1
|
Wang Y, Jin J, Li Y, Zhou Q, Yao R, Wu Z, Hu H, Fang Z, Dong S, Cai Q, Hu S, Liu B. NK cell tumor therapy modulated by UV-inactivated oncolytic herpes simplex virus type 2 and checkpoint inhibitors. Transl Res 2022; 240:64-86. [PMID: 34757194 DOI: 10.1016/j.trsl.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Oncolytic virotherapy is a new and safe therapeutic strategy for cancer treatment. In our previous study, a new type of oncolytic herpes simplex virus type 2 (oHSV2) was constructed. Following the completion of a preclinical study, oHSV2 has now entered into clinical trials for the treatment of melanoma and other solid tumors (NCT03866525). Oncolytic viruses (OVs) are generally able to directly destroy tumor cells and stimulate the immune system to fight tumors. Natural killer (NK) cells are important components of the innate immune system and critical players against tumor cells. But the detailed interactions between oncolytic viruses and NK cells and these interaction effects on the antitumor immune response remain to be elucidated. In particular, the functions of activating surface receptors and checkpoint inhibitors on oHSV2-treated NK cells and tumor cells are still unknown. In this study, we found that UV-oHSV2 potently activates human peripheral blood mononuclear cells, leading to increased antitumor activity in vitro and in vivo. Further investigation indicated that UV-oHSV2-stimulated NK cells release IFN-γ via Toll-like receptor 2 (TLR2)/NF-κB signaling pathway and exert antitumor activity via TLR2. We found for the first time that the expression of a pair of checkpoint molecules, NKG2A (on NK cells) and HLA-E (on tumor cells), is upregulated by UV-oHSV2 stimulation. Anti-NKG2A and anti-HLA-E treatment could further enhance the antitumor effects of UV-oHSV2-stimulated NK92 cells in vitro and in vivo. As our oHSV2 clinical trial is ongoing, we expect that the combination therapy of oncolytic virus oHSV2 and anti-NKG2A/anti-HLA-E antibodies may have synergistic antitumor effects in our future clinical trials.
Collapse
Affiliation(s)
- Yang Wang
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jing Jin
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yuying Li
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qin Zhou
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ruoyi Yao
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhen Wu
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Han Hu
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhizheng Fang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, 430000, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, China
| | - Qian Cai
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, China; Huazhong Agricultural University, Wuhan, 430068, China
| | - Binlei Liu
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
2
|
Cristi F, Gutiérrez T, Hitt MM, Shmulevitz M. Genetic Modifications That Expand Oncolytic Virus Potency. Front Mol Biosci 2022; 9:831091. [PMID: 35155581 PMCID: PMC8826539 DOI: 10.3389/fmolb.2022.831091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Oncolytic viruses (OVs) are a promising type of cancer therapy since they selectively replicate in tumor cells without damaging healthy cells. Many oncolytic viruses have progressed to human clinical trials, however, their performance as monotherapy has not been as successful as expected. Importantly, recent literature suggests that the oncolytic potential of these viruses can be further increased by genetically modifying the viruses. In this review, we describe genetic modifications to OVs that improve their ability to kill tumor cells directly, to dismantle the tumor microenvironment, or to alter tumor cell signaling and enhance anti-tumor immunity. These advances are particularly important to increase virus spread and reduce metastasis, as demonstrated in animal models. Since metastasis is the principal cause of mortality in cancer patients, having OVs designed to target metastases could transform cancer therapy. The genetic alterations reported to date are only the beginning of all possible improvements to OVs. Modifications described here could be combined together, targeting multiple processes, or with other non-viral therapies with potential to provide a strong and lasting anti-tumor response in cancer patients.
Collapse
Affiliation(s)
- Francisca Cristi
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tomás Gutiérrez
- Goping Laboratory, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mary M. Hitt
- Hitt Laboratory, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| | - Maya Shmulevitz
- Shmulevitz Laboratory, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Mary M. Hitt, ; Maya Shmulevitz,
| |
Collapse
|
3
|
Oncolytic Herpes Simplex Virus-Based Therapies for Cancer. Cells 2021; 10:cells10061541. [PMID: 34207386 PMCID: PMC8235327 DOI: 10.3390/cells10061541] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
With the increased worldwide burden of cancer, including aggressive and resistant cancers, oncolytic virotherapy has emerged as a viable therapeutic option. Oncolytic herpes simplex virus (oHSV) can be genetically engineered to target cancer cells while sparing normal cells. This leads to the direct killing of cancer cells and the activation of the host immunity to recognize and attack the tumor. Different variants of oHSV have been developed to optimize its antitumor effects. In this review, we discuss the development of oHSV, its antitumor mechanism of action and the clinical trials that have employed oHSV variants to treat different types of tumor.
Collapse
|
4
|
Shi F, Xin VW, Liu XQ, Wang YY, Zhang Y, Cheng JT, Cai WQ, Xiang Y, Peng XC, Wang X, Xin HW. Identification of 22 Novel Motifs of the Cell Entry Fusion Glycoprotein B of Oncolytic Herpes Simplex Viruses: Sequence Analysis and Literature Review. Front Oncol 2020; 10:1386. [PMID: 32974139 PMCID: PMC7466406 DOI: 10.3389/fonc.2020.01386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
Objective: Herpes simplex viruses (HSVs) are widely spread throughout the world, causing infections from oral, and genital mucous membrane ulcerations to severe viral encephalitis. Glycoprotein B (gB) was the first HSV envelope glycoprotein identified to induce cell fusion. This glycoprotein initiates viral entry and thereby determines the infectivity of HSV, as well as oncolytic HSV (oHSV). Clarifying its molecular characterization and enlarging its motif reservoir will help to engineer oHSV and in cancer treatment applications. Only in recent years has the importance of gB been acknowledged in HSV infection and oHSV engineering. Although gB-modified oHSVs have been developed, the detailed molecular biology of gB needs to be illustrated more clearly in order to construct more effective oHSVs. Method: Here, we performed a systematic comparative sequence analysis of gBs from the 9 HSV-1 and 2 HSV-2 strains, including HSV-1-LXMW, which was isolated by our lab. Online software was implemented to predict gB secondary structure and motifs. Based on extensive literature reviews, a functional analysis of the predicted motifs was performed. Results: Here, we reported the DNA and predicted amino acid sequences of our recently isolated HSV-1-LXMW and found that the strain was evolutionarily close to HSV-1 strains F, H129, and SC16 based on gB analysis. The 22 novel motifs of HSV gB were identified for the first time. An amino acid sequence alignment of the 11 HSV strains showed that the gB motifs are conserved among HSV strains, suggesting that they are functional in vivo. Additionally, we found that certain amino acids within the 13 motifs out of the 22 were reported to be functional in vivo. Furthermore, the gB mutants and gB-engineered oHSVs were also summarized. Conclusion: Our identification of the 22 novel motifs shed light on HSV gB biology and provide new options for gB engineering to improve the efficiency and safety of oHSVs.
Collapse
Affiliation(s)
- Fang Shi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Gastroenterology, Huanggang Central Hospital, Huanggang, China
| | - Victoria W. Xin
- Department of Biology, School of Humanities and Sciences, Stanford University, Stanford, CA, United States
| | - Xiao-Qin Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Ying-Ying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Ying Zhang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jun-Ting Cheng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xianwang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Laboratory Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
- Lianjiang People's Hospital, Guangdong, China
| |
Collapse
|
5
|
Luo Y, Lin C, Ren W, Ju F, Xu Z, Liu H, Yu Z, Chen J, Zhang J, Liu P, Huang C, Xia N. Intravenous Injections of a Rationally Selected Oncolytic Herpes Virus as a Potent Virotherapy for Hepatocellular Carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:153-165. [PMID: 31720372 PMCID: PMC6838930 DOI: 10.1016/j.omto.2019.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
As a clinical setting in which novel treatment options are urgently needed, hepatocellular carcinoma (HCC) exhibits intriguing opportunities for oncolytic virotherapy. Here we report the rational generation of a novel herpes simplex virus type 1 (HSV-1)-based oncolytic vector for targeting HCC, named Ld0-GFP, which was derived from oncolytic ICP0-null virus (d0-GFP), had a fusogenic phenotype, and was a novel killer against HCC as well as other types of cancer cells. Compared with d0-GFP, Ld0-GFP exhibited superior cancer cell-killing ability in vitro and in vivo. Ld0-GFP targets a broad spectrum of HCC cells and can result in significantly enhanced immunogenic tumor cell death. Intratumoral and intravenous injections of Ld0-GFP showed effective antitumor capabilities in multiple tumor models, leading to increased survival. We speculated that more active cell-killing capability of oncolytic virus and enhanced immunogenic cell death may lead to better tumor regression. Additionally, Ld0-GFP had an improved safety profile, showing reduced neurovirulence and systemic toxicity. Ld0-GFP virotherapy could offer a potentially less toxic, more effective option for both local and systemic treatment of HCC. This approach also provides novel insights toward ongoing efforts to develop an optimal oncolytic vector for cancer therapy.
Collapse
Affiliation(s)
- Yong Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Chaolong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Wenfeng Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Fei Ju
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Zilong Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Huiling Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Zeng Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Jun Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery, ZhongShan Hospital Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory and Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital Xiamen University, Xiamen, China
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Wang Y, Jin J, Wu Z, Hu S, Hu H, Ning Z, Li Y, Dong Y, Zou J, Mao Z, Shi X, Zheng H, Dong S, Liu F, Fang Z, Wu J, Liu B. Stability and anti-tumor effect of oncolytic herpes simplex virus type 2. Oncotarget 2018; 9:24672-24683. [PMID: 29872496 PMCID: PMC5973869 DOI: 10.18632/oncotarget.25122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
Oncolytic virotherapy is a new therapeutic strategy based on the inherent cytotoxicity of viruses and their ability to replicate and spread in tumors in a selective manner. We constructed a new type of oncolytic herpes simplex virus type 2 (oHSV-2, named OH2) to treat human cancers, but a systematic evaluation of the stability and oncolytic ability of this virus is lacking. In this study, we evaluated its physical stability, gene modification stability and biological characteristics stability, including its anti-tumor activity in an animal model. The physical characteristics as well as genetic deletions and insertions in OH2 were stable, and the anti-tumor activity remained stable even after passage of the virus for more than 20 generations. In conclusion, OH2 is a virus that has stable structural and biological traits. Furthermore, OH2 is a potent oncolytic agent against tumor cells.
Collapse
Affiliation(s)
- Yang Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Jing Jin
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhen Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Han Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhifeng Ning
- Basic Medicine College, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Yanfei Li
- College of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Yuting Dong
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Jianwen Zou
- College of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Zeyong Mao
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Xiaotai Shi
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 201203, Shanghai, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Fuxing Liu
- Basic Medicine College, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Zhizheng Fang
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Jiliang Wu
- Hubei Provincial Key Laboratory of Cardiocerebrovascular and Metabolic Diseases, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China.,College of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| |
Collapse
|
7
|
In vitro detection of cholangiocarcinoma cells using a fluorescent protein-expressing oncolytic herpes virus. Cancer Gene Ther 2017; 24:227-232. [PMID: 28409558 DOI: 10.1038/cgt.2017.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 02/08/2023]
Abstract
Pathological confirmation is desired prior to high-risk surgery for suspected perihilar cholangiocarcinoma (PHC), but preoperative tissue diagnosis is limited by poor sensitivity of available techniques. This study aimed to validate whether a tumor-specific enhanced green fluorescent protein (eGFP)-expressing oncolytic virus could be used for cholangiocarcinoma (CC) cell detection. Extrahepatic CC cell lines SK-ChA-1, EGI-1, TFK-1 and control cells (primary human liver cells) were exposed to the oncolytic herpes simplex type 1 virus NV1066 for up to 24 h in adherent culture. The technique was validated for cells in suspension and cultured cells that had been exposed to crude patient bile. Optimal incubation time of the CC cells with NV1066 at a multiplicity of infection of 0.1 was determined at 6-8 h, yielding 15% eGFP-expressing cells, as measured by flow cytometry. Cells were able to survive 2-h crude bile exposure and remained capable of producing eGFP following NV1066 infection. Detection of malignant cells was possible at the highest dilution tested (10 CC cells among 2 × 105 control cells), though hampered by non-target cell autofluorescence. The technique was not applicable to cells in suspension due to insufficient eGFP production. Accordingly, as yet the technique is not suitable for standardized clinical diagnostics in PHC.
Collapse
|
8
|
Yin L, Zhao C, Han J, Li Z, Zhen Y, Xiao R, Xu Z, Sun Y. Antitumor effects of oncolytic herpes simplex virus type 2 against colorectal cancer in vitro and in vivo. Ther Clin Risk Manag 2017; 13:117-130. [PMID: 28223815 PMCID: PMC5308569 DOI: 10.2147/tcrm.s128575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The incidence of colorectal cancer (CRC) is on the rise. Furthermore, late-stage diagnoses and limited efficacious treatment options make CRC a complex clinical challenge. Therefore, a new therapeutic regimen with a completely novel therapeutic mechanism is necessary for CRC. In the present study, the therapeutic efficacy of oncolytic herpes simplex virus type 2 (oHSV2) in CRC was assessed in vitro and in vivo. oHSV2 is an oncolytic agent derived from herpes simplex virus type 2 that encodes granulocyte-macrophage colony-stimulating factor. Materials and methods We investigated the cytopathic effects of oHSV2 in CRC cell lines using the MTT assay. Then, cell cycle progression and apoptosis of oHSV2 were examined by flow cytometry. We generated a model of CRC with mouse CRC cell CT26 in BALB/c mice. The antitumor effects and adaptive immune response of oHSV2 were assessed in tumor-bearing mice. The therapeutic efficacy of oHSV2 was compared with the traditional chemotherapeutic agent, 5-fluorouracil. Results The in vitro data showed that oHSV2 infected the CRC cell lines successfully and that the tumor cells formed a significant number of syncytiae postinfection. The oHSV2 killed cancer cells independent of the cell cycle and mainly caused tumor cells necrosis. The in vivo results showed that oHSV2 significantly inhibited tumor growth and prolonged survival of tumor-bearing mice without weight loss. With virus replication, oHSV2 not only resulted in a reduction of myeloid-derived suppressor cells and regulatory T cells in the spleen, but also increased the number of mature dendritic cells in tumor-draining lymph nodes and the effective CD4+T and CD8+T-cells in the tumor microenvironment. Conclusion Our study provides the first evidence that oHSV2 induces cell death in CRC in vitro and in vivo. These findings indicate that oHSV2 is an effective therapeutic cancer candidate that causes an oncolytic effect and recruits adaptive immune responses for an enhanced therapeutic impact, thus providing a potential therapeutic tool for treatment of CRC.
Collapse
Affiliation(s)
- Lei Yin
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan; Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan; Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Chunhong Zhao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Jixia Han
- Department of General Surgery, The Sixth People's Hospital of Jinan, Jinan, People's Republic of China
| | - Zengjun Li
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan
| | - Yanan Zhen
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Ruixue Xiao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Zhongfa Xu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan
| | - Yanlai Sun
- Department of Gastrointestinal Cancer Surgery, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan
| |
Collapse
|
9
|
Syncytial Mutations Do Not Impair the Specificity of Entry and Spread of a Glycoprotein D Receptor-Retargeted Herpes Simplex Virus. J Virol 2016; 90:11096-11105. [PMID: 27707922 DOI: 10.1128/jvi.01456-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
Membrane fusion, which is the key process for both initial cell entry and subsequent lateral spread of herpes simplex virus (HSV), requires the four envelope glycoproteins gB, gD, gH, and gL. Syncytial mutations, predominantly mapped to the gB and gK genes, confer hyperfusogenicity on HSV and cause multinucleated giant cells, termed syncytia. Here we asked whether interaction of gD with a cognate entry receptor remains indispensable for initiating membrane fusion of syncytial strains. To address this question, we took advantage of mutant viruses whose viral entry into cells relies on the uniquely specific interaction of an engineered gD with epidermal growth factor receptor (EGFR). We introduced selected syncytial mutations into gB and/or gK of the EGFR-retargeted HSV and found that these mutations, especially when combined, enabled formation of extensive syncytia by human cancer cell lines that express the target receptor; these syncytia were substantially larger than the plaques formed by the parental retargeted HSV strain. We assessed the EGFR dependence of entry and spread separately by using direct entry and infectious center assays, respectively, and we found that the syncytial mutations did not override the receptor specificity of the retargeted viruses at either stage. We discuss the implications of these results for the development of more effective targeted oncolytic HSV vectors. IMPORTANCE Herpes simplex virus (HSV) is investigated not only as a human pathogen but also as a promising agent for oncolytic virotherapy. We previously showed that both the initial entry and subsequent lateral spread of HSV can be retargeted to cells expressing tumor-associated antigens by single-chain antibodies fused to a receptor-binding-deficient envelope glycoprotein D (gD). Here we introduced syncytial mutations into the gB and/or gK gene of gD-retargeted HSVs to determine whether viral tropism remained dependent on the interaction of gD with the target receptor. Entry and spread profiles of the recombinant viruses indicated that gD retargeting does not abolish the hyperfusogenic activity of syncytial mutations and that these mutations do not eliminate the dependence of HSV entry and spread on a specific gD-receptor interaction. These observations suggest that syncytial mutations may be valuable for increasing the tumor-specific spreading of retargeted oncolytic HSV vectors.
Collapse
|
10
|
Abstract
New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer.
Collapse
Affiliation(s)
| | - Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Filatov F, Shargunov A. Short nucleotide sequences in herpesviral genomes identical to the human DNA. J Theor Biol 2015; 372:12-21. [PMID: 25728788 DOI: 10.1016/j.jtbi.2015.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/08/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
Abstract
In 2010, we described many similar DNA sequences in human and viral genomes, including herpesviral ones. The data obtained allowed us to suggest that these motifs may provide the antiviral protection by mating with a complementary potential target and destroying it by the catalytic way like small interfering RNA, siRNA. Since we have analyzed these viruses as a group, two major issues seemed to us curious: (1) the number of such motifs in genomes of various herpesvirus types, and (2) distribution of these motifs in an individual viral genome. Here we searched only the herpesviral genomes for short (>20nt) continuous sequences (hits) that are totally identical to the sequences of human DNA. We found that different viral genes and genomes of different herpesviruses contain different amount of such hits. Assuming like in previous paper that the density of these hits in viral genes is associated with the probability to be targets for cellular siRNA, we consider the genomic allocation of this density as a hypothetical targetome map of the human herpesviruses. We combined all nine types of herpesviruses in the three groups according the hit concentration in their genomes and found that the resulting sequence corresponds to the type of cellular pathology caused by a virus. We do not assert now that this trend also relates to other human viruses or other viruses in general. As the GenBank continues to fill, it would be highly advisable to conduct further relevant research. We also suggested that a high hits concentration we found in the gene RL1 (ICP34.5) of the herpes simplex virus type 1 (HSV1) can make this gene a likely target for putative cellular endogenous siRNA. Artificial blockade of the gene RL1 attaches oncolytic properties to HSV1, and we do not exclude the possibility that part of the HSV1 population in humans with blocked RL1 in vivo, may participate in early anti-cancer protection during the reactivation of the virus from the latent state.
Collapse
Affiliation(s)
- Felix Filatov
- Department of Scientific and Clinic Viral Diagnostics, Hematology Research Center, Ministry of Public Health, Moscow, Russian Federation.
| | - Alexander Shargunov
- Laboratory of Bioinformatics, Mechnikov Research Institute of Vaccines and Sera, Russian Academy of Medical Sciences, Moscow, Russian Federation
| |
Collapse
|
12
|
Abstract
ABSTRACT Enveloped viruses encode proteins that can induce cell fusion to allow spread of infection without exposure to immune surveillance. In this review, we discuss cell fusion events caused by neurotropic α-herpesviruses. Syncytia (large, multinucleated cells) are clinically indicative of α herpesvirus infections, and peripheral neuropathies are clinical hallmarks. We examine the viral and cellular factors required for cell fusion, as well as mutations which confer a more aggressive ‘hypersyncytial’ phenotype. Finally, we consider the causes of fusion events in infected neurons, and the implications for neuronal dysfunction and pathophysiology.
Collapse
Affiliation(s)
- Anthony E Ambrosini
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Lynn W Enquist
- Department of Molecular Biology & Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
13
|
Zhao Q, Zhang W, Ning Z, Zhuang X, Lu H, Liang J, Li J, Zhang Y, Dong Y, Zhang Y, Zhang S, Liu S, Liu B. A novel oncolytic herpes simplex virus type 2 has potent anti-tumor activity. PLoS One 2014; 9:e93103. [PMID: 24671154 PMCID: PMC3966855 DOI: 10.1371/journal.pone.0093103] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/28/2014] [Indexed: 02/02/2023] Open
Abstract
Oncolytic viruses are promising treatments for many kinds of solid tumors. In this study, we constructed a novel oncolytic herpes simplex virus type 2: oHSV2. We investigated the cytopathic effects of oHSV2 in vitro and tested its antitumor efficacy in a 4T1 breast cancer model. We compared its effect on the cell cycle and its immunologic impact with the traditional chemotherapeutic agent doxorubicin. In vitro data showed that oHSV2 infected most of the human and murine tumor cell lines and was highly oncolytic. oHSV2 infected and killed 4T1 tumor cells independent of their cell cycle phase, whereas doxorubicin mainly blocked cells that were in S and G2/M phase. In vivo study showed that both oHSV2 and doxorubicin had an antitumor effect, though the former was less toxic. oHSV2 treatment alone not only slowed down the growth of tumors without causing weight loss but also induced an elevation of NK cells and mild decrease of Tregs in spleen. In addition, combination therapy of doxorubicin followed by oHSV2 increased survival with weight loss than oHSV2 alone. The data showed that the oncolytic activity of oHSV2 was similar to oHSV1 in cell lines examined and in vivo. Therefore, we concluded that our virus is a safe and effective therapeutic agent for 4T1 breast cancer and that the sequential use of doxorubicin followed by oHSV2 could improve antitumor activity without enhancing doxorubicin’s toxicity.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Pathology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wen Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhifeng Ning
- School of Pharmacology, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Xiufen Zhuang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haizhen Lu
- Department of Pathology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Liang
- Department of Pathology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Li
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Dong
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youhui Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuren Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shangmei Liu
- Department of Pathology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binlei Liu
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; School of Pharmacology, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
14
|
Meshii N, Takahashi G, Okunaga S, Hamada M, Iwai S, Takasu A, Ogawa Y, Yura Y. Enhancement of systemic tumor immunity for squamous cell carcinoma cells by an oncolytic herpes simplex virus. Cancer Gene Ther 2013; 20:493-8. [PMID: 23887644 DOI: 10.1038/cgt.2013.45] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/07/2013] [Accepted: 06/15/2013] [Indexed: 01/13/2023]
Abstract
RH2 is a neurovirulent γ134.5 gene-deficient herpes simplex virus type 1 (HSV-1) with a lytic ability in human squamous cell carcinoma (SCC) cells; it is related to spontaneously occurring HSV-1 mutant HF10. The effect of RH2 on SCC was examined using a syngeneic C3H mouse model. After infection of mouse SCCVII cells with RH2, cell viability was decreased at first, but recovered by prolonged culture, indicating the limited replication of RH2. The antitumor ability of RH2 was examined using a bilateral SCCVII tumor model. The growth of the RH2-injected tumors was suppressed compared with that of phosphate-buffered saline-injected tumors. Moreover, the growth of contralateral tumor of RH2-treated mice was also suppressed significantly. The splenocytes of C3H mice treated with RH2 lysed more SCCVII cells than NFSaY83 cells and YAC-1 cells. The cytotoxicity of the splenocytes on SCCVII cells was significantly greater than that of splenocytes from tumor-bearing mice. Removal of CD8(+) T cells from splenocytes decreased their cell killing activity remarkably. The antitumor effect of RH2 on SCCVII xenografts in nude mice was not demonstrated. These results indicate that RH2 exhibited a suppressive effect on mouse SCC, even if the replication of RH2 was limited. This is ascribed to the ability of RH2 to enhance existing tumor-specific cytotoxic T lymphocyte activity.
Collapse
Affiliation(s)
- N Meshii
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dey M, Auffinger B, Lesniak MS, Ahmed AU. Antiglioma oncolytic virotherapy: unattainable goal or a success story in the making? Future Virol 2013; 8:675-693. [PMID: 24910708 DOI: 10.2217/fvl.13.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Initial observations from as early as the mid-1800s suggested that patients suffering from hematological malignancies would transiently go into remission upon naturally contracting viral infections laid the foundation for the oncolytic virotherapy research field. Since then, research focusing on anticancer oncolytic virotherapy has rapidly evolved. Today, oncolytic viral vectors have been engineered to stimulate and manipulate the host immune system, selectively targeting tumor tissues while sparing non-neoplastic cells. Glioblastoma multiforme, the most common adult primary brain tumor, has a disasterous history. It is one of the most deadly cancers known to humankind. Over the last century our understanding of this disease has grown exponentially. However, the median survival of patients suffering from this disease has only been extended by a few months. Even with the best, most aggressive modern therapeutic approaches available, malignant gliomas are still virtually 100% fatal. Motivated by the desperate need to find effective treatment strategies, more investments have been applied to oncolytic virotherapy preclinical and clinical studies. In this review we will discuss the antiglioma oncolytic virotherapy research field. We will survey its history and the principles laid down to serve as basis for preclinical works. We will also debate the variety of viral vectors used, their clinical applications, the lessons learned from clinical trials and possible future directions.
Collapse
Affiliation(s)
- Mahua Dey
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Atique U Ahmed
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Takahashi G, Meshii N, Hamada M, Iwai S, Yura Y. Sequence of a fusogenic herpes simplex virus, RH2, for oncolytic virotherapy. J Gen Virol 2012; 94:726-737. [PMID: 23239570 DOI: 10.1099/vir.0.044834-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RH2 is a novel oncolytic herpes simplex virus type 1 (HSV-1) produced by simultaneous infection with neurovirulent γ134.5 gene-deficient HSV-1 R849 derived from strain F and the spontaneously occurring, fusogenic HSV-1 HF in cell culture. The genome of RH2 was studied using Genome Sequencer FLX. RH2 comprised 149 64 bp and it was shown that the lacZ gene was inserted into the γ134.5 gene of R849. Comparison of ORFs revealed that RH2 had 100 % identity with strain F in 21/58 unique long (UL) genes (36.2%) and 1/13 unique short (US) genes (7.7%). RH2 had 100% amino acid identity with HF10 in 24/58 UL genes (41.4%) and 9/13 US genes (69.2%). Twelve genes, including UL27 (gB), US4 (gG) and UL6 (gD), had amino acid changes unique to RH2. Amino acid changes in gB occurred at positions 459 (T→A) and 817 (L→P). Other unique features were the amino acids missing in UL36 (VP1/2) and UL46 (VP11/12). Thus, RH2 is an HF10-based vector preserving the fusogenic amino acid changes of gB but lacking the γ134.5 gene. RH2 is expected to be a version of HF10 useful for the treatment of brain tumours as well as oral squamous cell carcinoma. Spontaneously occurring HSV-1 mutants may also be useful clinically, as their genome sequences can easily be determined by this genome sequencing system.
Collapse
Affiliation(s)
- Gen Takahashi
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noritoshi Meshii
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masakazu Hamada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Soichi Iwai
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Yura
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Zhuang X, Zhang W, Chen Y, Han X, Li J, Zhang Y, Zhang Y, Zhang S, Liu B. Doxorubicin-enriched, ALDH(br) mouse breast cancer stem cells are treatable to oncolytic herpes simplex virus type 1. BMC Cancer 2012; 12:549. [PMID: 23176143 PMCID: PMC3541265 DOI: 10.1186/1471-2407-12-549] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The primary objective of this study was to test whether oncolytic herpes simplex virus type 1 (HSV1) could eradicate chemoresistant cancer stem cells (CSCs). METHODS The fluorescent aldefluor reagent-based technique was used to identify and isolate ALDH(br) cells as CSCs from the 4T1 murine breast cancer cell line. The presence of ALDH(br) 4T1 cells was also examined in 4T1 breast cancer transplanted in immune-competent syngeneic mice. RESULTS Compared with ALDH(lo) cells, ALDH(br) cells had a markedly higher ability to form tumor spheres in vitro and a higher tumorigenic potential in vivo. ALDH(br) cells also exhibited increased doxorubicin resistance in vitro, which correlated with a selective increase in the percentage of ALDH(br) cells after doxorubicin treatment and an increased expression of P-glycoprotein (P-gp), a known chemoresistance factor. In contrast, oncolytic HSV1 was able to kill ALDH(br) cells in vitro and even more markedly in vivo. Furthermore, in in vivo studies, systemic administration of doxorubicin followed by intratumoral injection of oncolytic HSV1 resulted in much more significant suppression of tumor growth with increased median survival period compared with each treatment given alone (p<0.05). Though more CD8(+) T lymphocytes were induced by oncolytic HSV1, no significant specific T cell response against CSCs was detected in vivo. CONCLUSIONS These results suggested that the use of oncolytic HSV1 following doxorubicin treatment may help eradicate residual chemoresistant CSCs in vivo.
Collapse
Affiliation(s)
- Xiufen Zhuang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Recent advances include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, strategies to maximize the immunotherapeutic action of oncolytic viruses and clinical confirmation of a critical viremic threshold for vascular delivery and intratumoral virus replication. The primary clinical milestone has been completion of accrual in a phase 3 trial of intratumoral herpes simplex virus therapy using talimogene laherparepvec for metastatic melanoma. Key challenges for the field are to select 'winners' from a burgeoning number of oncolytic platforms and engineered derivatives, to transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity, to develop more meaningful preclinical virotherapy models and to manufacture viruses with orders-of-magnitude higher yields than is currently possible.
Collapse
|
19
|
Argnani R, Marconi P, Volpi I, Bolanos E, Carro E, Ried C, Santamaria E, Pourchet A, Epstein AL, Brocker T, Corrales FJ, Manservigi R, Goicoechea I, Foschini M, Hernandez-Alcoceba R. Characterization of herpes simplex virus 1 strains as platforms for the development of oncolytic viruses against liver cancer. Liver Int 2011; 31:1542-1553. [PMID: 22093330 DOI: 10.1111/j.1478-3231.2011.02628.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/25/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND Diverse oncolytic viruses (OV) are being designed for the treatment of cancer. The characteristics of the parental virus strains may influence the properties of these agents. AIMS To characterize two herpes simplex virus 1 strains (HSV-1 17syn(+) and HFEM) as platforms for virotherapy against liver cancer. METHODS The luciferase reporter gene was introduced in the intergenic region 20 locus of both HSV-1 strains, giving rise to the Cgal-Luc and H6-Luc viruses. Their properties were studied in hepatocellular carcinoma (HCC) cells in vitro. Biodistribution was monitored by bioluminescence imaging (BLI) in athymic mice and immune-competent Balb/c mice. Immunogenicity was studied by MHC-tetramer staining, in vivo killing assays and determination of specific antibody production. Intratumoural transgene expression and oncolytic effect were studied in HuH-7 xenografts. RESULTS The H6-Luc virus displayed a syncytial phenotype and showed higher cytolytic effect on some HCC cells. Upon intravenous or intrahepatic injection in mice, both viruses showed a transient transduction of the liver with rapid relocalization of bioluminescence in adrenal glands, spinal cord, uterus and ovaries. No significant differences were observed in the immunogenicity of these viruses. Local intratumoural administration caused progressive increase in transgene expression during the first 5 days and persisted for at least 2 weeks. H6-Luc achieved faster amplification of transgene expression and stronger inhibition of tumour growth than Cgal-Luc, although toxicity of these non-attenuated viruses should be reduced to obtain a therapeutic effect. CONCLUSIONS The syncytial H6-Luc virus has a strong oncolytic potential on human HCC xenografts and could be the basis for potent OV.
Collapse
Affiliation(s)
- Rafaela Argnani
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Takaoka H, Takahashi G, Ogawa F, Imai T, Iwai S, Yura Y. A novel fusogenic herpes simplex virus for oncolytic virotherapy of squamous cell carcinoma. Virol J 2011; 8:294. [PMID: 21663640 PMCID: PMC3131258 DOI: 10.1186/1743-422x-8-294] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/10/2011] [Indexed: 01/09/2023] Open
Abstract
Background R849 is a neurovirulent γ134.5 gene-deficient form of herpes simplex virus type 1 (HSV-1) and has LacZ genes at the deleted sites of the γ134.5 gene. HF is a spontaneously occurring, fusogenic HSV-1 strain. The purpose of this work was to generate a virus that has the syncytial character of HF, while preserving the γ134.5 gene inactivation profile of R849 virus. Results Vero cells were infected with R849 and HF simultaneously and two viruses, RH1 and RH2, expressing the LacZ gene and inducing extensive cell fusion were selected. A polymerase chain reaction (PCR)-based analysis suggested that one copy of the γ134.5 gene is lost in RH1, whereas both copies are lost in RH2, and that the γ134.5 gene is replaced by a R849-derived DNA fragment with the LacZ gene. These viruses produced larger plaques and more progeny than the parental viruses. Infection with RH2 decreased the viability of oral squamous cell carcinoma (SCC) cells most strongly. When RH2 was injected into xenografts of oral SCC in nude mice, multinucleated cells were produced and the growth of the tumors was suppressed significantly. Conclusion These results indicate that novel oncolytic HSV-1 vectors can be produced with the genetic background of the oncolytic HSV-1 HF, and that RH2 is deficient in γ134.5 genes and shows extensive cytopathic effects in oral SCC cells. RH2 may be useful in oncolytic virotherapy for oral SCC.
Collapse
Affiliation(s)
- Hiroo Takaoka
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Oncolytic herpes simplex virus 1 encoding 15-prostaglandin dehydrogenase mitigates immune suppression and reduces ectopic primary and metastatic breast cancer in mice. J Virol 2011; 85:7363-71. [PMID: 21543507 DOI: 10.1128/jvi.00098-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oncolytic herpes simplex virus 1 (HSV-1) viruses armed with immunomodulatory transgenes have shown potential for enhanced antitumor therapy by overcoming tumor-based immune suppression and promoting antitumor effector cell development. Previously, we reported that the new oncolytic HSV-1 virus, OncSyn (OS), engineered to fuse tumor cells, prevented tumor growth and metastasis to distal organs in the 4T1/BALB/c immunocompetent breast cancer mouse model, suggesting the elicitation of antitumor immune responses (Israyelyan et al., Hum. Gen. Ther. 18:5, 2007, and Israyelyan et al., Virol. J. 5:68, 2008). The OSV virus was constructed by deleting the OS viral host shutoff gene (vhs; UL41) to further attenuate the virus and permit dendritic cell activation and antigen presentation. Subsequently, the OSVP virus was constructed by inserting into the OSV viral genome a murine 15-prostaglandin dehydrogenase (15-PGDH) expression cassette, designed to constitutively express 15-PGDH upon infection. 15-PGDH is a tumor suppressor protein and the primary enzyme responsible for the degradation of prostaglandin E2 (PGE2), which is known to promote tumor development. OSVP, OSV, and OS treatment of 4T1 tumors in BALB/c mice effectively reduced primary tumor growth and inhibited metastatic development of secondary tumors. OSVP was able to significantly inhibit the development and accumulation of 4T1 metastatic tumor cells in the lungs of treated mice. Ex vivo analysis of immune cells following treatment showed increased inflammatory cytokine production and the presence of mature dendritic cells for the OSVP, OSV, and OS viruses. A statistically significant decrease in splenic myeloid-derived suppressor cells (MDSC) was observed only for OSVP-treated mice. These results show that intratumoral oncolytic herpes is highly immunogenic and suggest that 15-PGDH expression by OSVP enhanced the antitumor immune response initiated by viral infection of primary tumor cells, leading to reduced development of pulmonary metastases. The availability of the OSVP genome as a bacterial artificial chromosome allows for the rapid insertion of additional immunomodulatory genes that could further assist in the induction of potent antitumor immune responses against primary and metastatic tumors.
Collapse
|
22
|
Kanai R, Wakimoto H, Cheema T, Rabkin SD. Oncolytic herpes simplex virus vectors and chemotherapy: are combinatorial strategies more effective for cancer? Future Oncol 2010; 6:619-34. [PMID: 20373873 DOI: 10.2217/fon.10.18] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite aggressive treatments, including chemotherapy and radiotherapy, cancers often recur owing to resistance to conventional therapies. Oncolytic viruses such as oncolytic herpes simplex virus (oHSV) represent an exciting biological approach to cancer therapy. A range of viral mutations has been engineered into HSV to engender oncolytic activity. While oHSV as a single agent has been tested in a number of cancer clinical trials, preclinical studies have demonstrated enhanced efficacy when it is combined with cytotoxic anticancer drugs. Among the strategies that will be discussed in this article are combinations with standard-of-care chemotherapeutics, expression of prodrug-activating enzymes to enhance chemotherapy and small-molecule inhibitors. The combination of oHSV and chemotherapy can achieve much more efficient cancer cell killing than either single agent alone, often through synergistic interactions. This can be clinically important not just for improving efficacy but also for permitting lower and less toxic chemotherapeutic doses. The viral mutations in an oHSV vector often determine the favorability of its interactions with chemotherapy, just as different cancer cells, due to genetic alterations, vary in their response to chemotherapy. As chemotherapeutics are often the standard of care, combining them with an investigational new drug, such as oHSV, is clinically easier than combining multiple novel agents. As has become clear for most cancer therapies, multimodal treatments are usually more effective. In this article, we will discuss the recent progress of these combinatorial strategies between virotherapy and chemotherapy and future directions.
Collapse
Affiliation(s)
- Ryuichi Kanai
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, & Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
23
|
Manservigi R, Argnani R, Marconi P. HSV Recombinant Vectors for Gene Therapy. Open Virol J 2010; 4:123-56. [PMID: 20835362 DOI: 10.2174/1874357901004030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/13/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
24
|
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
25
|
Thalidomide suppressed the growth of 4T1 cells into solid tumors in Balb/c mice in a combination therapy with the oncolytic fusogenic HSV-1 OncdSyn. Cancer Chemother Pharmacol 2009; 64:1201-10. [PMID: 19308409 DOI: 10.1007/s00280-009-0987-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
PURPOSE The anti-tumor properties of thalidomide or in combination with an oncolytic herpes virus (OncdSyn) was investigated in a mouse model of human breast cancer. METHODS To determine if thalidomide could act alone, 4T1 cells were injected into Balb/c mice. Tumors were sized, and the mice were fed chow or chow-containing thalidomide. After 4 days the tumor volumes were compared. To determine if thalidomide could act with the virus, tumors of mice were injected with phosphate buffered saline (PBS), or fed thalidomide with injections of PBS, or fed thalidomide with injections of OncdSyn, or received injections of OncdSyn. RESULTS Thalidomide alone suppressed tumor growth. The most significant treatment occurred in thalidomide-fed-OncdSyn-injected mice. Compared to PBS controls, there was a significant difference in the number of metastatic nodes in the lungs. CONCLUSIONS Thalidomide alone delayed tumor growth, but the combination of thalidomide with OncdSyn appeared to produce the best results.
Collapse
|