 and STATA14.0 were used to estimate pooled effects of PVT1 on cancer prognosis with data from TCGA and published studies. Results In TCGA data, high PVT1 expression tended to increase the risk of TNM progression and decreased the overall survival (OS) time in most of cancers. The pooled effect of PVT1 on TNM (pooled-OR=1.46, 95% CI: 1.29-1.65) and OS (pooled HR=1.32, 95% CI: 1.22-1.43), calculated from 37 and 48 cohorts, identified that high PVT1 expression promoted the metastasis and poor prognosis of cancer. Furthermore, the pooled ORs of 2.77 (95% CI: 1.65-4.66), 4.32 (95% CI: 1.99-9.36), 1.35 (95% CI: 1.01-1.80), 1.62 (95% CI: 1.21-2.18) and 1.48 (95% CI: 1.02-2.15) provided evidence that PVT1 played a role in lymph node metastasis, depth of invasion, distant metastasis, differentiation and lymphatic invasion; while the expression of 24 identified target genes was significantly associated with PVT1 level, and high PVT1 expression dependently decreased the OS time under the influence of co-expression genes (OR=1.29, 95% CI: 1.25-1.32) in high-throughput RNA sequencing merging data. In addition, the expression of PVT1 could be upregulated by smoking, with the pooled OR being 1.09 (95% CI 1.01-1.16). Conclusion PVT1 is a dependent biomarker for tumorous prognosis surveillance. However, the reference value of PVT1 needs further study.
Collapse
Affiliation(s)
- Xiaoliang Chen
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Yueying Yang
- Science and Education Department, Shenzhen School of the Affiliated High School of Renmin University of China, Shenzhen, China
| | - Yong Cao
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Changjun Wu
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Shuxian Wu
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Zhan Su
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Hongwei Jin
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Dongli Wang
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Gengxin Zhang
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Wei Fan
- Division of Digestive and Liver Disease, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jinbo Lin
- Department of Oncology, Longgang Central Hospital of Shenzhen Affiliated to Zunyi Medical College, Shenzhen, China,
| | - Yunhong Zeng
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Dongsheng Hu
- School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
Takimoto-Shimomura T, Tsukamoto T, Maegawa S, Fujibayashi Y, Matsumura-Kimoto Y, Mizuno Y, Chinen Y, Shimura Y, Mizutani S, Horiike S, Taniwaki M, Kobayashi T, Kuroda J. Dual targeting of bromodomain-containing 4 by AZD5153 and BCL2 by AZD4320 against B-cell lymphomas concomitantly overexpressing c-MYC and BCL2. Invest New Drugs 2018; 37:210-222. [PMID: 29931583 DOI: 10.1007/s10637-018-0623-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/11/2018] [Indexed: 01/18/2023]
Abstract
Despite the recent therapeutic progress, the prognoses of diffuse large B-cell lymphomas (DLBCLs) that concomitantly overexpress c-MYC and BCL2, i.e., double hit lymphoma (DHL) and double expressing lymphoma (DEL), remain poor. This study examined triple targeting of c-MYC, BCL2 and the B-cell receptor (BCR) signaling pathway for DHL and DEL. We first used AZD5153, a novel bivalent inhibitor for bromodomain-containing 4 (BRD4), in DHL- and DEL-derived cell lines, because BRD4 regulates disease type-oriented key molecules for oncogenesis. AZD5153 was more effective than conventional monovalent BRD4 inhibitors, JQ1 and I-BET151, in inhibiting cell proliferation of a DHL-derived cell line and two DEL-derived cell lines, with at least 10-fold lower half growth inhibitory concentrations. AZD5153 caused G1/S cell cycle blockade, while the apoptosis-inducing effect was relatively modest. At the molecular level, AZD5153 was potent in downregulating various molecules for oncogenesis, such as c-MYC, AKT2 and MAP3K; those involved in the BCR signaling pathway, such as CD19, BLNK and CD79B; and those associated with B-cell development, such as IKZF1, IKZF3, PAX5, POU2AF1 and EBF1. In contrast, AZD5153 did not decrease anti-apoptotic BCL2 proteins, and did not activate pro-apoptotic BH3-only proteins, except BAD. To augment cell death induction, we added a novel BH3-mimicking BCL2 inhibitor AZD4320 to AZD5153, and found that these two agents had a mostly synergistic antitumor effect by increasing cells undergoing apoptosis in all three cell lines. These results provide a rationale for dual targeting of BRD4 and BCL2 using AZD5153 and AZD4320 as a therapeutic strategy against DHL and DEL.
Collapse
Affiliation(s)
- Tomoko Takimoto-Shimomura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Saori Maegawa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuto Fujibayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yayoi Matsumura-Kimoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshimi Mizuno
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigeo Horiike
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
29
|
Liu X, Bi L, Wang Q, Wen M, Li C, Ren Y, Jiao Q, Mao JH, Wang C, Wei G, Wang Y. miR-1204 targets VDR to promotes epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 2018; 37:3426-3439. [PMID: 29555976 DOI: 10.1038/s41388-018-0215-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/09/2017] [Accepted: 02/09/2018] [Indexed: 11/08/2022]
Abstract
Plasmacytoma variant translocation 1 (PVT1) is an lncRNA that plays vital roles in breast cancer (BC) pathogenesis. Increasing evidence suggests that miRNAs that reside in the PVT1 locus are the main driver of the oncogenic roles of PVT1 in cancer. However, the oncogenic role and underlying mechanism of miR-1204, located in the PVT1 locus, in human cancer is still unclear. In this study, we discovered that increased expression of miR-1204 is associated with poor prognosis in BC. Moreover, miR-1204 promotes proliferation, epithelial-mesenchymal transition and invasion of BC cells both in vitro and in vivo. Mechanistic investigations demonstrated that VDR is a novel target gene of miR-1204. Interference of VDR restored miR-1204-mediated BC cell proliferation, tumorigenesis, and metastasis. Collectively, our results demonstrated that the miR-1204-VDR pathway exerts oncogenic effects in BC with potential therapeutic applications in blocking BC development and progression.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lei Bi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, 250012, Jinan, China
| | - Mingxin Wen
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Ce Li
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, 264209, Shandong, China
| | - Yidan Ren
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, 264209, Shandong, China
| | - Qinlian Jiao
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, 264209, Shandong, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Guangwei Wei
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yunshan Wang
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, 264209, Shandong, China.
| |
Collapse
|
30
|
Fan H, Zhu JH, Yao XQ. Knockdown of long non‑coding RNA PVT1 reverses multidrug resistance in colorectal cancer cells. Mol Med Rep 2018; 17:8309-8315. [PMID: 29693171 PMCID: PMC5984006 DOI: 10.3892/mmr.2018.8907] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance (MDR) is one of the primary causes of chemotherapy failure in colorectal cancer (CRC), and extensive biological studies into MDR are required. The non-coding RNA plasmacytoma variant translocation 1 (PVT1) has been demonstrated to be associated with low survival rates in patients with CRC. However, whether PVT1 serves a critical function in the MDR of CRC remains to be determined. To determine the association between PVT1 expression and 5-fluorouracil (5-FU) resistance in CRC, the expression levels of PVT1 mRNA in 5-FU-resistant CRC tissues and cell lines (HCT-8/5-FU and HCT-116/5-FU) were assessed by a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cytotoxicity was evaluated using a Cell Counting Kit-8 assay and apoptosis rates were assessed via flow cytometry. In the present study, PVT1 mRNA was highly expressed in 5-FU-resistant CRC tissues and cell lines. HCT-8/5-FU and HCT-116/5-FU cells transfected with small interfering RNA PVT1 and treated with 5-FU exhibited higher apoptotic rates and lower survival rates. By contrast, overexpression of PVT1 in HCT-8 and HCT-116 cells transfected with lentiviral vector-PVT1-green fluorescent protein and treated with 5-FU exhibited lower apoptosis rates and higher survival rates. RT-qPCR and western blotting demonstrated that the overexpression of PVT1 increased the mRNA and protein expression levels of multidrug resistance-associated protein 1, P-glycoprotein, serine/threonine-protein kinase mTOR and apoptosis regulator Bcl2. The present study indicates that PVT1 overexpression may promote MDR in CRC cells, and suggested that inhibition of PVT1 expression may be an effective therapeutic strategy for reversing MDR in CRC.
Collapse
Affiliation(s)
- Heng Fan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian-Hua Zhu
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xue-Qing Yao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
31
|
Arun G, Diermeier SD, Spector DL. Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends Mol Med 2018; 24:257-277. [PMID: 29449148 PMCID: PMC5840027 DOI: 10.1016/j.molmed.2018.01.001] [Citation(s) in RCA: 458] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent a significant population of the human transcriptome. Many lncRNAs exhibit cell- and/or tissue/tumor-specific expression, making them excellent candidates for therapeutic applications. In this review we discuss examples of lncRNAs that demonstrate the diversity of their function in various cancer types. We also discuss recent advances in nucleic acid drug development with a focus on oligonucleotide-based therapies as a novel approach to inhibit tumor progression. The increased success rates of nucleic acid therapeutics provide an outstanding opportunity to explore lncRNAs as viable therapeutic targets to combat various aspects of cancer progression.
Collapse
Affiliation(s)
- Gayatri Arun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; These authors contributed equally
| | - Sarah D Diermeier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; These authors contributed equally
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
32
|
He Y, Jing Y, Wei F, Tang Y, Yang L, Luo J, Yang P, Ni Q, Pang J, Liao Q, Xiong F, Guo C, Xiang B, Li X, Zhou M, Li Y, Xiong W, Zeng Z, Li G. Long non-coding RNA PVT1 predicts poor prognosis and induces radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis 2018; 9:235. [PMID: 29445147 PMCID: PMC5833381 DOI: 10.1038/s41419-018-0265-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
The long non-coding RNA, plasmacytoma variant translocation 1 (PVT1), is highly expressed in a variety of tumors, and is believed to be a potential oncogene. However, the role and mechanism of action of PVT1 in the carcinogenesis and progression of nasopharyngeal carcinomas (NPCs) remains unclear. In this study, for the first time, we have discovered that PVT1 shows higher expression in NPCs than in normal nasopharyngeal epithelial tissue, and patients with NPCs who show higher expression of PVT1 have worse progression-free and overall survivals. Additionally, we observed that the proliferation of NPC cells decreased, and their rate of apoptosis increased; these results indicated that the knockdown of PVT1 expression in the NPC cells induced radiosensitivity. Further, we have shown that the knockdown of PVT1 expression can induce apoptosis in the NPC cells by influencing the DNA damage repair pathway after radiotherapy. In general, our study shows that PVT1 may be a novel biomarker for prognosis and a new target for the treatment of NPCs. Additionally, targeting PVT1 may be a potential strategy for the clinical management of NPC and for the improvement of the curative effect of radiation in NPCs.
Collapse
MESH Headings
- Apoptosis/genetics
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/therapy
- Caspases/genetics
- Caspases/metabolism
- Cell Line, Tumor
- Cell Proliferation
- DNA Repair
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Databases, Genetic
- Follow-Up Studies
- Gamma Rays/therapeutic use
- Gene Expression Regulation, Neoplastic
- Humans
- Nasopharyngeal Carcinoma/diagnosis
- Nasopharyngeal Carcinoma/genetics
- Nasopharyngeal Carcinoma/mortality
- Nasopharyngeal Carcinoma/therapy
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Prognosis
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Radiation Tolerance/genetics
- Signal Transduction
- Survival Analysis
Collapse
Affiliation(s)
- Yi He
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yizhou Jing
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Liting Yang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pei Yang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianxi Ni
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinmeng Pang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
33
|
Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2017; 18:558-576. [PMID: 27345524 PMCID: PMC5862301 DOI: 10.1093/bib/bbw060] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 02/07/2023] Open
Abstract
LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both experimental technology and computational prediction algorithm, thousands of lncRNA have been identified in eukaryotic organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated that lncRNAs are involved in almost the whole life cycle of cells through different mechanisms and play important roles in many critical biological processes. Therefore, it is not surprising that the mutations and dysregulations of lncRNAs would contribute to the development of various human complex diseases. In this review, we first made a brief introduction about the functions of lncRNAs, five important lncRNA-related diseases, five critical disease-related lncRNAs and some important publicly available lncRNA-related databases about sequence, expression, function, etc. Nowadays, only a limited number of lncRNAs have been experimentally reported to be related to human diseases. Therefore, analyzing available lncRNA–disease associations and predicting potential human lncRNA–disease associations have become important tasks of bioinformatics, which would benefit human complex diseases mechanism understanding at lncRNA level, disease biomarker detection and disease diagnosis, treatment, prognosis and prevention. Furthermore, we introduced some state-of-the-art computational models, which could be effectively used to identify disease-related lncRNAs on a large scale and select the most promising disease-related lncRNAs for experimental validation. We also analyzed the limitations of these models and discussed the future directions of developing computational models for lncRNA research.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
- Corresponding authors. Xing Chen, School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China. E-mail: ; Zhu-Hong You, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China. E-mail:
| | | | - Xu Zhang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China
- Corresponding authors. Xing Chen, School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China. E-mail: ; Zhu-Hong You, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China. E-mail:
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
34
|
Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit Rev Oncol Hematol 2017; 120:77-85. [PMID: 29198340 DOI: 10.1016/j.critrevonc.2017.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Long noncoding (lnc)RNAs have emerged as essential mediators of cellular biology, differentiation and malignant transformation. LncRNAs have a broad range of possible functions at the transcriptional, posttranscriptional and protein level and their aberrant expression significantly contributes to the hallmarks of cancer cell biology. In addition, their high tissue- and cell-type specificity makes lncRNAs especially interesting as biomarkers, prognostic factors or specific therapeutic targets. Here, we review current knowledge on lncRNA expression changes during normal B-cell development, indicating essential functions in the differentiation process. In addition we address lncRNA deregulation in B-cell malignancies, the putative prognostic value of this as well as the molecular functions of multiple deregulated lncRNAs. Altogether, the discussed work indicates major roles for lncRNAs in normal and malignant B cells affecting oncogenic pathways as well as the response to common therapeutics.
Collapse
|
35
|
Molecular Crosstalking among Noncoding RNAs: A New Network Layer of Genome Regulation in Cancer. Int J Genomics 2017; 2017:4723193. [PMID: 29147648 PMCID: PMC5632862 DOI: 10.1155/2017/4723193] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past few years, noncoding RNAs (ncRNAs) have been extensively studied because of the significant biological roles that they play in regulation of cellular mechanisms. ncRNAs are associated to higher eukaryotes complexity; accordingly, their dysfunction results in pathological phenotypes, including cancer. To date, most research efforts have been mainly focused on how ncRNAs could modulate the expression of protein-coding genes in pathological phenotypes. However, recent evidence has shown the existence of an unexpected interplay among ncRNAs that strongly influences cancer development and progression. ncRNAs can interact with and regulate each other through various molecular mechanisms generating a complex network including different species of RNAs (e.g., mRNAs, miRNAs, lncRNAs, and circRNAs). Such a hidden network of RNA-RNA competitive interactions pervades and modulates the physiological functioning of canonical protein-coding pathways involved in proliferation, differentiation, and metastasis in cancer. Moreover, the pivotal role of ncRNAs as keystones of network structural integrity makes them very attractive and promising targets for innovative RNA-based therapeutics. In this review we will discuss: (1) the current knowledge on complex crosstalk among ncRNAs, with a special focus on cancer; and (2) the main issues and criticisms concerning ncRNAs targeting in therapeutics.
Collapse
|
36
|
MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood 2017; 130:1290-1301. [PMID: 28751524 DOI: 10.1182/blood-2016-10-697698] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematologic malignancy characterized by the uncontrolled growth of immature myeloid cells. Over the past several decades, we have learned a tremendous amount regarding the genetic aberrations that govern disease development in AML. Among these are genes that encode noncoding RNAs, including the microRNA (miRNA) family. miRNAs are evolutionarily conserved small noncoding RNAs that display important physiological effects through their posttranscriptional regulation of messenger RNA targets. Over the past decade, studies have identified miRNAs as playing a role in nearly all aspects of AML disease development, including cellular proliferation, survival, and differentiation. These observations have led to the study of miRNAs as biomarkers of disease, and efforts to therapeutically manipulate miRNAs to improve disease outcome in AML are ongoing. Although much has been learned regarding the importance of miRNAs in AML disease initiation and progression, there are many unanswered questions and emerging facets of miRNA biology that add complexity to their roles in AML. Moving forward, answers to these questions will provide a greater level of understanding of miRNA biology and critical insights into the many translational applications for these small regulatory RNAs in AML.
Collapse
|
37
|
Zhang XW, Liu L, Zhang XZ, Bo P. Kanglaite inhibits the expression of drug resistance genes through suppressing PVT1 in cisplatin-resistant gastric cancer cells. Exp Ther Med 2017; 14:1789-1794. [PMID: 28810651 DOI: 10.3892/etm.2017.4650] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/01/2017] [Indexed: 01/08/2023] Open
Abstract
Kanglaite (KLT) was shown to alleviate the development of multidrug resistance (MDR) clinically. The purpose of this study is to examine the mechanism of KLT for chemotherapy resistance in gastric cancer cells involving the regulation of MDR-related proteins. The cisplatin-resistant BGC823/DPP and SGC7901/DDP cells were treated with 1, 2.5 and 5 µl/ml of KLT for 24, 36 and 48 h. Cell Counting Kit-8 (CCK-8) assay and flow cytometry were performed to detect the cell viability and cell apoptosis, respectively. The expression of MDR1 and multidrug resistance associated protein 1 (MRP1) were examined by quantitative PCR and western blotting in BGC823/DPP cells and SGC7901/DDP cells treated with KLT. The effect of KLT on the expression of PVT1 was investigated. PVT1-overexpression vector was constructed and transfected into BGC823/DPP cells and SGC7901/DDP cells which were treated with KLT. KLT inhibited the cell viability and promoted the cell apoptosis of BGC823/DPP cells and SGC7901/DDP cells in a concentration-dependent manner. KLT suppressed the expression of MDR1 and MRP1 and the level of PVT1. PVT1 overexpression reversed the increased percentage of apoptotic cells induced by KLT. Finally, we found that PVT1 overexpression also abrogated the effect of KLT on the mRNA level and protein level of MDR1 and MRP1 in BGC823/DPP and SGC7901/DDP cells. KLT inhibited the expression of MDR1 and MRP1 via suppressing the expression of PVT1, which suggested the potential mechanism of KLT involving in MDR in gastric cancer.
Collapse
Affiliation(s)
- Xian-Wen Zhang
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.,Department of Oncology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225009, P.R. China
| | - Liang Liu
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xi-Zhi Zhang
- Department of Oncology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225009, P.R. China
| | - Ping Bo
- Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
38
|
Guo K, Yao J, Yu Q, Li Z, Huang H, Cheng J, Wang Z, Zhu Y. The expression pattern of long non-coding RNA PVT1 in tumor tissues and in extracellular vesicles of colorectal cancer correlates with cancer progression. Tumour Biol 2017; 39:1010428317699122. [PMID: 28381186 DOI: 10.1177/1010428317699122] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The plasmacytoma variant translocation 1 gene (PVT1) is a large non-coding locus at adjacent of c-Myc, and long non-coding RNA PVT1 is now recognized as a cancerous gene co-amplified with c-Myc in various cancers. But the expression and functional role of PVT1 in colorectal cancer are still unelucidated. In addition, all the reported long non-coding RNAs so far are discovered in either cells or tissues, but no research about long non-coding RNAs detection in extracellular vesicles has been reported yet. In the present study, we firstly investigated the expression of PVT1 in colorectal cancer specimens and its correlation with the expression of c-Myc and other related genes by real-time polymerase chain reaction. Then, we isolated the extracellular vesicles from colorectal cancer cells culturing medium by differential centrifugation and detected the PVT1 expression in extracellular vesicles by using real-time polymerase chain reaction. The PVT1 targeting siRNA was transfected into SW480 and SW620 cells, and 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay and flow cytometry were used to evaluate the cell proliferation and apoptosis. The results showed that the PVT1 expression in tumor tissues was higher than that in normal tissues, which was significantly correlated with the expression of c-Myc and three c-Myc regulating genes FUBP1, EZH2, and NPM1 and also correlated with the expression of two other PVT1-associated transcript factors nuclear factor-κB and myocyte-specific enhancer factor 2A. Here, we reported for the first time that PVT1 as a long non-coding RNA was successfully detected in extracellular vesicles excluded from SW620 and SW480 cells, and the expression level of PVT1 was higher in extracellular vesicles from the more aggressive cell SW620 than from SW480. The results also showed that by down-regulating the PVT1 expression, the c-Myc expression was suppressed, the cell proliferation was inhibited, and cell apoptosis was increased. Taken together, these findings implicated that PVT1 may be a new oncogene co-amplified with c-Myc in colorectal cancer tissues and extracellular vesicles and functionally correlated with the proliferation and apoptosis of colorectal cancer cells.
Collapse
Affiliation(s)
- Kai Guo
- Department of Gastroenterology, The 161th Hospital of PLA, Wuhan, China
| | - Jie Yao
- Department of Oncology, The 161th Hospital of PLA, Wuhan, China
| | - Qiang Yu
- Department of Hepatobiliary Surgery, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| | - Zijian Li
- Department of Oncology, The 161th Hospital of PLA, Wuhan, China
| | - Hu Huang
- Department of Oncology, The 161th Hospital of PLA, Wuhan, China
| | - Jianguo Cheng
- Department of Gastroenterology, The 161th Hospital of PLA, Wuhan, China
| | - Zhigang Wang
- Department of Oncology, The 161th Hospital of PLA, Wuhan, China
| | - Yunfeng Zhu
- Department of Hepatobiliary Surgery, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing, China
| |
Collapse
|
39
|
Wei S, Wang K. Long noncoding RNAs: pivotal regulators in acute myeloid leukemia. Exp Hematol Oncol 2016; 5:30. [PMID: 27999732 PMCID: PMC5153810 DOI: 10.1186/s40164-016-0059-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/03/2016] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as a class of pivotal regulators of gene expression. Recent studies have shown that lncRNAs contribute to the initiation, maintenance, and development of acute myeloid leukemia (AML). In this review, we summarize the current knowledge of the lncRNAs that play critical roles in AML. We first briefly describe the characteristics of lncRNAs, and then focus on their regulatory roles in AML, including the modulation of differentiation, proliferation, cell cycle, and apoptosis. We further emphasize the action of lncRNAs during leukemogenesis by describing how they interact with RNA, protein and chromatin DNA to exert their functions. We also highlight an urgent need to investigate the mechanisms by which lncRNAs contribute to the pathogenesis of AML. Finally, we discuss the prognostic value of lncRNAs in AML patients.
Collapse
Affiliation(s)
- Shuyong Wei
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025 China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Rd, Shanghai, 200025 China ; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
40
|
Zhong Y, Gao D, He S, Shuai C, Peng S. Dysregulated Expression of Long Noncoding RNAs in Ovarian Cancer. Int J Gynecol Cancer 2016; 26:1564-1570. [PMID: 27603915 PMCID: PMC5084630 DOI: 10.1097/igc.0000000000000828] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer is the leading cause of death among women with gynecologic malignancies. The development and progression of ovarian cancer are complex and a multiple-step process. New biomarker molecules for diagnostic and prognostic are essential for novel therapeutic targets and to extend the survival time of patients with ovarian cancer. Long noncoding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides that have recently been found as key regulators of various biological processes and to be involved in the development and progression of many diseases including cancers. In this review, we summarized the expression pattern of several dysregulated lncRNAs (HOTAIR, H19, XIST, and HOST2) and the functional molecular mechanism of these lncRNAs on the initiation and progression of ovarian cancer. The lncRNAs as biomarkers may be used for current and future clinical diagnosis, therapeutics, and prognosis.
Collapse
Affiliation(s)
- Yancheng Zhong
- *The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, †The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, ‡Hunan Key Laboratory of Nonresolving Inflammation and Cancer, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China, and §State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Dan Gao
- *The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, †The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, ‡Hunan Key Laboratory of Nonresolving Inflammation and Cancer, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China, and §State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Shiwei He
- *The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, †The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, ‡Hunan Key Laboratory of Nonresolving Inflammation and Cancer, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China, and §State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Cijun Shuai
- *The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, †The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, ‡Hunan Key Laboratory of Nonresolving Inflammation and Cancer, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China, and §State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| | - Shuping Peng
- *The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, †The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, ‡Hunan Key Laboratory of Nonresolving Inflammation and Cancer, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China, and §State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
| |
Collapse
|
41
|
Liu HT, Fang L, Cheng YX, Sun Q. LncRNA PVT1 regulates prostate cancer cell growth by inducing the methylation of miR-146a. Cancer Med 2016; 5:3512-3519. [PMID: 27794184 PMCID: PMC5224852 DOI: 10.1002/cam4.900] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 01/19/2023] Open
Abstract
Prostate cancer is the third most common causes of death from cancer in men. Our previous study demonstrated that lncRNA PVT1 was overexpressed and played an oncogenic role in the progression of prostate cancer. However, the molecular mechanism of modulating the prostate cancer tumorigenesis was still unknown. In this study, we aim to investigate the interaction between PVT1 and miR-146a in prostate cancer and reveal the potential mechanism in prostate cancer carcinogenesis. The expression level of miR-146a was assessed by quantitative RT-PCR. The correlation analysis and methylation status analysis was made to confirm the interaction between PVT1 and miR-146a. Biological function analysis was performed through gain-of-function and loss-of-function strategies. Our results showed that miR-146a was downregulated and negatively correlated with PVT1 level in prostate cancer. PVT1 mediated miR-146a expression by inducing the methylation of CpG Island in its promoter. miR-146a overexpression eliminated the effects of PVT1 knockdown on prostate cancer cells. PVT1 regulated prostate cancer cell viability and apoptosis depending on miR-146a. Our study suggested a regulatory relationship between lncRNA PVT1 and miR-146a during the process of the prostate cancer tumorigenesis. PVT1 regulated prostate cancer cell viability and apoptosis depending on miR-146a. It would contribute to the diagnosis, treatment and prognosis of prostate cancer.
Collapse
Affiliation(s)
- Hong-Tao Liu
- Department of Pathology, Qian-fo-shan Hospital Affiliated to Shandong University, No. 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Lei Fang
- Department of Pathology, Qian-fo-shan Hospital Affiliated to Shandong University, No. 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Yu-Xia Cheng
- Department of Pathology, Qian-fo-shan Hospital Affiliated to Shandong University, No. 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Qing Sun
- Department of Pathology, Qian-fo-shan Hospital Affiliated to Shandong University, No. 16766 Jingshi Road, Jinan, Shandong, 250014, China
| |
Collapse
|
42
|
Upchurch GM, Haney SL, Opavsky R. Aberrant Promoter Hypomethylation in CLL: Does It Matter for Disease Development? Front Oncol 2016; 6:182. [PMID: 27563627 PMCID: PMC4980682 DOI: 10.3389/fonc.2016.00182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL.
Collapse
Affiliation(s)
- Garland Michael Upchurch
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center , Omaha, NE , USA
| | - Staci L Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center , Omaha, NE , USA
| | - Rene Opavsky
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
43
|
Iden M, Fye S, Li K, Chowdhury T, Ramchandran R, Rader JS. The lncRNA PVT1 Contributes to the Cervical Cancer Phenotype and Associates with Poor Patient Prognosis. PLoS One 2016; 11:e0156274. [PMID: 27232880 PMCID: PMC4883781 DOI: 10.1371/journal.pone.0156274] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
The plasmacytoma variant translocation 1 gene (PVT1) is an lncRNA that has been designated as an oncogene due to its contribution to the phenotype of multiple cancers. Although the mechanism by which PVT1 influences disease processes has been studied in multiple cancer types, its role in cervical tumorigenesis remains unknown. Thus, the present study was designed to investigate the role of PVT1 in cervical cancer in vitro and in vivo. PVT1 expression was measured by quantitative PCR (qPCR) in 121 invasive cervical carcinoma (ICC) samples, 30 normal cervix samples, and cervical cell lines. Functional assays were carried out using both siRNA and LNA-mediated knockdown to examine PVT1's effects on cervical cancer cell proliferation, migration and invasion, apoptosis, and cisplatin resistance. Our results demonstrate that PVT1 expression is significantly increased in ICC tissue versus normal cervix and that higher expression of PVT1 correlates with poorer overall survival. In cervical cancer cell lines, PVT1 knockdown resulted in significantly decreased cell proliferation, migration and invasion, while apoptosis and cisplatin cytotoxicity were significantly increased in these cells. Finally, we show that PVT1 expression is augmented in response to hypoxia and immune response stimulation and that this lncRNA associates with the multifunctional and stress-responsive protein, Nucleolin. Collectively, our results provide strong evidence for an oncogenic role of PVT1 in cervical cancer and lend insight into potential mechanisms by which PVT1 overexpression helps drive cervical carcinogenesis.
Collapse
Affiliation(s)
- Marissa Iden
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Samantha Fye
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Keguo Li
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Tamjid Chowdhury
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Ramani Ramchandran
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Janet S. Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
44
|
Haney SL, Upchurch GM, Opavska J, Klinkebiel D, Hlady RA, Suresh A, Pirruccello SJ, Shukla V, Lu R, Costinean S, Rizzino A, Karpf AR, Joshi S, Swanson P, Opavsky R. Promoter Hypomethylation and Expression Is Conserved in Mouse Chronic Lymphocytic Leukemia Induced by Decreased or Inactivated Dnmt3a. Cell Rep 2016; 15:1190-201. [PMID: 27134162 DOI: 10.1016/j.celrep.2016.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/18/2016] [Accepted: 03/28/2016] [Indexed: 01/06/2023] Open
Abstract
DNA methyltransferase 3a (DNMT3A) catalyzes the formation of 5-methyl-cytosine in mammalian genomic DNA, and it is frequently mutated in human hematologic malignancies. Bi-allelic loss of Dnmt3a in mice results in leukemia and lymphoma, including chronic lymphocytic leukemia (CLL). Here, we investigate whether mono-allelic loss of Dnmt3a is sufficient to induce disease. We show that, by 16 months of age, 65% of Dnmt3a(+/-) mice develop a CLL-like disease, and 15% of mice develop non-malignant myeloproliferation. Genome-wide methylation analysis reveals that reduced Dnmt3a levels induce promoter hypomethylation at similar loci in Dnmt3a(+/-) and Dnmt3a(Δ/Δ) CLL, suggesting that promoters are particularly sensitive to Dnmt3a levels. Gene expression analysis identified 26 hypomethylated and overexpressed genes common to both Dnmt3a(+/-) and Dnmt3a(Δ/Δ) CLL as putative oncogenic drivers. Our data provide evidence that Dnmt3a is a haplo-insufficient tumor suppressor in CLL and highlights the importance of deregulated molecular events in disease pathogenesis.
Collapse
Affiliation(s)
- Staci L Haney
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - G Michael Upchurch
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jana Opavska
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ryan A Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Abhinav Suresh
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Samuel J Pirruccello
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vipul Shukla
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Runqing Lu
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Stefan Costinean
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adam R Karpf
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shantaram Joshi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Patrick Swanson
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68102, USA
| | - Rene Opavsky
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
45
|
Farhana L, Antaki F, Anees MR, Nangia-Makker P, Judd S, Hadden T, Levi E, Murshed F, Yu Y, Van Buren E, Ahmed K, Dyson G, Majumdar APN. Role of cancer stem cells in racial disparity in colorectal cancer. Cancer Med 2016; 5:1268-78. [PMID: 26990997 PMCID: PMC4924385 DOI: 10.1002/cam4.690] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/16/2022] Open
Abstract
Although African‐Americans (AAs) have a higher incidence of colorectal cancer (CRC) than White people, the underlying biochemical mechanisms for this increase are poorly understood. The current investigation was undertaken to examine whether differences in self‐renewing cancer stem/stem‐like cells (CSCs) in the colonic mucosa, whose stemness is regulated by certain microRNAs (miRs), could partly be responsible for the racial disparity in CRC. The study contains 53 AAs and 47 White people. We found the number of adenomas and the proportion of CD44+CD166− CSC phenotype in the colon to be significantly higher in AAs than White people. MicroRNAs profile in CSC‐enriched colonic mucosal cells, expressed as ratio of high‐risk (≥3 adenomas) to low‐risk (no adenoma) CRC patients revealed an 8‐fold increase in miR‐1207‐5p in AAs, compared to a 1.2‐fold increase of the same in White people. This increase in AA was associated with a marked rise in lncRNA PVT1 (plasmacytoma variant translocation 1), a host gene of miR‐1207‐5p. Forced expression of miR‐1207‐5p in normal human colonic epithelial cells HCoEpiC and CCD841 produced an increase in stemness, as evidenced by morphologically elongated epithelial mesenchymal transition( EMT) phenotype and significant increases in CSC markers (CD44, CD166, and CD133) as well as TGF‐β, CTNNB1, MMP2, Slug, Snail, and Vimentin, and reduction in Twist and N‐Cadherin. Our findings suggest that an increase in CSCs, specifically the CD44+CD166− phenotype in the colon could be a predisposing factor for the increased incidence of CRC among AAs. MicroRNA 1207‐5p appears to play a crucial role in regulating stemness in colonic epithelial cells in AAs.
Collapse
Affiliation(s)
- Lulu Farhana
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201.,Department of Internal Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Fadi Antaki
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201
| | - Mohammad R Anees
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201
| | - Pratima Nangia-Makker
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201.,Karmanos Cancer Center, Detroit, Michigan, 48201.,Department of Internal Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Stephanie Judd
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201
| | - Timothy Hadden
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201.,Department of Internal Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Edi Levi
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201.,Department of Pathology, Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Farhan Murshed
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201
| | - Yingjie Yu
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201.,Department of Internal Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Eric Van Buren
- Karmanos Cancer Center, Detroit, Michigan, 48201.,Department of Internal Medicine, Wayne State University, Detroit, Michigan, 48201
| | - Kulsoom Ahmed
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201
| | | | - Adhip P N Majumdar
- Department of Veterans Affairs Medical Center, 4646 John R, Detroit, Michigan, 48201.,Karmanos Cancer Center, Detroit, Michigan, 48201.,Department of Internal Medicine, Wayne State University, Detroit, Michigan, 48201
| |
Collapse
|
46
|
Cui M, You L, Ren X, Zhao W, Liao Q, Zhao Y. Long non-coding RNA PVT1 and cancer. Biochem Biophys Res Commun 2016; 471:10-4. [DOI: 10.1016/j.bbrc.2015.12.101] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
|
47
|
Askarian-Amiri ME, Leung E, Finlay G, Baguley BC. The Regulatory Role of Long Noncoding RNAs in Cancer Drug Resistance. Methods Mol Biol 2016; 1395:207-27. [PMID: 26910076 DOI: 10.1007/978-1-4939-3347-1_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent genomic and transcriptomic analysis has revealed that the majority of the human genome is transcribed as nonprotein-coding RNA. These transcripts, known as long noncoding RNA, have structures similar to those of mRNA. Many of these transcripts are now thought to have regulatory roles in different biological pathways which provide cells with an additional layer of regulatory complexity in gene expression and proteome function in response to stimuli. A wide variety of cellular functions may thus depend on the fine-tuning of interactions between noncoding RNAs and other key molecules in cell signaling networks. Deregulation of many noncoding RNAs is thought to occur in a variety of human diseases, including neoplasia and cancer drug resistance. Here we discuss recent findings on the molecular functions of long noncoding RNAs in cellular pathways mediating resistance to anticancer drugs.
Collapse
Affiliation(s)
- Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand. .,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Graeme Finlay
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.,Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
48
|
Zhuang C, Li J, Liu Y, Chen M, Yuan J, Fu X, Zhan Y, Liu L, Lin J, Zhou Q, Xu W, Zhao G, Cai Z, Huang W. Tetracycline-inducible shRNA targeting long non-coding RNA PVT1 inhibits cell growth and induces apoptosis in bladder cancer cells. Oncotarget 2015; 6:41194-203. [PMID: 26517688 PMCID: PMC4747399 DOI: 10.18632/oncotarget.5880] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/28/2015] [Indexed: 02/05/2023] Open
Abstract
Recent studies show that long non-coding RNAs (lncRNAs) may be significant functional regulators in tumor development, including bladder cancer. Here, we found that PVT1 was upregulated in bladder cancer tissues and cells. Further experiments revealed that PVT1 promoted cell proliferation and suppressed cell apoptosis. Furthermore we also used the emerging technology, synthetic biology, to create tetracycline-inducible small hairpin RNA (shRNA) vectors which silenced PVT1 in a dosage-dependent manner to inhibit the progression of bladder cancer. In conclusion, data suggest that PVT1 could be an oncogene and may be a therapeutic target in bladder cancer. Synthetic "tetracycline-on" switch system can be used to quantitatively control the expression of PVT1 in bladder cancer in response to different concentration of doxycycline to suppress the progression of bladder cancer.
Collapse
Affiliation(s)
- Chengle Zhuang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
- Shantou University Medical College, Shantou 515041, Guangdong Province, People's Republic of China
| | - Jianfa Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
- Shantou University Medical College, Shantou 515041, Guangdong Province, People's Republic of China
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Mingwei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
- Anhui Medical University, Hefei 230601, Anhui Province, People's Republic of China
| | - Jiancheng Yuan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Xing Fu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Yonghao Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Li Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Junhao Lin
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Qing Zhou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Wen Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Guoping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Centerat Shanghai, Shanghai 200000, Shanghai, People's Republic of China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen 518039, Guangdong Province, People's Republic of China
| |
Collapse
|
49
|
Liu E, Liu Z, Zhou Y, Mi R, Wang D. Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways. Int J Clin Exp Med 2015; 8:20565-20572. [PMID: 26884974 PMCID: PMC4723819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Cisplatin is a very effective cancer chemotherapy drug, but cisplatin resistance is a crucial problem of therapy failure. Overexpression of PVT1 has been demonstrated in ovarian cancer. The mRNA level of PVT1 in ovarian cancer tissues of cisplatin-resistant patients and cisplatin-sensitive patients, cisplatin-resistant cells SKOV-3/DDP and A2780/DDP, cisplatin-sensitive cells SKOV-3 and A2780 were determined by qRT-PCR. The influence of the knockdown or overexpression of PVT1 on cisplatin resistance was measured by measuring the cytotoxicity of cisplatin and the apoptotic rate of ovarian cancer cells was detected by CCK-8 assay and flow cytometry, respectively. The mRNA levels and protein expression of TGF-β1, Smad4, p-Smad4 and Caspase-3 in apoptotic pathways were determined. The mRNA level of PVT1 was significantly higher in ovarian cancer tissues of cisplatin-resistant patients and cisplatin-resistant cells. SKOV-3/DDP and A2780/DDP cell viability and the percentage of apoptotic cells after transfection with PVT-1 siRNA and treated with cisplatin was markedly lower and higher than the control, respectively. Moreover, the overexpression of PVT1 exhibited the anti-apoptotic property in SKOV-3 and A2780 cells after transfection with LV-PVT1-GFP and treated with cisplatin. The mRNA levels and protein expression of TGF-β1, p-Smad4 and Caspase-3 were much higher in cisplatin-resistant cells transfected with siPVT1. Overexpression of LncRNA PVT1 in ovarian cancer promotes cisplatin resistance by regulating apoptotic pathways.
Collapse
Affiliation(s)
- Enling Liu
- Department of Obstetrics and Gynecology, Tangshan Gongren Hospital Affiliated to Hebei Medical UniversityTangshan 063000, Hebei, China
| | - Zheng Liu
- Clinical Medical Program 2011, Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Yuxiu Zhou
- Department of Immunology, Tangshan Gongren Hospital Affiliated to Hebei Medical UniversityTangshan 063000, Hebei, China
| | - Ruoran Mi
- Department of Obstetrics and Gynecology, General Hospital of Tianjin Medical UniversityTianjin 300052, China
| | - Dehua Wang
- Department of Obstetrics and Gynecology, General Hospital of Tianjin Medical UniversityTianjin 300052, China
| |
Collapse
|
50
|
Yang Z, Guo X, Li G, Shi Y, Li L. Long noncoding RNAs as potential biomarkers in gastric cancer: Opportunities and challenges. Cancer Lett 2015; 371:62-70. [PMID: 26577810 DOI: 10.1016/j.canlet.2015.11.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is a major threat to human health, and its prognosis is poor due to the lack of appropriate biomarkers. LncRNAs are a group of non-protein-coding RNAs that regulate gene expression at the transcriptional or posttranscriptional level. LncRNAs play essential roles in GC initiation and development in the same way as oncogenes or tumour suppressor genes. Recent investigations have revealed that lncRNAs are often aberrantly expressed in GC; are involved in cell proliferation, apoptosis, migration and invasion; and correlate with the malignant phenotype of GC. LncRNAs, especially the lncRNAs present in the blood and gastric juice, show potential value as biomarkers for the diagnosis of GC or for determining disease prognosis. However, there are still many challenges to be faced before lncRNAs can be used in clinical applications. In this review, we summarise lncRNAs as the potential biomarkers for GC and the current challenges associated with the clinical application.
Collapse
Affiliation(s)
- Ziguo Yang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaobo Guo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.
| | - Guimei Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Yulong Shi
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| |
Collapse
|