1
|
Zhao X, Ma R, Abulikemu A, Qi Y, Liu X, Wang J, Xu K, Guo C, Li Y. Proteomics revealed composition- and size-related regulators for hepatic impairments induced by silica nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170584. [PMID: 38309355 DOI: 10.1016/j.scitotenv.2024.170584] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Xu D, Song XJ, Chen X, Wang JW, Cui YL. Advances and future perspectives of intranasal drug delivery: A scientometric review. J Control Release 2024; 367:366-384. [PMID: 38286336 DOI: 10.1016/j.jconrel.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Intranasal drug delivery is as a noninvasive and efficient approach extensively utilized for treating the local, central nervous system, and systemic diseases. Despite numerous reviews delving into the application of intranasal drug delivery across biomedical fields, a comprehensive analysis of advancements and future perspectives remains elusive. This review elucidates the research progress of intranasal drug delivery through a scientometric analysis. It scrutinizes several challenges to bolster research in this domain, encompassing a thorough exploration of entry and elimination mechanisms specific to intranasal delivery, the identification of drugs compatible with the nasal cavity, the selection of dosage forms to surmount limited drug-loading capacity and poor solubility, and the identification of diseases amenable to the intranasal delivery strategy. Overall, this review furnishes a perspective aimed at galvanizing future research and development concerning intranasal drug delivery.
Collapse
Affiliation(s)
- Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Xu-Jiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Miao C, Jia P, Luo C, Pang J, Xiao L, Zhang T, Duan J, Li Y, Sun Z. The size-dependent in vivo toxicity of amorphous silica nanoparticles: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115910. [PMID: 38199222 DOI: 10.1016/j.ecoenv.2023.115910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
The extensive application of amorphous silica nanoparticles (aSiNPs) in recent years has resulted in unavoidable human exposure in daily life, thus raising widespread concerns regarding the safety of aSiNPs on human health. The particle size is one of the important characteristics of nanomaterials that could influence their toxicity. For the reason that particles with smaller sizes possess larger surface area, which may lead to higher surface activity and biological reactivity. However, due to the complexity of experimental conditions and biological systems, the relationship between the particle size and the toxic effect of aSiNPs remains unclear. Therefore, this systematic review aims to investigate how particle size influences the toxic effect of aSiNPs in vivo and to analyze the relevant experimental factors affecting the size-dependent toxicity of aSiNPs in vivo. We found that 83.8% of 35 papers included in the present review came to the conclusion that smaller-sized aSiNPs exhibited stronger toxicity, though a few papers (6 papers) put forward different opinions. The reasons for smaller aSiNPs manifested greater toxicity were summarized. In addition, certain important experimental factors could influence the size-dependent effects and in vivo toxicity of aSiNPs, such as the synthesis method of aSiNPs, disperse medium of aSiNPs, administration route of aSiNPs, species or strain of experimental animals, sex of experimental animals, aggregation/agglomeration and protein corona of aSiNPs.
Collapse
Affiliation(s)
- Chen Miao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Peixi Jia
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, PR China
| | - Chuning Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jinyan Pang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Liyan Xiao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tanlin Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
4
|
Wang L, Sun Y, Zhang R, Pan K, Li Y, Wang R, Zhang L, Zhou C, Li J, Li Y, Zhu B, Han J. Enhancement of hemostatic properties of Cyclotella cryptica frustule through genetic manipulation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:136. [PMID: 37710352 PMCID: PMC10503012 DOI: 10.1186/s13068-023-02389-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The silicified cell wall of diatoms, also known as frustule, shows huge potential as an outstanding bio-nanomaterial for hemostatic applications due to its high hemostatic efficiency, good biocompatibility, and ready availability. As the architectural features of the frustule determine its hemostatic performance, it is of great interest to develop an effective method to modify the frustule morphology into desired patterns to further improve hemostatic efficiency. RESULTS In this study, the gene encoding Silicalemma Associated Protein 2 (a silicalemma-spanning protein) of Cyclotella cryptica (CcSAP2) was identified as a key gene in frustule morphogenesis. Thus, it was overexpressed and knocked down, respectively. The frustule of the overexpress lines showed no obvious alteration in morphology compared to the wild type (WT), while the size, specific surface area (BET), pore volume, and pore diameter of the knockdown strains changed greatly. Particularly, the knockdown frustules achieved a more pronounced coagulation effect and in vivo hemostatic performance than the WT strains. Such observations suggested that silicalemma proteins are ideal genetic encoding targets for manipulating frustule morphology associated hemostatic properties. Furthermore, the Mantel test was adopted to identify the key morphologies associated with C. cryptica bleeding control. Finally, based on our results and recent advances, the mechanism of frustule morphogenesis was discussed. CONCLUSION This study explores a new strategy for enhancing the hemostatic efficiency of the frustule based on genetic morphology modification and may provide insights into a better understanding of the frustule morphogenesis mechanism.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China
| | - Ruihao Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kehou Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Laoshan Laboratory, Qingdao, 266237, China
| | - Yuhang Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, 315200, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Baohua Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China.
| |
Collapse
|
5
|
Zhang J, Kothalawala S, Yu C. Engineered silica nanomaterials in pesticide delivery: Challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121045. [PMID: 36639042 DOI: 10.1016/j.envpol.2023.121045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/04/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Over the past decade, nanopesticide has been developed rapidly for exploring effective and safe alternatives to conventional pesticides with significant drawbacks and risks. Many nanotechnologies, including pesticide nanoemulsions, polymer-based nanopesticides, and metal/metal oxide nanoparticle-based pesticides have emerged and are extensively reviewed. Engineered silica nanomaterials (ESNs) have also shown promising potential as carriers in nanopesticides for modern agriculture. However, there are limited reviews specifically on ESN-based nanopesticides. Herein, we provide a comprehensive review on the recent progress of ESN-based nanopesticide technologies. An introduction of synthetic technology, formation mechanism, and surface engineering technology is firstly presented. Then, the advantages of ESN-based pesticide formulation and their structure-function-relationship are illustrated in detail. Finally, our perspectives on challenges and future research in ESN-based nanopesticide development are discussed.
Collapse
Affiliation(s)
- Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sukitha Kothalawala
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
6
|
Liang Q, Sun M, Ma Y, Wang F, Sun Z, Duan J. Adverse effects and underlying mechanism of amorphous silica nanoparticles in liver. CHEMOSPHERE 2023; 311:136955. [PMID: 36280121 DOI: 10.1016/j.chemosphere.2022.136955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Amorphous silica nanoparticles (SiNPs) have been widely used and mass-producted due to its unique properties. With the life cycle of SiNPs-based products, SiNPs are further released into the air, soil, surface water and sediment, resulting in an increasing risk to humans. SiNPs could enter into the human body through vein, respiratory tract, digestive tract or skin. Moreover, recent evidences have showed that, regardless of exposure pathways, SiNPs could even be traced in liver, which is gradually considered as one of the main organs that SiNPs accumulate. Increasing evidences supported the link between SiNPs exposure and adverse liver effects. However, the research models are diverse and the molecular mechanisms have not been well integrated. In this review, the liver-related studies of SiNPs in vivo and in vitro were screened from the PubMed database by systematic retrieval method. We explored the interaction between SiNPs and the liver, and especially proposed a framework of SiNPs-caused liver toxicity, considering AOP Wiki and existing studies. We identified increased reactive oxygen species (ROS) as a molecular initiating event (MIE), oxidative stress, endoplasmic reticulum stress, lysosome disruption and mitochondrial dysfunction as subsequent key events (KEs), which gradually led to adverse outcomes (AOs) containing liver dysfunction and liver fibrosis through a series of key events about cell inflammation and death such as hepatocyte apoptosis/pyroptosis, hepatocyte autophagy dysfuncton and hepatic macrophages pyroptosis. To our best knowledge, this is the first AOP proposed on SiNPs-related liver toxicity. In the future, more epidemiological studies need to be performed and more biomarkers need to be explored to improve the AOP framework for SiNPs-associated liver toxicity.
Collapse
Affiliation(s)
- Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China; School of Public Health, Baotou Medical College, Inner Mongolia University of Science & Techonology, Baotou, 014040, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
7
|
Li X, Li Y, Lv S, Xu H, Ma R, Sun Z, Li Y, Guo C. Long-term respiratory exposure to amorphous silica nanoparticles promoted systemic inflammation and progression of fibrosis in a susceptible mouse model. CHEMOSPHERE 2022; 300:134633. [PMID: 35439488 DOI: 10.1016/j.chemosphere.2022.134633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Exposure to amorphous silica nanoparticles (SiNPs) has increased dramatically, and concerns are growing about their potential health effects. However, their long-term systemic toxicity profile and underlying mechanisms following respiratory exposure still remains unexplored. It is well documented that the inhalation of ultrafine particles is firmly associated with adverse effects in humans. Environmental pollutants may contribute to diverse adverse effect or comorbidity in susceptible individuals. Thereby, we examined the long-term systemic effects of inhaled SiNPs using a sensitive mouse model (ApoE-/-) fed by a western diet. Male ApoE-/- mice were intratracheally instilled with SiNPs suspension at a dose of 1.5, 3.0 and 6.0 mg/kg·bw, respectively, once per week, 12 times in total. The histological analysis was conducted. The serum cytokine levels were quantified by RayBiotech antibody array. As a result, systemic histopathological alterations were noticed, mainly characterized by inflammation and fibrosis. More importantly, cytokine array analysis indicated the key role of mast cells accumulation in systemic inflammation and fibrosis progression induced by inhaled SiNPs. Collectively, our study firstly demonstrated that long-term exposure to inhaled SiNPs promoted the mast cell-dominated activation of inflammatory response, not only in the lung but also in heart, liver and kidney, etc., eventually leading to the progression of tissue fibrosis in ApoE-/- mice.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
8
|
Higashisaka K. Health Effects and Safety Assurance of Nanoparticles in Vulnerable Generations. Biol Pharm Bull 2022; 45:806-812. [PMID: 35786586 DOI: 10.1248/bpb.b22-00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanoparticles have a variety of useful functions. They have already been put to practical use in products in many industrial arenas, such as the cosmetics and food fields. Therefore, we cannot avoid the unintentional nanoparticle exposure of vulnerable people such as pregnant women and infants, and the importance of evaluating the safety of such vulnerable generations, who are highly sensitive to chemical substances, has been pointed out worldwide. However, it is still difficult to determine the hazards posed by nanoparticle exposure in everyday life. From this perspective, to analyze the risk from nanoparticles to vulnerable generations, nano-safety science research has been conducted through the collection of toxicity information on nanoparticles based on their physicochemical properties and kinetics via the association analysis of physicochemical properties, kinetics, and toxicity. The results of this nano-safety science research have been used in nano-safety design research to develop safer forms of nanoparticles. The findings of these studies will not only provide insights that will help us to formulate new policies for the risk management of nanoparticles; they will also lead directly to the development of sustainable nanotechnology (nanotechnology that can be safely, usefully, and sustainably used). These developments will contribute not only to the development of the nano-industry and the promotion of its social acceptance, but also to future developments in the field of health science.
Collapse
Affiliation(s)
- Kazuma Higashisaka
- Institute for Advanced Co-Creation Studies, Osaka University.,Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
9
|
Krug HF. A Systematic Review on the Hazard Assessment of Amorphous Silica Based on the Literature From 2013 to 2018. Front Public Health 2022; 10:902893. [PMID: 35784253 PMCID: PMC9240267 DOI: 10.3389/fpubh.2022.902893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022] Open
Abstract
Background Nanomaterials are suspected of causing health problems, as published studies on nanotoxicology indicate. On the other hand, some of these materials, such as nanostructured pyrogenic and precipitated synthetic amorphous silica (SAS) and silica gel, have been used for decades without safety concerns in industrial, commercial, and consumer applications. However, in addition to many in vivo and in vitro studies that have failed to demonstrate the intrinsic toxicity of SAS, articles periodically emerge, in which biological effects of concern have been described. Even though most of these studies do not meet high-quality standards and do not always use equivalent test materials or standardized test systems, the results often trigger substance re-evaluation. To put the results into perspective, an extensive literature study was carried out and an example of amorphous silica will be used to try to unravel the reliability from the unreliable results. Methods A systematic search of studies on nanotoxicological effects has been performed covering the years 2013 to 2018. The identified studies have been evaluated for their quality regarding material and method details, and the data have been curated and put into a data collection. This review deals only with investigations on amorphous silica. Results Of 18,162 publications 1,217 have been selected with direct reference to experiments with synthetically produced amorphous silica materials. The assessment of these studies based on defined criteria leads to a further reduction to 316 studies, which have been included in this systematic review. Screening for quality with well-defined quantitative criteria following the GUIDE nano concept reveals only 27.3% has acceptable quality. Overall, the in vitro and in vivo data showed low or no toxicity of amorphous silica. The data shown do not support the hypothesis of dependency of biological effects on the primary particle size of the tested materials. Conclusion This review demonstrates the relatively low quality of most studies published on nanotoxicological issues in the case of amorphous silica. Moreover, mechanistic studies are often passed off or considered toxicological studies. In general, standardized methods or the Organization for Economic Cooperation and Development (OECD) guidelines are rarely used for toxicological experiments. As a result, the significance of the published data is usually weak and must be reevaluated carefully before using them for regulatory purposes.
Collapse
Affiliation(s)
- Harald F. Krug
- NanoCASE GmbH, Engelburg, Switzerland
- Empa—Swiss Federal Laboratories for Science and Materials Technology, St. Gallen, Switzerland
- Faculty of Medicine, University of Berne, Bern, Switzerland
- *Correspondence: Harald F. Krug ; orcid.org/0000-0001-9318-095X
| |
Collapse
|
10
|
Okazaki N, Yamaki D, Takei T, Shimizu M, Kamatani N, Shindo T. Studies on safety and efficacy of particles containing a mixture of hydroxyapatite–argentum–titanium oxide (HAT) and sheets coated with HAT particles to be used in masks to improve nasal allergy: II. Cellular, in vivo, and clinical studies. Eur Arch Otorhinolaryngol 2022; 279:4425-4433. [PMID: 35249130 PMCID: PMC9363370 DOI: 10.1007/s00405-022-07289-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
Purpose We report the manufacture of particles containing a mixture of hydroxyapatite–argentum–titanium oxide (HAT), followed by attachment to nonwoven polyester fabrics to produce HAT-coated sheets (HATS) for use in masks. The purpose of the present study was to perform cellular, in vivo, and clinical studies to further examine the safety of HATS for use in masks to improve nasal allergy. Methods Reverse mutation tests for HAT were performed using five bacterial strains. A cellular toxicity test was performed using a Chinese hamster cell line incubated with the HATS extracts. Skin reactions after intradermal administration were examined in rabbits. Skin sensitization tests in guinea pigs were performed using the HATS extracts. HAT was administered to the nasal cavity and conjunctival sac of the rabbits. An oral administration study was performed in rats. Finally, a human skin patch test was performed using the HATS. Results Reverse mutation tests showed negative results. The cellular toxicity test showed that the HATS extract had moderate cytotoxicity. The intradermal skin reaction and skin sensitization tests were all negative. The administration of HAT to the nasal cavity and intraocular administration showed negative results. No toxicity was observed after oral administration of HAT powder up to a dose of 2000 mg/kg. Finally, the skin patch test result was negative. Conclusion Although HAT showed moderate cytotoxicity, in vivo results indicated that HAT is safe because it does not come in direct contact with cells in normal usage, and HATS is safe when used in masks.
Collapse
|
11
|
Eto SI, Higashisaka K, Koshida A, Sato K, Ogura M, Sakurai M, Tsujino H, Nagano K, Tsutsumi Y. Amorphous silica nanoparticles (nSP50) exacerbate hepatic damage through the activation of acquired cell-mediated immunity. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac4bb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Due to their innovative functions, the use of nanoparticles in various industries has been expanding. However, a key concern is whether nanoparticles induce unexpected biological effects. Although many studies have focused on innate immunity, information on whether nanoparticles induce biological responses through effects on acquired immunity is sparse. Here, to assess the effects of amorphous silica nanoparticles on acquired immunity, we analyzed changes in acute toxicities after pretreatment with amorphous silica nanoparticles (50 nm in diameter; nSP50). Pretreatment with nSP50 biochemically and pathologically exacerbated nSP50-induced hepatic damage in immunocompetent mice. However, pretreatment with nSP50 did not exacerbate hepatic damage in immunodeficient mice. Consistent with this, the depletion of CD8+ cells with an anti-CD8 antibody in animals pretreated with nSP50 resulted in lower plasma levels of hepatic injury markers such as ALT and AST after an intravenous administration than treatment with an isotype-matched control antibody. Finally, stimulation of splenocytes promoted the release of IFN-γ in nSP50-pretreated mice regardless of the stimulator used. Moreover, the blockade of IFN-γ decreased plasma levels of ALT and AST levels in nSP50-pretreated mice. Collectively, these data show that nSP50-induced acquired immunity leads to exacerbation of hepatic damage through the activation of cytotoxic T lymphocytes.
Collapse
|
12
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
13
|
Park J, Choi SW, Cha BG, Kim J, Kang SJ. Alternative Activation of Macrophages through Interleukin-13-Loaded Extra-Large-Pore Mesoporous Silica Nanoparticles Suppresses Experimental Autoimmune Encephalomyelitis. ACS Biomater Sci Eng 2021; 7:4446-4453. [PMID: 34435775 DOI: 10.1021/acsbiomaterials.1c00946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) treatment via cytokine-mediated immunomodulation has been hampered by the difficulty with which cytokines can be stably and noninvasively delivered to the central nervous system. Here, we show that interleukin (IL)-13 packaged in extra-large-pore mesoporous silica nanoparticles (XL-MSNs) is protected from degradation and directs the alternative activation of macrophages both in vitro and in vivo. Furthermore, the noninvasive intranasal delivery of IL-13-loaded XL-MSNs ameliorated the symptoms of experimental autoimmune encephalomyelitis, a murine model of MS, accompanied by the induction of chemokines orchestrating immune cell infiltration. These results demonstrate the therapeutic potential of IL-13-loaded XL-MSNs for MS patients.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea
| | - Bong Geun Cha
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea.,School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Cui G, Li Z, Cao F, Li P, Jin M, Hou S, Yang X, Mu Y, Peng C, Shao H, Du Z. Activation of Nrf2/HO-1 signaling pathway attenuates ROS-mediated autophagy induced by silica nanoparticles in H9c2 cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1389-1401. [PMID: 33764603 DOI: 10.1002/tox.23134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Silica nanoparticles (SiNPs) as one of the most productive nano-powder, has been extensively applied in various fields. There has been increasing concern about the adverse effects of SiNPs on the health of ecological organisms and human. The potential cardiovascular toxicity of SiNPs and involved mechanisms remain elusive. Hence, in this study, we investigated the cardiovascular toxicity of SiNPs (60 nm) and explored the underlying mechanisms using H9c2 cardiomyocytes. Results showed that SiNPs induced oxidative stress and activated the Nrf2/HO-1 antioxidant pathway. Autophagy was also activated by SiNPs. Interestingly, N-acetyl-L-cysteine (NAC)attenuated autophagy after inhibiting reactive oxygen species (ROS). Meanwhile, down-regulation of Nrf2 enhanced autophagy. In summary, these data indicated that SiNPs induce autophagy in H9c2 cardiomyocytes through oxidative stress, and the Nrf2/HO-1 pathway has a negative regulatory effect on autophagy. This study provides new evidence for the cardiovascular toxicity of SiNPs and provides a reference for the safe use of nanomaterials in the future.
Collapse
Affiliation(s)
- Guanqun Cui
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Ziyuan Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| | - Feifei Cao
- Department of Infection Prevention and Control, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Peng Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| | - Minghua Jin
- School of Public Health Jilin University, Changchun, China
| | - Shanshan Hou
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
- School of Public Health Jilin University, Changchun, China
| | - Xu Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| | - Yingwen Mu
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University, Ji'nan, China
| |
Collapse
|
15
|
Guo C, Liu Y, Li Y. Adverse effects of amorphous silica nanoparticles: Focus on human cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124626. [PMID: 33296760 DOI: 10.1016/j.jhazmat.2020.124626] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Amorphous silica nanoparticle (SiNPs) has tremendous potential for a host of applications, while its mass production, broad application and environmental release inevitably increase the risk of human exposure. SiNPs could enter into the human body through different routes such as inhalation, ingestion, skin contact and even injection for medical applications. The cardiovascular system is gradually recognized as one of the primary sites for engineered NPs exerting adverse effects. Accumulating epidemiological or experimental evidence support the association between SiNPs exposure and adverse cardiovascular effects. However, this topic is still in its infancy, and the literature shows high inter-study variability and even contradictory results. New challenges still present in the safety evaluation of SiNPs, and its toxicological mechanisms are poorly understood. Here, scientific papers related to cardiovascular studies of SiNPs in vivo and in vitro were selected, and the updated particle-caused cardiovascular toxicity and potential mechanisms were summarized. Moreover, the understanding of how factors primarily including exposure dose, route of administration, particle size and surface properties, influence the interaction between SiNPs and cardiovascular system was discussed. In particular, the adverse outcome pathway (AOP) framework by which SiNPs cause deleterious effects in the cardiovascular system was described, aiming to provide useful information necessary for the regulatory decision and to guide a safer application of nanotechnology.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
16
|
Rong R, Zhang Y, Tan W, Hu T, Wang X, Gui Z, Gong J, Xu X. Evidence of Translocation of Oral Zn 2+ Doped Magnetite Nanoparticles Across the Small Intestinal Wall of Mice and Deposition in Spleen: Unique Advantage in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:7919-7929. [DOI: 10.1021/acsabm.0c01038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Rong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weihang Tan
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Tingting Hu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaoqin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zongxiang Gui
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Jiachun Gong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiaolong Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
17
|
M. Ways TM, Ng KW, Lau WM, Khutoryanskiy VV. Silica Nanoparticles in Transmucosal Drug Delivery. Pharmaceutics 2020; 12:E751. [PMID: 32785148 PMCID: PMC7465701 DOI: 10.3390/pharmaceutics12080751] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Transmucosal drug delivery includes the administration of drugs via various mucous membranes, such as gastrointestinal, nasal, ocular, and vaginal mucosa. The use of nanoparticles in transmucosal drug delivery has several advantages, including the protection of drugs against the harsh environment of the mucosal lumens and surfaces, increased drug residence time, and enhanced drug absorption. Due to their relatively simple synthetic methods for preparation, safety profile, and possibilities of surface functionalisation, silica nanoparticles are highly promising for transmucosal drug delivery. This review provides a description of silica nanoparticles and outlines the preparation methods for various core and surface-functionalised silica nanoparticles. The relationship between the functionalities of silica nanoparticles and their interactions with various mucous membranes are critically analysed. Applications of silica nanoparticles in transmucosal drug delivery are also discussed.
Collapse
Affiliation(s)
- Twana Mohammed M. Ways
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK;
- College of Pharmacy, University of Sulaimani, Sulaimani 46001, Iraq
| | - Keng Wooi Ng
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.W.N.); (W.M.L.)
| | - Wing Man Lau
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (K.W.N.); (W.M.L.)
| | | |
Collapse
|
18
|
Halenova T, Raksha N, Savchuk O, Ostapchenko L, Prylutskyy Y, Ritter U, Scharff P. Evaluation of the Biocompatibility of Water-Soluble Pristine С60 Fullerenes in Rabbit. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00762-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Amorphous nanosilica induced toxicity, inflammation and innate immune responses: A critical review. Toxicology 2020; 441:152519. [PMID: 32525085 DOI: 10.1016/j.tox.2020.152519] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Nanoparticles are promising bioengineering platforms facilitating various consumer product formulations, including packaged food, electrical, biosensor and biomedical tools. The unique surface and physicochemical properties of amorphous nanosilica supports advanced nano-biomolecular applications for various manufacturing, biotechnology, and healthcare industries including cosmetics, packaging, implants, drug delivery systems and cancer diagnostics. The increased technological and economic benefits of amorphous nanosilica, raises concerns regarding their adverse biological effects on humans. The cellular mechanisms underlying amorphous nanosilica internalization, evasion of biological barriers, inadvertent nano-bio interactions and unexpected long term exposure effects must be taken into consideration from the diverse ecosystems and human safety aspects. Recent research studies reveal cytotoxic, inflammatory and immunomodulatory effects of amorphous nanosilica particles. Our review focuses on studies demonstrating hazardous impact of amorphous nanosilica/bio-systems interface on the cellular and biochemical processes. The review further seeks to evaluate amorphous nanosilica-induced cytotoxicity, innate immune responses, inflammation and immune related dysfunctions, and discuss open research questions related to the use of amorphous nanosilica in biomedicine.
Collapse
|
20
|
Yang Y, Du X, Wang Q, Liu J, Zhang E, Sai L, Peng C, Lavin MF, Yeo AJ, Yang X, Shao H, Du Z. Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. Int J Mol Med 2019; 44:903-912. [PMID: 31524225 PMCID: PMC6657974 DOI: 10.3892/ijmm.2019.4265] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Silicon is one of the most widely used chemical materials, and the increasing use of silica nanoparticles (SNs) highlights the requirement for safety and biological toxicity studies. The damaging and adverse effects of SNs on human hepatocytes remain largely unknown, as do the mechanisms involved. In the present study, the mechanisms underlying SN‑induced toxicity in the human hepatocyte cell line HL‑7702 were investigated. An MTT assay revealed that following exposure to SNs in the concentration range of 25‑200 µg/ml, the viability of HL‑7702 cells decreased, and the viability decreased further with increasing exposure time. SNs induced a delay in the S and G2/M phases of the cell cycle, and also induced DNA damage in these cells. Western blot and flow cytometry analyses revealed that cell death was mediated by mitochondrial damage and the upregulated expression of a number of pro‑apoptotic proteins. In conclusion, exposure to SNs led to mitochondrial and DNA damage, resulting in apoptosis‑mediated HL‑7702 cell death. The study provided evidence for the cellular toxicity of SNs, and added to the growing body of evidence regarding the potential damaging effects of nanoparticles, indicating that caution should be exercised in their widespread usage.
Collapse
Affiliation(s)
- Ye Yang
- School of Medicine and Life Sciences, University of Jinan‑Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xinjing Du
- School of Medicine and Life Sciences, University of Jinan‑Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianwei Liu
- Radiation Protection Safety Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, P.R. China
| | - Enguo Zhang
- School of Medicine and Life Sciences, University of Jinan‑Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Sai
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Martin F Lavin
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Abrey Jie Yeo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xu Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
21
|
Duan J, Liang S, Yu Y, Li Y, Wang L, Wu Z, Chen Y, Miller MR, Sun Z. Inflammation-coagulation response and thrombotic effects induced by silica nanoparticles in zebrafish embryos. Nanotoxicology 2018; 12:470-484. [PMID: 29658397 PMCID: PMC6157531 DOI: 10.1080/17435390.2018.1461267] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nowadays, nanotechnology environmental health and safety (nanoEHS) is gaining attention. We previously found that silica nanoparticles (SiNPs) could induce vascular endothelial damage. However, the subsequent toxicologic response to SiNPs-induced endothelial damage was still largely unknown. In this study, we explored the inflammation–coagulation response and thrombotic effects of SiNPs in endothelial cells and zebrafish embryos. For in vitro study, swollen mitochondria and autophagosome were observed in ultrastructural analysis. The cytoskeleton organization was disrupted by SiNPs in vascular endothelial cells. The release of proinflammatory and procoagulant cytokines including IL-6, IL-8, MCP-1, PECAM-1, TF and vWF, were markedly elevated in a dose-dependent manner. For in vivo study, based on the NOAEL for dosimetry selection, and using two transgenic zebrafish, Tg(mpo:GFP) and Tg(fli-1:EGFP), SiNPs-induced neutrophil-mediated inflammation and impaired vascular endothelial cells. With the dosage higher than NOAEL, SiNPs significantly decreased blood flow and velocity, exhibiting a blood hypercoagulable state in zebrafish embryos. The thrombotic effect was assessed by o-dianisidine staining, showed that an increasing of erythrocyte aggregation occurred in SiNPs-treated zebrafish. Microarray analysis was used to screen the possible genes for inflammation–coagulation response to SiNPs in zebrafish, and the JAK1/TF signaling pathway was further verified by qRT-PCR and Western blot assays. For in-deepth study, il6st was knocked down with specific morpholinos. The whole-mount in situ hybridization and qRT-PCR analysis showed that the expression jak1 and f3b were attenuated in il6st knockdown groups. In summary, our data demonstrated that SiNPs could induce inflammation–coagulation response and thrombotic effects via JAK1/TF signaling pathway.
Collapse
Affiliation(s)
- Junchao Duan
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Shuang Liang
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Yang Yu
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Yang Li
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Lijing Wang
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Zehao Wu
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Yueyue Chen
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| | - Mark R Miller
- c BHF Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh , Edinburgh , UK
| | - Zhiwei Sun
- a Department of Toxicology and Sanitary Chemistry, School of Public Health , Capital Medical University , Beijing , P.R. China.,b Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing , P.R. China
| |
Collapse
|
22
|
Shin JH, Jeon K, Kim JK, Kim Y, Jo MS, Lee JS, Baek JE, Park HS, An HJ, Park JD, Ahn K, Oh SM, Yu IJ. Subacute inhalation toxicity study of synthetic amorphous silica nanoparticles in Sprague-Dawley rats. Inhal Toxicol 2018; 29:567-576. [DOI: 10.1080/08958378.2018.1426661] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jae Hoon Shin
- Occupational Lung Diseases Research Institute, KCOMWEL, Incheon, Korea
| | | | - Jin Kwon Kim
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | - Younghun Kim
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | - Mi Seong Jo
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | - Jong Seong Lee
- Occupational Lung Diseases Research Institute, KCOMWEL, Incheon, Korea
| | - Jin Ee Baek
- Occupational Lung Diseases Research Institute, KCOMWEL, Incheon, Korea
| | - Hye Seon Park
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | - Hyo Jin An
- Institute of Nanoproduct Safety Research, Hoseo University, Asan, Korea
| | | | - Kangho Ahn
- Department of mechanical Engineering, Hanyang University, Ansan, Korea
| | - Seung Min Oh
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| | | |
Collapse
|
23
|
Isoda K, Nagata R, Hasegawa T, Taira Y, Taira I, Shimizu Y, Isama K, Nishimura T, Ishida I. Hepatotoxicity and Drug/Chemical Interaction Toxicity of Nanoclay Particles in Mice. NANOSCALE RESEARCH LETTERS 2017; 12:199. [PMID: 28314361 PMCID: PMC5355403 DOI: 10.1186/s11671-017-1956-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
Nanomaterials are relatively new and unconventional materials with many useful properties, but their effects on biological systems are poorly understood. Nanoclay is a general term for layered mineral silicate nanoparticles that are ideally suited for use in clay-based nanocomposites. The potential biological hazards of nanoclays have not been addressed, however. Therefore, we investigated the in vivo effects and drug interactions of nanoclays. In mice, administration of nanoclay particles via the tail vein led to acute liver injury. Co-administration of nanoclay and carbon tetrachloride, paraquat, or cisplatin resulted in both liver and kidney injury. Our findings thus indicate that nanoclay particles are potentially hepato- and nephrotoxic.
Collapse
Affiliation(s)
- Katsuhiro Isoda
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan.
| | - Ryutaro Nagata
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Tomoya Hasegawa
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Yuichiro Taira
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Ikuko Taira
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Yoshimi Shimizu
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Kazuo Isama
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Tetsuji Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Isao Ishida
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| |
Collapse
|
24
|
In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link? Biotechnol Adv 2017; 35:889-904. [DOI: 10.1016/j.biotechadv.2017.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022]
|
25
|
Sweeney S, Adamcakova-Dodd A, Thorne PS, Assouline JG. Biocompatibility of Multi-Imaging Engineered Mesoporous Silica Nanoparticles: In Vitro and Adult and Fetal In Vivo Studies. J Biomed Nanotechnol 2017; 13:544-558. [PMID: 31118876 DOI: 10.1166/jbn.2017.2369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite potentially serious adverse effects of engineered nanoparticles on maternal health and fetal development, little is known about their transport across the placenta. Human and animal studies are primarily limited to ex vivo approaches; the lack of a real-time, minimally invasive tool to study transplacental transport is clear. We have developed functionalized mesoporous silica nanoparticles (MSN) for use in magnetic resonance, ultrasound, and fluorescent imaging. This material is designed as a model for, or a carrier of, environmental toxicants, allowing for in vivo evaluation. To establish a baseline of biocompatibility, we present data describing MSN tolerance using in vitro and in vivo models. In cultured cells, MSN were tolerated to a dose of 125 µg/mL with minimal effect on viability and doubling time. For the 42 day duration of the study, none of the mice exhibited behaviors usually indicative of distress (lethargy, anemia, loss of appetite, etc.). In gravid mice, the body and organ weights of MSN-exposed dams were equivalent to those of control dams. Embryos exposed to MSN during early gestation were underweight by a small degree, while embryos exposed during late gestation were of a slightly larger weight. The rate of spontaneous fetal resorptions were equivalent in exposed and control mice. Maternal livers and sera were screened for a complement of cytokines/chemokines and reactive oxygen/nitrogen species (ROS/RNS). Only granulocyte-colony stimulating factor was elevated in mice exposed to MSN during late gestation, while ROS/RNS levels were elevated in mice exposed during early/mid gestation. These findings may usher future experiments investigating environmental toxicants using real-time assessment of transport across the placenta.
Collapse
Affiliation(s)
- Sean Sweeney
- NanoMedTrix Post-Doctoral Research Associate, Department of Biomedical Engineering, University of Iowa, 229 Engineering Research Facility, Iowa City, IA 52242
| | - Andrea Adamcakova-Dodd
- Environmental Health Sciences Research Center Department of Occupational and Environmental Health, University of Iowa, 170 Institute for Rural and Environmental Health, Coralville, IA 52241
| | - Peter S Thorne
- Occupational and Environmental Health, University of Iowa, S341A College of Public Health Building, 145 N. Riverside Dr., Iowa City, IA 52242
| | - Jose G Assouline
- NanoMedTrix, Department of Biomedical Engineering, University of Iowa, 227 Engineering Research Facility, Iowa City, IA 52242
| |
Collapse
|
26
|
Nishijima N, Hirai T, Misato K, Aoyama M, Kuroda E, Ishii KJ, Higashisaka K, Yoshioka Y, Tsutsumi Y. Human Scavenger Receptor A1-Mediated Inflammatory Response to Silica Particle Exposure Is Size Specific. Front Immunol 2017; 8:379. [PMID: 28421077 PMCID: PMC5377922 DOI: 10.3389/fimmu.2017.00379] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
The application of nanotechnology in the health care setting has many potential benefits; however, our understanding of the interactions between nanoparticles and our immune system remains incomplete. Although many of the biological effects of nanoparticles are negatively correlated with particle size, some are clearly size specific and the mechanisms underlying these size-specific biological effects remain unknown. Here, we examined the pro-inflammatory effects of silica particles in THP-1 cells with respect to particle size; a large overall size range with narrow intervals between particle diameters (particle diameter: 10, 30, 50, 70, 100, 300, and 1,000 nm) was used. Secretion of the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α induced by exposure to the silica particles had a bell-shaped distribution, where the maximal secretion was induced by silica nanoparticles with a diameter of 50 nm and particles with smaller or larger diameters had progressively less effect. We found that blockade of IL-1β secretion markedly inhibited TNF-α secretion, suggesting that IL-1β is upstream of TNF-α in the inflammatory cascade induced by exposure to silica particles, and that the induction of IL-1β secretion was dependent on both the NLRP3 inflammasome and on uptake of the silica particles into the cells via endocytosis. However, a quantitative analysis of silica particle uptake showed that IL-1β secretion was not correlated with the amount of silica particles taken up by the cells. Further investigation revealed that the induction of IL-1β secretion and uptake of silica nanoparticles with diameters of 50 or 100 nm, but not of 10 or 1,000 nm, was dependent on scavenger receptor (SR) A1. In addition, of the silica particles examined, only those with a diameter of 50 nm induced strong IL-1β secretion via activation of Mer receptor tyrosine kinase, a signal mediator of SR A1. Together, our results suggest that the SR A1-mediated pro-inflammatory response is dependent on ligand size and that both SR A1-mediated endocytosis and receptor-mediated signaling are required to produce the maximal pro-inflammatory response to exposure to silica particles.
Collapse
Affiliation(s)
- Nobuo Nishijima
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Toshiro Hirai
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kazuki Misato
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Michihiko Aoyama
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, Suita, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, Suita, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yasuo Yoshioka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
27
|
Higashisaka K, Nagano K, Yoshioka Y, Tsutsumi Y. Nano-safety Research: Examining the Associations among the Biological Effects of Nanoparticles and Their Physicochemical Properties and Kinetics. Biol Pharm Bull 2017; 40:243-248. [PMID: 28250267 DOI: 10.1248/bpb.b16-00854] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the past decade, nanotechnology has advanced rapidly, and many products containing nanoparticles are now an important part of our daily lives. Despite our increasing exposure to nanoparticles, however, information regarding the absorption, distribution, metabolism, excretion, and toxicity of nanoparticles remains limited. In this review, we introduce our group's ongoing research into the biological effects and toxicities of nanoparticles, which we broadly refer to as "nano-safety research." In addition to determining the biological effects of nanoparticles and elucidating the underlying mechanisms of those effects, we are also exploring the associations among the physicochemical properties and kinetics of nanoparticles. Furthermore, we are currently developing a battery of biomarkers that we hope will be used to predict the biological effects of nanoparticles during the early stages of development. Our research provides valuable basic information on the safety of nanoparticles. We hope that this information will be used for the development of better assessments of nanoparticles safety and for the creation of more appropriate regulations to ensure not only the safety but also the sustainability of nanotechnology.
Collapse
|
28
|
Handa T, Hirai T, Izumi N, Eto SI, Tsunoda SI, Nagano K, Higashisaka K, Yoshioka Y, Tsutsumi Y. Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice. NANOTECHNOLOGY 2017; 28:135101. [PMID: 28240988 DOI: 10.1088/1361-6528/aa5d7c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many of the beneficial and toxic biological effects of nanoparticles have been shown to have a negative correlation with particle size. However, few studies have demonstrated biological effects that only occur at specific nanoparticle sizes. Further elucidation of the size-specific biological effects of nanoparticles may reveal not only unknown toxicities, but also novel benefits of nanoparticles. We used surface-unmodified silica particles with a wide range of diameters and narrow size intervals between the diameters (10, 30, 50, 70, 100, 300, and 1000 nm) to investigate the relationship between particle size and acute toxicity after intravenous administration in mice. Negative correlations between particle size and thrombocytopenia, liver damage, and lethal toxicity were observed. However, a specific size-effect was observed for the severity of hypothermia, where silica nanoparticles with a diameter of 50 nm induced the most severe hypothermia. Further investigation revealed that this hypothermia was mediated not by histamine, but by platelet-activating factor, and it was independent of the thrombocytopenia and the liver damage. In addition, macrophages/Kupffer cells and platelets, but not neutrophils, play a critical role in the hypothermia. The present results reveal that silica nanoparticles have particle size-specific toxicity in mice, suggesting that other types of nanoparticles may also have biological effects that only manifest at specific particle sizes. Further study of the size-specific effects of nanoparticles is essential for safer and more effective nanomedicines.
Collapse
Affiliation(s)
- Takayuki Handa
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yoshioka Y, Kuroda E, Hirai T, Tsutsumi Y, Ishii KJ. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure. Front Immunol 2017; 8:169. [PMID: 28261221 PMCID: PMC5311046 DOI: 10.3389/fimmu.2017.00169] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/02/2017] [Indexed: 01/13/2023] Open
Abstract
Over the past decade, a vast array of nanomaterials has been created through the development of nanotechnology. With the increasing application of these nanomaterials in various fields, such as foods, cosmetics, and medicines, there has been concern about their safety, that is, nanotoxicity. Therefore, there is an urgent need to collect information about the biological effects of nanomaterials so that we can exploit their potential benefits and design safer nanomaterials, while avoiding nanotoxicity as a result of inhalation or skin exposure. In particular, the immunomodulating effect of nanomaterials is one of most interesting aspects of nanotoxicity. However, the immunomodulating effects of nanomaterials through skin exposure have not been adequately discussed compared with the effects of inhalation exposure, because skin penetration by nanomaterials is thought to be extremely low under normal conditions. On the other hand, the immunomodulatory effects of nanomaterials via skin may cause severe problems for people with impaired skin barrier function, because some nanomaterials could penetrate the deep layers of their allergic or damaged skin. In addition, some studies, including ours, have shown that nanomaterials could exhibit significant immunomodulating effects even if they do not penetrate the skin. In this review, we summarize our current knowledge of the allergic responses induced by nanomaterials upon skin exposure. First, we discuss nanomaterial penetration of the intact or impaired skin barrier. Next, we describe the immunomodulating effects of nanomaterials, focusing on the sensitization potential of nanomaterials and the effects of co-exposure of nanomaterials with substances such as chemical sensitizers or allergens, on the onset of allergy, following skin exposure. Finally, we discuss the potential mechanisms underlying the immunomodulating effects of nanomaterials by describing the involvement of the protein corona in the interaction of nanomaterials with biological components and by presenting recent data about the adjuvant effects of well-characterized particle adjuvant, aluminum salt, as an example of immunomodulatory particulate.
Collapse
Affiliation(s)
- Yasuo Yoshioka
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University , Suita, Osaka , Japan
| | - Toshiro Hirai
- Department of Dermatology and Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| | - Yasuo Tsutsumi
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan; Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan; Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| |
Collapse
|
30
|
Yang M, Jing L, Wang J, Yu Y, Cao L, Zhang L, Zhou X, Sun Z. Macrophages participate in local and systemic inflammation induced by amorphous silica nanoparticles through intratracheal instillation. Int J Nanomedicine 2016; 11:6217-6228. [PMID: 27920528 PMCID: PMC5125762 DOI: 10.2147/ijn.s116492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Silica nanoparticles (SiNPs) are amongst the most commonly used materials in the field of nanomedicine and, therefore, their influence on organisms has drawn increasing attention in recent years. Most reports have focused on the single tissue reactions induced by SiNPs. Herein, the reaction of primary organs to SiNPs following intratracheal instillation in mice was analyzed by histopathology and ultrastructure observation. Following elucidation of the role of macrophages in local and systemic inflammation, the underlying mechanisms were explored using a macrophage cell line in vitro. The results suggest that macrophages swallow the SiNPs and secrete inflammatory factors by activating the NLRP3 inflammasome, thus participating in local and systemic inflammation.
Collapse
Affiliation(s)
- Man Yang
- School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Li Jing
- School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Ji Wang
- School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yang Yu
- School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Lige Cao
- School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Lianshuang Zhang
- School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Xianqing Zhou
- School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
31
|
Aoyama M, Hata K, Higashisaka K, Nagano K, Yoshioka Y, Tsutsumi Y. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes. Biochem Biophys Res Commun 2016; 480:690-695. [DOI: 10.1016/j.bbrc.2016.10.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/27/2016] [Indexed: 01/26/2023]
|
32
|
Yu X, Hong F, Zhang YQ. Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res A 2016; 104:2881-97. [PMID: 27301683 DOI: 10.1002/jbm.a.35804] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Nanoparticles (NPs; < 100 nm) are increasingly being applied in various fields due to their unique physicochemical properties. The increase in human exposure to NPs has raised concerns regarding their health and safety profiles. The potential correlation between NP exposure and several cardiovascular (CV) events has been demonstrated. The aim of this review is to provide a comprehensive evaluation of the current knowledge regarding the bio-toxic impacts of titanium oxide, silver, silica, carbon black, carbon nanotube, and zinc oxide NPs exposure on the CV system in terms of in vivo and in vitro experiments, which is not fully understood presently. Moreover, the potential toxic mechanisms of NPs in the CV system that are still being questioned are elaborately discussed, and the underlying capacity of NPs used in medicine for CV events are summarized. It will be an important instrument to extrapolate relevant data for human CV risk evaluation and management. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2881-2897, 2016.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China. .,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| |
Collapse
|
33
|
Onodera A, Yayama K, Tanaka A, Morosawa H, Furuta T, Takeda N, Kakiguchi K, Yonemura S, Yanagihara I, Tsutsumi Y, Kawai Y. Amorphous nanosilica particles evoke vascular relaxation through PI3K/Akt/eNOS signaling. Fundam Clin Pharmacol 2016; 30:419-28. [PMID: 27214102 DOI: 10.1111/fcp.12206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/17/2022]
Abstract
There have been several reported studies on the distribution and/or toxicity of nanosilica particles. However, the influence of these particles on blood vessels through which they are distributed is poorly understood. Hence, we investigated the effects of nano- and micromaterials on blood vessel shrinkage and relaxation. Nanosilica particles with diameters of 70 nm (nSP70) were used as the nanomaterial, and particles of 300 and 1000 nm (nSP300 and mSP1000, respectively) were used as micromaterials. A rat thoracic aorta was used as the test blood vessel. The nano- and micromaterials had no effect on vessel shrinkage. Of the nano- and micromaterials tested, only nSP70 strongly evoked vascular relaxation. Vascular relaxation evoked by nSP70 was almost completely inhibited by the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin. In addition, the selective nitric oxide synthesis inhibitor NG-nitro-l-arginine methyl ester, which inhibits endothelial nitric oxide synthase (eNOS) downstream of PI3K signaling, inhibited vascular relaxation evoked by nSP70. In an analysis using bovine aortic endothelial cells (bAECs), nSP70 phosphorylated protein kinase B (AKT) and eNOS acted downstream of PI3K signaling. PI3K inhibition by wortmannin reduced AKT and eNOS phosphorylation. These results demonstrated that 70-nm amorphous nanosilica particles evoked vascular relaxation through PI3K/Akt/eNOS signaling. Moreover, it was suggested that nanomaterials, in general, control or disrupt vascular function by activating a known signal cascade.
Collapse
Affiliation(s)
- Akira Onodera
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| | - Katsutoshi Yayama
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Atsushi Tanaka
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Hideto Morosawa
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Takuya Furuta
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Naoya Takeda
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Kisa Kakiguchi
- Electron Microscope Laboratory, RIKEN Centre for Developmental Biology, 2-2-3 Minatojima Minami-Cho, Kobe, 650-0047, Japan
| | - Shigenobu Yonemura
- Electron Microscope Laboratory, RIKEN Centre for Developmental Biology, 2-2-3 Minatojima Minami-Cho, Kobe, 650-0047, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Osaka Medical Centre and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yasuo Tsutsumi
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yuichi Kawai
- Department of Pharmaceutical Sciences, Kobegakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| |
Collapse
|
34
|
Silica Nanoparticles Effects on Blood Coagulation Proteins and Platelets. Biochem Res Int 2016; 2016:2959414. [PMID: 26881078 PMCID: PMC4736757 DOI: 10.1155/2016/2959414] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/20/2015] [Indexed: 01/09/2023] Open
Abstract
Interaction of nanoparticles with the blood coagulation is important prior to their using as the drug carriers or therapeutic agents. The aim of present work was studying of the primary effects of silica nanoparticles (SiNPs) on haemostasis in vitro. We studied the effect of SiNPs on blood coagulation directly estimating the activation of prothrombin and factor X and to verify any possible effect of SiNPs on human platelets. It was shown that SiNPs shortened coagulation time in APTT and PT tests and increased the activation of factor X induced by RVV possibly due to the sorption of intrinsic pathway factors on their surface. SiNPs inhibited the aggregation of platelet rich plasma induced by ADP but in the same time partially activated platelets as it was shown using flow cytometry. The possibility of SiNPs usage in nanomedicine is strongly dependant on their final concentration in bloodstream and the size of the particles that are used. However SiNPs are extremely promising as the haemostatic agents for preventing the blood loss after damage.
Collapse
|
35
|
Fröhlich E. Action of Nanoparticles on Platelet Activation and Plasmatic Coagulation. Curr Med Chem 2016; 23:408-30. [PMID: 26063498 PMCID: PMC5403968 DOI: 10.2174/0929867323666160106151428] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
Nanomaterials can get into the blood circulation after injection or by release from implants but also by permeation of the epithelium after oral, respiratory or dermal exposure. Once in the blood, they can affect hemostasis, which is usually not intended. This review addresses effects of biological particles and engineered nanomaterials on hemostasis. The role of platelets and coagulation in normal clotting and the interaction with the immune system are described. Methods to identify effects of nanomaterials on clotting and results from in vitro and in vivo studies are summarized and the role of particle size and surface properties discussed. The literature overview showed that mainly pro-coagulative effects of nanomaterials have been described. In vitro studies suggested stronger effects of smaller than of larger NPs on coagulation and a greater importance of material than of surface charge. For instance, carbon nanotubes, polystyrene particles, and dendrimers inferred with clotting independent from their surface charge. Coating of particles with polyethylene glycol was able to prevent interaction with clotting by some particles, while it had no effect on others and the more recently developed bio-inspired surfaces might help to design coatings for more biocompatible particles. The mainly pro-coagulative action of nanoparticles could present a particular risk for individuals affected by common diseases such as diabetes, cancer, and cardiovascular diseases. Under standardized conditions, in vitro assays using human blood appear to be a suitable tool to study mechanisms of interference with hemostasis and to optimize hemocompatibility of nanomaterials.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University Graz, Stiftingtalstr 24, 8010 Graz, Austria.
| |
Collapse
|
36
|
Chen Z, Li F, Liu C, Guan J, Hu X, Du G, Yao X, Wu J, Tian F. Blood clot initiation by mesoporous silica nanoparticles: dependence on pore size or particle size? J Mater Chem B 2016; 4:7146-7154. [DOI: 10.1039/c6tb01946c] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hemostatic efficiency of mesoporous silica nanoparticles depends on pore size more than particle size, and biocompatibility is more related to particle size.
Collapse
Affiliation(s)
- Zihao Chen
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Fan Li
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Changjun Liu
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Jing Guan
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Xiao Hu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard
- Logistics College of People's Armed Police Force
- Tianjin 300000
- China
| | - Ge Du
- Oncology Department
- Beijing Ditang Hospital (Shunyi Campus)
- Capital Medical University
- Beijing 100015
- China
| | - Xinpei Yao
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Jimin Wu
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Feng Tian
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| |
Collapse
|
37
|
Yoshioka Y, Higashisaka K, Tsutsumi Y. Biocompatibility of Nanomaterials. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
NAGANO K, TSUTSUMI Y. Development of novel drug delivery systems using phage display technology for clinical application of protein drugs. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:156-66. [PMID: 27169349 PMCID: PMC4995314 DOI: 10.2183/pjab.92.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/29/2016] [Indexed: 05/23/2023]
Abstract
Attempts are being made to develop therapeutic proteins for cancer, hepatitis, and autoimmune conditions, but their clinical applications are limited, except in the cases of drugs based on erythropoietin, granulocyte colony-stimulating factor, interferon-alpha, and antibodies, owing to problems with fundamental technologies for protein drug discovery. It is difficult to identify proteins useful as therapeutic seeds or targets. Another problem in using bioactive proteins is pleiotropic actions through receptors, making it hard to elicit desired effects without side effects. Additionally, bioactive proteins have poor therapeutic effects owing to degradation by proteases and rapid excretion from the circulatory system. Therefore, it is essential to establish a series of novel drug delivery systems (DDS) to overcome these problems. Here, we review original technologies in DDS. First, we introduce antibody proteomics technology for effective selection of proteins useful as therapeutic seeds or targets and identification of various kinds of proteins, such as cancer-specific proteins, cancer metastasis-related proteins, and a cisplatin resistance-related protein. Especially Ephrin receptor A10 is expressed in breast tumor tissues but not in normal tissues and is a promising drug target potentially useful for breast cancer treatment. Moreover, we have developed a system for rapidly creating functional mutant proteins to optimize the seeds for therapeutic applications and used this system to generate various kinds of functional cytokine muteins. Among them, R1antTNF is a TNFR1-selective antagonistic mutant of TNF and is the first mutein converted from agonist to antagonist. We also review a novel polymer-conjugation system to improve the in vivo stability of bioactive proteins. Site-specific PEGylated R1antTNF is uniform at the molecular level, and its bioactivity is similar to that of unmodified R1antTNF. In the future, we hope that many innovative protein drugs will be developed by combining these technologies.
Collapse
Affiliation(s)
- Kazuya NAGANO
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Laboratory of innovative Antibody Engineering and Design, Center for Drug Design Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Yasuo TSUTSUMI
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Laboratory of innovative Antibody Engineering and Design, Center for Drug Design Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
39
|
Yoshida T, Yoshioka Y, Morishita Y, Aoyama M, Tochigi S, Hirai T, Tanaka K, Nagano K, Kamada H, Tsunoda SI, Nabeshi H, Yoshikawa T, Higashisaka K, Tsutsumi Y. Protein corona changes mediated by surface modification of amorphous silica nanoparticles suppress acute toxicity and activation of intrinsic coagulation cascade in mice. NANOTECHNOLOGY 2015; 26:245101. [PMID: 26011124 DOI: 10.1088/0957-4484/26/24/245101] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recently, nanomaterial-mediated biological effects have been shown to be governed by the interaction of nanomaterials with some kinds of proteins in biological fluids, and the physical characteristics of the nanomaterials determine the extent and type of their interactions with proteins. Here, we examined the relationships between the surface properties of amorphous silica nanoparticles with diameters of 70 nm (nSP70), their interactions with some proteins in biological fluids, and their toxicity in mice after intravenous administration. The surface modification of nSP70 with amino groups (nSP70-N) prevented acute lethality and abnormal activation of the coagulation cascade found in the nSP70-treated group of mice. Since our previous study showed that coagulation factor XII played a role in the nSP70-mediated abnormal activation of the coagulation cascade, we examined the interaction of nSP70 and nSP70-N with coagulation factor XII. Coagulation factor XII bonded to the surface of nSP70 to a greater extent than that observed for nSP70-N, and consequently more activation of coagulation factor XII was observed for nSP70 than for nSP70-N. Collectively, our results suggest that controlling the interaction of nSP70 with blood coagulation factor XII by modifying the surface properties would help to inhibit the nSP70-mediated abnormal activation of the blood coagulation cascade.
Collapse
Affiliation(s)
- Tokuyuki Yoshida
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jiang L, Li Y, Li Y, Guo C, Yu Y, Zou Y, Yang Y, Yu Y, Duan J, Geng W, Li Q, Sun Z. Silica nanoparticles induced the pre-thrombotic state in rats via activation of coagulation factor XII and the JNK-NF-κB/AP-1 pathway. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00118h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pre-thrombotic state induced by SiNPsviathe interaction between platelet activation, coagulation hyperfunction, anti-coagulation and fibrinolytic resistance.
Collapse
|
41
|
Chen X, Zhouhua W, Jie Z, Xinlu F, Jinqiang L, Yuwen Q, Zhiying H. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-κB signaling pathway. Int J Nanomedicine 2014; 10:1-22. [PMID: 25565800 PMCID: PMC4275059 DOI: 10.2147/ijn.s73538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies have indicated that the nephrotoxicity induced by mesoporous silica nanoparticles (MSNs) is closely related to inflammation. Nuclear factor kappa B (NF-κB), a common rapid transcription factor associated with inflammation, plays an important role in the process of many kidney diseases. Acute toxicity assessment with a high-dose exposure is critical for the development of nanoparticle, as a part of standardized procedures for the evaluation of their toxicity. The present study was undertaken to observe the acute toxicity, predict the potential target organs of MSNs injury, and test the hypothesis that the NF-κB pathway plays a role in mediating the acute kidney injury and renal interstitial fibrosis in mice induced by MSNs. Balb/c mice were intraperitoneally injected with MSNs at concentrations of 150, 300, or 600 mg/kg. All of the animals were euthanized 2 and 12 days after exposure, and the blood and kidney tissues were collected for further studies. In vitro, the cytotoxicity, fibrosis markers, and NF-κB pathway were measured in a normal rat kidney cell line (NRK-52E). Acute kidney injury was induced by MSNs in mice after 2 days, some renal tubules regenerated and renal interstitial fibrosis was also observed. The expression of fibrosis markers and the nuclear translocation of NF-κB p65 in the kidney homogenates increased after exposure to MSNs. The in vitro study showed that MSNs cause cytotoxicity in NRK-52E cells and increased the expression of fibrosis markers. In addition, the NF-κB pathway could be induced, and inhibition of the NF-κB pathway could alleviate the fibrosis caused by MSNs. We conclude that inflammation is a major effector of the acute kidney toxicity induced by MSNs and results in renal interstitial fibrosis, which is mediated by the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xi Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China ; Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wang Zhouhua
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhou Jie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fu Xinlu
- Center of Laboratory Animals, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liang Jinqiang
- Center of Laboratory Animals, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qiu Yuwen
- Center of Laboratory Animals, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huang Zhiying
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China ; Center of Laboratory Animals, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
42
|
Kim YR, Lee SY, Lee EJ, Park SH, Seong NW, Seo HS, Shin SS, Kim SJ, Meang EH, Park MK, Kim MS, Kim CS, Kim SK, Son SW, Seo YR, Kang BH, Han BS, An SSA, Lee BJ, Kim MK. Toxicity of colloidal silica nanoparticles administered orally for 90 days in rats. Int J Nanomedicine 2014; 9 Suppl 2:67-78. [PMID: 25565827 PMCID: PMC4279771 DOI: 10.2147/ijn.s57925] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study was undertaken to investigate the potential toxicity and establish the no observed adverse effect level (NOAEL) and target organ(s) of negatively charged colloidal silica particles of different sizes, ie, SiO2EN20(−) (20 nm) or SiO2EN100(−) 2(100 nm), administered by gavage in Sprague-Dawley rats. After verification of the physicochemical properties of the SiO2 particles to be tested, a preliminary dose range-finding study and 90-day repeated dose study were conducted according to the Organisation for Economic Cooperation and Development test guideline. Based on the results of the 14-day dose range-finding study, a high dose was determined to be 2,000 mg/kg, and middle and low doses were set at 1,000 and 500 mg/kg, respectively. In the 90-day toxicity study, there were no animal deaths in relation to administration of SiO2 particles of either size. In addition, no treatment-related clinical changes or histopathological findings were observed in any of the experimental groups. Moreover, no difference in toxic effects from chronic exposure to SiO2EN20(−)(20 nm) or SiO2EN100(−) (100 nm) was observed. The results of this study indicate that the NOAEL for SiO2EN20(−) and SiO2EN100(−) would most likely be 2,000 mg/kg, and no target organ was identified in rats of either sex.
Collapse
Affiliation(s)
- Yu-Ri Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea
| | - Seung-Young Lee
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Eun Jeong Lee
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea
| | - Sung Ha Park
- Department of Biochemistry, University of Bath, Bath, UK
| | - Nak-won Seong
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Heung-Sik Seo
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Sung-Sup Shin
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Seon-Ju Kim
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Eun-Ho Meang
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Myeong-Kyu Park
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Min-Seok Kim
- General Toxicology Team, Korea Testing and Research Institute, Seoul, Republic of Korea
| | - Cheol-Su Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Gangwon, Republic of Korea
| | - Soo-Ki Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Gangwon, Republic of Korea
| | - Sang Wook Son
- Department of Dermatology, Korea University Medical School and College, Seoul, Republic of Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University, Seoul, Republic of Korea
| | - Boo Hyon Kang
- Nonclinical Research Institute, Chemon Inc, Gyeonggi, Republic of Korea
| | - Beom Seok Han
- Toxicological Research Center, Hoseo University, Chungnam, Republic of Korea
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon University, Gyeonggi, Republic of Korea
| | - Beom-Jun Lee
- College of Veterinary Medicine, Chungbuk National University, Chungbuk, Republic of Korea
| | - Meyoung-Kon Kim
- Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, Republic of Korea
| |
Collapse
|
43
|
Imai S, Yoshioka Y, Morishita Y, Yoshida T, Uji M, Nagano K, Mukai Y, Kamada H, Tsunoda SI, Higashisaka K, Tsutsumi Y. Size and surface modification of amorphous silica particles determine their effects on the activity of human CYP3A4 in vitro. NANOSCALE RESEARCH LETTERS 2014; 9:651. [PMID: 25520598 PMCID: PMC4266520 DOI: 10.1186/1556-276x-9-651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Because of their useful chemical and physical properties, nanomaterials are widely used around the world - for example, as additives in food and medicines - and such uses are expected to become more prevalent in the future. Therefore, collecting information about the effects of nanomaterials on metabolic enzymes is important. Here, we examined the effects of amorphous silica particles with various sizes and surface modifications on cytochrome P450 3A4 (CYP3A4) activity by means of two different in vitro assays. Silica nanoparticles with diameters of 30 and 70 nm (nSP30 and nSP70, respectively) tended to inhibit CYP3A4 activity in human liver microsomes (HLMs), but the inhibitory activity of both types of nanoparticles was decreased by carboxyl modification. In contrast, amine-modified nSP70 activated CYP3A4 activity. In HepG2 cells, nSP30 inhibited CYP3A4 activity more strongly than the larger silica particles did. Taken together, these results suggest that the size and surface characteristics of the silica particles determined their effects on CYP3A4 activity and that it may be possible to develop silica particles that do not have undesirable effects on metabolic enzymes by altering their size and surface characteristics.
Collapse
Affiliation(s)
- Shunji Imai
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Morishita
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tokuyuki Yoshida
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miyuki Uji
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Nagano
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085, Japan
| | - Yohei Mukai
- Laboratory of Innovative Antibody Engineering and Design, Center for Drug Innovation and Screening, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin-ichi Tsunoda
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saitoasagi, Ibaraki, Osaka 567-0085, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Hata K, Higashisaka K, Nagano K, Mukai Y, Kamada H, Tsunoda SI, Yoshioka Y, Tsutsumi Y. Evaluation of silica nanoparticle binding to major human blood proteins. NANOSCALE RESEARCH LETTERS 2014; 9:2493. [PMID: 26089000 PMCID: PMC4493834 DOI: 10.1186/1556-276x-9-668] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/04/2014] [Indexed: 05/24/2023]
Abstract
Nanomaterials are used for various biomedical applications because they are often more effective than conventional materials. Recently, however, it has become clear that the protein corona that forms on the surface of nanomaterials when they make contact with biological fluids, such as blood, influences the pharmacokinetics and biological responses induced by the nanomaterials. Therefore, when evaluating nanomaterial safety and efficacy, it is important to analyze the interaction between nanomaterials and proteins in biological fluids and to evaluate the effects of the protein corona. Here, we evaluated the interaction of silica nanoparticles, a commonly used nanomaterial, with the human blood proteins albumin, transferrin, fibrinogen, and IgG. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the amount of albumin, transferrin, and IgG binding to the silica particles increased as the particle size decreased under conditions where the silica particle mass remained the same. However, under conditions in which the specific surface area remained constant, there were no differences in the binding of human plasma proteins to the silica particles tested, suggesting that the binding of silica particles with human plasma proteins is dependent on the specific surface area of the silica particles. Furthermore, the amount of albumin, transferrin, and IgG binding to silica nanoparticles with a diameter of 70 nm (nSP70) and a functional amino group was lower than that with unmodified nSP70, although there was no difference in the binding between nSP70 with the surface modification of a carboxyl functional group and nSP70. These results suggest that the characteristics of nanomaterials are important for binding with human blood proteins; this information may contribute to the development of safe and effective nanomaterials.
Collapse
Affiliation(s)
- Katsutomo Hata
- />Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Kazuma Higashisaka
- />Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871 Japan
- />Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085 Japan
| | - Kazuya Nagano
- />Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085 Japan
| | - Yohei Mukai
- />Laboratory of Innovative Antibody Engineering and Design, Center for Drug Innovation and Screening, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 Japan
| | - Haruhiko Kamada
- />Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085 Japan
- />The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Shin-ichi Tsunoda
- />Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085 Japan
- />The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Yasuo Yoshioka
- />Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871 Japan
- />Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 567-0085 Japan
| | - Yasuo Tsutsumi
- />Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871 Japan
- />The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6, Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
45
|
Luyts K, Smulders S, Napierska D, Van Kerckhoven S, Poels K, Scheers H, Hemmeryckx B, Nemery B, Hoylaerts MF, Hoet PHM. Pulmonary and hemostatic toxicity of multi-walled carbon nanotubes and zinc oxide nanoparticles after pulmonary exposure in Bmal1 knockout mice. Part Fibre Toxicol 2014; 11:61. [PMID: 25394423 PMCID: PMC4234845 DOI: 10.1186/s12989-014-0061-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/29/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pulmonary exposure to nanoparticles (NPs) may affect, in addition to pulmonary toxicity, the cardiovascular system such as procoagulant effects, vascular dysfunction and progression of atherosclerosis. However, only few studies have investigated hemostatic effects after pulmonary exposure. METHODS We used Bmal1 (brain and muscle ARNT-like protein-1) knockout (Bmal1(-/-)) mice which have a disturbed circadian rhythm and procoagulant phenotype, to study the pulmonary and hemostatic toxicity of multi-walled carbon nanotubes (MWCNTs) and zinc oxide (ZnO) NPs after subacute pulmonary exposure. Bmal1(-/-) and wild-type (Bmal1(+/+)) mice were exposed via oropharyngeal aspiration, once a week, during 5 consecutive weeks, to a cumulative dose of 32 or 128 μg MWCNTs or 32 or 64 μg ZnO NPs. RESULTS MWCNTs caused a pronounced inflammatory response in the lung with increased cell counts in the broncho-alveolar lavage and increased secretion of interleukin-1β and cytokine-induced neutrophil chemo-attractant (KC), oxidative stress (increased ratio of oxidized versus reduced glutathione and decreased total glutathione) as well as anemic and procoagulant effects as evidenced by a decreased prothrombin time with increased fibrinogen concentrations and coagulation factor (F)VII. In contrast, the ZnO NPs seemed to suppress the inflammatory (decreased neutrophils in Bmal1(-/-) mice) and oxidative response (increased total glutathione in Bmal1(-/-) mice), but were also procoagulant with a significant increase of FVIII. The procoagulant effects, as well as the significant correlations between the pulmonary endpoints (inflammation and oxidative stress) and hemostasis parameters were more pronounced in Bmal1(-/-) mice than in Bmal1(+/+) mice. CONCLUSIONS The Bmal1(-/-) mouse is a sensitive animal model to study the procoagulant effects of engineered NPs. The MWCNTs and ZnO NPs showed different pulmonary toxicity but both NPs induced procoagulant effects, suggesting different mechanisms of affecting hemostasis. However, the correlation analysis suggests a causal association between the observed pulmonary and procoagulant effects.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Air Pollutants/chemistry
- Air Pollutants/toxicity
- Anemia, Hemolytic/chemically induced
- Anemia, Hemolytic/immunology
- Anemia, Hemolytic/metabolism
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/toxicity
- Coagulants/administration & dosage
- Coagulants/chemistry
- Coagulants/toxicity
- Dose-Response Relationship, Drug
- Hemolysis/drug effects
- Inflammation Mediators/agonists
- Inflammation Mediators/metabolism
- Inhalation Exposure/adverse effects
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Metal Nanoparticles/administration & dosage
- Metal Nanoparticles/chemistry
- Metal Nanoparticles/toxicity
- Mice, Inbred C57BL
- Mice, Knockout
- Nanotubes, Carbon/chemistry
- Nanotubes, Carbon/toxicity
- Oxidative Stress/drug effects
- Pneumonia/chemically induced
- Pneumonia/immunology
- Pneumonia/metabolism
- Respiratory Mucosa/drug effects
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Thrombophilia/chemically induced
- Thrombophilia/immunology
- Thrombophilia/metabolism
- Toxicity Tests, Subacute
- Zinc Oxide/administration & dosage
- Zinc Oxide/chemistry
- Zinc Oxide/toxicity
Collapse
Affiliation(s)
- Katrien Luyts
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| | - Stijn Smulders
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| | - Dorota Napierska
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| | - Soetkin Van Kerckhoven
- Department of Cardiovascular sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.
| | - Katrien Poels
- Department of Public Health and Primary Care, Laboratory for Occupational and Environmental Hygiene, KU Leuven, Leuven, Belgium.
| | - Hans Scheers
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| | - Bianca Hemmeryckx
- Department of Cardiovascular sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.
| | - Ben Nemery
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| | - Marc F Hoylaerts
- Department of Cardiovascular sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.
| | - Peter H M Hoet
- Department of Public Health and Primary Care, Occupational and Environmental Toxicology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
46
|
Yoshida T, Yoshioka Y, Takahashi H, Misato K, Mori T, Hirai T, Nagano K, Abe Y, Mukai Y, Kamada H, Tsunoda SI, Nabeshi H, Yoshikawa T, Higashisaka K, Tsutsumi Y. Intestinal absorption and biological effects of orally administered amorphous silica particles. NANOSCALE RESEARCH LETTERS 2014; 9:532. [PMID: 25288919 PMCID: PMC4184165 DOI: 10.1186/1556-276x-9-532] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/20/2014] [Indexed: 06/03/2023]
Abstract
Although amorphous silica nanoparticles are widely used in the production of food products (e.g., as anticaking agents), there is little information available about their absorption and biological effects after oral exposure. Here, we examined the in vitro intestinal absorption and in vivo biological effects in mice of orally administered amorphous silica particles with diameters of 70, 300, and 1,000 nm (nSP70, mSP300, and mSP1000, respectively) and of nSP70 that had been surface-modified with carboxyl or amine groups (nSP70-C and nSP70-N, respectively). Analysis of intestinal absorption by means of the everted gut sac method combined with an inductively coupled plasma optical emission spectrometer showed that the intestinal absorption of nSP70-C was significantly greater than that of nSP70. The absorption of nSP70-N tended to be greater than that of nSP70; however, the results were not statistically significant. Our results indicate that silica nanoparticles can be absorbed through the intestine and that particle diameter and surface properties are major determinants of the degree of absorption. We also examined the biological effects of the silica particles after 28-day oral exposure in mice. Hematological, histopathological, and biochemical analyses showed no significant differences between control mice and mice treated with the silica particles, suggesting that the silica nanoparticles evaluated in this study are safe for use in food production.
Collapse
Affiliation(s)
- Tokuyuki Yoshida
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Takahashi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuki Misato
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahide Mori
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Nagano
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan
| | - Yasuhiro Abe
- Cancer Biology Research Center, Sanford Research/USD, 2301 E. 60th Street N, Sioux Falls, SD 57104, USA
| | - Yohei Mukai
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin-ichi Tsunoda
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromi Nabeshi
- Division of Foods, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Tomoaki Yoshikawa
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Asagi Saito, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
47
|
Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 2014; 38:1146-71. [PMID: 25065463 DOI: 10.1111/1574-6976.12080] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/03/2023] Open
Abstract
The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.
Collapse
Affiliation(s)
- Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Sanfins E, Augustsson C, Dahlbäck B, Linse S, Cedervall T. Size-dependent effects of nanoparticles on enzymes in the blood coagulation cascade. NANO LETTERS 2014; 14:4736-4744. [PMID: 25025946 DOI: 10.1021/nl501863u] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanoparticles (NPs) are increasingly used in diagnostic and drug delivery. After entering the bloodstream, a protein corona will form around NPs. The size and curvature of NPs is one of the major characteristics affecting the composition of bound protein in the corona. Key initiators of the intrinsic pathway of blood coagulation, the contact activation complex, (Kallikrein, Factor XII, and high molecular weight Kininogen) have previously been identified on NPs surfaces. We show that the functional impact of carboxyl-modified polystyrene NPs on these initiators of the intrinsic pathway is size dependent. NPs with high curvature affect the enzymatic activity differently from NPs with low curvature. The size dependency is evident in full blood plasma as well as in solutions of single coagulation factors. NPs induce significant alteration of the enzymatic activity in a size-dependent manner, and enzyme kinetics studies show a critical role for NPs surface area and curvature.
Collapse
Affiliation(s)
- Elodie Sanfins
- Biochemistry and Structural Biology, Chemical Centre, Lund University , Lund, Sweden
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Yasuo Yoshioka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University
- Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University
- The Center for Advanced Medical Engineering and Informatics, Osaka University
| |
Collapse
|
50
|
Asian dust particles induce macrophage inflammatory responses via mitogen-activated protein kinase activation and reactive oxygen species production. J Immunol Res 2014; 2014:856154. [PMID: 24987712 PMCID: PMC4058895 DOI: 10.1155/2014/856154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/18/2014] [Indexed: 12/19/2022] Open
Abstract
Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.
Collapse
|