1
|
Tatar E, Yaldız S, Kulabaş N, Vanderlinden E, Naesens L, Küçükgüzel İ. Synthesis and structure-activity relationship of L-methionine-coupled 1,3,4-thiadiazole derivatives with activity against influenza virus. Chem Biol Drug Des 2021; 99:398-415. [PMID: 34873848 DOI: 10.1111/cbdd.13995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
In previous investigations, we identified a class of 1,3,4-thiadiazole derivatives with antiviral activity. N-{3-(Methylsulfanyl)-1-[5-(phenylamino)-1,3,4-thiadiazole-2-yl]propyl}benzamide emerged as a relevant lead compound for designing novel influenza A virus inhibitors. In the present study, we elaborated on this initial lead by performing chemical synthesis and antiviral evaluation of a series of structural analogues. During this research, thirteen novel 1,3,4-thiadiazole derivatives were synthesized by the cyclization of the corresponding thiosemicarbazides as synthetic precursors. The structures and the purities of the synthesized compounds were confirmed through chromatographic and spectral data. Four L-methionine-based 1,3,4-thiadiazole derivatives displayed activity against influenza A virus, the two best compounds being 24 carrying a 5-(4-chlorophenylamino)-1,3,4-thiadiazole moiety and 30 possessing a 5-(benzoylamino)-1,3,4-thiadiazole structure [antiviral EC50 against influenza A/H3N2 virus: 4.8 and 7.4 µM, respectively]. The 1,3,4-thiadiazole derivatives were inactive against influenza B virus and a wide panel of unrelated DNA and RNA viruses. Compound 24 represents a new class of selective influenza A virus inhibitors acting during the virus entry process, as evidenced by our findings in a time-of-addition assay. Molecular descriptors and in silico prediction of ADMET properties of the active compounds were calculated. According to in silico ADMET and drug similarity studies, active compounds have been estimated to be good candidates for oral administration with no apparent toxicity considerations.
Collapse
Affiliation(s)
- Esra Tatar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Seda Yaldız
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Necla Kulabaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - Evelien Vanderlinden
- Laboratory of Virology and Chemotherapy, KU Leuven Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy, KU Leuven Rega Institute, Leuven, Belgium
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| |
Collapse
|
2
|
Wang Y, Guo C, Wang X, Xu L, Li R, Wang J. The Zinc Content of HIV-1 NCp7 Affects Its Selectivity for Packaging Signal and Affinity for Stem-Loop 3. Viruses 2021; 13:v13101922. [PMID: 34696351 PMCID: PMC8540335 DOI: 10.3390/v13101922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The nucleocapsid (NC) protein of human immunodeficiency (HIV) is a small, highly basic protein containing two CCHC zinc-finger motifs, which is cleaved from the NC domain of the Gag polyprotein during virus maturation. We previously reported that recombinant HIV-1 Gag and NCp7 overexpressed in an E. coli host contains two and one zinc ions, respectively, and Gag exhibited much higher selectivity for packaging signal (Psi) and affinity for the stem-loop (SL)-3 of Psi than NCp7. In this study, we prepared NCp7 containing 0 (0NCp7), 1 (NCp7) or 2 (2NCp7) zinc ions, and compared their secondary structure, Psi-selectivity and SL3-affinity. Along with the decrease of the zinc content, less ordered conformations were detected. Compared to NCp7, 2NCp7 exhibited a much higher Psi-selectivity and SL3-affinity, similar to Gag, whereas 0NCp7 exhibited a lower Psi-selectivity and SL3-affinity, similar to the H23&H44K double mutant of NCp7, indicating that the different RNA-binding property of Gag NC domain and the mature NCp7 may be resulted, at least partially, from their different zinc content. This study will be helpful to elucidate the critical roles that zinc played in the viral life cycle, and benefit further investigations of the functional switch from the NC domain of Gag to the mature NCp7.
Collapse
Affiliation(s)
- Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Chao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China;
| | - Xing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
| | - Lianmei Xu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
| | - Rui Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
| | - Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
- Correspondence:
| |
Collapse
|
3
|
Feng Z, Yang Z, Gao X, Xue Y, Wang X. Resveratrol Promotes HIV-1 Tat Accumulation via AKT/FOXO1 Signaling Axis and Potentiates Vorinostat to Antagonize HIV-1 Latency. Curr HIV Res 2021; 19:238-247. [PMID: 33461468 DOI: 10.2174/1570162x19666210118151249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The latent reservoir of HIV-1 is a major barrier to achieving the eradication of HIV-1/AIDS. One strategy is termed "shock and kill", which aims to awaken the latent HIV-1 using latency reversing agents (LRAs) to replicate and produce HIV-1 particles. Subsequently, the host cells containing HIV-1 can be recognized and eliminated by the immune response and anti-retroviral therapy. Although many LRAs have been found and tested, their clinical trials were dissatisfactory. OBJECTIVE To aim of the study was to investigate how resveratrol reactivates silent HIV-1 transcription and assess if resveratrol could be a candidate drug for the "shock" phase in "shock and kill" strategy. METHODS We used established HIV-1 transcription cell models (HeLa-based NH1 and NH2 cells) and HIV-1 latent cell models (J-Lat A72 and Jurkat 2D10 cells). We performed resveratrol treatment on these cell lines and studied the mechanism of how resveratrol stimulates HIV-1 gene transcription. We also tested resveratrol's bioactivity on primary cells isolated from HIV-1 latent infected patients. RESULTS Resveratrol promoted HIV-1 Tat protein levels, and resveratrol-induced Tat promotion was found to be dependent on the AKT/FOXO1 signaling axis. Resveratrol could partially dissociate P-TEFb (Positive Transcription Elongation Factor b) from 7SK snRNP (7SK small nuclear Ribonucleoprotein) and promote Tat-SEC (Super Elongation Complex) interaction. Preclinical studies showed that resveratrol potentiated Vorinostat to awaken HIV-1 latency in HIV-1 latent infected cells isolated from patients. CONCLUSION We found a new mechanism of resveratrol stimulating the production of HIV-1. Resveratrol could be a promising candidate drug to eradicate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Zeming Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhengrong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaohui Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
4
|
Monette A, Mouland AJ. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses 2020; 12:E1179. [PMID: 33081049 PMCID: PMC7589941 DOI: 10.3390/v12101179] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
5
|
Guo C, Yao X, Wang K, Wang J, Wang Y. Comparison of HIV-1 Gag and NCp7 in their selectivity for package signal, affinity for stem-loop 3, and Zn 2+ content. Biochimie 2020; 179:135-145. [PMID: 32987107 DOI: 10.1016/j.biochi.2020.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag recognizes viral packaging signal (Psi) specifically via its nucleocapsid (NC) domain, resulting in the encapsidation of two copies of genomic RNA (gRNA) into the viral particle. The NCp7, which is cleaved from Gag during viral maturation, is a nucleic acid chaperone, coating and protecting the gRNA. In this study, an RT-qPCR-based approach was developed to quantitatively compare the Psi-selectivity of Gag and NCp7 in the presence of bacterial or 293T total RNAs. The binding affinity of Gag and NCp7 to the stem-loop (SL) 3 of Psi was also compared using surface plasmon resonance. We found that Gag selected more Psi-RNA than NCp7 from both E. coli BL21 (DE3) and in vitro binding reactions, and Gag bound to SL3-RNA with a higher affinity than NCp7. Moreover, Gag contained two Zn2+ whereas NCp7 contained one. The N-terminal zinc-finger motif of NCp7 lost most of its Zn2+-binding activity. Deletion of N-terminal amino acids 1-11 of NCp7 resulted in increased Psi-selectivity, SL3-affinity and Zn2+ content. These results indicated that Zn2+ coordination of Gag is critical for Psi-binding and selection. Removal of Zn2+ from the first zinc-finger motif during or after Gag cleavage to generate mature NCp7 might serve as a switch to regulate the functions of Gag NC domain and mature NCp7. Our study will be helpful to elucidate the important roles that Zn2+ plays in the viral life cycle, and may benefit further investigations of the function of HIV-1 Gag and NCp7.
Collapse
Affiliation(s)
- Chao Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Xiaohong Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Kangkang Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| | - Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| |
Collapse
|
6
|
Monette A, Niu M, Chen L, Rao S, Gorelick RJ, Mouland AJ. Pan-retroviral Nucleocapsid-Mediated Phase Separation Regulates Genomic RNA Positioning and Trafficking. Cell Rep 2020; 31:107520. [PMID: 32320662 PMCID: PMC8965748 DOI: 10.1016/j.celrep.2020.03.084] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
The duality of liquid-liquid phase separation (LLPS) of cellular components into membraneless organelles defines the nucleation of both normal and disease processes including stress granule (SG) assembly. From mounting evidence of LLPS utility by viruses, we discover that HIV-1 nucleocapsid (NC) protein condenses into zinc-finger (ZnF)-dependent LLPSs that are dynamically influenced by cytosolic factors. ZnF-dependent and Zinc (Zn2+)-chelation-sensitive NC-LLPS are formed in live cells. NC-Zn2+ ejection reverses the HIV-1 blockade on SG assembly, inhibits NC-SG assembly, disrupts NC/Gag-genomic RNA (vRNA) ribonucleoprotein complexes, and causes nuclear sequestration of NC and the vRNA, inhibiting Gag expression and virus release. NC ZnF mutagenesis eliminates the HIV-1 blockade of SG assembly and repositions vRNA to SGs. We find that NC-mediated, Zn2+-coordinated phase separation is conserved among diverse retrovirus subfamilies, illustrating that this exquisitely evolved Zn2+-dependent feature of virus replication represents a critical target for pan-antiretroviral therapies.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada.
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Lois Chen
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
| | - Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Biochemistry, Erasmus University Medical Center, Ee634, PO Box 2040, 3000CA Rotterdam, the Netherlands
| | - Robert James Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Andrew John Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada; Department of Medicine, McGill University, Montréal, QC H3G 2M1, Canada.
| |
Collapse
|
7
|
Humbert N, Kovalenko L, Saladini F, Giannini A, Pires M, Botzanowski T, Cherenok S, Boudier C, Sharma KK, Real E, Zaporozhets OA, Cianférani S, Seguin-Devaux C, Poggialini F, Botta M, Zazzi M, Kalchenko VI, Mori M, Mély Y. (Thia)calixarenephosphonic Acids as Potent Inhibitors of the Nucleic Acid Chaperone Activity of the HIV-1 Nucleocapsid Protein with a New Binding Mode and Multitarget Antiviral Activity. ACS Infect Dis 2020; 6:687-702. [PMID: 32045204 DOI: 10.1021/acsinfecdis.9b00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleocapsid protein (NC) is a highly conserved protein that plays key roles in HIV-1 replication through its nucleic acid chaperone properties mediated by its two zinc fingers and basic residues. NC is a promising target for antiviral therapy, particularly to control viral strains resistant to currently available drugs. Since calixarenes with antiviral properties have been described, we explored the ability of calixarene hydroxymethylphosphonic or sulfonic acids to inhibit NC chaperone properties and exhibit antiviral activity. By using fluorescence-based assays, we selected four calixarenes inhibiting NC chaperone activity with submicromolar IC50 values. These compounds were further shown by mass spectrometry, isothermal titration calorimetry, and fluorescence anisotropy to bind NC with no zinc ejection and to compete with nucleic acids for the binding to NC. Molecular dynamic simulations further indicated that these compounds interact via their phosphonate or sulfonate groups with the basic surface of NC but not with the hydrophobic plateau at the top of the folded fingers. Cellular studies showed that the most soluble compound CIP201 inhibited the infectivity of wild-type and drug-resistant HIV-1 strains at low micromolar concentrations, primarily targeting the early steps of HIV-1 replication. Moreover, CIP201 was also found to inhibit the flipping and polymerization activity of reverse transcriptase. Calixarenes thus form a class of noncovalent NC inhibitors, endowed with a new binding mode and multitarget antiviral activity.
Collapse
Affiliation(s)
- Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Lesia Kovalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Manuel Pires
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Sergiy Cherenok
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska str. 5, Kyiv 02660, Ukraine
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Kamal K. Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Eleonore Real
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Olga A. Zaporozhets
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178 CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Federica Poggialini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, viale Mario Bracci no. 16, 53100 Siena, Italy
| | - Vitaly I. Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska str. 5, Kyiv 02660, Ukraine
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022 Università degli Studi di Siena, via Aldo Moro 2, I-53019 Siena, Italy
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
8
|
Dick A, Cocklin S. Recent Advances in HIV-1 Gag Inhibitor Design and Development. Molecules 2020; 25:molecules25071687. [PMID: 32272714 PMCID: PMC7181048 DOI: 10.3390/molecules25071687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Acquired Immune Deficiency Syndrome (AIDS) treatment with combination antiretroviral therapy (cART) has improved the life quality of many patients since its implementation. However, resistance mutations and the accumulation of severe side effects associated with cART remain enormous challenges that need to be addressed with the continual design and redesign of anti-HIV drugs. In this review, we focus on the importance of the HIV-1 Gag polyprotein as the master coordinator of HIV-1 assembly and maturation and as an emerging drug target. Due to its multiple roles in the HIV-1 life cycle, the individual Gag domains are attractive but also challenging targets for inhibitor design. However, recent encouraging developments in targeting the Gag domains such as the capsid protein with highly potent and potentially long-acting inhibitors, as well as the exploration and successful targeting of challenging HIV-1 proteins such as the matrix protein, have demonstrated the therapeutic viability of this important protein. Such Gag-directed inhibitors have great potential for combating the AIDS pandemic and to be useful tools to dissect HIV-1 biology.
Collapse
|
9
|
Iraci N, Tabarrini O, Santi C, Sancineto L. NCp7: targeting a multitask protein for next-generation anti-HIV drug development part 2. Noncovalent inhibitors and nucleic acid binders. Drug Discov Today 2018; 23:687-695. [PMID: 29326078 DOI: 10.1016/j.drudis.2018.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/25/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023]
Abstract
Nucleocapsid protein 7 (NCp7) represents a viable target not yet reached by the currently available antiretrovirals. It is a small and highly basic protein, which is essential for multiple stages of the viral replicative cycle, with its structure preserved in all viral strains, including clinical isolates. NCp7 can be inhibited covalently, noncovalently and by shielding the nucleic acid (NA) substrates of its chaperone activity. Although covalent NCp7 inhibitors have already been detailed in the first part of this review series, the focus here is based on noncovalent and NA-binder inhibitors and on the analysis of the NCp7 3D structure to deliver fruitful insights for future drug design strategies.
Collapse
Affiliation(s)
- Nunzio Iraci
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Santi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luca Sancineto
- Department of Heterorganic Chemistry, Centre of Molecular and Macromulecular Studies, Lodz, Poland.
| |
Collapse
|
10
|
Ghose A, Maltsev OV, Humbert N, Hintermann L, Arntz Y, Naumov P, Mély Y, Didier P. Oxyluciferin Derivatives: A Toolbox of Environment-Sensitive Fluorescence Probes for Molecular and Cellular Applications. J Phys Chem B 2017; 121:1566-1575. [PMID: 28118001 DOI: 10.1021/acs.jpcb.6b12616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this work, we used firefly oxyluciferin (OxyLH2) and its polarity-dependent fluorescence mechanism as a sensitive tool to monitor biomolecular interactions. The chromophores, OxyLH2, and its two analogues, 4-MeOxyLH and 4,6'-DMeOxyL, were modified trough carboxylic functionalization and then coupled to the N-terminus part of Tat and NCp7 peptides of human immunodeficiency virus type-1 (HIV-1). The photophysical properties of the labeled peptides were studied in live cells as well as in complex with different oligonucleotides in solution. By monitoring the emission properties of these derivatives we were able, for the first time, to study in vitro biomolecular interactions using oxyluciferin as a sensor. As an additional application, cyclopropyl-oxyluciferin (5,5-Cpr-OxyLH) was site-specifically conjugated to the thiol group (Cys-232) of the human protein α-1 antytripsin to investigate its interaction with porcine pancreatic elastase. Our data demonstrate that OxyLH2 and its derivatives can be used as fluorescence reporters for monitoring biomolecular interactions.
Collapse
Affiliation(s)
- Avisek Ghose
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Oleg V Maltsev
- Department Chemie, Technische Universität München , Lichtenbergstr. 4, 85748 Garching bei München, Germany
| | - Nicolas Humbert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Lukas Hintermann
- Department Chemie, Technische Universität München , Lichtenbergstr. 4, 85748 Garching bei München, Germany
| | - Youri Arntz
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Panče Naumov
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg , 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Pascal Didier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 du CNRS, Faculté de Pharmacie, Université de Strasbourg , 74, Route du Rhin, 67401 Illkirch Cedex, France
| |
Collapse
|
11
|
Kamal A, Nekkanti S, Shankaraiah N, Sathish M. Future of Drug Discovery. DRUG RESISTANCE IN BACTERIA, FUNGI, MALARIA, AND CANCER 2017:609-629. [DOI: 10.1007/978-3-319-48683-3_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
12
|
Asquith CRM, Konstantinova LS, Laitinen T, Meli ML, Poso A, Rakitin OA, Hofmann-Lehmann R, Hilton ST. Evaluation of Substituted 1,2,3-Dithiazoles as Inhibitors of the Feline Immunodeficiency Virus (FIV) Nucleocapsid Protein via a Proposed Zinc Ejection Mechanism. ChemMedChem 2016; 11:2119-2126. [DOI: 10.1002/cmdc.201600260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/21/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher R. M. Asquith
- School of Pharmacy; Faculty of Life Sciences; University College London; London WC1N 1AX UK
- Clinical Laboratory & Center for Clinical Studies; Vetsuisse Faculty; University of Zurich; 8057 Zurich Switzerland
| | - Lidia S. Konstantinova
- Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow 119991 Russian Federation
- Nanotechnology Education and Research Center; South Ural State, University; Lenina Ave. 76 Chelyabinsk 454080 Russian Federation
| | - Tuomo Laitinen
- School of Pharmacy; Faculty of Health Sciences; University of Eastern, Finland; Kuopio 70211 Finland
| | - Marina L. Meli
- Clinical Laboratory & Center for Clinical Studies; Vetsuisse Faculty; University of Zurich; 8057 Zurich Switzerland
| | - Antti Poso
- School of Pharmacy; Faculty of Health Sciences; University of Eastern, Finland; Kuopio 70211 Finland
| | - Oleg A. Rakitin
- Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Moscow 119991 Russian Federation
- Nanotechnology Education and Research Center; South Ural State, University; Lenina Ave. 76 Chelyabinsk 454080 Russian Federation
| | - Regina Hofmann-Lehmann
- Clinical Laboratory & Center for Clinical Studies; Vetsuisse Faculty; University of Zurich; 8057 Zurich Switzerland
| | - Stephen T. Hilton
- School of Pharmacy; Faculty of Life Sciences; University College London; London WC1N 1AX UK
| |
Collapse
|
13
|
Sharma KK, Przybilla F, Restle T, Godet J, Mély Y. FRET-based assay to screen inhibitors of HIV-1 reverse transcriptase and nucleocapsid protein. Nucleic Acids Res 2016; 44:e74. [PMID: 26762982 PMCID: PMC4856972 DOI: 10.1093/nar/gkv1532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/23/2015] [Indexed: 12/15/2022] Open
Abstract
During HIV-1 reverse transcription, the single-stranded RNA genome is converted into proviral double stranded DNA by Reverse Transcriptase (RT) within a reverse transcription complex composed of the genomic RNA and a number of HIV-1 encoded proteins, including the nucleocapsid protein NCp7. Here, we developed a one-step and one-pot RT polymerization assay. In this in vitro assay, RT polymerization is monitored in real-time by Förster resonance energy transfer (FRET) using a commercially available doubly-labeled primer/template DNA. The assay can monitor and quantify RT polymerization activity as well as its promotion by NCp7. Z-factor values as high as 0.89 were obtained, indicating that the assay is suitable for high-throughput drug screening. Using Nevirapine and AZT as prototypical RT inhibitors, reliable IC50 values were obtained from the changes in the RT polymerization kinetics. Interestingly, the assay can also detect NCp7 inhibitors, making it suitable for high-throughput screening of drugs targeting RT, NCp7 or simultaneously, both proteins.
Collapse
Affiliation(s)
- Kamal K Sharma
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Frédéric Przybilla
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Tobias Restle
- Institute für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France Département d'Information Médicale et de Biostatistiques, Hôpitaux Universitaires de Strasbourg, 1, pl de l'Hôpital, 67400 Strasbourg, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
14
|
Kim MJ, Kim SH, Park JA, Yu KL, Jang SI, Kim BS, Lee ES, You JC. Identification and characterization of a new type of inhibitor against the human immunodeficiency virus type-1 nucleocapsid protein. Retrovirology 2015; 12:90. [PMID: 26545586 PMCID: PMC4636002 DOI: 10.1186/s12977-015-0218-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
Background The human immunodeficiency virus type-1 (HIV-1) nucleocapsid protein (NC) is an essential and multifunctional protein involved in multiple stages of the viral life cycle such as reverse transcription, integration of proviral DNA, and especially genome RNA packaging. For this reason, it has been considered as an attractive target for the development of new anti-HIV drugs. Although a number of inhibitors of NC have been reported thus far, the search for NC-specific and functional inhibitor(s) with a good antiviral activity continues. Results In this study, we report the identification of A1752, a small molecule with inhibitory action against HIV-1 NC, which shows a strong antiviral efficacy and an IC50 around 1 μM. A1752 binds directly to HIV-1 NC, thereby inhibiting specific chaperone functions of NC including Psi RNA dimerization and complementary trans-activation response element (cTAR) DNA destabilization, and it also disrupts the proper Gag processing. Further analysis of the mechanisms of action of A1752 also showed that it generates noninfectious viral particles with defects in uncoating and reverse transcription in the infected cells. Conclusions These results demonstrate that A1752 is a specific and functional inhibitor of NC with a novel mode of action and good antiviral efficacy. Thus, this agent provides a new type of anti-HIV NC inhibitor candidate for further drug development. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0218-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Seon Hee Kim
- Avixgen Inc., Seoul, 137-701, Korea. .,National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| | | | - Kyung Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| | - Soo In Jang
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| | | | - Eun Soo Lee
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| | - Ji Chang You
- Avixgen Inc., Seoul, 137-701, Korea. .,National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, Seoul, 137-701, Korea.
| |
Collapse
|
15
|
Zhan P, Pannecouque C, De Clercq E, Liu X. Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. J Med Chem 2015; 59:2849-78. [PMID: 26509831 DOI: 10.1021/acs.jmedchem.5b00497] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The early effectiveness of combinatorial antiretroviral therapy (cART) in the treatment of HIV infection has been compromised to some extent by rapid development of multidrug-resistant HIV strains, poor bioavailability, and cumulative toxicities, and so there is a need for alternative strategies of antiretroviral drug discovery and additional therapeutic agents with novel action modes or targets. From this perspective, we first review current strategies of antiretroviral drug discovery and optimization, with the aid of selected examples from the recent literature. We highlight the development of phosphate ester-based prodrugs as a means to improve the aqueous solubility of HIV inhibitors, and the introduction of the substrate envelope hypothesis as a new approach for overcoming HIV drug resistance. Finally, we discuss future directions for research, including opportunities for exploitation of novel antiretroviral targets, and the strategy of activation of latent HIV reservoirs as a means to eradicate the virus.
Collapse
Affiliation(s)
- Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
16
|
Okazaki S, Oishi S, Mizuhara T, Shimura K, Murayama H, Ohno H, Matsuoka M, Fujii N. Investigations of possible prodrug structures for 2-(2-mercaptophenyl)tetrahydropyrimidines: reductive conversion from anti-HIV agents with pyrimidobenzothiazine and isothiazolopyrimidine scaffolds. Org Biomol Chem 2015; 13:4706-13. [PMID: 25800792 DOI: 10.1039/c5ob00301f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
3,4-Dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine (PD 404182) and 3,4-dihydro-2H-benzo[4,5]isothiazolo[2,3-a]pyrimidine are the heterocyclic antiretroviral agents against human immunodeficiency virus type 1 (HIV-1) infection. On the basis of similar structure-activity relationships of anti-HIV activities toward the early-stage of viral infection between these unique scaffolds, the transformations under the bioassay conditions were investigated. The distinctive S-N bond in the isothiazolopyrimidine scaffold was immediately cleaved under reductive conditions in the presence of GSH to generate a thiophenol derivative. A similar rapid conversion of PD 404182 into the same thiophenol derivative was observed, suggesting that pyrimidobenzothiazine and isothiazolopyrimidine scaffolds may work as prodrug forms of the common bioactive thiophenol derivatives.
Collapse
Affiliation(s)
- Shiho Okazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mori M, Kovalenko L, Lyonnais S, Antaki D, Torbett BE, Botta M, Mirambeau G, Mély Y. Nucleocapsid Protein: A Desirable Target for Future Therapies Against HIV-1. Curr Top Microbiol Immunol 2015; 389:53-92. [PMID: 25749978 PMCID: PMC7122173 DOI: 10.1007/82_2015_433] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The currently available anti-HIV-1 therapeutics is highly beneficial to infected patients. However, clinical failures occur as a result of the ability of HIV-1 to rapidly mutate. One approach to overcome drug resistance is to target HIV-1 proteins that are highly conserved among phylogenetically distant viral strains and currently not targeted by available therapies. In this respect, the nucleocapsid (NC) protein, a zinc finger protein, is particularly attractive, as it is highly conserved and plays a central role in virus replication, mainly by interacting with nucleic acids. The compelling rationale for considering NC as a viable drug target is illustrated by the fact that point mutants of this protein lead to noninfectious viruses and by the inability to select viruses resistant to a first generation of anti-NC drugs. In our review, we discuss the most relevant properties and functions of NC, as well as recent developments of small molecules targeting NC. Zinc ejectors show strong antiviral activity, but are endowed with a low therapeutic index due to their lack of specificity, which has resulted in toxicity. Currently, they are mainly being investigated for use as topical microbicides. Greater specificity may be achieved by using non-covalent NC inhibitors (NCIs) targeting the hydrophobic platform at the top of the zinc fingers or key nucleic acid partners of NC. Within the last few years, innovative methodologies have been developed to identify NCIs. Though the antiviral activity of the identified NCIs needs still to be improved, these compounds strongly support the druggability of NC and pave the way for future structure-based design and optimization of efficient NCIs.
Collapse
Affiliation(s)
- Mattia Mori
- Dipartimento di Biotecnologie Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sosic A, Cappellini M, Sinigaglia L, Jacquet R, Deffieux D, Fabris D, Quideau S, Gatto B. Polyphenolic C-glucosidic ellagitannins present in oak-aged wine inhibit HIV-1 nucleocapsid protein. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.01.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Okazaki S, Mizuhara T, Shimura K, Murayama H, Ohno H, Oishi S, Matsuoka M, Fujii N. Identification of anti-HIV agents with a novel benzo[4,5]isothiazolo[2,3-a]pyrimidine scaffold. Bioorg Med Chem 2015; 23:1447-52. [PMID: 25744188 DOI: 10.1016/j.bmc.2015.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 12/29/2022]
Abstract
3,4-Dihydro-2H-benzo[4,5]isothiazolo[2,3-a]pyrimidine is a newly identified antiviral agent against human immunodeficiency virus type 1 (HIV-1) infection, derived from 3,4-dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine (PD 404182). The introduction of the hydrophobic 8-aryl substituent on the benzene substructure improved its anti-HIV activity, resulting in the identification of 6-fold more potent analogs. In addition, it was demonstrated that these isothiazolopyrimidine derivatives exert anti-HIV effects at an early stage of viral infection.
Collapse
Affiliation(s)
- Shiho Okazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsukasa Mizuhara
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuya Shimura
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroto Murayama
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Masao Matsuoka
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
20
|
Garg D, Torbett BE. Advances in targeting nucleocapsid-nucleic acid interactions in HIV-1 therapy. Virus Res 2014; 193:135-43. [PMID: 25026536 PMCID: PMC4252855 DOI: 10.1016/j.virusres.2014.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 11/16/2022]
Abstract
The continuing challenge of HIV-1 treatment resistance in patients creates a need for the development of new antiretroviral inhibitors. The HIV nucleocapsid (NC) protein is a potential therapeutic target. NC is necessary for viral RNA packaging and in the early stages of viral infection. The high level of NC amino acid conservation among all HIV-1 clades suggests a low tolerance for mutations. Thus, NC mutations that could arise during inhibitor treatment to provide resistance may render the virus less fit. Disruption of NC function provides a unique opportunity to strongly dampen replication at multiple points during the viral life cycle with a single inhibitor. Although NC exhibits desirable features for a potential antiviral target, the structural flexibility, size, and the presence of two zinc fingers makes small molecule targeting of NC a challenging task. In this review, we discuss the recent advances in strategies to develop inhibitors of NC function and present a perspective on potential novel approaches that may help to overcome some of the current challenges in the field.
Collapse
Affiliation(s)
- Divita Garg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruce E Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
21
|
Perrone R, Butovskaya E, Daelemans D, Palù G, Pannecouque C, Richter SN. Anti-HIV-1 activity of the G-quadruplex ligand BRACO-19. J Antimicrob Chemother 2014; 69:3248-58. [PMID: 25103489 DOI: 10.1093/jac/dku280] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES A dynamic G-quadruplex region has been previously shown to form in the long terminal repeat (LTR) promoter of the HIV-1 integrated DNA genome. Inhibition of promoter activity and antiviral effects have been observed when this region was stabilized by BRACO-19, a trisubstituted acridine derivative that binds G-quadruplexes. Here, we aimed at characterizing the antiviral mechanism of action of BRACO-19 by analysing its activity towards a broad range of HIV-1 strains, host cells and infection modes. METHODS The antiviral activity of BRACO-19 in cell lines and primary cells infected or persistently infected by HIV-1 strains was evaluated at different times post-infection. Virucidal, viral binding, time-dependent and drug-dependent assays were performed to identify the viral target step. Circular dichroism, UV spectroscopy and a reverse transcriptase (RT) stop assay were used to assess RNA G-quadruplex folding and inhibition of RT processing. RESULTS Thorough virological assays demonstrated that BRACO-19 acts both at the reverse transcription and the post-integration level during the virus life cycle. This behaviour was rationalized by the observation that a G-quadruplex-forming sequence identical to that of the LTR DNA is present at the 3'-end of the virus RNA genome. Biophysics and biomolecular testing showed that this region has the ability to fold into very stable G-quadruplex structures that are even more stabilized by BRACO-19, therefore inhibiting the reverse transcription process at the template level. CONCLUSIONS Our findings strongly support the activity of BRACO-19 at the viral G-quadruplex level and therefore strengthen the use of viral G-quadruplexes as new anti-HIV-1 targets.
Collapse
Affiliation(s)
- Rosalba Perrone
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Elena Butovskaya
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Dirk Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy
| |
Collapse
|
22
|
Retrospective on the all-in-one retroviral nucleocapsid protein. Virus Res 2014; 193:2-15. [PMID: 24907482 PMCID: PMC7114435 DOI: 10.1016/j.virusres.2014.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/11/2014] [Accepted: 05/11/2014] [Indexed: 01/08/2023]
Abstract
This retrospective reviews 30 years of research on the retroviral nucleocapsid protein (NC) focusing on HIV-1 NC. Originally considered as a non-specific nucleic-acid binding protein, NC has seminal functions in virus replication. Indeed NC turns out to be a all-in-one viral protein that chaperones viral DNA synthesis and integration, and virus formation. As a chaperone NC provides assistance to genetic recombination thus allowing the virus to escape the immune response and antiretroviral therapies against HIV-1.
This review aims at briefly presenting a retrospect on the retroviral nucleocapsid protein (NC), from an unspecific nucleic acid binding protein (NABP) to an all-in-one viral protein with multiple key functions in the early and late phases of the retrovirus replication cycle, notably reverse transcription of the genomic RNA and viral DNA integration into the host genome, and selection of the genomic RNA together with the initial steps of virus morphogenesis. In this context we will discuss the notion that NC protein has a flexible conformation and is thus a member of the growing family of intrinsically disordered proteins (IDPs) where disorder may account, at least in part, for its function as a nucleic acid (NA) chaperone and possibly as a protein chaperone vis-à-vis the viral DNA polymerase during reverse transcription. Lastly, we will briefly review the development of new anti-retroviral/AIDS compounds targeting HIV-1 NC because it represents an ideal target due to its multiple roles in the early and late phases of virus replication and its high degree of conservation.
Collapse
|
23
|
Goudreau N, Hucke O, Faucher AM, Grand-Maître C, Lepage O, Bonneau PR, Mason SW, Titolo S. Discovery and structural characterization of a new inhibitor series of HIV-1 nucleocapsid function: NMR solution structure determination of a ternary complex involving a 2:1 inhibitor/NC stoichiometry. J Mol Biol 2013; 425:1982-1998. [PMID: 23485336 DOI: 10.1016/j.jmb.2013.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 11/30/2022]
Abstract
The nucleocapsid (NC) protein is an essential factor with multiple functions within the human immunodeficiency virus type 1 (HIV-1) replication cycle. In this study, we describe the discovery of a novel series of inhibitors that targets HIV-1 NC protein by blocking its interaction with nucleic acids. This series was identified using a previously described capsid (CA) assembly assay, employing a recombinant HIV-1 CA-NC protein and immobilized TG-rich deoxyoligonucleotides. Using visible absorption spectroscopy, we were able to demonstrate that this new inhibitor series binds specifically and reversibly to the NC with a peculiar 2:1 stoichiometry. A fluorescence-polarization-based binding assay was also developed in order to monitor the inhibitory activities of this series of inhibitors. To better characterize the structural aspect of inhibitor binding onto NC, we performed NMR studies using unlabeled and (13)C,(15)N-double-labeled NC(1-55) protein constructs. This allowed the determination of the solution structure of a ternary complex characterized by two inhibitor molecules binding to the two zinc knuckles of the NC protein. To the best of our knowledge, this represents the first report of a high-resolution structure of a small-molecule inhibitor bound to NC, demonstrating sub-micromolar potency and moderate antiviral potency with one analogue of the series. This structure was compared with available NC/oligonucleotide complex structures and further underlined the high flexibility of the NC protein, allowing it to adopt many conformations in order to bind its different oligonucleotide/nucleomimetic targets. In addition, analysis of the interaction details between the inhibitor molecules and NC demonstrated how this novel inhibitor series is mimicking the guanosine nucleobases found in many reported complex structures.
Collapse
Affiliation(s)
- Nathalie Goudreau
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5.
| | - Oliver Hucke
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5.
| | - Anne-Marie Faucher
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Chantal Grand-Maître
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Olivier Lepage
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Pierre R Bonneau
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Stephen W Mason
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Steve Titolo
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| |
Collapse
|
24
|
Sosic A, Frecentese F, Perissutti E, Sinigaglia L, Santagada V, Caliendo G, Magli E, Ciano A, Zagotto G, Parolin C, Gatto B. Design, synthesis and biological evaluation of TAR and cTAR binders as HIV-1 nucleocapsid inhibitors. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00212h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|