1
|
Therkildsen ER, Lorentzen J, Perez MA, Nielsen JB. Evaluation of spasticity: IFCN Handbook Chapter. Clin Neurophysiol 2025; 173:1-23. [PMID: 40068367 DOI: 10.1016/j.clinph.2025.02.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 05/09/2025]
Abstract
There is no generally accepted definition of spasticity, but hyperexcitable stretch reflexes, exaggerated tendon jerks, clonus, spasms, cramps, increased resistance to passive joint movement, sustained involuntary muscle activity and aberrant muscle activation, including co-contraction of antagonist muscles are all signs and symptoms which are usually associated clinically to the term spasticity. This review describes how biomechanical and electrophysiological techniques may be used to provide quantitative and objective measures of each of these signs and symptoms. The review further describes how neurophysiological techniques may be used to evaluate pathophysiological changes in spinal motor control mechanisms. It is emphasized that understanding the pathophysiology and distinguishing the specific signs and symptoms associated with spasticity, using objective, valid, and reproducible measurements, is essential for providing optimal therapy.
Collapse
Affiliation(s)
- Eva Rudjord Therkildsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; Department of Pediatrics, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 10, Dk-2100 Copenhagen Ø, Denmark
| | - Monica A Perez
- Shirley Ryan Ability Lab, Chicago, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA; Edward Jr. Hines VA Hospital, Chicago, USA
| | - Jens Bo Nielsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; The Elsass Foundation, Holmegårdsvej 28, Charlottenlund, 2920, Denmark.
| |
Collapse
|
2
|
Valle MS, Cioni M, Russo C, Malaguarnera L, Casabona A. Applicability of the Instrumented Pendulum Test for Assessing Limb Viscoelastic Properties in Neurological and Internal Diseases: A Narrative Review. Life (Basel) 2025; 15:535. [PMID: 40283090 PMCID: PMC12028550 DOI: 10.3390/life15040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND The pendulum test was first introduced by Wartenberg as a clinical tool for neurological examination in patients with hypertonia. It was later instrumented to measure the kinematic parameters of gravity-imposed knee movements in patients with spasticity. More recently, the instrumented pendulum test has enabled the quantification of stiffness, viscosity, and damping in both the lower and upper limbs across various neurological and internal diseases. OBJECTIVE To highlight the utility of the instrumented pendulum test as a valuable tool for the quantification of stiffness, viscosity, and damping of knee and elbow joints within a clinical setting. DESIGN Narrative review. METHODS A comprehensive search was conducted using PubMed/MEDLINE, focusing on the terms "pendulum test" combined with "viscosity", "stiffness", and "damping". RESULTS The instrumented pendulum test effectively quantifies stiffness, viscosity, and damping of the knee and elbow across various conditions, including rheumatic diseases, chronic obstructive pulmonary disease, hypertonia, and hypotonia. Studies have also demonstrated correlations between these non-neural parameters and factors such as age and disease severity. CONCLUSIONS Findings suggest that the instrumented pendulum test could serve as a valuable tool in clinical decision-making for targeted pharmacological treatments, such as botulinum toxin-A or hyaluronidase injections for spasticity, as well as interventions for myofascial system disorders.
Collapse
Affiliation(s)
- Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.C.)
| | - Matteo Cioni
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.C.)
| | - Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.C.)
| |
Collapse
|
3
|
OuYang Z, Shen C, Wang Y. Motion analysis for the evaluation of dynamic spasticity during walking: A systematic scoping review. Mult Scler Relat Disord 2025; 94:106273. [PMID: 39827537 DOI: 10.1016/j.msard.2025.106273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Three-dimensional (3D) gait analysis has the potential to assess dynamic spasticity (DS). However, little is known about which parameters can be utilized for assessment. OBJECTIVE To evaluate the application of 3D gait analysis in assessing DS during walking and to identify the most relevant parameters for clinical practice. METHODS A systematic scoping review was conducted by a multidisciplinary team of researchers and clinicians. A literature search of the PubMed, Web of Science and Cochrane Library databases was conducted using the following inclusion criteria: (i) clinical trial study; (ii) focused on the relationship between spasticity and gait analysis indicators during walking. The risk of bias was assessed using the Mixed Methods Appraisal Tool. Data were analyzed using content analysis and quantification techniques. RESULTS Four key parameters in 3D gait analysis-spatiotemporal parameters, kinematics, kinetics, and myoelectric signals-are utilized to evaluate alterations in DS during walking. Among the spatiotemporal parameters, the most frequently used metrics are speed, stride length, and cadence. In kinematics, the ankle and knee joint angles are the most commonly measured indicators. For kinetics, the ankle joint moment and plantar pressure are the primary focus. For myoelectric signals, the most utilized metrics include the patterns and duration of muscle co-contraction. CONCLUSIONS 3D gait analysis is feasible for precisely evaluating DS during walking. However, to obtain a comprehensive evaluation, it is essential to integrate multiple metrics. High-quality research is urgently needed to provide more precise assessment protocols by analyzing changes in gait parameters before and after spasticity interventions.
Collapse
Affiliation(s)
- ZengQiang OuYang
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Chen Shen
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Yue Wang
- Department of Neurology and Neurological Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China.
| |
Collapse
|
4
|
Nourizadeh M, Shadgan B, Abbasidezfouli S, Juricic M, Mulpuri K. Methods of muscle spasticity assessment in children with cerebral palsy: a scoping review. J Orthop Surg Res 2024; 19:401. [PMID: 38992701 PMCID: PMC11238363 DOI: 10.1186/s13018-024-04894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Evaluating muscle spasticity in children with cerebral palsy (CP) is essential for determining the most effective treatment strategies. This scoping review assesses the current methods used to evaluate muscle spasticity, highlighting both traditional and innovative technologies, and their respective advantages and limitations. METHODS A search (to April 2024) used keywords such as muscle spasticity, cerebral palsy, and assessment methods. Selection criteria included articles involving CP children, assessing spasticity objectively/subjectively, comparing methods, or evaluating method effectiveness. RESULTS From an initial pool of 1971 articles, 30 met our inclusion criteria. These studies collectively appraised a variety of techniques ranging from well-established clinical scales like the modified Ashworth Scale and Tardieu Scale, to cutting-edge technologies such as real-time sonoelastography and inertial sensors. Notably, innovative methods such as the dynamic evaluation of range of motion scale and the stiffness tool were highlighted for their potential to provide more nuanced and precise assessments of spasticity. The review unveiled a critical insight: while traditional methods are convenient and widely used, they often fall short in reliability and objectivity. CONCLUSION The review discussed the strengths and limitations of each method and concluded that more reliable methods are needed to measure the level of muscle spasticity more accurately.
Collapse
Affiliation(s)
- Mehdi Nourizadeh
- Implantable Biosensing Laboratory, ICORD, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
| | - Babak Shadgan
- Implantable Biosensing Laboratory, ICORD, Vancouver, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada.
| | - Samin Abbasidezfouli
- The Heart and Lung Innovation Centre, Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Maria Juricic
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| | - Kishore Mulpuri
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
- Department of Orthopaedic Surgery, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
De Santis D, Perez MA. A portable system to measure knee extensor spasticity after spinal cord injury. J Neuroeng Rehabil 2024; 21:50. [PMID: 38594696 PMCID: PMC11003160 DOI: 10.1186/s12984-024-01326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/18/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The pendulum test is a quantitative method used to assess knee extensor spasticity in humans with spinal cord injury (SCI). Yet, the clinical implementation of this method remains limited. The goal of our study was to develop an objective and portable system to assess knee extensor spasticity during the pendulum test using inertial measurement units (IMU). METHODS Spasticity was quantified by measuring the first swing angle (FSA) using a 3-dimensional optical tracking system (with external markers over the iliotibial band, lateral knee epicondyle, and lateral malleolus) and two wireless IMUs (positioned over the iliotibial band and mid-part of the lower leg) as well as a clinical exam (Modified Ashworth Scale, MAS). RESULTS Measurements were taken on separate days to assess test-retest reliability and device agreement in humans with and without SCI. We found no differences between FSA values obtained with the optical tracking system and the IMU-based system in control subjects and individuals with SCI. FSA values from the IMU-based system showed excellent agreement with the optical tracking system in individuals with SCI (ICC > 0.98) and good agreement in controls (ICC > 0.82), excellent test-retest reliability across days in SCI (ICC = 0.93) and good in controls (ICC = 0.87). Notably, FSA values measured by both systems showed a strong association with MAS scores ( ρ ~ -0.8) being decreased in individuals with SCI with higher MAS scores, reflecting the presence of spasticity. CONCLUSIONS These findings suggest that our new portable IMU-based system provides a robust and flexible alternative to a camera-based optical tracking system to quantify knee extensor spasticity following SCI.
Collapse
Affiliation(s)
| | - Monica A Perez
- Shirley Ryan Abilitylab, Chicago, IL, 60611, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA.
| |
Collapse
|
6
|
Jiang W, Zhang L, Wei M, Wang R, Xiao B, Wang J, Zhan Q. A preliminary study on the spasticity reduction of quadriceps after selective dorsal rhizotomy in pediatric cases of spastic cerebral palsy. Acta Neurochir (Wien) 2024; 166:108. [PMID: 38409557 DOI: 10.1007/s00701-024-06010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVE This study aimed to evaluate the potential alleviation of quadriceps spasticity in children diagnosed with spastic cerebral palsy (CP) following selective dorsal rhizotomy (SDR). METHODS A retrospective study was conducted on children suffering from spastic CP who underwent SDR at the Department of Neurosurgery, Shanghai Children's Hospital, from July 2018 to September 2020. Inclusion criteria comprised children exhibiting quadriceps spasticity exceeding modified Ashworth Scale grade 2. Muscle tone and motor function were assessed before the operation, at short-term follow-up and at the last follow-up after SDR. Additionally, intraoperative neurophysiological monitoring data were reviewed. RESULTS The study comprised 20 eligible cases, where, prior to surgery, 35 quadriceps muscles exhibited spasticity exceeding modified Ashworth Scale grade 2. Following short-term and mid-term follow-up, specifically an average duration of 11 ± 2 days and 1511 ± 210 days after SDR, it was observed that muscle tension in adductors, hamstrings, gastrocnemius, and soleus decreased significantly. This reduction was accompanied by a decrease in quadriceps muscle tone in 24 out of 35 muscles (68.6%). Furthermore, the study found that intraoperative electrophysiological parameters can predict postoperative spasticity relief in the quadriceps. The triggered electromyographic (EMG) output of the transected sensory root/rootlets after single-pulse stimulation revealed that the higher the EMG amplitudes in quadriceps, the greater the likelihood of postoperative decrease in quadriceps muscle tension. CONCLUSIONS SDR demonstrates the potential to reduce muscle spasticity in lower extremities in children diagnosed with CP, including a notable impact on quadriceps spasticity even they are not targeted in SDR. The utilization of intraoperative neurophysiological monitoring data enhances the predictability of quadriceps spasticity reduction following SDR.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Neurosurgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Li Zhang
- Department of Neurosurgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Min Wei
- Department of Neurosurgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Rui Wang
- Department of Neurosurgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Bo Xiao
- Department of Neurosurgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junlu Wang
- Department of Neurosurgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Qijia Zhan
- Department of Neurosurgery, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
7
|
He J, Luo A, Yu J, Qian C, Liu D, Hou M, Ma Y. Quantitative assessment of spasticity: a narrative review of novel approaches and technologies. Front Neurol 2023; 14:1121323. [PMID: 37475737 PMCID: PMC10354649 DOI: 10.3389/fneur.2023.1121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Spasticity is a complex neurological disorder, causing significant physical disabilities and affecting patients' independence and quality of daily lives. Current spasticity assessment methods are questioned for their non-standardized measurement protocols, limited reliabilities, and capabilities in distinguishing neuron or non-neuron factors in upper motor neuron lesion. A series of new approaches are developed for improving the effectiveness of current clinical used spasticity assessment methods with the developing technology in biosensors, robotics, medical imaging, biomechanics, telemedicine, and artificial intelligence. We investigated the reliabilities and effectiveness of current spasticity measures employed in clinical environments and the newly developed approaches, published from 2016 to date, which have the potential to be used in clinical environments. The new spasticity scales, taking advantage of quantified information such as torque, or echo intensity, the velocity-dependent feature and patients' self-reported information, grade spasticity semi-quantitatively, have competitive or better reliability than previous spasticity scales. Medical imaging technologies, including near-infrared spectroscopy, magnetic resonance imaging, ultrasound and thermography, can measure muscle hemodynamics and metabolism, muscle tissue properties, or temperature of tissue. Medical imaging-based methods are feasible to provide quantitative information in assessing and monitoring muscle spasticity. Portable devices, robotic based equipment or myotonometry, using information from angular, inertial, torque or surface EMG sensors, can quantify spasticity with the help of machine learning algorithms. However, spasticity measures using those devices are normally not physiological sound. Repetitive peripheral magnetic stimulation can assess patients with severe spasticity, which lost voluntary contractions. Neuromusculoskeletal modeling evaluates the neural and non-neural properties and may gain insights into the underlying pathology of spasticity muscles. Telemedicine technology enables outpatient spasticity assessment. The newly developed spasticity methods aim to standardize experimental protocols and outcome measures and enable quantified, accurate, and intelligent assessment. However, more work is needed to investigate and improve the effectiveness and accuracy of spasticity assessment.
Collapse
Affiliation(s)
- Jian He
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Anhua Luo
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Jiajia Yu
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Chengxi Qian
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Dongwei Liu
- School of Information Management and Artificial Intelligence, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Meijin Hou
- National Joint Engineering Research Centre of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopaedics and Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of TCM), Ministry of Education, Fuzhou, China
| | - Ye Ma
- Research Academy of Grand Health, Faculty of Sports Sciences, Ningbo University, Ningbo, China
- National Joint Engineering Research Centre of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Orthopaedics and Traumatology of Traditional Chinese Medicine and Rehabilitation (Fujian University of TCM), Ministry of Education, Fuzhou, China
| |
Collapse
|
8
|
Cooney NJ, Minhas AS. Humanoid Robot Based Platform to Evaluate the Efficacy of Using Inertial Sensors for Spasticity Assessment in Cerebral Palsy. IEEE J Biomed Health Inform 2021; 26:254-263. [PMID: 34115599 DOI: 10.1109/jbhi.2021.3088133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spasticity is commonly present in individuals with cerebral palsy (CP) and manifests itself as shaky movements, muscle tightness and joint stiffness. Accurate and objective measurement of spasticity is investigated using inertial measurement unit (IMU) sensors. However, use of current IMU-based devices is limited to clinics in urban areas where experienced and trained health professionals are available to collect spasticity data. Designing these devices based on the wearable internet of things based architectures with edge computing will expand their use to home, aged care or remote clinics enabling less-experienced health professionals or care givers to collect spasticity data. However, these new designs require rigorous testing during their prototyping stage and collection of supporting data for regulatory approvals. This work demonstrates that a humanoid robot can act as an accurate model of the movements of CP individuals performing pendulum test during their spasticity assessment. Utilizing this model, we present a robust platform to evaluate new designs of IMU-based spasticity measurement devices.
Collapse
|
9
|
Szopa A, Domagalska-Szopa M, Siwiec A, Kwiecień-Czerwieniec I. Effects of Whole-Body Vibration-Assisted Training on Lower Limb Blood Flow in Children With Myelomeningocele. Front Bioeng Biotechnol 2021; 9:601747. [PMID: 33644013 PMCID: PMC7902517 DOI: 10.3389/fbioe.2021.601747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
This study investigated the effectiveness of whole-body vibration (WBV) training incorporated into a conventional physiotherapy (PT) program (WBV-assisted training) in improving blood flow in the lower limbs and range of motion in the lower limb joints of children with myelomeningocele (MMC). A total of 31 children with MMC (7–15 years old) underwent a 6 weeks treatment program consisting of 2 weeks of conventional PT followed by 4 weeks of WBV-assisted training. The assessment comprised two parts: evaluation of lower limb joint range of motion and Doppler ultrasonography of the superficial femoral, popliteal, and anterior tibial arteries and was performed three times for each of the participants (at baseline, after 10 sessions of PT but before WBV-assisted training, and after 20 sessions of WBV-assisted training). Our results showed that WBV-assisted training significantly improved lower limb circulation in patients with MMC, increasing velocity and reducing resistivity in all tested arteries. Moreover, WBV-assisted training alleviated lower-extremity contractures, especially of the knee. Thus, WBV-assisted training is effective as an adjunctive rehabilitation program for improving functional mobility in children with MMC.
Collapse
Affiliation(s)
- Andrzej Szopa
- Department of Physiotherapy, Medical University of Silesia in Katowice, Katowice, Poland
| | | | - Andrzej Siwiec
- John Paul II Pediatric Center in Sosnowiec, Sosnowiec, Poland
| | | |
Collapse
|
10
|
Martino G, McKay JL, Factor SA, Ting LH. Neuromechanical Assessment of Activated vs. Resting Leg Rigidity Using the Pendulum Test Is Associated With a Fall History in People With Parkinson's Disease. Front Hum Neurosci 2020; 14:602595. [PMID: 33362496 PMCID: PMC7756105 DOI: 10.3389/fnhum.2020.602595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Leg rigidity is associated with frequent falls in people with Parkinson’s disease (PD), suggesting a potential role in functional balance and gait impairments. Changes in the neural state due to secondary tasks, e.g., activation maneuvers, can exacerbate (or “activate”) rigidity, possibly increasing the risk of falls. However, the subjective interpretation and coarse classification of the standard clinical rigidity scale has prohibited the systematic, objective assessment of resting and activated leg rigidity. The pendulum test is an objective diagnostic method that we hypothesized would be sensitive enough to characterize resting and activated leg rigidity. We recorded kinematic data and electromyographic signals from rectus femoris and biceps femoris during the pendulum test in 15 individuals with PD, spanning a range of leg rigidity severity. From the recorded data of leg swing kinematics, we measured biomechanical outcomes including first swing excursion, first extension peak, number and duration of the oscillations, resting angle, relaxation index, maximum and minimum angular velocity. We examined associations between biomechanical outcomes and clinical leg rigidity score. We evaluated the effect of increasing rigidity through activation maneuvers on biomechanical outcomes. Finally, we assessed whether either biomechanical outcomes or changes in outcomes with activation were associated with a fall history. Our results suggest that the biomechanical assessment of the pendulum test can objectively quantify parkinsonian leg rigidity. We found that the presence of high rigidity during clinical exam significantly impacted biomechanical outcomes, i.e., first extension peak, number of oscillations, relaxation index, and maximum angular velocity. No differences in the effect of activation maneuvers between groups with clinically assessed low rigidity were observed, suggesting that activated rigidity may be independent of resting rigidity and should be scored as independent variables. Moreover, we found that fall history was more common among people whose rigidity was increased with a secondary task, as measured by biomechanical outcomes. We conclude that different mechanisms contributing to resting and activated rigidity may play an important yet unexplored functional role in balance impairments. The pendulum test may contribute to a better understanding of fundamental mechanisms underlying motor symptoms in PD, evaluating the efficacy of treatments, and predicting the risk of falls.
Collapse
Affiliation(s)
- Giovanni Martino
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - J Lucas McKay
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States.,Department of Biomedical Informatics, Emory University, Atlanta, GA, United States.,Jean and Paul Amos PD and Movement Disorders Program, Department of Neurology, Emory University, Atlanta, GA, United States
| | - Stewart A Factor
- Jean and Paul Amos PD and Movement Disorders Program, Department of Neurology, Emory University, Atlanta, GA, United States
| | - Lena H Ting
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States.,Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Rahimi F, Eyvazpour R, Salahshour N, Azghani MR. Objective assessment of spasticity by pendulum test: a systematic review on methods of implementation and outcome measures. Biomed Eng Online 2020; 19:82. [PMID: 33168030 PMCID: PMC7653760 DOI: 10.1186/s12938-020-00826-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022] Open
Abstract
Background Instrumented pendulum test is an objective and repeatable biomechanical method of assessment for spasticity. However, multitude of sensor technologies and plenty of suggested outcome measures, confuse those interested in implementing this method in practice. Lack of a standard agreement on the definition of experimental setup and outcome measures adds to this ambiguity and causes the results of one study not to be directly attainable by a group that uses a different setup. In this systematic review of studies, we aim to reduce the confusion by providing pros and cons of the available choices, and also by standardizing the definitions. Methods A literature search was conducted for the period of 1950 to the end of 2019 on PubMed, Science Direct, Google Scholar and IEEE explore; with keywords of “pendulum test” and “Spasticity”. Results Twenty-eight studies with instrumented pendulum test for assessment of spasticity met the inclusion criteria. All the suggested methods of implementation were compared and advantages and disadvantages were provided for each sensor technology. An exhaustive list categorized outcome measures in three groups of angle-based, angular velocity-based, and angular acceleration-based measures with all different names and definitions. Conclusions With the aim of providing standardized methodology with replicable and comparable results, sources of dissimilarity and ambiguity among research strategies were found and explained with the help of graphical representation of pendulum movement stages and corresponding parameters on the angular waveforms. We hope using the provided tables simplify the choices when implementing pendulum test for spasticity evaluation, improve the consistency when reporting the results, and disambiguate inconsistency in the literature.
Collapse
Affiliation(s)
- Fariborz Rahimi
- Department of Electrical Engineering, Faculty of Engineering, University of Bonab, 5551761167, Bonab, East Azerbaijan, Iran.
| | - Reza Eyvazpour
- Department of Electronics, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Nazila Salahshour
- Department of Electrical Engineering, Faculty of Engineering, University of Bonab, 5551761167, Bonab, East Azerbaijan, Iran
| | - Mahmood Reza Azghani
- Department of Biomechanical Engineering, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
12
|
Willaert J, Desloovere K, Van Campenhout A, Ting LH, De Groote F. Movement History Influences Pendulum Test Kinematics in Children With Spastic Cerebral Palsy. Front Bioeng Biotechnol 2020; 8:920. [PMID: 32850754 PMCID: PMC7426371 DOI: 10.3389/fbioe.2020.00920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
The pendulum test assesses quadriceps spasticity by dropping the lower leg of a relaxed patient from the horizontal position and observing limb movement. The first swing excursion (FS) decreases with increasing spasticity severity. Our recent simulation study suggests that the reduced initial swing results from muscle short-range stiffness and its interaction with reflex hyper-excitability. Short-range stiffness emerges from the thixotropic behavior of muscles where fiber stiffness upon stretch increases when the muscle is held isometric. Fiber stiffness might thus be higher during the first swing of the pendulum test than during consecutive swings. In addition, it has recently been suggested that muscle spindle firing reflects fiber force rather than velocity and therefore, reflex activity might depend on fiber stiffness. If this hypothesized mechanism is true, we expect to observe larger first swing excursions and reduced reflex muscle activity when the leg is moved rather than kept isometric before release, especially in patients with increased reflex activity. We performed the pendulum test in 15 children with cerebral palsy (CP) and 15 age-matched typically developing (TD) children in two conditions. In the hold condition, the leg was kept isometric in the extended position before release. In the movement condition, the leg was moved up and down before release to reduce the contribution of short-range stiffness. Knee kinematics and muscle activity were recorded. Moving the leg before release increased first swing excursion (p < 0.001) and this increase was larger in children with CP (21°) than in TD children (8°) (p < 0.005). In addition, pre-movement delayed reflex onset by 87 ms (p < 0.05) and reduced reflex activity as assessed through the area under the curve of rectus femoris electromyography (p < 0.05) in children with CP. The movement history dependence of pendulum kinematics and reflex activity supports our hypothesis that muscle short-range stiffness and its interaction with reflex hyper-excitability contribute to joint hyper-resistance in spastic CP. Our results have implications for standardizing movement history in clinical tests of spasticity and for understanding the role of spasticity in functional movements, where movement history differs from movement history in clinical tests.
Collapse
Affiliation(s)
- Jente Willaert
- Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Clinical Motion Analysis Laboratory, Universitair Ziekenhuis Leuven, Leuven, Belgium.,Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Orthopedics, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Lena H Ting
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States.,Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Friedl De Groote
- Department of Movement Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Whelan A, Sexton A, Jones M, O'Connell C, McGibbon CA. Predictive value of the pendulum test for assessing knee extensor spasticity. J Neuroeng Rehabil 2018; 15:68. [PMID: 30021641 PMCID: PMC6052641 DOI: 10.1186/s12984-018-0411-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/05/2018] [Indexed: 11/19/2022] Open
Abstract
Background The pendulum test is commonly used to quantify knee extensor spasticity, but it is currently unknown to what extent common pendulum test metrics can detect spasticity in patients with neurological injury or disease, and if the presence of flexor spasticity influences the test outcomes. Methods A retrospective analysis was conducted on 131 knees, from 93 patients, across four different patient cohorts. Clinical data included Modified Ashworth Scale (MAS) scores for knee extensors and flexors, and years since diagnosis. BioTone™ measures included extensor strength, passive and active range of motion, and pendulum tests of most affected or both knees. Pendulum test metrics included the relaxation index (RI), 1st flexion amplitude (F1amp) and plateau angle (Plat), where RI=F1amp/Plat. Two-way ANOVA tests were used to determine if pendulum test metrics were influenced by the degree of knee flexor spasticity graded by the MAS, and ANCOVA was used to test for confounding effects of age, years since injury, strength and range of motion (ROM). In order to identify the best pendulum test metrics, Receiver Operator Characteristic analysis and logistic regression (LR) analysis were used to classify knees by spasticity status (none or any) and severity (low/moderate or high/severe). Results Pendulum test metrics for knee extensors were not influenced by degree of flexor spasticity, age, years since injury, strength or ROM of the limb. RI, F1amp and Plat were > 70% accurate in classifying knees by presence of clinical spasticity (from the MAS), but were less accurate (< 70%) for grading spasticity level. The best classification accuracy was obtained using F1amp and Plat independently in the model rather than using RI alone. Conclusions We conclude that the pendulum test has good predictive value for detecting the presence of extensor spasticity, independent of the existence of flexor spasticity. However, the ability to grade spasticity level as measured by MAS using the RI and/or F1amp may be limited. Further study is warranted to explore if the pendulum test is suitable for quantifying more severe spasticity.
Collapse
Affiliation(s)
- Alyssa Whelan
- Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada
| | - Andrew Sexton
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Melony Jones
- Stan Cassidy Centre for Rehabilitation, Fredericton, NB, Canada
| | - Colleen O'Connell
- Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada.,Stan Cassidy Centre for Rehabilitation, Fredericton, NB, Canada
| | - Chris A McGibbon
- Institute of Biomedical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada. .,Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada.
| |
Collapse
|
14
|
A novel sensor-based assessment of lower limb spasticity in children with cerebral palsy. J Neuroeng Rehabil 2018; 15:45. [PMID: 29866177 PMCID: PMC5987429 DOI: 10.1186/s12984-018-0388-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND To provide effective interventions for spasticity, accurate and reliable spasticity assessment is essential. For the assessment, the Modified Tardieu Scale (MTS) has been widely used owing to its simplicity and convenience. However, it has poor or moderate accuracy and reliability. METHODS We proposed a novel inertial measurement unit (IMU)-based MTS assessment system to improve the accuracy and reliability of the MTS itself. The proposed system consists of a joint angle calculation algorithm, a function to detect abnormal muscle reaction (a catch and clonus), and a visual biofeedback mechanism. Through spastic knee and ankle joint assessment, the proposed IMU-based MTS assessment system was compared with the conventional MTS assessment system in 28 children with cerebral palsy by two raters. RESULTS The results showed that the proposed system has good accuracy (root mean square error < 3.2°) and test-retest and inter-rater reliabilities (ICC > 0.8), while the conventional MTS system has poor or moderate reliability. Moreover, we found that the deteriorated reliability of the conventional MTS system comes from its goniometric measurement as well as from irregular passive stretch velocity. CONCLUSIONS The proposed system, which is clinically relevant, can significantly improve the accuracy and reliability of the MTS in lower limbs for children with cerebral palsy.
Collapse
|
15
|
Characterisation of the patellar tendon reflex in cerebral palsy children using motion analysis. Ir J Med Sci 2015; 185:813-817. [PMID: 26472096 DOI: 10.1007/s11845-015-1369-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND The patellar tendon reflex (PTR) is an important spinal reflex and an important diagnostic tool assessing neurological disturbances. Reflexes are conveniently assessed but quantifying the response can be subjective. Motion analysis is commonly used to assess gait kinematics in a variety of populations. It can be used to objectively assess the PTR with the advantage that standard technique and hammer can be used without the need for bulky apparatus or fixing the subject position. AIM To compare the PTR in 15 cerebral palsy (CP) children with age and height matched controls. METHODS EMG reflex latency in the rectus femoris was assessed using a Noraxon 2400T unit. Knee movement latency, knee angular displacement and peak angular velocity were captured using the CODA mpx 30 system. RESULTS EMG reflex latency was significantly reduced in CP compared to control limbs (13.11 versus 18.11 ms; p < 0.01) confirming a 'brisk' response in this population. The kinematic data found that while knee angular displacement was significantly reduced in CP (12.82° versus 20.06°; p < 0.01) there was no significant difference in movement latency or peak angular velocity compared to controls. CONCLUSIONS Subjective evaluation of the PTR relies mostly on change in knee angle. Using motion analysis we have confirmed a difference in this variable in CP compared to controls. We have also shown reduced reflex latency associated with a brisk reflex. Knee movement latency and peak angular velocity did not differentiate CP from normal. Further examination of the knee angular response of the PTR is warranted in CP.
Collapse
|