1
|
Sain J, Scanarotti IG, Gerstner CD, Fariña AC, Lavandera JV, Bernal CA. Enriched functional milk fat ameliorates glucose intolerance and triacylglycerol accumulation in skeletal muscle of rats fed high-fat diets. Eur J Nutr 2023; 62:1535-1550. [PMID: 36708376 DOI: 10.1007/s00394-023-03098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
PURPOSE We examined the effect of a functional milk fat (FMF) on the glucose metabolism and its association with the intramuscular triacylglycerol (TAG) content in rats fed high-fat diets. METHODS Male Wistar rats were fed for 60 days with S7 (soybean oil 7%), S30 (soybean oil 30%), MF30 (soybean oil 3% + milk fat 27%), or FMF30 (soybean oil 3% + FMF 27%) diets. An oral glucose tolerance test was performed. The levels of key metabolites in gastrocnemius muscle and mRNA levels of genes involved in glucose and lipid metabolism in muscle, epididymal white adipose tissue (EWAT), and serum were assessed. RESULTS The S30 diet induced glucose intolerance and led to TAG, citrate, and glucose accumulation in muscle. Moreover, we observed a downregulation of uncoupling proteins (Ucp2 and Ucp3) and insulin receptor substrate-1 (Irs1) genes, lower carnitine palmitoyl transferase-1b (CPT-1b), and phosphofructokinase-1 (PFK1) activities in muscle and lower expression of adiponectin (Adipoq) in EWAT. The FMF30 diet ameliorated the glucose intolerance and normalized the glucose and TAG levels in muscle, preventing the accumulation of citrate and enhancing glucose utilization by the PFK1. The beneficial effects might also be related to the higher expression of Adipoq in EWAT, its receptor in muscle (Adipor1), and the expression of Ucp2, Ucp3, and Irs1 in muscle, restoring the alterations observed with the S30 diet. CONCLUSIONS FMF30 modulated key genes involved in glucose and lipid metabolism in skeletal muscle, improving the glucose utilization and preventing TAG, glucose, and citrate accumulation.
Collapse
Affiliation(s)
- Juliana Sain
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Ignacio Gabriel Scanarotti
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Carolina Daniela Gerstner
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina
| | - Ana Clara Fariña
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Jimena Verónica Lavandera
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina
| | - Claudio Adrián Bernal
- Cátedra de Bromatología Y Nutrición, Departamento de Ciencias Biológicas, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242. (3000), Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Santa Fe, Argentina.
| |
Collapse
|
2
|
Iwasaki W, Yoshida R, Liu H, Hori S, Otsubo Y, Tanaka Y, Sato M, Ishizuka S. The ratio of 12α to non-12-hydroxylated bile acids reflects hepatic triacylglycerol accumulation in high-fat diet-fed C57BL/6J mice. Sci Rep 2022; 12:16707. [PMID: 36202928 PMCID: PMC9537321 DOI: 10.1038/s41598-022-20838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
In our previous study, enterohepatic 12α-hydroxylated (12α) bile acid (BA) levels were found to be correlated with hepatic triacylglycerol concentration in rats fed high-fat (HF) diet. Since BA composition is diverse depending on animal species, we evaluated whether such a relationship is applicable in mice in response to an HF diet. C57BL/6JJmsSLC (B6) male mice were fed HF diet for 13 weeks and analyzed for triacylglycerol, cholesterol, oxysterols, and other metabolites in the liver. The BA composition was determined in the liver, small intestinal contents, portal plasma, aortic plasma, and feces. Neutral sterols were also measured in the feces. The ratio of 12α BA/non-12 BA increased in the liver, portal plasma, small intestinal contents, and feces of HF-fed B6 mice. Moreover, a positive correlation was observed between the ratio of fecal 12α BAs/non-12 BAs and hepatic triacylglycerol concentration. The concentration of 7α-hydroxycholesterol was increased in the liver of HF-fed B6 mice, whereas no increase was observed in the hepatic expression of cytochrome P450 family 7 subfamily A member 1. The present study showed that the ratio of 12α BA/non-12 BA in feces is closely associated with hepatic triacylglycerol accumulation in B6 mice fed HF diet.
Collapse
Affiliation(s)
- Wakana Iwasaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Ryo Yoshida
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hongxia Liu
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shota Hori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yuki Otsubo
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0385, Japan
| | - Yasutake Tanaka
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0385, Japan
| | - Masao Sato
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0385, Japan
| | - Satoshi Ishizuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
3
|
Oliva ME, Ferreira MDR, Vega Joubert MB, D'Alessandro ME. Salvia hispanica L. (chia) seed promotes body fat depletion and modulates adipocyte lipid handling in sucrose-rich diet-fed rats. Food Res Int 2021; 139:109842. [PMID: 33509466 DOI: 10.1016/j.foodres.2020.109842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/16/2022]
Abstract
The aim of this study was to analyze the effects of Salvia hispanica L. (chia) seed upon metabolic pathways that play a key role in adipose tissue lipid handling which could be involved in visceral adiposity reduction developed in rats fed a sucrose-rich diet (SRD). Male Wistar rats were fed with a reference diet (RD) -6 months- or SRD-3 months. Then, the last group was randomly divided into two subgroups. One subgroup continued receiving the SRD up to 6 months and the other was fed with a SRD where whole chia seed was incorporated as the source of dietary fat for the next 3 months (SRD + CHIA). Results showed that chia seed in the SRD-fed rat reduced the abdominal and thoracic circumferences, carcass fat content, adipose tissue weights, and visceral adiposity index. This was accompanied by an improvement in insulin sensitivity and plasma lipid profile. In epididymal adipose tissue, the decreased fat cell triglyceride content was associated with a reduction in both, FAT/CD 36 plasma membrane levels and the fat synthesis enzyme activities. There were not changes in oxidative CPT enzyme activities. PKCβ and the precursor and mature forms of SREBP-1 protein levels were decreased, while pAMPK was increased. Our findings suggest that chia seed supplementation can modulate essential pathways of lipid metabolism in adipose tissue, contributing to reduced visceral fat accumulation in SRD-fed rats.
Collapse
Affiliation(s)
- María Eugenia Oliva
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Michelle Berenice Vega Joubert
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
4
|
Lin X, Lyvers Peffer PA, Woodworth J, Odle J. Ontogeny of carnitine biosynthesis in Sus scrofa domesticus, inferred from γ-butyrobetaine hydroxylase (dioxygenase) activity and substrate inhibition. Am J Physiol Regul Integr Comp Physiol 2020; 319:R43-R49. [PMID: 32432915 DOI: 10.1152/ajpregu.00051.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
γ-Butyrobetaine hydroxylase (γ-BBH) is the last limiting enzyme of the l-carnitine biosynthesis pathway and plays an important role in catalyzing the hydroxylation of γ-butyrobetaine (γ-BB) to l-carnitine. To study the developmental effect of substrate concentration on the enzyme's specific activity, kinetics of γ-BBH were measured in liver and kidney from newborn and 1-, 7-, 21-, 35-, 56-, and 210-day-old domestic pigs. Fresh tissue homogenates were assayed under nine concentrations of γ-BB from 0 to 1.5 mM. Substrate inhibition associated with age was observed at ≥0.6 mM of γ-BB. Hepatic activity was low at birth but increased after 1 day. By 21 days, the activity rose by 6.6-fold (P < 0.05) and remained constant after 56 days. Renal activity was higher than in liver at birth but remained constant through 35 days. By 56 days, the velocity increased by 44% over the activity at birth (P < 0.05). The apparent Km for γ-BB at birth on average was 2.8-fold higher than at 1 day. The Km value was 60% higher in kidney than liver during development but showed no difference in adult pigs. The total organ enzyme activity increased by 130-fold for liver and 18-fold for kidney as organ weight increased from birth to 56 days. In conclusion, age and substrate affect γ-BBH specific activity and Km for γ-BB in liver and kidney. Whereas the predominant organ for carnitine synthesis is likely the kidney at birth, the liver appears to predominate after the pig exceeds 7 days of age.
Collapse
Affiliation(s)
- Xi Lin
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, North Carolina
| | - Pasha A Lyvers Peffer
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, North Carolina
| | | | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
5
|
Ferreira MDR, Oliva ME, Aiassa V, D'Alessandro ME. Salvia hispanica L. (chia) seed improves skeletal muscle lipotoxicity and insulin sensitivity in rats fed a sucrose-rich diet by modulating intramuscular lipid metabolism. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
6
|
Abdelatty AM, Badr OAM, Mohamed SA, Khattab MS, Dessouki SHM, Farid OAA, Elolimy AA, Sakr OG, Elhady MA, Mehesen G, Bionaz M. Long term conjugated linoleic acid supplementation modestly improved growth performance but induced testicular tissue apoptosis and reduced sperm quality in male rabbit. PLoS One 2020; 15:e0226070. [PMID: 31923252 PMCID: PMC6953797 DOI: 10.1371/journal.pone.0226070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Conjugated linoleic acid (CLA) is known for its multiple benefits including improvement of growth, increasing lean mass, and anti-carcinogenic effects. However, when used in long-term supplementations CLA does not improve semen parameters in boar and bull and reduces fertility in Japanese quails. The content of unsaturated fatty acids in dietary lipids plays a significant role in spermatogenesis owning the high proportion of unsaturated fatty acids in plasma membrane of sperms. Whether CLA plays a role in testicular tissue and epididymal fat is still unknown. Therefore, in this study we hypothesize that long-term supplementation of equal proportion of CLA isomer mix (c9,t11-CLA and t10,c12- CLA) in rabbit bucks might alter male reproductive potentials. Twelve V-Line weaned male rabbits were used in 26 weeks trial, rabbits were individually raised and randomly allocated into three dietary groups. Control group (CON) received a basal diet, a group received 0.5% CLA (CLA 0.5%), and a group received 1% CLA (CLA 1%). Rabbits were euthanized at the end of the trial and several parameters were evaluated related to growth, semen quality, and testicular and epididymal tissue histopathology and transcriptome. The long-term supplementation of CLA increased feed intake by 5% and body weight by 2-3%. CLA 1% decreased sperm progressive motility. In testicular tissue L-carnitine and α-tocopherol were decreased by CLA supplementation. In epididymal fat, CLA tended to decrease concentration of polyunsaturated fatty acids, the expression of SCD5 gene was upregulated by CLA 1% and CASP3 gene was upregulated by CLA 0.5%. Transcription of PPARG was downregulated by CLA. Feeding 1% CLA also decreased testicular epithelial thickness. Long-term supplementation of CLA modestly enhanced male rabbit growth, but negatively impacted male reproduction, especially at high dose of CLA.
Collapse
Affiliation(s)
- A. M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - O. A. M. Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - S. A. Mohamed
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - M. S. Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - SH. M. Dessouki
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - O. A. A. Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - A. A. Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States of America
- Department of Animal Production, National Research Centre, Giza, Egypt
| | - O. G. Sakr
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - M. A. Elhady
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - G. Mehesen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
7
|
Hausner EA, Elmore SA, Yang X. Overview of the Components of Cardiac Metabolism. Drug Metab Dispos 2019; 47:673-688. [PMID: 30967471 PMCID: PMC7333657 DOI: 10.1124/dmd.119.086611] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Metabolism in organs other than the liver and kidneys may play a significant role in how a specific organ responds to chemicals. The heart has metabolic capability for energy production and homeostasis. This homeostatic machinery can also process xenobiotics. Cardiac metabolism includes the expression of numerous organic anion transporters, organic cation transporters, organic carnitine (zwitterion) transporters, and ATP-binding cassette transporters. Expression and distribution of the transporters within the heart may vary, depending on the patient's age, disease, endocrine status, and various other factors. Several cytochrome P450 (P450) enzyme classes have been identified within the heart. The P450 hydroxylases and epoxygenases within the heart produce hydroxyeicosatetraneoic acids and epoxyeicosatrienoic acids, metabolites of arachidonic acid, which are critical in regulating homeostatic processes of the heart. The susceptibility of the cardiac P450 system to induction and inhibition from exogenous materials is an area of expanding knowledge, as are the metabolic processes of glucuronidation and sulfation in the heart. The susceptibility of various transcription factors and signaling pathways of the heart to disruption by xenobiotics is not fully characterized but is an area with implications for disruption of normal postnatal development, as well as modulation of adult cardiac health. There are knowledge gaps in the timelines of physiologic maturation and deterioration of cardiac metabolism. Cross-species characterization of cardiac-specific metabolism is needed for nonclinical work of optimum translational value to predict possible adverse effects, identify sensitive developmental windows for the design and conduct of informative nonclinical and clinical studies, and explore the possibilities of organ-specific therapeutics.
Collapse
Affiliation(s)
- Elizabeth A Hausner
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Susan A Elmore
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| | - Xi Yang
- United States Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland (E.A.H., X.Y.); and National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina (S.A.E.)
| |
Collapse
|
8
|
Effect of Acetyl-L-carnitine Used for Protection of Neonatal Hypoxic-Ischemic Brain Injury on Acute Kidney Changes in Male and Female Rats. Neurochem Res 2019; 44:2405-2412. [PMID: 31041669 DOI: 10.1007/s11064-019-02807-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 10/26/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a common cause of brain injury in infants. Acute kidney injury frequently occurs after birth asphyxia and is associated with adverse outcome. Treatment with acetyl-L-carnitine (ALCAR) after HI protects brain and improves outcome. Rat pups underwent carotid ligation and 75 min hypoxia on postnatal day 7 to determine effects of HI on kidney which is understudied in this model. HI + ALCAR pups were treated at 0, 4 and 24 h after HI. The organic cation/carnitine transporter 2 (OCTN2), transports ALCAR and functions to reabsorb carnitine and acylcarnitines from urine. At 24 h after injury OCTN2 levels were significantly decreased in kidney from HI pups, 0.80 ± 0.04 (mean ± SEM, p < 0.01), compared to sham controls 1.03 ± 0.04, and HI + ALCAR pups 1.11 ± 0.06. The effect of HI on the level of pyruvate dehydrogenase (PDH) was determined since kidney has high energy requirements. At 24 h after HI, kidney PDH/β-actin ratios were significantly lower in HI pups, 0.98 ± 0.05 (mean ± SEM, p < 0.05), compared to sham controls 1.16 ± 0.06, and HI + ALCAR pups 1.24 ± 0.03, p < 0.01. Treatment of pups with ALCAR after HI prevented the decrease in renal OCTN2 and PDH levels at 24 h after injury. Protection of PDH and OCTN2 after HI would improve energy metabolism in kidney, maintain tissue carnitine levels and overall carnitine homeostasis which is essential for neonatal health.
Collapse
|
9
|
Yamaguchi H, Mano N. Analysis of membrane transport mechanisms of endogenous substrates using chromatographic techniques. Biomed Chromatogr 2019; 33:e4495. [PMID: 30661254 DOI: 10.1002/bmc.4495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Membrane transporters are expressed in various bodily tissues and play essential roles in the homeostasis of endogenous substances and the absortion, distribution and/or excretion of xenobiotics. For transporter assays, radioisotope-labeled compounds have been mainly used. However, commercially available radioisotope-labeled compounds are limited in number and relatively expensive. Chromatographic analyses such as high-performance liquid chromatography with ultraviolet absorptiometry and liquid chromatography with tandem mass spectrometry have also been applied for transport assays. To elucidate the transport properties of endogenous substrates, although there is no difficulty in performing assays using radioisotope-labeled probes, the endogenous background and the metabolism of the compound after its translocation across cell membranes must be considered when the intact compound is assayed. In this review, the current state of knowledge about the transport of endogenous substrates via membrane transporters as determined by chromatographic techniques is summarized. Chromatographic techniques have contributed to our understanding of the transport of endogenous substances including amino acids, catecholamines, bile acids, prostanoids and uremic toxins via membrane transporters.
Collapse
Affiliation(s)
- Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
10
|
Rotimi SO, Adelani IB, Bankole GE, Rotimi OA. Naringin enhances reverse cholesterol transport in high fat/low streptozocin induced diabetic rats. Biomed Pharmacother 2018; 101:430-437. [PMID: 29501765 DOI: 10.1016/j.biopha.2018.02.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Naringin, a citrus-derived flavonoid with antihyperglycemic, antihyperlipidemic, and antioxidant properties, is reported to be a useful nutraceutical in the management of diabetes and its complications. This study investigated the mechanism of antiatherogenic properties of naringin in type 2 diabetes (T2DM) using high fat-low streptozocin rat model of T2DM. Rats were treated daily with 50, 100 and 200 mg/kg naringin orally for 21days. Levels of biomarkers of T2DM, lipid profile and activity of paraoxonase (PON) were assayed spectrophotometrically. The levels of expression of hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase (Hmgcr), scavenger receptor class B member 1 (Scarb1), aryl hydrocarbon receptor (Ahr), hepatic Lipase (Lipc), and lecithin-cholesterol acyltransferase (Lcat) were assessed using relative reverse transcriptase polymerase chain reaction technique. Naringin treatment resulted in a dose-dependent significant (p < 0.05) decrease in the levels of plasma cholesterol and triglyceride from 84.84 ± 1.62 to 55.59 ± 1.50 mg/dL and 123.03 ± 15.11 to 55.00 ± 0.86 mg/dL, respectively, at 200 mg/kg naringin. In the liver, Scarb1 and Ahr were significantly (p < 0.05) upregulated at 200 mg/kg naringin while Lipc and Lcat were significantly (p < 0.05) upregulated by 50 mg/kg naringin. T2DM-induced decrease in PON activities in the plasma, liver and HDL was significantly (p < 0.05) reversed by 200 mg/kg naringin treatment. These genes play critical roles in reverse cholesterol transport and hence our results showed that the antiatherogenic property of naringin in T2DM involves enhancement of reverse cholesterol transport and PON activity.
Collapse
Affiliation(s)
- Solomon Oladapo Rotimi
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria.
| | - Isaacson Bababode Adelani
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | - Goodness Esther Bankole
- Department of Biochemistry and Molecular Biology Research Laboratory, Covenant University, Ota, Nigeria
| | | |
Collapse
|
11
|
Creus A, Ferreira MR, Oliva ME, Lombardo YB. Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats. J Clin Med 2016; 5:jcm5020018. [PMID: 26828527 PMCID: PMC4773774 DOI: 10.3390/jcm5020018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/01/2015] [Accepted: 01/15/2016] [Indexed: 01/12/2023] Open
Abstract
This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO), was replaced by chia seeds from month 3 to 6 (SRD+chia). A reference group consumed a control diet (CD) all the time. Triglyceride, long-chain acyl CoA (LC ACoA) and diacylglycerol (DAG) contents, pyruvate dehydrogenase complex (PDHc) and muscle-type carnitine palmitoyltransferase 1 (M-CPT1) activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36), peroxisome proliferator activated receptor α (PPARα) and uncoupling protein 2 (UCP2) were analyzed. Results show that: (a) the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b) Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs) availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats.
Collapse
Affiliation(s)
- Agustina Creus
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| | - María R Ferreira
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| | - María E Oliva
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| | - Yolanda B Lombardo
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| |
Collapse
|
12
|
Vaz FM, van Vlies N. Dioxygenases of Carnitine Biosynthesis: 6- N-Trimethyllysine and γ-Butyrobetaine Hydroxylases. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This chapter describes the state of knowledge of the two 2-oxoglutarate-dependent dioxygenases of carnitine biosynthesis: 6-N-trimethyllysine hydroxylase and γ-butyrobetaine hydroxylase. Both enzymes have been extensively investigated as carnitine plays an important role in fatty acid metabolism in animals and some other life forms. Carnitine metabolism is introduced followed by a comprehensive review of the properties of the two carnitine biosynthesis dioxygenases including their purification, kinetic and biophysical characterization, regulation and roles in metabolism.
Collapse
Affiliation(s)
- Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics and Clinical Chemistry, Emma Children’s Hospital, Academic Medical Center 1105 AZ Amsterdam The Netherlands
| | - Naomi van Vlies
- Laboratory Genetic Metabolic Diseases, Departments of Paediatrics and Clinical Chemistry, Emma Children’s Hospital, Academic Medical Center 1105 AZ Amsterdam The Netherlands
| |
Collapse
|
13
|
Huang B, Wang Z, Park JH, Ryu OH, Choi MK, Lee JY, Kang YH, Lim SS. Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Nutr Res Pract 2015; 9:22-9. [PMID: 25671064 PMCID: PMC4317475 DOI: 10.4162/nrp.2015.9.1.22] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 09/30/2014] [Accepted: 10/08/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/OBJECTIVES Recently, anthocyanins have been reported to have various biological activities. Furthermore, anthocyanin-rich purple corn extract (PCE) ameliorated insulin resistance and reduced diabetes-associated mesanginal fibrosis and inflammation, suggesting that it may have benefits for the prevention of diabetes and diabetes complications. In this study, we determined the anthocyanins and non-anthocyanin component of PCE by HPLC-ESI-MS and investigated its anti-diabetic activity and mechanisms using C57BL/KsJ db/db mice. MATERIALS/METHODS The db/db mice were divided into four groups: diabetic control group (DC), 10 or 50 mg/kg PCE (PCE 10 or PCE 50), or 10 mg/kg pinitol (pinitol 10) and treated with drugs once per day for 8 weeks. During the experiment, body weight and blood glucose levels were measured every week. At the end of treatment, we measured several diabetic parameters. RESULTS Compared to the DC group, Fasting blood glucose levels were 68% lower in PCE 50 group and 51% lower in the pinitol 10 group. Furthermore, the PCE 50 group showed 2- fold increased C-peptide and adiponectin levels and 20% decreased HbA1c levels, than in the DC group. In pancreatic islets morphology, the PCE- or pinitol-treated mice showed significant prevention of pancreatic β-cell damage and higher insulin content. Microarray analyses results indicating that gene and protein expressions associated with glycolysis and fatty acid metabolism in liver and fat tissues. In addition, purple corn extract increased the phosphorylation of AMP-activated protein kinase (AMPK) and decreased phosphoenolpyruvate carboxykinase (PEPCK), glucose 6-phosphatase (G6pase) genes in liver, and also increased glucose transporter 4 (GLUT4) expressions in skeletal muscle. CONCLUSIONS Our results suggested that PCE exerted anti-diabetic effects through protection of pancreatic β-cells, increase of insulin secretion and AMPK activation in the liver of C57BL/KsJ db/db mice.
Collapse
Affiliation(s)
- Bo Huang
- College of Food Science and Engineering, Liaoning Medical University, Jinzhou 121000, China
| | - Zhiqiang Wang
- Department of Food Science and Nutrition and Center for Aging and HealthCare, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| | - Jong Hyuk Park
- Institute of Natural Medicine, Hallym University Medical School, Gangwon 200-702, Korea
| | - Ok Hyun Ryu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University, Gangwon 200-702, Korea
| | - Moon Ki Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University, Gangwon 200-702, Korea
| | - Jae-Yong Lee
- Institute of Natural Medicine, Hallym University Medical School, Gangwon 200-702, Korea. ; Department of Biochemistry, School of Medicine, Hallym University, Gangwon 200-702, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and Center for Aging and HealthCare, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| | - Soon Sung Lim
- Institute of Natural Medicine, Hallym University Medical School, Gangwon 200-702, Korea. ; Department of Food Science and Nutrition and Center for Aging and HealthCare, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon 200-702, Korea
| |
Collapse
|