1
|
Krivoshik SR, Dzielak L, Masters AR, Hall J, Johnson AJ. Development of an Enzyme-Linked Immunosorbent Spot Assay for the Assessment of Adeno-Associated Virus Peptides to Examine Immune Safety. Hum Gene Ther 2024; 35:506-516. [PMID: 38264994 DOI: 10.1089/hum.2023.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapies have shown promise as novel treatments for rare genetic disorders such as hemophilia A and spinal muscular atrophy. However, cellular immune responses mediated by cytotoxic (CD8+) and helper (CD4+) T cells may target vector-transduced cells as well as healthy immune cells, impacting safety and efficacy. In this study, we describe the optimization and reproducibility of interferon-γ (IFNγ)-based and interleukin-2 (IL-2)-based enzyme-linked immunosorbent spot (ELISpot) assays for measuring T cell responses against AAV peptide antigens. For method optimization, peripheral blood mononuclear cells (PBMCs) were isolated from healthy human donors and stimulated with commercially available major histocompatibility complex (MHC) class I or II-specific peptides as positive controls. Peptide pools were designed from published AAV8 and AAV9 capsid protein sequences and then used to assess the presence of AAV-specific T cell responses. Our results demonstrate a measurable increase in IFNγ and IL-2-producing cells after AAV peptide presentation. Furthermore, there was an observed difference in the magnitude and specificity of response to peptide pools based on AAV serotype and donor. Finally, using individual peptides, we identified a region of the AAV9 capsid protein that can elicit an immunogenic response. This work shows the applicability of ELISpot in assessing anti-AAV immune responses and provides insight into how novel recombinant AAV vectors could be designed to reduce immunogenic potential.
Collapse
Affiliation(s)
- Sara Rose Krivoshik
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Lindsey Dzielak
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - April R Masters
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Jennifer Hall
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Alison J Johnson
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| |
Collapse
|
2
|
Ji J, Lefebvre E, Laporte J. Comparative in vivo characterization of newly discovered myotropic adeno-associated vectors. Skelet Muscle 2024; 14:9. [PMID: 38702726 PMCID: PMC11067285 DOI: 10.1186/s13395-024-00341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Adeno-associated virus (AAV)-based gene therapy is a promising strategy to treat muscle diseases. However, this strategy is currently confronted with challenges, including a lack of transduction efficiency across the entire muscular system and toxicity resulting from off-target tissue effects. Recently, novel myotropic AAVs named MyoAAVs and AAVMYOs have been discovered using a directed evolution approach, all separately demonstrating enhanced muscle transduction efficiency and liver de-targeting effects. However, these newly discovered AAV variants have not yet been compared. METHODS In this study, we performed a comparative analysis of these various AAV9-derived vectors under the same experimental conditions following different injection time points in two distinct mouse strains. RESULTS We highlight differences in transduction efficiency between AAV9, AAVMYO, MyoAAV2A and MyoAAV4A that depend on age at injection, doses and mouse genetic background. In addition, specific AAV serotypes appeared more potent to transduce skeletal muscles including diaphragm and/or to de-target heart or liver. CONCLUSIONS Our study provides guidance for researchers aiming to establish proof-of-concept approaches for preventive or curative perspectives in mouse models, to ultimately lead to future clinical trials for muscle disorders.
Collapse
Affiliation(s)
- Jacqueline Ji
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, IGBMC, 1 rue Laurent Fries, Illkirch, 67404, France
| | - Elise Lefebvre
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, IGBMC, 1 rue Laurent Fries, Illkirch, 67404, France
| | - Jocelyn Laporte
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), INSERM U1258, CNRS UMR7104, University of Strasbourg, IGBMC, 1 rue Laurent Fries, Illkirch, 67404, France.
| |
Collapse
|
3
|
Gene Therapy and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:235-254. [DOI: 10.1007/978-981-19-5642-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Tabebordbar M, Lagerborg KA, Stanton A, King EM, Ye S, Tellez L, Krunnfusz A, Tavakoli S, Widrick JJ, Messemer KA, Troiano EC, Moghadaszadeh B, Peacker BL, Leacock KA, Horwitz N, Beggs AH, Wagers AJ, Sabeti PC. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 2021; 184:4919-4938.e22. [PMID: 34506722 PMCID: PMC9344975 DOI: 10.1016/j.cell.2021.08.028] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/21/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Capsid/chemistry
- Capsid/metabolism
- Cells, Cultured
- Dependovirus/metabolism
- Directed Molecular Evolution
- Disease Models, Animal
- Gene Transfer Techniques
- HEK293 Cells
- Humans
- Integrins/metabolism
- Macaca fascicularis
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/therapy
- Protein Multimerization
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/therapeutic use
- Recombination, Genetic/genetics
- Species Specificity
- Transgenes
- Mice
Collapse
Affiliation(s)
| | - Kim A Lagerborg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Stanton
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Emily M King
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Simon Ye
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liana Tellez
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Sahar Tavakoli
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jeffrey J Widrick
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Emily C Troiano
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Behzad Moghadaszadeh
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bryan L Peacker
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Krystynne A Leacock
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Naftali Horwitz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Alan H Beggs
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA.
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
5
|
Ku CA, Pennesi ME. The new landscape of retinal gene therapy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:846-859. [PMID: 32888388 DOI: 10.1002/ajmg.c.31842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Novel therapeutics for inherited retinal dystrophies (IRDs) have rapidly evolved since groundbreaking clinical trials for LCA due to RPE65 mutations led to the first FDA-approved in vivo gene therapy. Since then, advancements in viral vectors have led to more efficient AAV transduction and developed other viral vectors for gene augmentation therapy of large gene targets. Furthermore, significant developments in gene editing and RNA modulation technologies have introduced novel capabilities for treatment of autosomal dominant diseases, intronic mutations, and/or large genes otherwise unable to be treated with current viral vectors. We highlight strategies currently being evaluated in gene therapy clinical trials and promising preclinical developments for IRDs.
Collapse
Affiliation(s)
- Cristy A Ku
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Choong OK, Chen CY, Zhang J, Lin JH, Lin PJ, Ruan SC, Kamp TJ, Hsieh PC. Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction. Am J Cancer Res 2019; 9:6550-6567. [PMID: 31588235 PMCID: PMC6771230 DOI: 10.7150/thno.35218] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/29/2019] [Indexed: 01/03/2023] Open
Abstract
Rationale: Long non-coding RNA (lncRNAs) has been identified as a pivotal novel regulators in cardiac development as well as cardiac pathogenesis. lncRNA H19 is known as a fetal gene but it is exclusively abundant in the heart and skeletal muscles in adulthood, and is evolutionarily conserved in humans and mice. It has been reported to possess a significant correlation with the risk of coronary artery diseases. However, the function of H19 is not well characterized in heart. Methods: Loss-of-function and gain-of-function mouse models with left anterior descending coronary artery-ligation surgery were utilized to evaluate the functionality of H19 in vivo. For mechanistic studies, hypoxia condition were exerted in in vitro models to mimic cardiac ischemic injury. Chromatin isolation by RNA immunoprecipitation (ChIRP) was performed to reveal the interacting protein of lncRNA H19. Results: lncRNA H19 was significantly upregulated in the infarct area post-surgery day 4 in mouse model. Ectopic expression of H19 in the mouse heart resulted in severe cardiac dilation and fibrosis. Several extracellular matrix (ECM) genes were significantly upregulated. While genetic ablation of H19 by CRISPR-Cas9 ameliorated post-MI cardiac remodeling with reduced expression in ECM genes. Through chromatin isolation by RNA purification (ChIRP), we identified Y-box-binding protein (YB)-1, a suppressor of Collagen 1A1, as an interacting protein of H19. Furthermore, H19 acted to antagonize YB-1 through direct interaction under hypoxia, which resulted in de-repression of Collagen 1A1 expression and cardiac fibrosis. Conclusions: Together these results demonstrate that lncRNA H19 and its interacting protein YB-1 are crucial for ECM regulation during cardiac remodeling.
Collapse
|
7
|
Odiba A, Ottah V, Anunobi O, Ukegbu C, Uroko R, Ottah C, Edeke A, Omeje K. Current strides in AAV-derived vectors and SIN channels further relieves the limitations of gene therapy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2018. [DOI: 10.1016/j.ejmhg.2017.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Burridge PW, Sharma A, Wu JC. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. Annu Rev Genet 2016; 49:461-84. [PMID: 26631515 DOI: 10.1146/annurev-genet-112414-054911] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Paul W Burridge
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Pharmacology.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | - Arun Sharma
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305
| | - Joseph C Wu
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
9
|
Abstract
Clinical trials treating inherited retinal dystrophy caused by RPE65 mutations had put retinal gene therapy at the forefront of gene therapy. Both successes and limitations in these clinical trials have fueled developments in gene vectors, which continue to further advance the field. These novel gene vectors aim to more safely and efficiently transduce retinal cells, expand the gene packaging capacity of AAV, and utilize new strategies to correct the varying mechanisms of dysfunction found with inherited retinal dystrophies. With recent clinical trials and numerous pre-clinical studies utilizing these novel vectors, the future of ocular gene therapy continues to hold vast potential.
Collapse
Affiliation(s)
- Cristy A Ku
- Center for Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, 26505, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
10
|
Zacchigna S, Zentilin L, Giacca M. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 2014; 114:1827-46. [PMID: 24855205 DOI: 10.1161/circresaha.114.302331] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of vectors based on the small parvovirus adeno-associated virus has gained significant momentum during the past decade. Their high efficiency of transduction of postmitotic tissues in vivo, such as heart, brain, and retina, renders these vectors extremely attractive for several gene therapy applications affecting these organs. Besides functional correction of different monogenic diseases, the possibility to drive efficient and persistent transgene expression in the heart offers the possibility to develop innovative therapies for prevalent conditions, such as ischemic cardiomyopathy and heart failure. Therapeutic genes are not only restricted to protein-coding complementary DNAs but also include short hairpin RNAs and microRNA genes, thus broadening the spectrum of possible applications. In addition, several spontaneous or engineered variants in the virus capsid have recently improved vector efficiency and expanded their tropism. Apart from their therapeutic potential, adeno-associated virus vectors also represent outstanding investigational tools to explore the function of individual genes or gene combinations in vivo, thus providing information that is conceptually similar to that obtained from genetically modified animals. Finally, their single-stranded DNA genome can drive homology-directed gene repair at high efficiency. Here, we review the main molecular characteristics of adeno-associated virus vectors, with a particular view to their applications in the cardiovascular field.
Collapse
Affiliation(s)
- Serena Zacchigna
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Lorena Zentilin
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.)
| | - Mauro Giacca
- From the Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy (S.Z., L.Z., M.G.); and Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy (S.Z., M.G.).
| |
Collapse
|
11
|
Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med 2013; 5:1642-61. [PMID: 24106209 PMCID: PMC3840483 DOI: 10.1002/emmm.201202287] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023] Open
Abstract
The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders.
Collapse
Affiliation(s)
| | - Hildegard Büning
- Department I of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of CologneCologne, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical SchoolHannover, Germany
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical SchoolBoston, MA, USA
| | - Manuel Grez
- Institute for Biomedical ResearchGeorg-Speyer-Haus, Frankfurt, Germany
| |
Collapse
|