1
|
Lv C, Yang Z, Lan X, Liang F, Kong W, Wang R, Zhao M. Research Progress on the GP3 Protein of Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2025; 15:430. [PMID: 39943200 PMCID: PMC11815881 DOI: 10.3390/ani15030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious immunosuppressive disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV) that is characterized by a highly variable gene sequence and a high rate of recombination, thereby contributing to difficulties in the clinical prevention and control of this virus. Glycosylated protein 3 (GP3) is the most glycosylated protein in PRRSV, and is closely associated with the composition of PRRSV virus particles, infection, and immune evasion. This review summarizes the structural features, genetic evolutionary patterns, glycosylation of GP3 and its interactions with other PRRSV and host proteins, associations with PRRSV infection and virulence, and immunomodulatory roles. Additionally, it provides an overview of research progress on monoclonal antibodies and vaccines targeting GP3. This study aims to provide a theoretical foundation for better understanding the structure and function of GP3, of the mechanisms of PRRSV infection, and the development of novel vaccines.
Collapse
Affiliation(s)
- Chen Lv
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Zhiyu Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Xiaolin Lan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Fang Liang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Ruining Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan 528225, China; (C.L.); (Z.Y.); (X.L.); (F.L.)
| |
Collapse
|
2
|
Kim K, Moon SY, Kim S, Ouh IO, Lee Y, Lim H. Immunogenicity Analysis of Chikungunya Virus DNA Vaccine Based on Mutated Putative N-Linked Glycosylation Sites of the Envelope Protein. Vaccines (Basel) 2024; 12:1097. [PMID: 39460264 PMCID: PMC11511311 DOI: 10.3390/vaccines12101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Chikungunya fever is a mosquito-borne infectious disease caused by the chikungunya virus (CHIKV). Recently, CHIKV has spread rapidly worldwide, raising global concerns. However, there is only one approved vaccine is available to prevent CHIKV infection; therefore, different platform vaccines development is a public health priority. The CHIKV genome encodes four non-structural polyproteins (nsP1-4) and one structural polyprotein (capsid, envelope 3, envelope 2, 6 K, and envelope 1). Previous studies have shown that N-linked glycans in viral proteins play important roles in regulating immune responses. Accordingly, in this study, we designed four CHIKV DNA vaccine candidates with mutated N-glycosylation sites in the full-length E and E I/II proteins. Our results indicated that immunization of mice with the vaccine elevated the cytokines levels, including IFN-γ, associated with T cell immune response. Furthermore, the truncated E protein with a deleted E III domain (E I/II) exhibited better immunogenicity than the full-length E protein, and N-linked glycosylation of E I/II protein induced a higher cell-mediated immune response. Overall, our study demonstrates that N-linked glycosylation of the E I/II proteins of CHIKV significantly enhances cell-mediated immune responses, laying the foundation for the development of potential vaccination strategies against CHIKV.
Collapse
Affiliation(s)
| | | | | | | | | | - Heeji Lim
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea; (K.K.); (S.Y.M.); (S.K.); (I.-O.O.); (Y.L.)
| |
Collapse
|
3
|
Zhao G, Gao Y, Shi N, Zhang S, Xiao P, Zhang J, Xie C, Ha Z, Feng S, Li C, Zhang X, Xie Y, Yu N, Zhang H, Bi J, Jin N. Molecular Detection and Genetic Characterization of Japanese Encephalitis Virus in Animals from 11 Provinces in China. Viruses 2023; 15:v15030625. [PMID: 36992334 PMCID: PMC10051441 DOI: 10.3390/v15030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Japanese encephalitis virus (JEV), which uses a mosquito primary vector and swine as a reservoir host, poses a significant risk to human and animal health. JEV can be detected in cattle, goats and dogs. A molecular epidemiological survey of JEV was conducted in 3105 mammals from five species, swine, fox, racoon dog, yak and goat, and 17,300 mosquitoes from 11 Chinese provinces. JEV was detected in pigs from Heilongjiang (12/328, 3.66%), Jilin (17/642, 2.65%), Shandong (14/832, 1.68%), Guangxi (8/278, 2.88%) and Inner Mongolia (9/952, 0.94%); in goats (1/51, 1.96%) from Tibet; and mosquitoes (6/131, 4.58%) from Yunnan. A total of 13 JEV envelope (E) gene sequences were amplified in pigs from Heilongjiang (5/13), Jilin (2/13) and Guangxi (6/13). Swine had the highest JEV infection rate of any animal species, and the highest infection rates were found in Heilongjiang. Phylogenetic analysis indicated that the predominant strain in Northern China was genotype I. Mutations were found at residues 76, 95, 123, 138, 244, 474 and 475 of E protein but all sequences had predicted glycosylation sites at ′N154. Three strains lacked the threonine 76 phosphorylation site from non-specific (unsp) and protein kinase G (PKG) site predictions; one lacked the threonine 186 phosphorylation site from protein kinase II (CKII) prediction; and one lacked the tyrosine 90 phosphorylation site from epidermal growth factor receptor (EGFR) prediction. The aim of the current study was to contribute to JEV prevention and control through the characterization of its molecular epidemiology and prediction of functional changes due to E-protein mutations.
Collapse
Affiliation(s)
- Guanyu Zhao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Ning Shi
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shiheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Pengpeng Xiao
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Jiaqi Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Changzhan Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Zhuo Ha
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Sheng Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chenghui Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xuancheng Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yubiao Xie
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Ning Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Correspondence: (H.Z.); (J.B.); (N.J.)
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (H.Z.); (J.B.); (N.J.)
| | - Ningyi Jin
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
- Correspondence: (H.Z.); (J.B.); (N.J.)
| |
Collapse
|
4
|
Sun Y, Ding H, Zhao F, Yan Q, Li Y, Niu X, Zeng W, Wu K, Ling B, Fan S, Zhao M, Yi L, Chen J. Genomic Characteristics and E Protein Bioinformatics Analysis of JEV Isolates from South China from 2011 to 2018. Vaccines (Basel) 2022; 10:vaccines10081303. [PMID: 36016192 PMCID: PMC9412759 DOI: 10.3390/vaccines10081303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Japanese encephalitis is a mosquito-borne zoonotic epidemic caused by the Japanese encephalitis virus (JEV). JEV is not only the leading cause of Asian viral encephalitis, but also one of the leading causes of viral encephalitis worldwide. To understand the genetic evolution and E protein characteristics of JEV, 263 suspected porcine JE samples collected from South China from 2011 to 2018 were inspected. It was found that 78 aborted porcine fetuses were JEV-nucleic-acid-positive, with a positive rate of 29.7%. Furthermore, four JEV variants were isolated from JEV-nucleic-acid-positive materials, namely, CH/GD2011/2011, CH/GD2014/2014, CH/GD2015/2015, and CH/GD2018/2018. The cell culture and virus titer determination of four JEV isolates showed that four JEV isolates could proliferate stably in Vero cells, and the virus titer was as high as 108.5 TCID 50/mL. The whole-genome sequences of four JEV isolates were sequenced. Based on the phylogenetic analysis of the JEV E gene and whole genome, it was found that CH/GD2011/2011 and CH/GD2015/2015 belonged to the GIII type, while CH/GD2014/2014 and CH/GD2018/2018 belonged to the GI type, which was significantly different from that of the JEV classical strain CH/BJ-1/1995. Bioinformatics tools were used to analyze the E protein phosphorylation site, glycosylation site, B cell antigen epitope, and modeled 3D structures of E protein in four JEV isolates. The analysis of the prevalence of JEV and the biological function of E protein can provide a theoretical basis for the prevention and control of JEV and the design of antiviral drugs.
Collapse
Affiliation(s)
- Yawei Sun
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Quanhui Yan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xinni Niu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Weijun Zeng
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Keke Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bing Ling
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: ; Fax: +86-20-8528-0245
| |
Collapse
|
5
|
Feng T, Zhang J, Chen Z, Pan W, Chen Z, Yan Y, Dai J. Glycosylation of viral proteins: Implication in virus-host interaction and virulence. Virulence 2022; 13:670-683. [PMID: 35436420 PMCID: PMC9037552 DOI: 10.1080/21505594.2022.2060464] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycans are among the most important cell molecular components. However, given their structural diversity, their functions have not been fully explored. Glycosylation is a vital post-translational modification for various proteins. Many bacteria and viruses rely on N-linked and O-linked glycosylation to perform critical biological functions. The diverse functions of glycosylation on viral proteins during viral infections, including Dengue, Zika, influenza, and human immunodeficiency viruses as well as coronaviruses have been reported. N-linked glycosylation is the most common form of protein modification, and it modulates folding, transportation and receptor binding. Compared to N-linked glycosylation, the functions of O-linked viral protein glycosylation have not been comprehensively evaluated. In this review, we summarize findings on viral protein glycosylation, with particular attention to studies on N-linked glycosylation in viral life cycles. This review informs the development of virus-specific vaccines or inhibitors.
Collapse
Affiliation(s)
- Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jinyu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zhiqian Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Wen Pan
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Soochow University, Suzhou, China
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Hardy JM, Newton ND, Modhiran N, Scott CAP, Venugopal H, Vet LJ, Young PR, Hall RA, Hobson-Peters J, Coulibaly F, Watterson D. A unified route for flavivirus structures uncovers essential pocket factors conserved across pathogenic viruses. Nat Commun 2021; 12:3266. [PMID: 34075032 PMCID: PMC8169900 DOI: 10.1038/s41467-021-22773-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
The epidemic emergence of relatively rare and geographically isolated flaviviruses adds to the ongoing disease burden of viruses such as dengue. Structural analysis is key to understand and combat these pathogens. Here, we present a chimeric platform based on an insect-specific flavivirus for the safe and rapid structural analysis of pathogenic viruses. We use this approach to resolve the architecture of two neurotropic viruses and a structure of dengue virus at 2.5 Å, the highest resolution for an enveloped virion. These reconstructions allow improved modelling of the stem region of the envelope protein, revealing two lipid-like ligands within highly conserved pockets. We show that these sites are essential for viral growth and important for viral maturation. These findings define a hallmark of flavivirus virions and a potential target for broad-spectrum antivirals and vaccine design. We anticipate the chimeric platform to be widely applicable for investigating flavivirus biology. Understanding virus assembly could identify potential drug targets. Here the authors use a safe and efficient method to solve pathogenic flavivirus structures, revealing two lipid-like ligands within highly conserved pockets of the stem region of envelope protein that are important for virus maturation.
Collapse
Affiliation(s)
- Joshua M Hardy
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Fasséli Coulibaly
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Leemans A, Boeren M, Van der Gucht W, Pintelon I, Roose K, Schepens B, Saelens X, Bailey D, Martinet W, Caljon G, Maes L, Cos P, Delputte P. Removal of the N-Glycosylation Sequon at Position N116 Located in p27 of the Respiratory Syncytial Virus Fusion Protein Elicits Enhanced Antibody Responses after DNA Immunization. Viruses 2018; 10:E426. [PMID: 30110893 PMCID: PMC6115940 DOI: 10.3390/v10080426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022] Open
Abstract
Prevention of severe lower respiratory tract infections in infants caused by the human respiratory syncytial virus (hRSV) remains a major public health priority. Currently, the major focus of vaccine development relies on the RSV fusion (F) protein since it is the main target protein for neutralizing antibodies induced by natural infection. The protein conserves 5 N-glycosylation sites, two of which are located in the F2 subunit (N27 and N70), one in the F1 subunit (N500) and two in the p27 peptide (N116 and N126). To study the influence of the loss of one or more N-glycosylation sites on RSV F immunogenicity, BALB/c mice were immunized with plasmids encoding RSV F glycomutants. In comparison with F WT DNA immunized mice, higher neutralizing titres were observed following immunization with F N116Q. Moreover, RSV A2-K-line19F challenge of mice that had been immunized with mutant F N116Q DNA was associated with lower RSV RNA levels compared with those in challenged WT F DNA immunized animals. Since p27 is assumed to be post-translationally released after cleavage and thus not present on the mature RSV F protein, it remains to be elucidated how deletion of this glycan can contribute to enhanced antibody responses and protection upon challenge. These findings provide new insights to improve the immunogenicity of RSV F in potential vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Female
- Glycosylation
- Humans
- Hydrolysis
- Immunization
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Mutation
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/immunology
- Protein Engineering
- Protein Subunits/administration & dosage
- Protein Subunits/genetics
- Protein Subunits/immunology
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/drug effects
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Fusion Proteins/administration & dosage
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Viral Load/drug effects
Collapse
Affiliation(s)
- Annelies Leemans
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Winke Van der Gucht
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Kenny Roose
- Medical Biotechnology Centre, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Bert Schepens
- Medical Biotechnology Centre, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Xavier Saelens
- Medical Biotechnology Centre, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| |
Collapse
|
8
|
Liang JJ, Chou MW, Lin YL. DC-SIGN Binding Contributed by an Extra N-Linked Glycosylation on Japanese Encephalitis Virus Envelope Protein Reduces the Ability of Viral Brain Invasion. Front Cell Infect Microbiol 2018; 8:239. [PMID: 30042931 PMCID: PMC6048278 DOI: 10.3389/fcimb.2018.00239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
The major structural envelope (E) protein of Japanese encephalitis virus (JEV) facilitates cellular binding/entry and is the primary target of neutralizing antibodies. JEV E protein has one N-linked glycosylation site at N154 (G2 site), but the related dengue virus E protein has two glycosylation sites at N67 (G1 site) and N153 (G2 site). We generated three recombinant JEVs with different glycosylation patterns on the E protein. As compared with wild-type (WT) JEV with G2 glycosylation, viral growth in culture cells as well as neurovirulence and neuroinvasiveness in challenged mice were reduced when infected with the G1 mutant (E-D67N/N154A) with glycosylation shifted to G1 site, and the G0 mutant (E-N154A) with non-glycosylation. The G1G2 mutant (E-D67N), with E-glycosylation on both G1 and G2 sites, showed potent in vitro viral replication and in vivo neurovirulence, but reduced neuroinvasiveness. Furthermore, the JEV mutants with G1 glycosylation showed enhanced DC-SIGN binding, which may then lead to reduced brain invasion and explain the reason why WT JEV is devoid of this G1 site of glycosylation. Overall, the patterns of N-linked glycosylation on JEV E proteins may affect viral interaction with cellular lectins and contribute to viral replication and pathogenesis.
Collapse
Affiliation(s)
- Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Min-Wei Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Qadir A, Riaz M, Saeed M, Shahzad-Ul-Hussan S. Potential targets for therapeutic intervention and structure based vaccine design against Zika virus. Eur J Med Chem 2018; 156:444-460. [PMID: 30015077 DOI: 10.1016/j.ejmech.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Continuously increasing number of reports of Zika virus (ZIKV) infections and associated severe clinical manifestations, including autoimmune abnormalities and neurological disorders such as neonatal microcephaly and Guillain-Barré syndrome have created alarming situation in various countries. To date, no specific antiviral therapy or vaccine is available against ZIKV. This review provides a comprehensive insight into the potential therapeutic targets and describes viral epitopes of broadly neutralizing antibodies (bNAbs) in vaccine design perspective. Interactions between ZIKV envelope glycoprotein E and cellular receptors mediate the viral fusion and entry to the target cell. Blocking these interactions by targeting cellular receptors or viral structural proteins mediating these interactions or viral surface glycans can inhibit viral entry to the cell. Similarly, different non-structural proteins of ZIKV and un-translated regions (UTRs) of its RNA play essential roles in viral replication cycle and potentiate for therapeutic interventions. Structure based vaccine design requires identity and structural description of the epitopes of bNAbs. We have described different conserved bNAb epitopes present in the ZIKV envelope as potential targets for structure based vaccine design. This review also highlights successes, unanswered questions and future perspectives in relation to therapeutic and vaccine development against ZIKV.
Collapse
Affiliation(s)
- Amina Qadir
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Riaz
- Department of Chemistry, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Saeed
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| | - Syed Shahzad-Ul-Hussan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
10
|
Karthikeyan A, Shanmuganathan S, Pavulraj S, Prabakar G, Pavithra S, Porteen K, Elaiyaraja G, Malik YS. JAPANESE ENCEPHALITIS, RECENT PERSPECTIVES ON VIRUS GENOME, TRANSMISSION, EPIDEMIOLOGY, DIAGNOSIS AND PROPHYLACTIC INTERVENTIONS. ACTA ACUST UNITED AC 2017. [DOI: 10.18006/2017.5(6).730.748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Zhou J, Wang SQ, Wei JC, Zhang XM, Gao ZC, Liu K, Ma ZY, Chen PY, Zhou B. Mx Is Not Responsible for the Antiviral Activity of Interferon-α against Japanese Encephalitis Virus. Viruses 2017; 9:v9010005. [PMID: 28075421 PMCID: PMC5294974 DOI: 10.3390/v9010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/14/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022] Open
Abstract
Mx proteins are interferon (IFN)-induced dynamin-like GTPases that are present in all vertebrates and inhibit the replication of myriad viruses. However, the role Mx proteins play in IFN-mediated suppression of Japanese encephalitis virus (JEV) infection is unknown. In this study, we set out to investigate the effects of Mx1 and Mx2 expression on the interferon-α (IFNα) restriction of JEV replication. To evaluate whether the inhibitory activity of IFNα on JEV is dependent on Mx1 or Mx2, we knocked down Mx1 or Mx2 with siRNA in IFNα-treated PK-15 cells and BHK-21 cells, then challenged them with JEV; the production of progeny virus was assessed by plaque assay, RT-qPCR, and Western blotting. Our results demonstrated that depletion of Mx1 or Mx2 did not affect JEV restriction imposed by IFNα, although these two proteins were knocked down 66% and 79%, respectively. Accordingly, expression of exogenous Mx1 or Mx2 did not change the inhibitory activity of IFNα to JEV. In addition, even though virus-induced membranes were damaged by Brefeldin A (BFA), overexpressing porcine Mx1 or Mx2 did not inhibit JEV proliferation. We found that BFA inhibited JEV replication, not maturation, suggesting that BFA could be developed into a novel antiviral reagent. Collectively, our findings demonstrate that IFNα inhibits JEV infection by Mx-independent pathways.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shi-Qi Wang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian-Chao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China.
| | - Xiao-Min Zhang
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhi-Can Gao
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China.
| | - Zhi-Yong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China.
| | - Pu-Yan Chen
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Bin Zhou
- Key Laboratory of Animal Diseases Diagnosis and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Entry of Classical Swine Fever Virus into PK-15 Cells via a pH-, Dynamin-, and Cholesterol-Dependent, Clathrin-Mediated Endocytic Pathway That Requires Rab5 and Rab7. J Virol 2016; 90:9194-208. [PMID: 27489278 DOI: 10.1128/jvi.00688-16] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/26/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Classical swine fever virus (CSFV), a member of the genus Pestivirus within the family Flaviviridae, is a small, enveloped, positive-strand RNA virus. Due to its economic importance to the pig industry, the biology and pathogenesis of CSFV have been investigated extensively. However, the mechanisms of CSFV entry into cells are not well characterized. In this study, we used systematic approaches to dissect CSFV cell entry. We first observed that CSFV infection was inhibited by chloroquine and NH4Cl, suggesting that viral entry required a low-pH environment. By using the specific inhibitor dynasore, or by expressing the dominant negative (DN) K44A mutant, we verified that dynamin is required for CSFV entry. CSFV particles were observed to colocalize with clathrin at 5 min postinternalization, and CSFV infection was significantly reduced by chlorpromazine treatment, overexpression of a dominant negative form of the EPS15 protein, or knockdown of the clathrin heavy chain by RNA interference. These results suggested that CSFV entry depends on clathrin. Additionally, we found that endocytosis of CSFV was dependent on membrane cholesterol, while neither the overexpression of a dominant negative caveolin mutant nor the knockdown of caveolin had an effect. These results further suggested that CSFV entry required cholesterol and not caveolae. Importantly, the effect of DN mutants of three Rab proteins that regulate endosomal traffic on CSFV infection was examined. Expression of DN Rab5 and Rab7 mutants, but not the DN Rab11 mutant, significantly inhibited CSFV replication. These results were confirmed by silencing of Rab5 and Rab7. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab7 during the early phase of infection within 45 min after virus entry. These results indicated that after internalization, CSFV moved to early and late endosomes before releasing its RNA. Taken together, our findings demonstrate for the first time that CSFV enters cells through the endocytic pathway, providing new insights into the life cycle of pestiviruses. IMPORTANCE Bovine viral diarrhea virus (BVDV), a single-stranded, positive-sense pestivirus within the family Flaviviridae, is internalized by clathrin-dependent receptor-mediated endocytosis. However, the detailed mechanism of cell entry is unknown for other pestiviruses, such as classical swine fever (CSF) virus (CSFV). CSFV is the etiological agent of CSF, a highly contagious disease of swine that causes numerous deaths in pigs and enormous economic losses in China. Understanding the entry pathway of CSFV will not only advance our knowledge of CSFV infection and pathogenesis but also provide novel drug targets for antiviral intervention. Based on this objective, we used systematic approaches to dissect the pathway of entry of CSFV into PK-15 cells. This is the first report to show that the entry of CSFV into PK-15 cells requires a low-pH environment and involves dynamin- and cholesterol-dependent, clathrin-mediated endocytosis that requires Rab5 and Rab7.
Collapse
|
13
|
Zhang X, Jia R, Zhou J, Wang M, Yin Z, Cheng A. Capsid-Targeted Viral Inactivation: A Novel Tactic for Inhibiting Replication in Viral Infections. Viruses 2016; 8:E258. [PMID: 27657114 PMCID: PMC5035972 DOI: 10.3390/v8090258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Capsid-targeted viral inactivation (CTVI), a conceptually powerful new antiviral strategy, is attracting increasing attention from researchers. Specifically, this strategy is based on fusion between the capsid protein of a virus and a crucial effector molecule, such as a nuclease (e.g., staphylococcal nuclease, Barrase, RNase HI), lipase, protease, or single-chain antibody (scAb). In general, capsid proteins have a major role in viral integration and assembly, and the effector molecule used in CTVI functions to degrade viral DNA/RNA or interfere with proper folding of viral key proteins, thereby affecting the infectivity of progeny viruses. Interestingly, such a capsid-enzyme fusion protein is incorporated into virions during packaging. CTVI is more efficient compared to other antiviral methods, and this approach is promising for antiviral prophylaxis and therapy. This review summarizes the mechanism and utility of CTVI and provides some successful applications of this strategy, with the ultimate goal of widely implementing CTVI in antiviral research.
Collapse
Affiliation(s)
- Xingcui Zhang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Jiakun Zhou
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu 611130, Sichuan Province, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
14
|
Zhu Z, Chan JFW, Tee KM, Choi GKY, Lau SKP, Woo PCY, Tse H, Yuen KY. Comparative genomic analysis of pre-epidemic and epidemic Zika virus strains for virological factors potentially associated with the rapidly expanding epidemic. Emerg Microbes Infect 2016; 5:e22. [PMID: 26980239 PMCID: PMC4820678 DOI: 10.1038/emi.2016.48] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022]
Abstract
Less than 20 sporadic cases of human Zika virus (ZIKV) infection were reported in Africa and Asia before 2007, but large outbreaks involving up to 73% of the populations on the Pacific islands have started since 2007, and spread to the Americas in 2014. Moreover, the clinical manifestation of ZIKV infection has apparently changed, as evident by increasing reports of neurological complications, such as Guillain-Barré syndrome in adults and congenital anomalies in neonates. We comprehensively compared the genome sequences of pre-epidemic and epidemic ZIKV strains with complete genome or complete polyprotein sequences available in GenBank. Besides the reported phylogenetic clustering of the epidemic strains with the Asian lineage, we found that the topology of phylogenetic tree of all coding regions is the same except that of the non-structural 2B (NS2B) coding region. This finding was confirmed by bootscan analysis and multiple sequence alignment, which suggested the presence of a fragment of genetic recombination at NS2B with that of Spondweni virus. Moreover, the representative epidemic strain possesses one large bulge of nine bases instead of an external loop on the first stem-loop structure at the 3'-untranslated region just distal to the stop codon of the NS5 in the 1947 pre-epidemic prototype strain. Fifteen amino acid substitutions are found in the epidemic strains when compared with the pre-epidemic strains. As mutations in other flaviviruses can be associated with changes in virulence, replication efficiency, antigenic epitopes and host tropism, further studies would be important to ascertain the biological significance of these genomic changes.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Kah-Meng Tee
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Garnet Kwan-Yue Choi
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
| | - Susanna Kar-Pui Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Herman Tse
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Evaluation of the Impact of Codon Optimization and N-Linked Glycosylation on Functional Immunogenicity of Pfs25 DNA Vaccines Delivered by In Vivo Electroporation in Preclinical Studies in Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1013-9. [PMID: 26135972 DOI: 10.1128/cvi.00185-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
Abstract
Plasmodium falciparum sexual stage surface antigen Pfs25 is a well-established candidate for malaria transmission-blocking vaccine development. Immunization with DNA vaccines encoding Pfs25 has been shown to elicit potent antibody responses in mice and nonhuman primates. Studies aimed at further optimization have revealed improved immunogenicity through the application of in vivo electroporation and by using a heterologous prime-boost approach. The goal of the studies reported here was to systematically evaluate the impact of codon optimization, in vivo electroporation, and N-linked glycosylation on the immunogenicity of Pfs25 encoded by DNA vaccines. The results from this study demonstrate that while codon optimization and in vivo electroporation greatly improved functional immunogenicity of Pfs25 DNA vaccines, the presence or absence of N-linked glycosylation did not significantly impact vaccine efficacy. These findings suggest that N-glycosylation of Pfs25 encoded by DNA vaccines is not detrimental to overall transmission-blocking efficacy.
Collapse
|
16
|
A Japanese encephalitis virus genotype 5 molecular clone is highly neuropathogenic in a mouse model: impact of the structural protein region on virulence. J Virol 2015; 89:5862-75. [PMID: 25787283 DOI: 10.1128/jvi.00358-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Japanese encephalitis virus (JEV) strains can be separated into 5 genotypes (g1 to g5) based on sequence similarity. JEV g5 strains have been rarely isolated and are poorly characterized. We report here the full characterization of a g5 virus generated using a cDNA-based technology and its comparison with a widely studied g3 strain. We did not observe any major differences between those viruses when their infectious cycles were studied in various cell lines in vitro. Interestingly, the JEV g5 strain was highly pathogenic when inoculated to BALB/c mice, which are known to be largely resistant to JEV g3 infection. The study of chimeric viruses between JEV g3 and g5 showed that there was a poor viral clearance of viruses that express JEV g5 structural proteins in BALB/c mice blood, which correlated with viral invasion of the central nervous system and encephalitis. In addition, using an in vitro model of the blood-brain barrier, we were able to show that JEV g5 does not have an enhanced capacity for entering the central nervous system, compared to JEV g3. Overall, in addition to providing a first characterization of the understudied JEV g5, our work highlights the importance of sustaining an early viremia in the development of JEV encephalitis. IMPORTANCE Genotype 5 viruses are genetically and serologically distinct from other JEV genotypes and can been associated with human encephalitis, which warrants the need for their characterization. In this study, we characterized the in vitro and in vivo properties of a JEV g5 strain and showed that it was more neuropathogenic in a mouse model than a well-characterized JEV g3 strain. The enhanced virulence of JEV g5 was associated with poor viral clearance but not with enhanced crossing of the blood-brain barrier, thus providing new insights into JEV pathogenesis.
Collapse
|
17
|
Roby JA, Setoh YX, Hall RA, Khromykh AA. Post-translational regulation and modifications of flavivirus structural proteins. J Gen Virol 2015; 96:1551-69. [PMID: 25711963 DOI: 10.1099/vir.0.000097] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Flaviviruses are a group of single-stranded, positive-sense RNA viruses that generally circulate between arthropod vectors and susceptible vertebrate hosts, producing significant human and veterinary disease burdens. Intensive research efforts have broadened our scientific understanding of the replication cycles of these viruses and have revealed several elegant and tightly co-ordinated post-translational modifications that regulate the activity of viral proteins. The three structural proteins in particular - capsid (C), pre-membrane (prM) and envelope (E) - are subjected to strict regulatory modifications as they progress from translation through virus particle assembly and egress. The timing of proteolytic cleavage events at the C-prM junction directly influences the degree of genomic RNA packaging into nascent virions. Proteolytic maturation of prM by host furin during Golgi transit facilitates rearrangement of the E proteins at the virion surface, exposing the fusion loop and thus increasing particle infectivity. Specific interactions between the prM and E proteins are also important for particle assembly, as prM acts as a chaperone, facilitating correct conformational folding of E. It is only once prM/E heterodimers form that these proteins can be secreted efficiently. The addition of branched glycans to the prM and E proteins during virion transit also plays a key role in modulating the rate of secretion, pH sensitivity and infectivity of flavivirus particles. The insights gained from research into post-translational regulation of structural proteins are beginning to be applied in the rational design of improved flavivirus vaccine candidates and make attractive targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Justin A Roby
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Yin Xiang Setoh
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Roy A Hall
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Alexander A Khromykh
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| |
Collapse
|
18
|
Kant Upadhyay R. Biomarkers in Japanese encephalitis: a review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:591290. [PMID: 24455705 PMCID: PMC3878288 DOI: 10.1155/2013/591290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| |
Collapse
|
19
|
Fine mapping of a linear epitope on EDIII of Japanese encephalitis virus using a novel neutralizing monoclonal antibody. Virus Res 2013; 179:133-9. [PMID: 24184444 DOI: 10.1016/j.virusres.2013.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 01/12/2023]
Abstract
The domain III (EDIII) of the envelope protein of Japanese encephalitis virus (JEV) is proposed to play an essential role in JEV replication and infection; it is involved in binding to host receptors and contains specific epitopes that elicit neutralizing antibodies. However, most previous studies have not provided detailed molecular information about the functional epitopes on JEV EDIII protein. In this study, we described a monoclonal antibody (mAb 2B4) we produced and characterized by IFA, PRNT, ELISA and Western blot analyses. The results showed that mAb 2B4 was specific to JEV EDIII protein and possessed high neutralization activity against JEV in vitro. Furthermore, we found that the motif, (394)HHWH(397), was the minimal unit of the linear epitope recognized by mAb 2B4 through screening a phage-displayed random 12-mer peptide library. Using sequence alignment analysis it was found that this motif was highly conserved among JEV strains and was present in West Nile Virus (WNV). Indeed, ELISA data showed that this epitope could be recognized by both JEV-positive swine serum and WNV-positive swine serum. Notably, this linear epitope was highly hydrophilic and was located within the terminal end of a β-pleated sheet of EDIII. An analysis of the spatial conformation supported the possibility of inducing specific antibodies to this epitope. Taken together, we identified (394)HHWH(397) as an EDIII-specific linear epitope recognized by mAb 2B4, which would be beneficial for studying the pathogenic mechanism of JEV; and mAb 2B4 was also a potential diagnostic and therapeutic reagent.
Collapse
|
20
|
West Nile virus genome with glycosylated envelope protein and deletion of alpha helices 1, 2, and 4 in the capsid protein is noninfectious and efficiently secretes subviral particles. J Virol 2013; 87:13063-9. [PMID: 24049184 DOI: 10.1128/jvi.01552-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Flavivirus genomes with deletions in the capsid (C) gene are attractive vaccine candidates, as they secrete highly immunogenic subviral particles (SVPs) without generating infectious virus. Here, we report that cytomegalovirus promoter-driven cDNA of West Nile virus Kunjin (KUNV) containing a glycosylation motif in the envelope (E) gene and a combined deletion of alpha helices 1, 2, and 4 in C produces significantly more SVPs than KUNV cDNAs with nonglycosylated E and various other deletions in C.
Collapse
|
21
|
Kant Upadhyay R. Japanese Encephalitis Virus Generated Neurovirulence, Antigenicity, and Host Immune Responses. ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/830396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In response to a JE virus attack, infected body cells start secretion of different cytokines and activate innate immune response. Virus starts neuronal invasion by entering into nerve cells and inflecting the central nervous system. It avoids exposure of body’s natural immunity and generates neurotrophic effects. Virus causes acute susceptibility to CNS and establishes encephalitis syndrome that results in very high fatality in children. In survivors, JEV inhibits the growth and proliferation of NCPs and imposes permanent neuronal disorders like cognitive, motor, and behavioral impairments. However, body cells start TCR mediated interactions, to recognize viral antigens with class I MHC complex on specific target cells, and operate mass killing of virus infected cells by increased CTL activity. Thus, both cell mediated and antibody interactions plays a central role in protection against JEV. In the present review article virus generated neurovirulence, antigenicity, and host immune responses are described in detail. More emphasis is given on diagnosis, clinical care, and active immunization with well-designed potential antiflavivirus vaccines. Further, for achieving an elite success against JEV, global eradication strategies are to be needed for making vaccination program more responsible and effective in endemic areas.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, D D U Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
22
|
In vitro inhibition of Japanese encephalitis virus replication by capsid-targeted virus inactivation. Antiviral Res 2013; 97:369-75. [DOI: 10.1016/j.antiviral.2012.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/10/2012] [Accepted: 12/31/2012] [Indexed: 01/01/2023]
|
23
|
Medigeshi GR. Mosquito-borne flaviviruses: overview of viral life-cycle and host–virus interactions. Future Virol 2011. [DOI: 10.2217/fvl.11.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mosquito-borne flaviviruses such as dengue virus, Japanese encephalitis virus and West Nile virus pose a threat to half of the world population and are a serious public health challenge in many developing countries. There are no effective vaccines or antivirals for most of these viruses. Viruses, being obligate parasites, hijack host pathways for efficient replication and therefore each step of viral life-cycle, namely entry into the host cell, genome replication, assembly and exit, requires the participation of host factors. Investigating the biology of mosquito-borne flaviviruses and the complex interplay of virus with its host will help in identifying drug targets and also in developing safer vaccines and antivirals. This article provides insights into the recent developments in our understanding of the virus–host interactions at various steps in the life-cycle of these viruses.
Collapse
Affiliation(s)
- Guruprasad R Medigeshi
- Vaccine & Infectious Disease Research Center, Translational Health Science & Technology Institute, Plot 496, Udyog Vihar Phase III, Gurgaon 122016, Haryana, India
| |
Collapse
|