1
|
Radakovic A, Todisco M, Mishra A, Szostak JW. Autocatalytic assembly of a chimeric aminoacyl-RNA synthetase ribozyme. SCIENCE ADVANCES 2025; 11:eadu3693. [PMID: 40173248 PMCID: PMC11963975 DOI: 10.1126/sciadv.adu3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Autocatalytic reactions driving the self-assembly of biological polymers are important for the origin of life, yet few experimental examples of such reactions exist. Here we report an autocatalytic assembly pathway that generates a chimeric, amino acid-bridged aminoacyl-RNA synthetase ribozyme. The noncovalent complex of ribozyme fragments initiates low-level aminoacylation of one of the fragments, which, after loop-closing ligation, generates a highly active covalently linked chimeric ribozyme. The generation of this ribozyme is increasingly efficient over time due to the autocatalytic assembly cycle that sustains the ribozyme over indefinite cycles of serial dilution. Because of its trans activity, this ribozyme also assembles ribozymes distinct from itself, such as the hammerhead, suggesting that RNA aminoacylation, coupled with nonenzymatic ligation, could have facilitated the emergence and propagation of ribozymes.
Collapse
Affiliation(s)
- Aleksandar Radakovic
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago IL 60637, USA
| | - Marco Todisco
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago IL 60637, USA
| | - Anmol Mishra
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago IL 60637, USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago IL 60637, USA
| |
Collapse
|
2
|
Fer E, Yao T, McGrath KM, Goldman AD, Kaçar B. The origins and evolution of translation factors. Trends Genet 2025:S0168-9525(25)00045-9. [PMID: 40133153 DOI: 10.1016/j.tig.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025]
Abstract
Translation is an ancient molecular information processing system found in all living organisms. Over the past decade, significant progress has been made in uncovering the origins of early translation. Yet, the evolution of translation factors - key regulators of protein synthesis - remains poorly understood. This review synthesizes recent findings on translation factors, highlighting their structural diversity, evolutionary history, and organism-specific adaptations across the tree of life. We examine conserved translation factors, their coevolution, and their roles in different steps in translation: initiation, elongation, and termination. The early evolution of translation factors serves as a natural link between modern genetics and the origins of life. Traditionally rooted in chemistry and geology, incorporating evolutionary molecular biology into the studies of life's emergence provides a complementary perspective on this complex question.
Collapse
Affiliation(s)
- Evrim Fer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Tony Yao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaitlyn M McGrath
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Aaron D Goldman
- Department of Biology, Oberlin College and Conservatory, Oberlin, OH, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Ruzov AS, Ermakov AS. The non-canonical nucleotides and prebiotic evolution. Biosystems 2025; 248:105411. [PMID: 39900260 DOI: 10.1016/j.biosystems.2025.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/23/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
The mystery of the origin of life has been puzzling mankind for several millenia. Starting from the second half of the 20th century, when the crucial role of nucleic acids in biological heredity became apparent, the emphasis in the field has shifted to the explanation of the origin of nucleic acids and the mechanisms of copying of macromolecules. In the 1960s, the hypothesis of the RNA World was proposed, according to which the first stages of the origin of life on Earth were associated with the appearance of self-replicating complexes based on RNA, that were akin to RNA-enzymes that catalyze critical for life chemical reactions. Currently, it has been shown that different forms of RNA include not only canonical (adenine, uracil, guanine, cytosine), but also about 170 non-canonical nucleotides. In this review, we discuss potential roles of these non-canonical nucleotides in the processes of molecular prebiotic evolution, such as the emergence of canonical RNA nucleotides and catalytic RNAs, as well as the origin of template synthesis of RNA and proteins.
Collapse
Affiliation(s)
- Alexey S Ruzov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Alexander S Ermakov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, 119071, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
4
|
Tang S, Gao M. The Origin(s) of LUCA: Computer Simulation of a New Theory. Life (Basel) 2025; 15:75. [PMID: 39860015 PMCID: PMC11766493 DOI: 10.3390/life15010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Carl Woese's thesis of cellular evolution emphasized that the last universal common/cellular ancestor (LUCA) must have evolved by drawing from "global inventions". Yet, existing theories regarding the origin(s) of LUCA have mostly centered upon scenarios that LUCA had evolved mostly independently. In an earlier paper, we advanced a new theory regarding the origin(s) of LUCA that extends Woese's original insights. Our theory centers upon the possibility that different vesicles and protocells can merge with and acquire each other as a form of variation, selection, and retention, driven by wet-and-dry cycles and other similar cyclical processes. In this paper, we use computer simulation to show that under a variety of simulated conditions, LUCA can indeed be produced by our proposed processes. We hope that our study can stimulate laboratory testing of some key hypotheses that vesicles' absorption, acquisition, and merger has indeed been a central force in driving the evolution of LUCA.
Collapse
Affiliation(s)
- Shiping Tang
- Center for Complex Decision Analysis, Fudan University, Shanghai 200433, China;
| | | |
Collapse
|
5
|
Seelig B, Chen IA. Intellectual frameworks to understand complex biochemical systems at the origin of life. Nat Chem 2025; 17:11-19. [PMID: 39762573 DOI: 10.1038/s41557-024-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Understanding the emergence of complex biochemical systems, such as protein translation, is a great challenge. Although synthetic approaches can provide insight into the potential early stages of life, they do not address the equally important question of why the complex systems of life would have evolved. In particular, the intricacies of the mechanisms governing the transfer of information from nucleic acid sequences to proteins make it difficult to imagine how coded protein synthesis could have emerged from a prebiotic soup. Here we discuss the use of intellectual frameworks in studying the emergence of life. We discuss how one such framework, namely the RNA world theory, has spurred research, and provide an overview of its limitations. We suggest that the emergence of coded protein synthesis could be broken into experimentally tractable problems by treating it as a molecular bricolage-a complex system integrating many different parts, each of which originally evolved for uses unrelated to its modern function-to promote a concrete understanding of its origin.
Collapse
Affiliation(s)
- Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Reußwig SG, Richert C. Ribosome-Free Translation up to Pentapeptides via Template Walk on RNA Sequences. Angew Chem Int Ed Engl 2024; 63:e202410317. [PMID: 38967604 DOI: 10.1002/anie.202410317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The origin of translation is one of the most difficult problems of molecular evolution. Identifying molecular systems that translate an RNA sequence into a peptide sequence in the absence of ribosomes and enzymes is a challenge. Recently, single-nucleotide translation via coupling of 5' phosphoramidate-linked amino acids to 2'/3'-aminoacyl transfer-NMPs, as directed by the sequence of an RNA template, was demonstrated for three of the four canonical nucleotides. How single-nucleotide translation could be expanded to include all four bases and to produce longer peptides without translocation along the template strand remained unclear. Using transfer strands of increasing length containing any of the four bases that interrogate adjacent positions along the template, we now show that pentapeptides can be produced in coupling reactions and subsequent hydrolytic release in situ. With 2'/3'-aminoacylated mono-, di-, tri- and tetranucleotides we thus show how efficient translation can be without biomacromolecules.
Collapse
Affiliation(s)
- Sabrina G Reußwig
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
7
|
Tanoz I, Timsit Y. Protein Fold Usages in Ribosomes: Another Glance to the Past. Int J Mol Sci 2024; 25:8806. [PMID: 39201491 PMCID: PMC11354259 DOI: 10.3390/ijms25168806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and usage of protein folds in ribosomes across bacteria, archaea, and eukaryotes. We identify the prevalence of certain 'super-ribosome folds,' such as the OB fold in bacteria and the SH3 domain in archaea and eukaryotes. The observed protein fold distribution in the ribosomes announces the future power-law distribution where only a few folds are highly prevalent, and most are rare. Additionally, we highlight the presence of three copies of proto-Rossmann folds in ribosomes across all kingdoms, showing its ancient and fundamental role in ribosomal structure and function. Our study also explores early mechanisms of molecular convergence, where different protein folds bind equivalent ribosomal RNA structures in ribosomes across different kingdoms. This comparative analysis enhances our understanding of ribosomal evolution, particularly the distinct evolutionary paths of the large and small subunits, and underscores the complex interplay between RNA and protein components in the transition from the RNA world to modern cellular life. Transcending the concept of folds also makes it possible to group a large number of ribosomal proteins into five categories of urfolds or metafolds, which could attest to their ancestral character and common origins. This work also demonstrates that the gradual acquisition of extensions by simple but ordered folds constitutes an inexorable evolutionary mechanism. This observation supports the idea that simple but structured ribosomal proteins preceded the development of their disordered extensions.
Collapse
Affiliation(s)
- Inzhu Tanoz
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
| | - Youri Timsit
- Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
8
|
Węgrzyn E, Mejdrová I, Carell T. Gradual evolution of a homo-l-peptide world on homo-d-configured RNA and DNA. Chem Sci 2024; 15:d4sc03384a. [PMID: 39129775 PMCID: PMC11306956 DOI: 10.1039/d4sc03384a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Modern life requires the translation of genetic information - encoded by nucleic acids - into proteins, which establishes the essential link between genotype and phenotype. During translation, exclusively l-amino acids are loaded onto transfer RNA molecules (tRNA), which are then connected at the ribosome to give homo-l-proteins. In contrast to the homo-l-configuration of amino acids and proteins, the oligonucleotides involved are all d-configured (deoxy)ribosides. Previously, others and us have shown that if peptide synthesis occurs at homo d-configured oligonucleotides, a pronounced l-amino acid selectivity is observed, which reflects the d-sugar/l-amino acid world that evolved in nature. Here we further explore this astonishing selectivity. We show a peptide-synthesis/recapture-cycle that can lead to a gradual enrichment and hence selection of a homo-l-peptide world. We show that even if peptides with a mixed l/d-stereochemistry are formed, they are not competitive against the homo-l-counterparts. We also demonstrate that this selectivity is not limited to RNA but that peptide synthesis on DNA features the same l-amino acid preference. In total, the data bring us a step closer to an understanding of how homochirality on Earth once evolved.
Collapse
Affiliation(s)
- Ewa Węgrzyn
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| | - Ivana Mejdrová
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| | - Thomas Carell
- Department of Chemistry, Center for Nucleic Acids Therapies at the Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität (LMU) München Butenandtstrasse 5-13 81377 Munich Germany
| |
Collapse
|
9
|
O'Connor PBF. The Evolutionary Transition of the RNA World to Obcells to Cellular-Based Life. J Mol Evol 2024; 92:278-285. [PMID: 38683368 DOI: 10.1007/s00239-024-10171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
The obcell hypothesis is a proposed route for the RNA world to develop into a primitive cellular one. It posits that this transition began with the emergence of the proto-ribosome which enabled RNA to colonise the external surface of lipids by the synthesis of amphipathic peptidyl-RNAs. The obcell hypothesis also posits that the emergence of a predation-based ecosystem provided a selection mechanism for continued sophistication amongst early life forms. Here, I argue for this hypothesis owing to its significant explanatory power; it offers a rationale why a ribosome which initially was capable only of producing short non-coded peptides was advantageous and it forgoes issues related to maintaining a replicating RNA inside a lipid enclosure. I develop this model by proposing that the evolutionary selection for improved membrane anchors resulted in the emergence of primitive membrane pores which enabled obcells to gradually evolve into a cellular morphology. Moreover, I introduce a model of obcell production which advances that tRNAs developed from primers of the RNA world.
Collapse
|
10
|
Piast RW. The bubble theory: exploring the transition from first replicators to cells and viruses in a landscape-based scenario. Theory Biosci 2024; 143:153-160. [PMID: 38722466 PMCID: PMC11127830 DOI: 10.1007/s12064-024-00417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/07/2024] [Indexed: 05/27/2024]
Abstract
This study proposes a landscape-based scenario for the origin of viruses and cells, focusing on the adaptability of preexisting replicons from the RNP (ribonucleoprotein) world. The scenario postulates that life emerged in a subterranean "warm little pond" where organic matter accumulated, resulting in a prebiotic soup rich in nucleotides, amino acids, and lipids, which served as nutrients for the first self-replicating entities. Over time, the RNA world, followed by the RNP world, came into existence. Replicators/replicons, along with the nutritious soup from the pond, were washed out into the river and diluted. Lipid bubbles, enclosing organic matter, provided the last suitable environment for replicons to replicate. Two survival strategies emerged under these conditions: cell-like structures that obtained nutrients by merging with new bubbles, and virus-like entities that developed various techniques to transmit themselves to fresh bubbles. The presented hypothesis provides the possibility for the common origin of cells and viruses on rocky worlds hosting liquid water, like Earth.
Collapse
Affiliation(s)
- Radoslaw W Piast
- Chemistry Department, Warsaw University, Pasteura 1, Warsaw, Poland.
| |
Collapse
|
11
|
Garte S. Accurate phenotypic self-replication as a necessary cause for biological evolution. Biosystems 2024; 237:105154. [PMID: 38346554 DOI: 10.1016/j.biosystems.2024.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Since the Origin of Species, it has been known that evolution depends on what Darwin called the "strong principle of inheritance." Highly accurate replication of cellular phenotype is a universal phenomenon in all of life since LUCA and is often taken for granted as a constant in evolutionary theory. It is not known how self-replication arose during the origin of life. In this report I use the simple mathematics of evolutionary theory to investigate the dynamics of self-replication accuracy and allelic selection. Results indicate that the degree of self-replication accuracy must be greater than a threshold related to the selection coefficients of the alleles in a population in order for evolution to occur. Accurate replication of cellular phenotype and of the molecules involved in genotype/phenotype linkage is necessary for the origin of evolution and may be considered the fundamental principle of life.
Collapse
Affiliation(s)
- Seymour Garte
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
| |
Collapse
|
12
|
Agmon I. Three Biopolymers and Origin of Life Scenarios. Life (Basel) 2024; 14:277. [PMID: 38398786 PMCID: PMC10890401 DOI: 10.3390/life14020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
To track down the possible roots of life, various models for the initial living system composed of different combinations of the three extant biopolymers, RNA, DNA, and proteins, are presented. The suitability of each molecular set is assessed according to its ability to emerge autonomously, sustain, and evolve continuously towards life as we know it. The analysis incorporates current biological knowledge gained from high-resolution structural data and large sequence datasets, together with experimental results concerned with RNA replication and with the activity demonstrated by standalone constructs of the ribosomal Peptidyl Transferase Center region. The scrutiny excludes the DNA-protein combination and assigns negligible likelihood to the existence of an RNA-DNA world, as well as to an RNA world that contained a replicase made of RNA. It points to the precedence of an RNA-protein system, whose model of emergence suggests specific processes whereby a coded proto-ribosome ribozyme, specifically aminoacylated proto-tRNAs and a proto-polymerase enzyme, could have autonomously emerged, cross-catalyzing the formation of each other. This molecular set constitutes a feasible starting point for a continuous evolutionary path, proceeding via natural processes from the inanimate matter towards life as we know it.
Collapse
Affiliation(s)
- Ilana Agmon
- Institute for Advanced Studies in Theoretical Chemistry, Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
13
|
Brunk CF, Marshall CR. Opinion: The Key Steps in the Origin of Life to the Formation of the Eukaryotic Cell. Life (Basel) 2024; 14:226. [PMID: 38398735 PMCID: PMC10890422 DOI: 10.3390/life14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The path from life's origin to the emergence of the eukaryotic cell was long and complex, and as such it is rarely treated in one publication. Here, we offer a sketch of this path, recognizing that there are points of disagreement and that many transitions are still shrouded in mystery. We assume life developed within microchambers of an alkaline hydrothermal vent system. Initial simple reactions were built into more sophisticated reflexively autocatalytic food-generated networks (RAFs), laying the foundation for life's anastomosing metabolism, and eventually for the origin of RNA, which functioned as a genetic repository and as a catalyst (ribozymes). Eventually, protein synthesis developed, leading to life's biology becoming dominated by enzymes and not ribozymes. Subsequent enzymatic innovation included ATP synthase, which generates ATP, fueled by the proton gradient between the alkaline vent flux and the acidic sea. This gradient was later internalized via the evolution of the electron transport chain, a preadaptation for the subsequent emergence of the vent creatures from their microchamber cradles. Differences between bacteria and archaea suggests cellularization evolved at least twice. Later, the bacterial development of oxidative phosphorylation and the archaeal development of proteins to stabilize its DNA laid the foundation for the merger that led to the formation of eukaryotic cells.
Collapse
Affiliation(s)
- Clifford F. Brunk
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Charles R. Marshall
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720-4780, USA
| |
Collapse
|
14
|
Spirov A. Evolution of the RNA world: From signals to codes. Biosystems 2023; 234:105043. [PMID: 37852409 DOI: 10.1016/j.biosystems.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
The accumulated material in evolutionary biology, greatly enhanced by the achievements of modern synthetic biology, allows us to envision certain key hypothetical stages of prebiotic (chemical) evolution. This is often understood as the further evolution in the RNA World towards the RNA-protein World. It is a path towards the emergence of translation and the genetic code (I), signaling pathways with signaling molecules (II), and the appearance of RNA-based components of future gene regulatory networks (III). We believe that these evolutionary paths can be constructively viewed from the perspective of the concept of biological codes (Barbieri, 2003). Crucial evolutionary events in these directions would involve the emergence of RNA-based adaptors. Such adaptors connect two families of functionally and chemically distinct molecules into one functional entity. The emergence of primitive translation processes is undoubtedly the major milestone in the evolutionary path towards modern life. The key aspect here is the appearance of adaptors between amino acids and their cognate triplet codons. The initial steps are believed to involve the emergence of proto-transfer RNAs capable of self-aminoacylation. The second significant evolutionary breakthrough is the development of biochemical regulatory networks based on signaling molecules of the RNA World (ribonucleotides and their derivatives), as well as receptors and effectors (riboswitches) for these messengers. Some authors refer to this as the "lost language of the RNA World." The third evolutionary step is the emergence of signal sequences for ribozymes on the molecules of their RNA targets. This level of regulation in the RNA World is comparable to the gene regulatory networks of modern organisms. We believe that the signal sequences on target molecules have been rediscovered and developed by evolution into the gene regulatory networks of modern cells. In conclusion, the immense diversity of modern biological codes, in some of its key characteristics, can be traced back to the achievements of prebiotic evolution.
Collapse
Affiliation(s)
- Alexander Spirov
- The Institute of Scientific Information for Social Sciences RAS, Moscow, Russia.
| |
Collapse
|
15
|
Tozzi A, Mazzeo M. The First Nucleic Acid Strands May Have Grown on Peptides via Primeval Reverse Translation. Acta Biotheor 2023; 71:23. [PMID: 37947915 DOI: 10.1007/s10441-023-09474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The central dogma of molecular biology dictates that, with only a few exceptions, information proceeds from DNA to protein through an RNA intermediate. Examining the enigmatic steps from prebiotic to biological chemistry, we take another road suggesting that primordial peptides acted as template for the self-assembly of the first nucleic acids polymers. Arguing in favour of a sort of archaic "reverse translation" from proteins to RNA, our basic premise is a Hadean Earth where key biomolecules such as amino acids, polypeptides, purines, pyrimidines, nucleosides and nucleotides were available under different prebiotically plausible conditions, including meteorites delivery, shallow ponds and hydrothermal vents scenarios. Supporting a protein-first scenario alternative to the RNA world hypothesis, we propose the primeval occurrence of short two-dimensional peptides termed "selective amino acid- and nucleotide-matching oligopeptides" (henceforward SANMAOs) that noncovalently bind at the same time the polymerized amino acids and the single nucleotides dispersed in the prebiotic milieu. In this theoretical paper, we describe the chemical features of this hypothetical oligopeptide, its biological plausibility and its virtues from an evolutionary perspective. We provide a theoretical example of SANMAO's selective pairing between amino acids and nucleosides, simulating a poly-Glycine peptide that acts as a template to build a purinic chain corresponding to the glycine's extant triplet codon GGG. Further, we discuss how SANMAO might have endorsed the formation of low-fidelity RNA's polymerized strains, well before the appearance of the accurate genetic material's transmission ensured by the current translation apparatus.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, Department of Physics, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.
| | - Marco Mazzeo
- Erredibi Srl, Via Pazzigno 117, 80146, Naples, Italy
| |
Collapse
|
16
|
Rekadwad BN, Shouche YS, Jangid K. Investigation of tRNA-based relatedness within the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum: a comparative analysis. Arch Microbiol 2023; 205:366. [PMID: 37917352 DOI: 10.1007/s00203-023-03694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
The PVC superphylum is a diverse group of prokaryotes that require stringent growth conditions. RNA is a fascinating molecule to find evolutionary relatedness according to the RNA World Hypothesis. We conducted tRNA gene analysis to find evolutionary relationships in the PVC phyla. The analysis of genomic data (P = 9, V = 4, C = 8) revealed that the number of tRNA genes varied from 28 to 90 in Planctomycetes and Chlamydia, respectively. Verrucomicrobia has whole genomes and the longest scaffold (3 + 1), with tRNA genes ranging from 49 to 53 in whole genomes and 4 in the longest scaffold. Most tRNAs in the E. coli genome clustered with homologs, but approximately 43% clustered with tRNAs encoding different amino acids. Planctomyces, Akkermansia, Isosphaera, and Chlamydia were similar to E. coli tRNAs. In a phylum, tRNAs coding for different amino acids clustered at a range of 8 to 10%. Further analysis of these tRNAs showed sequence similarity with Cyanobacteria, Proteobacteria, Viridiplantae, Ascomycota and Basidiomycota (Eukaryota). This indicates the possibility of horizontal gene transfer or, otherwise, a different origin of tRNA in PVC bacteria. Hence, this work proves its importance for determining evolutionary relatedness and potentially identifying bacteria using tRNA. Thus, the analysis of these tRNAs indicates that primitive RNA may have served as the genetic material of LUCA before being replaced by DNA. A quantitative analysis is required to test these possibilities that relate the evolutionary significance of tRNA to the origin of life.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Saviribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, Maharashtra, India.
- Microbe AI Lab, Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India.
| | - Yogesh S Shouche
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Saviribai Phule Pune University Campus, Ganeshkhind, Pune, 411007, Maharashtra, India
- Gut Microbiology Research Division, SKAN Research Trust, Bangalore, 560034, Karnataka, India
| | - Kamlesh Jangid
- Bioenergy Group, DST-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, Maharashtra, India
| |
Collapse
|
17
|
Cuevas-Zuviría B, Adam ZR, Goldman AD, Kaçar B. Informatic Capabilities of Translation and Its Implications for the Origins of Life. J Mol Evol 2023; 91:567-569. [PMID: 37526692 DOI: 10.1007/s00239-023-10125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 08/02/2023]
Abstract
The ability to encode and convert heritable information into molecular function is a defining feature of life as we know it. The conversion of information into molecular function is performed by the translation process, in which triplets of nucleotides in a nucleic acid polymer (mRNA) encode specific amino acids in a protein polymer that folds into a three-dimensional structure. The folded protein then performs one or more molecular activities, often as one part of a complex and coordinated physiological network. Prebiotic systems, lacking the ability to explicitly translate information between genotype and phenotype, would have depended upon either chemosynthetic pathways to generate its components-constraining its complexity and evolvability- or on the ambivalence of RNA as both carrier of information and of catalytic functions-a possibility which is still supported by a very limited set of catalytic RNAs. Thus, the emergence of translation during early evolutionary history may have allowed life to unmoor from the setting of its origin. The origin of translation machinery also represents an entirely novel and distinct threshold of behavior for which there is no abiotic counterpart-it could be the only known example of computing that emerged naturally at the chemical level. Here we describe translation machinery's decoding system as the basis of cellular translation's information-processing capabilities, and the four operation types that find parallels in computer systems engineering that this biological machinery exhibits.
Collapse
Affiliation(s)
- Bruno Cuevas-Zuviría
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Zachary R Adam
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Geosciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
José MV, Bobadilla JR, Zamudio GS, de Farías ST. Symmetrical distributions of aminoacyl-tRNA synthetases during the evolution of the genetic code. Theory Biosci 2023; 142:211-219. [PMID: 37402895 PMCID: PMC10423125 DOI: 10.1007/s12064-023-00394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 06/10/2023] [Indexed: 07/06/2023]
Abstract
In this work, we formulate the following question: How the distribution of aminoacyl-tRNA synthetases (aaRSs) went from an ancestral bidirectional gene (mirror symmetry) to the symmetrical distribution of aaRSs in a six-dimensional hypercube of the Standard Genetic Code (SGC)? We assume a primeval RNY code, two Extended Genetic RNA codes type 1 and 2, and the SGC. We outline the types of symmetries of the distribution of aaRSs in each code. The symmetry groups of aaRSs in each code are described, until the symmetries of the SGC display a mirror symmetry. Considering both Extended RNA codes the 20 aaRSs were already present before the Last Universal Ancestor. These findings reveal intricacies in the diversification of aaRSs accompanied by the evolution of the genetic code.
Collapse
Affiliation(s)
- Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CP 04510, Mexico City, Mexico.
| | - Juan R Bobadilla
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CP 04510, Mexico City, Mexico
| | - Gabriel S Zamudio
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CP 04510, Mexico City, Mexico
| | - Sávio Torres de Farías
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
19
|
Prosdocimi F, de Farias ST. Origin of life: Drawing the big picture. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:28-36. [PMID: 37080436 DOI: 10.1016/j.pbiomolbio.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Trying to provide a broad overview about the origin of life in Earth, the most significant transitions of life before cells are listed and discussed. The current approach emphasizes the symbiotic relationships that emerged with life. We propose a rational, stepwise scenario for the origin of life that starts with the origin of the first biomolecules and steps forward until the origins of the first cells. Along this path, we aim to provide a brief, though comprehensive theoretical model that will consider the following steps: (i) how nucleotides and other biomolecules could be made prebiotically in specific prebiotic refuges; (ii) how the first molecules of RNAs were formed; (iii) how the proto-peptidyl transferase center was built by the concatenation of proto-tRNAs; (iv) how the ribosome and the genetic code could be structured; (v) how progenotes could live and reproduce as "naked" ribonucleoprotein molecules; (vi) how peptides started to bind molecules in the prebiotic soup allowing biochemical pathways to evolve from those bindings; (vii) how genomes got bigger by the symbiotic relationship of progenotes and lateral transference of genetic material; (viii) how the progenote LUCA has been formed by assembling most biochemical routes; (ix) how the first virion capsids probably emerged and evolved; (x) how phospholipid membranes emerged probably twice by the evolution of lipid-binding proteins; (xi) how DNA synthesis have been formed in parallel in Bacteria and Archaea; and, finally, (xii) how DNA-based cells of Bacteria and Archaeabacteria have been constituted. The picture provided is conjectural and present epistemological gaps. Future research will help to advance into the elucidation of gaps and confirmation/refutation of current statements.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
20
|
Gutierrez-Rus LI, Gamiz-Arco G, Gavira JA, Gaucher EA, Risso VA, Sanchez-Ruiz JM. Protection of catalytic cofactors by polypeptides as a driver for the emergence of primordial enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532612. [PMID: 36993774 PMCID: PMC10055001 DOI: 10.1101/2023.03.14.532612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enzymes catalyze the chemical reactions of life. For nearly half of known enzymes, catalysis requires the binding of small molecules known as cofactors. Polypeptide-cofactor complexes likely formed at a primordial stage and became starting points for the evolution of many efficient enzymes. Yet, evolution has no foresight so the driver for the primordial complex formation is unknown. Here, we use a resurrected ancestral TIM-barrel protein to identify one potential driver. Heme binding at a flexible region of the ancestral structure yields a peroxidation catalyst with enhanced efficiency when compared to free heme. This enhancement, however, does not arise from protein-mediated promotion of catalysis. Rather, it reflects protection of bound heme from common degradation processes and a resulting longer life time and higher effective concentration for the catalyst. Protection of catalytic cofactors by polypeptides emerges as a general mechanism to enhance catalysis and may have plausibly benefited primordial polypeptide-cofactor associations.
Collapse
|
21
|
Villarreal L, Witzany G. Self-empowerment of life through RNA networks, cells and viruses. F1000Res 2023; 12:138. [PMID: 36785664 PMCID: PMC9918806 DOI: 10.12688/f1000research.130300.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 01/05/2024] Open
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
22
|
Abstract
Our understanding of the key players in evolution and of the development of all organisms in all domains of life has been aided by current knowledge about RNA stem-loop groups, their proposed interaction motifs in an early RNA world and their regulative roles in all steps and substeps of nearly all cellular processes, such as replication, transcription, translation, repair, immunity and epigenetic marking. Cooperative evolution was enabled by promiscuous interactions between single-stranded regions in the loops of naturally forming stem-loop structures in RNAs. It was also shown that cooperative RNA stem-loops outcompete selfish ones and provide foundational self-constructive groups (ribosome, editosome, spliceosome, etc.). Self-empowerment from abiotic matter to biological behavior does not just occur at the beginning of biological evolution; it is also essential for all levels of socially interacting RNAs, cells and viruses.
Collapse
Affiliation(s)
- Luis Villarreal
- Center for Virus Research, University of California, Irvine, California, USA
| | - Guenther Witzany
- Telos - Philosophische Praxis, Buermoos, Salzburg, 5111, Austria
| |
Collapse
|
23
|
Prebiotic Assembly of Cloverleaf tRNA, Its Aminoacylation and the Origin of Coding, Inferred from Acceptor Stem Coding-Triplets. Int J Mol Sci 2022; 23:ijms232415756. [PMID: 36555394 PMCID: PMC9778954 DOI: 10.3390/ijms232415756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
tRNA is a key component in life's most fundamental process, the translation of the instructions contained in mRNA into proteins. Its role had to be executed as soon as the earliest translation emerged, but the questions of the prebiotic tRNA materialization, aminoacylation, and the origin of the coding triplets it carries are still open. Here, these questions are addressed by utilizing a distinct pattern of coding triplets highly conserved in the acceptor stems from the modern bacterial tRNAs of five early-emerging amino acids. Self-assembly of several copies of a short RNA oligonucleotide that carries a related pattern of coding triplets, via a simple and statistically feasible process, is suggested to result in a proto-tRNA model highly compatible with the cloverleaf secondary structure of the modern tRNA. Furthermore, these stem coding triplets evoke the possibility that they were involved in self-aminoacylation of proto-tRNAs prior to the emergence of the earliest synthetases, a process proposed to underlie the formation of the genetic code. Being capable of autonomous materialization and of self-aminoacylation, this verifiable model of the proto-tRNA advent adds principal components to an initial set of molecules and processes that may have led, exclusively through natural means, to the emergence of life.
Collapse
|
24
|
A Short Tale of the Origin of Proteins and Ribosome Evolution. Microorganisms 2022; 10:microorganisms10112115. [DOI: 10.3390/microorganisms10112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Proteins are the workhorses of the cell and have been key players throughout the evolution of all organisms, from the origin of life to the present era. How might life have originated from the prebiotic chemistry of early Earth? This is one of the most intriguing unsolved questions in biology. Currently, however, it is generally accepted that amino acids, the building blocks of proteins, were abiotically available on primitive Earth, which would have made the formation of early peptides in a similar fashion possible. Peptides are likely to have coevolved with ancestral forms of RNA. The ribosome is the most evident product of this coevolution process, a sophisticated nanomachine that performs the synthesis of proteins codified in genomes. In this general review, we explore the evolution of proteins from their peptide origins to their folding and regulation based on the example of superoxide dismutase (SOD1), a key enzyme in oxygen metabolism on modern Earth.
Collapse
|
25
|
Bremer J, Richter C, Schwalbe H, Richert C. Synthesis of a Peptidoyl RNA Hairpin via a Combination of Solid-Phase and Template-Directed Chain Assembly. Chembiochem 2022; 23:e202200352. [PMID: 35867587 PMCID: PMC9542650 DOI: 10.1002/cbic.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/21/2022] [Indexed: 12/02/2022]
Abstract
Peptidoyl RNAs are the products of ribosome-free, single-nucleotide translation. They contain a peptide in the backbone of the oligoribonucleotide and are interesting from a synthetic and a bioorganic point of view. A synthesis of a stabilized version of peptidoyl RNA, with an amide bond between the C-terminus of a peptide and a 3'-amino-2',3'-dideoxynucleoside in the RNA chain was developed. The preferred synthetic route used an N-Teoc-protected aminonucleoside support and involved a solution-phase coupling of the amino-terminal oligonucleotide to a dipeptido dinucleotide. Exploratory UV-melting and NMR analysis of the hairpin 5'-UUGGCGAAAGCdC-LeuLeu-AA-3' indicated that the peptide-linked RNA segments do not fold in a cooperative fashion. The synthetic access to doubly RNA-linked peptides on a scale sufficient for structural biology opens the door to the exploration of their structural and biochemical properties.
Collapse
Affiliation(s)
- Jennifer Bremer
- Institut for Organic ChemistryUniversity of Stuttgart70569StuttgartGermany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical BiologyJohann Wolfgang Goethe-University60438FrankfurtGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyJohann Wolfgang Goethe-University60438FrankfurtGermany
| | - Clemens Richert
- Institut for Organic ChemistryUniversity of Stuttgart70569StuttgartGermany
| |
Collapse
|
26
|
Fer E, McGrath KM, Guy L, Hockenberry AJ, Kaçar B. Early divergence of translation initiation and elongation factors. Protein Sci 2022; 31:e4393. [PMID: 36250475 PMCID: PMC9601768 DOI: 10.1002/pro.4393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Protein translation is a foundational attribute of all living cells. The translation function carried out by the ribosome critically depends on an assortment of protein interaction partners, collectively referred to as the translation machinery. Various studies suggest that the diversification of the translation machinery occurred prior to the last universal common ancestor, yet it is unclear whether the predecessors of the extant translation machinery factors were functionally distinct from their modern counterparts. Here we reconstructed the shared ancestral trajectory and subsequent evolution of essential translation factor GTPases, elongation factor EF-Tu (aEF-1A/eEF-1A), and initiation factor IF2 (aIF5B/eIF5B). Based upon their similar functions and structural homologies, it has been proposed that EF-Tu and IF2 emerged from an ancient common ancestor. We generated the phylogenetic tree of IF2 and EF-Tu proteins and reconstructed ancestral sequences corresponding to the deepest nodes in their shared evolutionary history, including the last common IF2 and EF-Tu ancestor. By identifying the residue and domain substitutions, as well as structural changes along the phylogenetic history, we developed an evolutionary scenario for the origins, divergence and functional refinement of EF-Tu and IF2 proteins. Our analyses suggest that the common ancestor of IF2 and EF-Tu was an IF2-like GTPase protein. Given the central importance of the translation machinery to all cellular life, its earliest evolutionary constraints and trajectories are key to characterizing the universal constraints and capabilities of cellular evolution.
Collapse
Affiliation(s)
- Evrim Fer
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Microbiology Doctoral Training ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- NASA Center for Early Life and EvolutionUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kaitlyn M. McGrath
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- NASA Center for Early Life and EvolutionUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Adam J. Hockenberry
- Department of Integrative BiologyThe University of Texas at AustinAustinTexasUSA
| | - Betül Kaçar
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- NASA Center for Early Life and EvolutionUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
27
|
Janzen E, Shen Y, Vázquez-Salazar A, Liu Z, Blanco C, Kenchel J, Chen IA. Emergent properties as by-products of prebiotic evolution of aminoacylation ribozymes. Nat Commun 2022; 13:3631. [PMID: 35752631 PMCID: PMC9233669 DOI: 10.1038/s41467-022-31387-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Systems of catalytic RNAs presumably gave rise to important evolutionary innovations, such as the genetic code. Such systems may exhibit particular tolerance to errors (error minimization) as well as coding specificity. While often assumed to result from natural selection, error minimization may instead be an emergent by-product. In an RNA world, a system of self-aminoacylating ribozymes could enforce the mapping of amino acids to anticodons. We measured the activity of thousands of ribozyme mutants on alternative substrates (activated analogs for tryptophan, phenylalanine, leucine, isoleucine, valine, and methionine). Related ribozymes exhibited shared preferences for substrates, indicating that adoption of additional amino acids by existing ribozymes would itself lead to error minimization. Furthermore, ribozyme activity was positively correlated with specificity, indicating that selection for increased activity would also lead to increased specificity. These results demonstrate that by-products of ribozyme evolution could lead to adaptive value in specificity and error tolerance.
Collapse
Affiliation(s)
- Evan Janzen
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Yuning Shen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Celia Blanco
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Josh Kenchel
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Irene A Chen
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA. .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA. .,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
28
|
Kankia B. Trinity of G-tetrads and origin of translation. Biol Direct 2022; 17:12. [PMID: 35637509 PMCID: PMC9153121 DOI: 10.1186/s13062-022-00327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The RNA world hypothesis cannot address most of the questions of the origin of life without violating the continuity principle (small Darwinian steps without foresight and miracles). Moreover, the RNA world is an isolated system incapable of accommodating the genetic code and evolving into extant biochemistry. All these problems are rooted in the central assumption of the hypothesis: de novo appearance of the ribozymes, production of which represents a multistep reaction requiring the complementarity principle. Thus, even the basis of the RNA world is at odds with the continuity principle-it uses foresight (multistep reaction) and a miracle (complementarity principle). Can a three-dimensional (3D) architecture, capable of molecular recognition and catalysis, be formed in a single-step reaction without the complementarity or any other preexisting rules? HYPOTHESIS At first glance, the above question sounds rhetoric since the complementarity principle is the essential feature of the RNA world; it turns an RNA polymer into a genetic material. Without it, the RNA world becomes as shapeless and unconvincing as other hypotheses based on the non-hereditary molecules (i.e., protein world). However, it was suggested recently that the quadruplexes could initiate life and take necessary evolutionary steps before the arrival of the complementarity rules. The hypothesis relies on the unique properties of guanines (Gs) to self-assemble into G-tetrads and efficiently polymerize without any external help or preexisting rules. Interestingly, polyG folds into an unusually stable and well-structured monomolecular architecture that uses the quadruplex domain (QD) assembly. The QD has a strictly defined zigzag-like building pattern to accommodate only three G-tetrads. Since both QD architecture and codon length are based on triplets, the inevitable question arises: are they related? Or could QD play the role of the early adapter and determine the codon length? The current paper is an attempt to answer this question. CONCLUSION While without translation apparatus most of the steps of the extant translation are physically impossible, the QD-mediated translation is sterically feasible and can be explained by physicochemical properties of the QD and the amino acids without violating the continuity principle. Astonishingly, the quadruplex world hypothesis can address all the shortcomings of the RNA world, including its most significant challenge-step-by-step evolution from the polymerization of the first polynucleotide to the extant biochemistry.
Collapse
Affiliation(s)
- Besik Kankia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA. .,Institute of Biophysics, Ilia State University, 0162, Tbilisi, Republic of Georgia.
| |
Collapse
|
29
|
Vanchurin V, Wolf YI, Katsnelson MI, Koonin EV. Toward a theory of evolution as multilevel learning. Proc Natl Acad Sci U S A 2022; 119:e2120037119. [PMID: 35121666 PMCID: PMC8833143 DOI: 10.1073/pnas.2120037119] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/28/2022] Open
Abstract
We apply the theory of learning to physically renormalizable systems in an attempt to outline a theory of biological evolution, including the origin of life, as multilevel learning. We formulate seven fundamental principles of evolution that appear to be necessary and sufficient to render a universe observable and show that they entail the major features of biological evolution, including replication and natural selection. It is shown that these cornerstone phenomena of biology emerge from the fundamental features of learning dynamics such as the existence of a loss function, which is minimized during learning. We then sketch the theory of evolution using the mathematical framework of neural networks, which provides for detailed analysis of evolutionary phenomena. To demonstrate the potential of the proposed theoretical framework, we derive a generalized version of the Central Dogma of molecular biology by analyzing the flow of information during learning (back propagation) and predicting (forward propagation) the environment by evolving organisms. The more complex evolutionary phenomena, such as major transitions in evolution (in particular, the origin of life), have to be analyzed in the thermodynamic limit, which is described in detail in the paper by Vanchurin et al. [V. Vanchurin, Y. I. Wolf, E. V. Koonin, M. I. Katsnelson, Proc. Natl. Acad. Sci. U.S.A. 119, 10.1073/pnas.2120042119 (2022)].
Collapse
Affiliation(s)
- Vitaly Vanchurin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
- Duluth Institute for Advanced Study, Duluth, MN 55804
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Mikhail I Katsnelson
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
| |
Collapse
|
30
|
Kondratyeva LG, Dyachkova MS, Galchenko AV. The Origin of Genetic Code and Translation in the Framework of Current Concepts on the Origin of Life. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:150-169. [PMID: 35508902 DOI: 10.1134/s0006297922020079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The origin of genetic code and translation system is probably the central and most difficult problem in the investigations on the origin of life and one of the most complex problems in the evolutionary biology in general. There are multiple hypotheses on the emergence and development of existing genetic systems that propose the mechanisms for the origin and early evolution of genetic code, as well as for the emergence of replication and translation. Here, we discuss the most well-known of these hypotheses, although none of them provides a description of the early evolution of genetic systems without gaps and assumptions. The RNA world hypothesis is a currently prevailing scientific idea on the early evolution of biological and pre-biological structures, the main advantage of which is the assumption that RNAs as the first living systems were self-sufficient, i.e., capable of functioning as both catalysts and templates. However, this hypothesis has also significant limitations. In particular, no ribozymes with processive polymerase activity have been yet discovered or synthesized. Taking into account the mutual need of proteins and nucleic acids in each other in the current world, many authors propose the early evolution scenarios based on the co-evolution of these two classes of organic molecules. They postulate that the emergence of translation was necessary for the replication of nucleic acids, in contrast to the RNA world hypothesis, according to which the emergence of translation was preceded by the era of self-replicating RNAs. Although such scenarios are less parsimonious from the evolutionary point of view, since they require simultaneous emergence and evolution of two classes of organic molecules, as well as the emergence of synchronized replication and translation, their major advantage is that they explain the development of processive and much more accurate protein-dependent replication.
Collapse
Affiliation(s)
- Liya G Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | - Alexey V Galchenko
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| |
Collapse
|
31
|
Furukawa R, Yokobori SI, Sato R, Kumagawa T, Nakagawa M, Katoh K, Yamagishi A. Amino Acid Specificity of Ancestral Aminoacyl-tRNA Synthetase Prior to the Last Universal Common Ancestor Commonote commonote. J Mol Evol 2022; 90:73-94. [PMID: 35084522 PMCID: PMC8821087 DOI: 10.1007/s00239-021-10043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022]
Abstract
Extant organisms commonly use 20 amino acids in protein synthesis. In the translation system, aminoacyl-tRNA synthetase (ARS) selectively binds an amino acid and transfers it to the cognate tRNA. It is postulated that the amino acid repertoire of ARS expanded during the development of the translation system. In this study we generated composite phylogenetic trees for seven ARSs (SerRS, ProRS, ThrRS, GlyRS-1, HisRS, AspRS, and LysRS) which are thought to have diverged by gene duplication followed by mutation, before the evolution of the last universal common ancestor. The composite phylogenetic tree shows that the AspRS/LysRS branch diverged from the other five ARSs at the deepest node, with the GlyRS/HisRS branch and the other three ARSs (ThrRS, ProRS and SerRS) diverging at the second deepest node. ThrRS diverged next, and finally ProRS and SerRS diverged from each other. Based on the phylogenetic tree, sequences of the ancestral ARSs prior to the evolution of the last universal common ancestor were predicted. The amino acid specificity of each ancestral ARS was then postulated by comparison with amino acid recognition sites of ARSs of extant organisms. Our predictions demonstrate that ancestral ARSs had substantial specificity and that the number of amino acid types amino-acylated by proteinaceous ARSs was limited before the appearance of a fuller range of proteinaceous ARS species. From an assumption that 10 amino acid species are required for folding and function, proteinaceous ARS possibly evolved in a translation system composed of preexisting ribozyme ARSs, before the evolution of the last universal common ancestor.
Collapse
Affiliation(s)
- Ryutaro Furukawa
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.,Faculty of Human Science, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Shin-Ichi Yokobori
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Riku Sato
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Taimu Kumagawa
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Mizuho Nakagawa
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan
| | - Kazutaka Katoh
- Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, Japan.
| |
Collapse
|
32
|
Kovalenko SP. On the Origin of Genetically Coded Protein Synthesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Genome Evolution from Random Ligation of RNAs of Autocatalytic Sets. Int J Mol Sci 2021; 22:ijms222413526. [PMID: 34948321 PMCID: PMC8707343 DOI: 10.3390/ijms222413526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The evolutionary origin of the genome remains elusive. Here, I hypothesize that its first iteration, the protogenome, was a multi-ribozyme RNA. It evolved, likely within liposomes (the protocells) forming in dry-wet cycling environments, through the random fusion of ribozymes by a ligase and was amplified by a polymerase. The protogenome thereby linked, in one molecule, the information required to seed the protometabolism (a combination of RNA-based autocatalytic sets) in newly forming protocells. If this combination of autocatalytic sets was evolutionarily advantageous, the protogenome would have amplified in a population of multiplying protocells. It likely was a quasispecies with redundant information, e.g., multiple copies of one ribozyme. As such, new functionalities could evolve, including a genetic code. Once one or more components of the protometabolism were templated by the protogenome (e.g., when a ribozyme was replaced by a protein enzyme), and/or addiction modules evolved, the protometabolism became dependent on the protogenome. Along with increasing fidelity of the RNA polymerase, the protogenome could grow, e.g., by incorporating additional ribozyme domains. Finally, the protogenome could have evolved into a DNA genome with increased stability and storage capacity. I will provide suggestions for experiments to test some aspects of this hypothesis, such as evaluating the ability of ribozyme RNA polymerases to generate random ligation products and testing the catalytic activity of linked ribozyme domains.
Collapse
|
34
|
Robin AN, Denton KK, Horna Lowell ES, Dulay T, Ebrahimi S, Johnson GC, Mai D, O’Fallon S, Philson CS, Speck HP, Zhang XP, Nonacs P. Major Evolutionary Transitions and the Roles of Facilitation and Information in Ecosystem Transformations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.711556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.
Collapse
|
35
|
Factors in Protobiomonomer Selection for the Origin of the Standard Genetic Code. Acta Biotheor 2021; 69:745-767. [PMID: 34283307 DOI: 10.1007/s10441-021-09420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Natural selection of specific protobiomonomers during abiogenic development of the prototype genetic code is hindered by the diversity of structural, spatial, and rotational isomers that have identical elemental composition and molecular mass (M), but can vary significantly in their physicochemical characteristics, such as the melting temperature Tm, the Tm:M ratio, and the solubility in water, due to different positions of atoms in the molecule. These parameters differ between cis- and trans-isomers of dicarboxylic acids, spatial monosaccharide isomers, and structural isomers of α-, β-, and γ-amino acids. The stable planar heterocyclic molecules of the major nucleobases comprise four (C, H, N, O) or three (C, H, N) elements and contain a single -C=C bond and two nitrogen atoms in each heterocycle involved in C-N and C=N bonds. They exist as isomeric resonance hybrids of single and double bonds and as a mixture of tautomer forms due to the presence of -C=O and/or -NH2 side groups. They are thermostable, insoluble in water, and exhibit solid-state stability, which is of central importance for DNA molecules as carriers of genetic information. In M-Tm diagrams, proteinogenic amino acids and the corresponding codons are distributed fairly regularly relative to the distinct clusters of purine and pyrimidine bases, reflecting the correspondence between codons and amino acids that was established in different periods of genetic code development. The body of data on the evolution of the genetic code system indicates that the elemental composition and molecular structure of protobiomonomers, and their M, Tm, photostability, and aqueous solubility determined their selection in the emergence of the standard genetic code.
Collapse
|
36
|
Abstract
Selection for resource conservation can shape the coding sequences of organisms living in nutrient-limited environments. Recently, it was proposed that selection for resource conservation, specifically for nitrogen and carbon content, has also shaped the structure of the standard genetic code, such that the missense mutations the code allows tend to cause small increases in the number of nitrogen and carbon atoms in amino acids. Moreover, it was proposed that this optimization is not confounded by known optimizations of the standard genetic code, such as for polar requirement or hydropathy. We challenge these claims. We show the proposed optimization for nitrogen conservation is highly sensitive to choice of null model and the proposed optimization for carbon conservation is confounded by the known conservative nature of the standard genetic code with respect to the molecular volume of amino acids. There is therefore little evidence the standard genetic code is optimized for resource conservation. We discuss our findings in the context of null models of the standard genetic code.
Collapse
Affiliation(s)
- Hana Rozhoňová
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, Lausanne, Switzerland
| | - Joshua L Payne
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, Lausanne, Switzerland
| |
Collapse
|
37
|
Freire MÁ. Short non-coded peptides interacting with cofactors facilitated the integration of early chemical networks. Biosystems 2021; 211:104547. [PMID: 34547425 DOI: 10.1016/j.biosystems.2021.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/28/2021] [Accepted: 09/15/2021] [Indexed: 11/02/2022]
Abstract
Independently developed iron-sulphur/thioester- and phosphate-driven chemical reactions would have set up two distinct reaction networks prior to coupling in a proto-metabolic system supporting a minimal organisation closure. Each chemical system assisted initially by simple catalysts and then by more complex cofactors would have provided the precursors of the small metabolites and monomer units along with their respective polymers through dehydrating template-independent assemblies. For example, acylation reactions mediated by activated thioester groups produced peptides, fatty acids and polyhydroxyalkanoates, while phosphorylation reactions by phosphorylating agents allowed the synthesis of polysaccharides, polyribonucleotides and polyphosphates. Here, we address how these independent chemical systems might fit together and shaped a proto-metabolic system, focusing specifically on cofactors as molecular fossils of metabolism. As a result, the proposed overview suggests that non-coded peptides capable of binding a variety of ligands, but in particular with a redox active versatility and/or group transfer potential could have facilitated the chemical connections that led to a minimal closure with a proto-metabolism. Later developments would have made it possible to establish a cellular organisation with more complex and interdependent metabolic pathways.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC). Facultad de Ciencias Exactas, Físicas y Naturales. Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
38
|
Garte S. The Continuity Principle and the Evolution of Replication Fidelity. Acta Biotheor 2021; 69:303-318. [PMID: 33249536 DOI: 10.1007/s10441-020-09399-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/28/2020] [Indexed: 11/25/2022]
Abstract
Evolution in modern life requires high replication fidelity to allow for natural selection. A simulation model utilizing simulated phenotype data on cellular probability of survival was developed to determine how self-replication fidelity could evolve in early life. The results indicate that initial survivability and replication fidelity both contribute to overall fitness as measured by growth rates of the cell population. Survival probability was the more dominant feature, and evolution was possible even with zero replication fidelity. A derived formula for the relationship of survival probability and replication fidelity with growth rate was consistent with the simulated empirical data. Quantitative assessment of continuity and other evidence was obtained for a saltation (non-continuous) evolutionary process starting from low to moderate levels of survival probability and self-replication fidelity to reach the high levels seen in modern life forms.
Collapse
Affiliation(s)
- Seymour Garte
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
| |
Collapse
|
39
|
Jash B, Tremmel P, Jovanovic D, Richert C. Single nucleotide translation without ribosomes. Nat Chem 2021; 13:751-757. [PMID: 34312504 DOI: 10.1038/s41557-021-00749-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/11/2021] [Indexed: 11/09/2022]
Abstract
The translation of messenger RNA sequences into polypeptide sequences according to the genetic code is central to life. How this process, which relies on the ribosomal machinery, arose from much simpler precursors is unclear. Here, we demonstrate that single nucleotides charged with an amino acid couple with amino acids linked to the 5'-terminus of an RNA primer in reactions directed by the nucleotides of an RNA template in dilute aqueous solution at 0 °C. When a mixture of U-Val, A-Gly and G-Leu competed for coupling to Gly-RNA, base pairing dictated which dipeptide sequence formed preferentially. The resulting doubly anchored dipeptides can retain their link to the primer for further extension or can be fully released under mild acidic conditions. These results show that a single-nucleotide-based form of translation exists that requires no more than oligoribonucleotides and anchored amino acids.
Collapse
Affiliation(s)
- Biswarup Jash
- Institute of Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Peter Tremmel
- Institute of Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Dejana Jovanovic
- Institute of Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
40
|
'Whole Organism', Systems Biology, and Top-Down Criteria for Evaluating Scenarios for the Origin of Life. Life (Basel) 2021; 11:life11070690. [PMID: 34357062 PMCID: PMC8306273 DOI: 10.3390/life11070690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
While most advances in the study of the origin of life on Earth (OoLoE) are piecemeal, tested against the laws of chemistry and physics, ultimately the goal is to develop an overall scenario for life's origin(s). However, the dimensionality of non-equilibrium chemical systems, from the range of possible boundary conditions and chemical interactions, renders the application of chemical and physical laws difficult. Here we outline a set of simple criteria for evaluating OoLoE scenarios. These include the need for containment, steady energy and material flows, and structured spatial heterogeneity from the outset. The Principle of Continuity, the fact that all life today was derived from first life, suggests favoring scenarios with fewer non-analog (not seen in life today) to analog (seen in life today) transitions in the inferred first biochemical pathways. Top-down data also indicate that a complex metabolism predated ribozymes and enzymes, and that full cellular autonomy and motility occurred post-LUCA. Using these criteria, we find the alkaline hydrothermal vent microchamber complex scenario with a late evolving exploitation of the natural occurring pH (or Na+ gradient) by ATP synthase the most compelling. However, there are as yet so many unknowns, we also advocate for the continued development of as many plausible scenarios as possible.
Collapse
|
41
|
The Origin(s) of Cell(s): Pre-Darwinian Evolution from FUCAs to LUCA : To Carl Woese (1928-2012), for his Conceptual Breakthrough of Cellular Evolution. J Mol Evol 2021; 89:427-447. [PMID: 34173011 DOI: 10.1007/s00239-021-10014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
The coming of the Last Universal Cellular Ancestor (LUCA) was the singular watershed event in the making of the biotic world. If the coming of LUCA marked the crossing of the "Darwinian Threshold", then pre-LUCA evolution must have been Pre-Darwinian and at least partly non-Darwinian. But how did Pre-Darwinian evolution before LUCA actually operate? I broaden our understanding of the central mechanism of biological evolution (i.e., variation-selection-inheritance) and then extend this broadened understanding to its natural starting point: the origin(s) of the First Universal Cellular Ancestors (FUCAs) before LUCA. My hypothesis centers upon vesicles' making-and-remaking as variation and competition as selection. More specifically, I argue that vesicles' acquisition and merger, via breaking-and-repacking, proto-endocytosis, proto-endosymbiosis, and other similar processes had been a central force of both variation and selection in the pre-Darwinian epoch. These new perspectives shed important new light upon the origin of FUCAs and their subsequent evolution into LUCA.
Collapse
|
42
|
Martínez-Giménez JA, Tabares-Seisdedos R. Possible Ancestral Functions of the Genetic and RNA Operational Precodes and the Origin of the Genetic System. ORIGINS LIFE EVOL B 2021; 51:167-183. [PMID: 34097191 DOI: 10.1007/s11084-021-09610-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
The origin of genetic systems is the central problem in the study of the origin of life for which various explanatory hypotheses have been presented. One model suggests that both ancestral transfer ribonucleic acid (tRNA) molecules and primitive ribosomes were originally involved in RNA replication (Campbell 1991). According to this model the early tRNA molecules catalyzed their own self-loading with a trinucleotide complementary to their anticodon triplet, while the primordial ribosome (protoribosome) catalyzed the transfer of these terminal trinucleotides from one tRNA to another tRNA harboring the growing RNA polymer at the 3´-end.Here we present the notion that the anticodon-codon-like pairs presumably located in the acceptor stem of primordial tRNAs (Rodin et al. 1996) (thus being and remaining, after the code and translation origins, the major contributor to the RNA operational code (Schimmel et al. 1993)) might have originally been used for RNA replication rather than translation; these anticodon and acceptor stem triplets would have been involved in accurately loading the 3'-end of tRNAs with a trinucleotide complementary to their anticodon triplet, thus allowing the accurate repair of tRNAs for their use by the protoribosome during RNA replication.We propose that tRNAs could have catalyzed their own trinucleotide self-loading by forming catalytic tRNA dimers which would have had polymerase activity. Therefore, the loading mechanism and its evolution may have been a basic step in the emergence of new genetic mechanisms such as genetic translation. The evolutionary implications of this proposed loading mechanism are also discussed.
Collapse
Affiliation(s)
| | - Rafael Tabares-Seisdedos
- Departamento de Medicina, Facultad de Medicina de Valencia, Universidad de Valencia, Av. Blasco Ibañez 17, 46010, Valencia, Spain.
| |
Collapse
|
43
|
Marshall P. Biology transcends the limits of computation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:88-101. [PMID: 33961842 DOI: 10.1016/j.pbiomolbio.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Abstract
Cognition-sensing and responding to the environment-is the unifying principle behind the genetic code, origin of life, evolution, consciousness, artificial intelligence, and cancer. However, the conventional model of biology seems to mistake cause and effect. According to the reductionist view, the causal chain in biology is chemicals → code → cognition. Despite this prevailing view, there are no examples in the literature to show that the laws of physics and chemistry can produce codes, or that codes produce cognition. Chemicals are just the physical layer of any information system. In contrast, although examples of cognition generating codes and codes controlling chemicals are ubiquitous in biology and technology, cognition remains a mystery. Thus, the central question in biology is: What is the nature and origin of cognition? In order to elucidate this pivotal question, we must cultivate a deeper understanding of information flows. Through this lens, we see that biological cognition is volitional (i.e., deliberate, intentional, or knowing), and while technology is constrained by deductive logic, living things make choices and generate novel information using inductive logic. Information has been called "the hard problem of life' and cannot be fully explained by known physical principles (Walker et al., 2017). The present paper uses information theory (the mathematical foundation of our digital age) and Turing machines (computers) to highlight inaccuracies in prevailing reductionist models of biology, and proposes that the correct causation sequence is cognition → code → chemicals.
Collapse
Affiliation(s)
- Perry Marshall
- Evolution 2.0, 805 Lake Street #295 Oak Park, IL, 60301, USA.
| |
Collapse
|
44
|
Villarreal LP, Witzany G. Social Networking of Quasi-Species Consortia drive Virolution via Persistence. AIMS Microbiol 2021; 7:138-162. [PMID: 34250372 PMCID: PMC8255905 DOI: 10.3934/microbiol.2021010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of cooperative quasi-species consortia (QS-C) thinking from the more accepted quasispecies equations of Manfred Eigen, provides a conceptual foundation from which concerted action of RNA agents can now be understood. As group membership becomes a basic criteria for the emergence of living systems, we also start to understand why the history and context of social RNA networks become crucial for survival and function. History and context of social RNA networks also lead to the emergence of a natural genetic code. Indeed, this QS-C thinking can also provide us with a transition point between the chemical world of RNA replicators and the living world of RNA agents that actively differentiate self from non-self and generate group identity with membership roles. Importantly the social force of a consortia to solve complex, multilevel problems also depend on using opposing and minority functions. The consortial action of social networks of RNA stem-loops subsequently lead to the evolution of cellular organisms representing a tree of life.
Collapse
|
45
|
Abstract
Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS-tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7260, USA;
| | - Peter R Wills
- Department of Physics, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
46
|
Kunnev D. Origin of Life: The Point of No Return. Life (Basel) 2020; 10:life10110269. [PMID: 33153087 PMCID: PMC7693465 DOI: 10.3390/life10110269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Origin of life research is one of the greatest scientific frontiers of mankind. Many hypotheses have been proposed to explain how life began. Although different hypotheses emphasize different initial phenomena, all of them agree around one important concept: at some point, along with the chain of events toward life, Darwinian evolution emerged. There is no consensus, however, how this occurred. Frequently, the mechanism leading to Darwinian evolution is not addressed and it is assumed that this problem could be solved later, with experimental proof of the hypothesis. Here, the author first defines the minimum components required for Darwinian evolution and then from this standpoint, analyzes some of the hypotheses for the origin of life. Distinctive features of Darwinian evolution and life rooted in the interaction between information and its corresponding structure/function are then reviewed. Due to the obligatory dependency of the information and structure subject to Darwinian evolution, these components must be locked in their origin. One of the most distinctive characteristics of Darwinian evolution in comparison with all other processes is the establishment of a fundamentally new level of matter capable of evolving and adapting. Therefore, the initiation of Darwinian evolution is the "point of no return" after which life begins. In summary: a definition and a mechanism for Darwinian evolution are provided together with a critical analysis of some of the hypotheses for the origin of life.
Collapse
Affiliation(s)
- Dimiter Kunnev
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14263, USA
| |
Collapse
|
47
|
Roy S, Bapat NV, Derr J, Rajamani S, Sengupta S. Emergence of ribozyme and tRNA-like structures from mineral-rich muddy pools on prebiotic earth. J Theor Biol 2020; 506:110446. [PMID: 32798505 DOI: 10.1016/j.jtbi.2020.110446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
The RNA world hypothesis, although a viable one regarding the origin of life on earth, has so far failed to provide a compelling explanation for the synthesis of RNA enzymes from free nucleotides via abiotic processes. To tackle this long-standing problem, we develop a realistic model for the onset of the RNA world, using experimentally determined rates for polymerization reactions. We start with minimal assumptions about the initial state that only requires the presence of short oligomers or just free nucleotides and consider the effects of environmental cycling by dividing a day into a dry, semi-wet and wet phases that are distinguished by the nature of reactions they support. Long polymers, with maximum lengths sometimes exceeding 100 nucleotides, spontaneously emerge due to a combination of non-enzymatic, non-templated polymer extension and template-directed primer extension processes. The former helps in increasing the lengths of RNA strands, whereas the later helps in producing complementary copies of the strands. Strands also undergo hydrolysis in a structure-dependent manner that favour breaking of bonds connecting unpaired nucleotides. We identify the most favourable conditions needed for the emergence of ribozyme and tRNA-like structures and double stranded RNA molecules, classify all RNA strands on the basis of their secondary structures and determine their abundance in the population. Our results indicate that under suitable environmental conditions, non-enzymatic processes would have been sufficient to lead to the emergence of a variety of ribozyme-like molecules with complex secondary structures and potential catalytic functions.
Collapse
Affiliation(s)
- Suvam Roy
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Niraja V Bapat
- Department of Biology, Indian Institute of Science Education and Research, Pune; Dr. Homi-Bhabha Road, Pune 411008, India
| | - Julien Derr
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, 5 Rue Thomas Mann, 75013 Paris, France.
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune; Dr. Homi-Bhabha Road, Pune 411008, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.
| |
Collapse
|
48
|
Koonin EV, Krupovic M, Ishino S, Ishino Y. The replication machinery of LUCA: common origin of DNA replication and transcription. BMC Biol 2020; 18:61. [PMID: 32517760 PMCID: PMC7281927 DOI: 10.1186/s12915-020-00800-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Origin of DNA replication is an enigma because the replicative DNA polymerases (DNAPs) are not homologous among the three domains of life, Bacteria, Archaea, and Eukarya. The homology between the archaeal replicative DNAP (PolD) and the large subunits of the universal RNA polymerase (RNAP) responsible for transcription suggests a parsimonious evolutionary scenario. Under this model, RNAPs and replicative DNAPs evolved from a common ancestor that functioned as an RNA-dependent RNA polymerase in the RNA-protein world that predated the advent of DNA replication. The replicative DNAP of the Last Universal Cellular Ancestor (LUCA) would be the ancestor of the archaeal PolD.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 75015, Paris, France
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
49
|
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020; 120:4848-4878. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.
Collapse
Affiliation(s)
- Jessica C Bowman
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton S Petrov
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petar I Penev
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Loren Dean Williams
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
50
|
Liberles DA, Chang B, Geiler-Samerotte K, Goldman A, Hey J, Kaçar B, Meyer M, Murphy W, Posada D, Storfer A. Emerging Frontiers in the Study of Molecular Evolution. J Mol Evol 2020; 88:211-226. [PMID: 32060574 PMCID: PMC7386396 DOI: 10.1007/s00239-020-09932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A collection of the editors of Journal of Molecular Evolution have gotten together to pose a set of key challenges and future directions for the field of molecular evolution. Topics include challenges and new directions in prebiotic chemistry and the RNA world, reconstruction of early cellular genomes and proteins, macromolecular and functional evolution, evolutionary cell biology, genome evolution, molecular evolutionary ecology, viral phylodynamics, theoretical population genomics, somatic cell molecular evolution, and directed evolution. While our effort is not meant to be exhaustive, it reflects research questions and problems in the field of molecular evolution that are exciting to our editors.
Collapse
Affiliation(s)
- David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Belinda Chang
- Department of Ecology and Evolutionary Biology and Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Aaron Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Jody Hey
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michelle Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|