1
|
Lin HS, Li CH, Chen LW, Wang SS, Chen LY, Hung CH, Lin CL, Chang PJ. The varicella-zoster virus ORF16 protein promotes both the nuclear transport and the protein abundance of the viral DNA polymerase subunit ORF28. Virus Res 2024; 345:199379. [PMID: 38643859 PMCID: PMC11061344 DOI: 10.1016/j.virusres.2024.199379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Although all herpesviruses utilize a highly conserved replication machinery to amplify their viral genomes, different members may have unique strategies to modulate the assembly of their replication components. Herein, we characterize the subcellular localization of seven essential replication proteins of varicella-zoster virus (VZV) and show that several viral replication enzymes such as the DNA polymerase subunit ORF28, when expressed alone, are localized in the cytoplasm. The nuclear import of ORF28 can be mediated by the viral DNA polymerase processivity factor ORF16. Besides, ORF16 could markedly enhance the protein abundance of ORF28. Noteworthily, an ORF16 mutant that is defective in nuclear transport still retained the ability to enhance ORF28 abundance. The low abundance of ORF28 in transfected cells was due to its rapid degradation mediated by the ubiquitin-proteasome system. We additionally reveal that radicicol, an inhibitor of the chaperone Hsp90, could disrupt the interaction between ORF16 and ORF28, thereby affecting the nuclear entry and protein abundance of ORF28. Collectively, our findings imply that the cytoplasmic retention and rapid degradation of ORF28 may be a key regulatory mechanism for VZV to prevent untimely viral DNA replication, and suggest that Hsp90 is required for the interaction between ORF16 and ORF28.
Collapse
Affiliation(s)
- Huang-Shen Lin
- Department of Internal Medicine, Division of Infectious Diseases, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Han Li
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
2
|
Herpesvirus DNA polymerase processivity factors: Not just for DNA synthesis. Virus Res 2021; 298:198394. [PMID: 33775751 DOI: 10.1016/j.virusres.2021.198394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Herpesviruses encode multiple proteins directly involved in DNA replication, including a DNA polymerase and a DNA polymerase processivity factor. As the name implies, these processivity factors are essential for efficient DNA synthesis, however they also make additional contributions to DNA replication, as well as having novel roles in transcription and modulation of host processes. Here we review the mechanisms by which DNA polymerase processivity factors from all three families of mammalian herpesviruses contribute to viral DNA replication as well as to additional aspects of viral infection.
Collapse
|
3
|
Bruce AG, Barcy S, Staheli J, Bielefeldt-Ohmann H, Ikoma M, Howard K, Rose TM. Experimental co-transmission of Simian Immunodeficiency Virus (SIV) and the macaque homologs of the Kaposi Sarcoma-Associated Herpesvirus (KSHV) and Epstein-Barr Virus (EBV). PLoS One 2018; 13:e0205632. [PMID: 30444879 PMCID: PMC6239284 DOI: 10.1371/journal.pone.0205632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Macaque RFHV and LCV are close homologs of human KSHV and EBV, respectively. No experimental model of RFHV has been developed due to the lack of a source of culturable infectious virus. Screening of macaques at the Washington National Primate Research Center detected RFHV in saliva of SIV-infected macaques from previous vaccine studies. A pilot experimental infection of two naïve juvenile pig-tailed macaques was initiated by inoculation of saliva from SIV-infected pig-tailed and cynomolgus macaque donors, which contained high levels of DNA (> 10(6) genomes/ml) of the respective species-specific RFHV strain. Both juvenile recipients developed SIV and RFHV infections with RFHV DNA detected transiently in saliva and/or PBMC around week 16 post-infection. One juvenile macaque was infected with the homologous RFHVMn from whole saliva of a pig-tailed donor, which had been inoculated into the cheek pouch. This animal became immunosuppressed, developing simian AIDS and was euthanized 23 weeks after inoculation. The levels of RFHV DNA in saliva and PBMC remained below the level of detection after week 17, showing no reactivation of the RFHVMn infection during the rapid development of AIDS. The other juvenile macaque was infected with the heterologous RFHVMf from i.v. inoculation of purified virions from saliva of a cynomolgus donor. The juvenile recipient remained immunocompetent, developing high levels of persistent anti-RFHV and -SIV antibodies. After the initial presence of RFHVMf DNA in saliva and PBMC decreased to undetectable levels by week 19, all attempts to reactivate the infection through additional inoculations, experimental infection with purified SRV-2 or SIV, or immunosuppressive treatments with cyclosporine or dexamethasone were unsuccessful. An heterologous LCV transmission was also detected in this recipient, characterized by continual high levels of LCVMf DNA from the cynomolgus donor in both saliva (> 10(6) genomes/ml) and PBMC (> 10(4) genomes/million cells), coupled with high levels of anti-LCV antibodies. The macaque was sacrificed 209 weeks after the initial inoculation. Low levels of LCVMf DNA were detected in salivary glands, tonsils and other lymphoid organs, while RFHVMf DNA was below the level of detection. These results show successful co-transmission of RFHV and LCV from saliva and demonstrate differential lytic activation of the different gammaherpesvirus lineages due to presumed differences in biology and tropism and control by the host immune system. Although this initial pilot transmission study utilized only two macaques, it provides the first evidence for experimental transmission of the macaque homolog of KSHV, setting the stage for larger transmission studies to examine the differential activation of rhadinovirus and lymphocryptovirus infections and the pathological effects of immunosuppression.
Collapse
Affiliation(s)
- A. Gregory Bruce
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| | - Serge Barcy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Jeannette Staheli
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| | - Helle Bielefeldt-Ohmann
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Minako Ikoma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Kellie Howard
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
| | - Timothy M. Rose
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pathobiology, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Bielefeldt-Ohmann H, Bruce AG, Howard K, Ikoma M, Thouless ME, Rose TM. Macaque homologs of Kaposi's sarcoma-associated herpesvirus (KSHV) infect germinal center lymphoid cells, epithelial cells in skin and gastrointestinal tract and gonadal germ cells in naturally infected macaques. Virology 2018; 519:106-120. [PMID: 29689462 DOI: 10.1016/j.virol.2018.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
We developed a set of rabbit antisera to characterize infections by the macaque RV2 rhadinovirus homologs of KSHV. We analyzed tissues from rhesus and pig-tailed macaques naturally infected with rhesus rhadinovirus (RRV) or Macaca nemestrina rhadinovirus 2 (MneRV2). Our study demonstrates that RV2 rhadinoviruses have a tropism for epithelial cells, lymphocytes and gonadal germ cells in vivo. We observed latent infections in both undifferentiated and differentiated epithelial cells with expression of the latency marker, LANA. Expression of the early (ORF59) and late (glycoprotein B) lytic markers were detected in highly differentiated cells in epithelial ducts in oral, renal, dermal and gastric mucosal tissue as well as differentiated germ cells in male and female gonads. Our data provides evidence that epithelial and germ cell differentiation in vivo induces rhadinovirus reactivation and suggests that infected epithelial and germ cells play a role in transmission and dissemination of RV2 rhadinovirus infections in vivo.
Collapse
Affiliation(s)
| | - A Gregory Bruce
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA.
| | - Kellie Howard
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA.
| | - Minako Ikoma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | | | - Timothy M Rose
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pathobiology, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Full-Length Isoforms of Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Accumulate in the Cytoplasm of Cells Undergoing the Lytic Cycle of Replication. J Virol 2017; 91:JVI.01532-17. [PMID: 28978712 DOI: 10.1128/jvi.01532-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/29/2017] [Indexed: 01/09/2023] Open
Abstract
The latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) performs a variety of functions to establish and maintain KSHV latency. During latency, LANA localizes to discrete punctate spots in the nucleus, where it tethers viral episomes to cellular chromatin and interacts with nuclear components to regulate cellular and viral gene expression. Using highly sensitive tyramide signal amplification, we determined that LANA localizes to the cytoplasm in different cell types undergoing the lytic cycle of replication after de novo primary infection and after spontaneous, tetradecanoyl phorbol acetate-, or open reading frame 50 (ORF50)/replication transactivator (RTA)-induced activation. We confirmed the presence of cytoplasmic LANA in a subset of cells in lytically active multicentric Castleman disease lesions. The induction of cellular migration by scratch-wounding confluent cell cultures, culturing under subconfluent conditions, or induction of cell differentiation in primary cultures upregulated the number of cells permissive for primary lytic KSHV infection. The induction of lytic replication was characterized by high-level expression of cytoplasmic LANA and nuclear ORF59, a marker of lytic replication. Subcellular fractionation studies revealed the presence of multiple isoforms of LANA in the cytoplasm of ORF50/RTA-activated Vero cells undergoing primary infection. Mass spectrometry analysis demonstrated that cytoplasmic LANA isoforms were full length, containing the N-terminal nuclear localization signal. These results suggest that trafficking of LANA to different subcellular locations is a regulated phenomenon, which allows LANA to interact with cellular components in different compartments during both the latent and the replicative stages of the KSHV life cycle.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) causes AIDS-related malignancies, including lymphomas and Kaposi's sarcoma. KSHV establishes lifelong infections using its latency-associated nuclear antigen (LANA). During latency, LANA localizes to the nucleus, where it connects viral and cellular DNA complexes and regulates gene expression, allowing the virus to maintain long-term infections. Our research shows that intact LANA traffics to the cytoplasm of cells undergoing permissive lytic infections and latently infected cells in which the virus is induced to replicate. This suggests that LANA plays important roles in the cytoplasm and nuclear compartments of the cell during different stages of the KSHV life cycle. Determining cytoplasmic function and mechanism for regulation of the nuclear localization of LANA will enhance our understanding of the biology of this virus, leading to therapeutic approaches to eliminate infection and block its pathological effects.
Collapse
|
6
|
Howard K, Cherezova L, DeMaster LK, Rose TM. ORF73 LANA homologs of RRV and MneRV2 contain an extended RGG/RG-rich nuclear and nucleolar localization signal that interacts directly with importin β1 for non-classical nuclear import. Virology 2017; 511:152-164. [PMID: 28850829 DOI: 10.1016/j.virol.2017.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 01/26/2023]
Abstract
The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif. The RG-NLS interacts uniquely with importin β1, which mediates nuclear import and accumulation of RV2 LANA in the nucleolus. The alternative nuclear import and localization of RV2 LANA homologs may contribute to the dominant RV2 lytic replication phenotype.
Collapse
Affiliation(s)
- Kellie Howard
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Lidia Cherezova
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Laura K DeMaster
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Timothy M Rose
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Bruce AG, Horst JA, Rose TM. Conservation of the glycoprotein B homologs of the Kaposi׳s sarcoma-associated herpesvirus (KSHV/HHV8) and old world primate rhadinoviruses of chimpanzees and macaques. Virology 2016; 494:29-46. [PMID: 27070755 DOI: 10.1016/j.virol.2016.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 01/09/2023]
Abstract
The envelope-associated glycoprotein B (gB) is highly conserved within the Herpesviridae and plays a critical role in viral entry. We analyzed the evolutionary conservation of sequence and structural motifs within the Kaposi׳s sarcoma-associated herpesvirus (KSHV) gB and homologs of Old World primate rhadinoviruses belonging to the distinct RV1 and RV2 rhadinovirus lineages. In addition to gB homologs of rhadinoviruses infecting the pig-tailed and rhesus macaques, we cloned and sequenced gB homologs of RV1 and RV2 rhadinoviruses infecting chimpanzees. A structural model of the KSHV gB was determined, and functional motifs and sequence variants were mapped to the model structure. Conserved domains and motifs were identified, including an "RGD" motif that plays a critical role in KSHV binding and entry through the cellular integrin αVβ3. The RGD motif was only detected in RV1 rhadinoviruses suggesting an important difference in cell tropism between the two rhadinovirus lineages.
Collapse
Affiliation(s)
- A Gregory Bruce
- Center for Global Infectious Disease Research, Seattle Children׳s Research Institute, Seattle, WA, United States
| | - Jeremy A Horst
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Timothy M Rose
- Center for Global Infectious Disease Research, Seattle Children׳s Research Institute, Seattle, WA, United States; Department of Pediatrics, University of Washington, Seattle, WA, United States.
| |
Collapse
|
8
|
Complete genome sequence of Pig-tailed macaque rhadinovirus 2 and its evolutionary relationship with rhesus macaque rhadinovirus and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus. J Virol 2015; 89:3888-909. [PMID: 25609822 DOI: 10.1128/jvi.03597-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Two rhadinovirus lineages have been identified in Old World primates. The rhadinovirus 1 (RV1) lineage consists of human herpesvirus 8, Kaposi's sarcoma-associated herpesvirus (KSHV), and closely related rhadinoviruses of chimpanzees, gorillas, macaques and other Old World primates. The RV2 rhadinovirus lineage is distinct and consists of closely related viruses from the same Old World primate species. Rhesus macaque rhadinovirus (RRV) is the RV2 prototype, and two RRV isolates, 26-95 and 17577, were sequenced. We determined that the pig-tailed macaque RV2 rhadinovirus, MneRV2, is highly associated with lymphomas in macaques with simian AIDS. To further study the role of rhadinoviruses in the development of lymphoma, we sequenced the complete genome of MneRV2 and identified 87 protein coding genes and 17 candidate microRNAs (miRNAs). A strong genome colinearity and sequence homology were observed between MneRV2 and RRV26-95, although the open reading frame (ORF) encoding the KSHV ORFK15 homolog was disrupted in RRV26-95. Comparison with MneRV2 revealed several genomic anomalies in RRV17577 that were not present in other rhadinovirus genomes, including an N-terminal duplication in ORF4 and a recombinative exchange of more distantly related homologs of the ORF22/ORF47 interacting glycoprotein genes. The comparison with MneRV2 has revealed novel genes and important conservation of protein coding domains and transcription initiation, termination, and splicing signals, which have added to our knowledge of RV2 rhadinovirus genetics. Further comparisons with KSHV and other RV1 rhadinoviruses will provide important avenues for dissecting the biology, evolution, and pathology of these closely related tumor-inducing viruses in humans and other Old World primates. IMPORTANCE This work provides the sequence characterization of MneRV2, the pig-tailed macaque homolog of rhesus rhadinovirus (RRV). MneRV2 and RRV belong to the rhadinovirus 2 (RV2) rhadinovirus lineage of Old World primates and are distinct but related to Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma. Pig-tailed macaques provide important models of human disease, and our previous studies have indicated that MneRV2 plays a causal role in AIDS-related lymphomas in macaques. Delineation of the MneRV2 sequence has allowed a detailed characterization of the genome structure, and evolutionary comparisons with RRV and KSHV have identified conserved promoters, splice junctions, and novel genes. This comparison provides insight into RV2 rhadinovirus biology and sets the groundwork for more intensive next-generation (Next-Gen) transcript and genetic analysis of this class of tumor-inducing herpesvirus. This study supports the use of MneRV2 in pig-tailed macaques as an important model for studying rhadinovirus biology, transmission and pathology.
Collapse
|
9
|
DeMaster LK, Rose TM. A critical Sp1 element in the rhesus rhadinovirus (RRV) Rta promoter confers high-level activity that correlates with cellular permissivity for viral replication. Virology 2013; 448:196-209. [PMID: 24314650 DOI: 10.1016/j.virol.2013.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/25/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
KSHV establishes characteristic latent infections in vitro, while RRV, a related macaque rhadinovirus, establishes characteristic permissive infections with virus replication. We identified cells that are not permissive for RRV replication and recapitulate the latent KSHV infection and reactivation processes. The RRV replication and transactivator (Rta) promoter was characterized in permissive and non-permissive cells and compared to the KSHV Rta promoter. Both promoters contained a critical Sp1 element, had equivalent activities in different cell types, and were inhibited by LANA. RRV and KSHV infections were non-permissive in cells with low Rta promoter activity. While RRV infections were permissive in cells with high basal promoter activity, KSHV infections remained non-permissive. Our studies suggest that RRV lacks the Rta-inducible LANA promoter that is responsible for LANA inhibition of the KSHV Rta promoter and induction of latency during KSHV infection. Instead, the outcome of RRV infection is determined by host factors, such as Sp1.
Collapse
Affiliation(s)
- Laura K DeMaster
- Department of Global Health, University of Washington, Seattle, WA 98195, USA; Center for Childhood Infections and Prematurity Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | | |
Collapse
|
10
|
Next-generation sequence analysis of the genome of RFHVMn, the macaque homolog of Kaposi's sarcoma (KS)-associated herpesvirus, from a KS-like tumor of a pig-tailed macaque. J Virol 2013; 87:13676-93. [PMID: 24109218 DOI: 10.1128/jvi.02331-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans.
Collapse
|
11
|
Phosphorylation of Kaposi's sarcoma-associated herpesvirus processivity factor ORF59 by a viral kinase modulates its ability to associate with RTA and oriLyt. J Virol 2013; 87:8038-52. [PMID: 23678174 DOI: 10.1128/jvi.03460-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ORF59 of Kaposi's sarcoma-associated herpesvirus (KSHV) plays an essential role in viral lytic replication by providing DNA processivity activity to the viral DNA polymerase (ORF9). ORF59 forms a homodimer in the cytoplasm and binds and translocates ORF9 into the nucleus, where it secures ORF9 to the origin of lytic DNA replication (oriLyt) in order to synthesize long DNA fragments during replication. ORF59 binds to oriLyt through an immediate early protein, replication and transcription activator (RTA). Here, we show that viral kinase (ORF36) phosphorylates serines between amino acids 376 and 379 of ORF59 and replacement of the Ser378 residue with alanine significantly impairs phosphorylation. Although mutating these serine residues had no effect on binding between ORF59 and ORF9, viral polymerase, or ORF36, the viral kinase, it significantly reduced the ability of ORF59 to bind to RTA. The results for the mutant in which Ser376 to Ser379 were replaced by alanine showed that both Ser378 and Ser379 contribute to binding to RTA. Additionally, the Ser376, Ser378, and Ser379 residues were found to be critical for binding of ORF59 to oriLyt and its processivity function. Ablation of these phosphorylation sites reduced the production of virion particles, suggesting that phosphorylation is critical for ORF59 activity and viral DNA synthesis.
Collapse
|
12
|
Development of whole-virus multiplex luminex-based serological assays for diagnosis of infections with kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 homologs in macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:409-19. [PMID: 23345584 DOI: 10.1128/cvi.00673-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 is a tumorigenic rhadinovirus that is associated with all forms of Kaposi's sarcoma. Current serological detection of KSHV is based on enzyme-linked immunosorbent or immunofluorescence assays that suffer from a variety of problems, including the lack of defined standards for test comparison. While KSHV is the only known human rhadinovirus, two lineages of KSHV-like rhadinoviruses are found in Old World primates: the RV1 lineage includes KSHV and retroperitoneal fibromatosis herpesvirus (RFHV) in macaques, and the RV2 lineage includes RRV and MneRV2 from different macaque species. To develop animal models of KSHV-associated diseases, we developed quantitative multiplex bead-based serological assays to detect antibodies against rhadinovirus antigens. Proteins from KSHV (RV1) and MneRV2 (RV2) virions were coupled to spectrally distinct fluorescent beads and used in Luminex flow cytometry-based assays to detect immune responses in macaques. Both assays showed large dynamic ranges with high levels of seroreactivity to both KSHV and MneRV2 proteins. A large set of macaque serum samples from the Washington National Primate Research Center was screened, and most of the samples (82%) were positive in both assays, consistent with the high level of RV1-RV2 coinfection detected by PCR. The macaque sera showed broad, variable, and unique serological responses to the different viral antigens, allowing an initial seroprevalence to be determined for the macaque viruses. The Luminex assays offer a novel multiplexed approach to assess rhadinovirus infection patterns in both humans and nonhuman primates. This will help advance our understanding of rhadinovirus biology and associated host immunological responses.
Collapse
|
13
|
Bruce AG, Bielefeldt-Ohmann H, Barcy S, Bakke AM, Lewis P, Tsai CC, Murnane RD, Rose TM. Macaque homologs of EBV and KSHV show uniquely different associations with simian AIDS-related lymphomas. PLoS Pathog 2012; 8:e1002962. [PMID: 23055934 PMCID: PMC3464224 DOI: 10.1371/journal.ppat.1002962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/27/2012] [Indexed: 01/28/2023] Open
Abstract
Two gammaherpesviruses, Epstein-Barr virus (EBV) (Lymphocryptovirus genus) and Kaposi's sarcoma-associated herpesvirus (KSHV) (Rhadinovirus genus) have been implicated in the etiology of AIDS-associated lymphomas. Homologs of these viruses have been identified in macaques and other non-human primates. In order to assess the association of these viruses with non-human primate disease, archived lymphoma samples were screened for the presence of macaque lymphocryptovirus (LCV) homologs of EBV, and macaque rhadinoviruses belonging to the RV1 lineage of KSHV homologs or the more distant RV2 lineage of Old World primate rhadinoviruses. Viral loads were determined by QPCR and infected cells were identified by immunolabeling for different viral proteins. The lymphomas segregated into three groups. The first group (n = 6) was associated with SIV/SHIV infections, contained high levels of LCV (1–25 genomes/cell) and expressed the B-cell antigens CD20 or BLA.36. A strong EBNA-2 signal was detected in the nuclei of the neoplastic cells in one of the LCV-high lymphomas, indicative of a type III latency stage. None of the lymphomas in this group stained for the LCV viral capsid antigen (VCA) lytic marker. The second group (n = 5) was associated with D-type simian retrovirus-2 (SRV-2) infections, contained high levels of RV2 rhadinovirus (9–790 genomes/cell) and expressed the CD3 T-cell marker. The third group (n = 3) was associated with SIV/SHIV infections, contained high levels of RV2 rhadinovirus (2–260 genomes/cell) and was negative for both CD20 and CD3. In both the CD3-positive and CD3/CD20-negative lymphomas, the neoplastic cells stained strongly for markers of RV2 lytic replication. None of the lymphomas had detectable levels of retroperitoneal fibromatosis herpesvirus (RFHV), the macaque RV1 homolog of KSHV. Our data suggest etiological roles for both lymphocryptoviruses and RV2 rhadinoviruses in the development of simian AIDS-associated lymphomas and indicate that the virus-infected neoplastic lymphoid cells are derived from different lymphocyte lineages and differentiation stages. The incidence of Kaposi's sarcoma (KS) and non-Hodgkin's lymphoma increased in conjunction with the epidemic of HIV disease and AIDS. These malignancies are now known to be associated with secondary infections with a gammaherpesvirus; KS, with the Kaposi's sarcoma-associated herpesvirus (KSHV) and lymphoma, with both KSHV and Epstein-Barr virus (EBV). Similar AIDS-related malignancies have been observed in monkeys with simian AIDS and monkey gammaherpesviruses related to KSHV and EBV have been implicated in the development of disease. The study of monkey models of AIDS-related malignancies provides important approaches for understanding the role of gammaherpesviruses in AIDS-related tumorigenesis. Here we have used a combined molecular and immunological approach to identify, quantitate and localize infections of gammaherpesviruses in AIDS-associated lymphomas in macaques. We found high levels of macaque viruses related to EBV and KSHV in the tumor cells of distinct types of macaque lymphomas, suggesting that the virus-infected tumor cells belong to different lymphocyte lineages and differentiation stages.
Collapse
Affiliation(s)
- A. Gregory Bruce
- Seattle Children's Research Institute, Seattle, Washington, United States of America
| | | | - Serge Barcy
- Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Seattle, Washington, United States of America
| | - Angela M. Bakke
- Northwestern University, Evanston, Illinois, United States of America
| | - Patrick Lewis
- Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Che-Chung Tsai
- University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Robert D. Murnane
- University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle, Washington, United States of America
| | - Timothy M. Rose
- Seattle Children's Research Institute, Seattle, Washington, United States of America
- University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
While PCR primer design for the amplification of known sequences is usually quite straightforward, the design, and successful application of primers aimed at the detection of as yet unknown genes is often not. The search for genes that are presumed to be distantly related to a known gene sequence, such as homologous genes in different species, paralogs in the same genome, or novel pathogens in diverse hosts, often turns into the proverbial search for the needle in the haystack. PCR-based methods commonly used to address this issue involve the use of either consensus primers or degenerate primers, both of which have significant shortcomings regarding sensitivity and specificity. We have developed a novel primer design approach that diminishes these shortcomings and instead takes advantage of the strengths of both consensus and degenerate primer designs, by combining the two concepts into a Consensus-Degenerate Hybrid Oligonucleotide Primer (CODEHOP) approach. CODEHOP PCR primers contain a relatively short degenerate 3' core and a 5' nondegenerate clamp. The 3' degenerate core consists of a pool of primers containing all possible codons for a 3-4 aminoacid motif that is highly conserved in multiply aligned sequences from known members of a protein family. Each primer in the pool also contains a single 5' nondegenerate nucleotide sequence derived from a codon consensus across the aligned aminoacid sequences flanking the conserved motif. During the initial PCR amplification cycles, the degenerate core is responsible for specific binding to sequences encoding the conserved aminoacid motif. The longer consensus clamp region serves to stabilize the primer and allows the participation of all primers in the pool in the efficient amplification of products during later PCR cycles. We have developed an interactive web site and algorithm (iCODEHOP) for designing CODEHOP PCR primers from multiply aligned protein sequences, which is freely available online. Here, we describe the workflow of a typical CODEHOP PCR assay design and optimization and give a specific implementation example along with "best-practice" advice.
Collapse
Affiliation(s)
- Jeannette P Staheli
- Center for Childhood Infection and Prematurity Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | |
Collapse
|