1
|
Komara I, Andanawari F, Susanto A, Yuslianti ER, Hendiani I, Metta P, Amaliya A. Biodegradation, Angiogenesis, and Inflammatory Response of a Collagen-Chitosan-Polyvinyl Alcohol (PVA) Membrane: In Vivo Model of Guided Tissue Regeneration. Eur J Dent 2025. [PMID: 40239715 DOI: 10.1055/s-0044-1801305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
The aim of this study was to examine the biodegradation, angiogenesis, and inflammatory response in collagen-chitosan-polyvinyl alcohol (PVA) membranes.This study employed an experimental approach utilizing a randomized controlled trial design. Wistar rats were used as subjects, with 51 rats divided into three groups. Each group received a different treatment: application of the collagen-chitosan-PVA membrane, pericardial membrane, or cross-linked pericardial membrane, administered subcutaneously. On days 0, 7, 14, and 30, the rats were terminated, and the membranes and surrounding tissues were collected for analysis. A histological examination was performed to evaluate the membrane biodegradation rate, the number of blood vessels formed, and the inflammatory response.The data were analyzed using the Kruskal-Wallis and Mann-Whitney tests, with a p-value of < 0.05 considered statistically significant.The collagen-chitosan-PVA membrane remained in the tissue up to day 30, while the pericardial membrane and cross-linked pericardial membrane were completely degraded by day 7. The average number of new blood vessels formed in the collagen-chitosan-PVA membrane on days 7, 14, and 30 was greater than that in the pericardial membrane and cross-linked pericardial membrane, which was statistically significant (p < 0.005). The average number of inflammatory cells in the collagen-chitosan-PVA membrane on day 30 was lower than that in the pericardial membrane and cross-linked pericardial membrane, which was statistically significant (p < 0.005) for neutrophils, monocytes, and lymphocytes. However, the difference was not statistically significant (p > 0.05) for eosinophils and mast cells.Biodegradation, angiogenesis, and the inflammatory response in collagen-chitosan-PVA membranes showed better results compared with other membranes. Collagen-chitosan-PVA membranes exhibit potential for application in guided tissue regeneration treatment for periodontal disease.
Collapse
Affiliation(s)
- Ira Komara
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Furi Andanawari
- Post-Graduate Program in Periodontology, Dental Faculty, Universitas Padjadjaran, Bandung, Indonesia
| | - Agus Susanto
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Euis Reni Yuslianti
- Department of Oral Biology and Biomedical, Faculty of Dentistry, Universitas Jenderal Achmad Yani, Cimahi, Indonesia
| | - Ina Hendiani
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Prajna Metta
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Amaliya Amaliya
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
2
|
Franović B, Čandrlić M, Blašković M, Renko I, Komar Milas K, Markova-Car EP, Mohar Vitezić B, Gabrić D, Gobin I, Vranić SM, Perić Kačarević Ž, Peloza OC. The Microbial Diversity and Biofilm Characteristics of d-PTFE Membranes Used for Socket Preservation: A Randomized Controlled Clinical Trial. J Funct Biomater 2025; 16:40. [PMID: 39997574 PMCID: PMC11856730 DOI: 10.3390/jfb16020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/29/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Understanding microbial colonization on different membranes is critical for guided bone regeneration procedures such as socket preservation, as biofilm formation may affect healing and clinical outcomes. This randomized controlled clinical trial (RCT) investigates, for the first time, the microbiome of two different high-density polytetrafluoroethylene (d-PTFE) membranes that are used in socket preservation on a highly molecular level and in vivo. METHODS This RCT enrolled 39 participants, with a total of 48 extraction sites, requiring subsequent implant placement. Sites were assigned to two groups, each receiving socket grafting with a composite bone graft (50% autogenous bone, 50% bovine xenograft) and covered by either a permamem® (group P) or a Cytoplast™ (group C). The membranes were removed after four weeks and analyzed using scanning electron microscopy (SEM) for bacterial adherence, qPCR for bacterial species quantification, and next-generation sequencing (NGS) for microbial diversity and composition assessment. RESULTS The four-week healing period was uneventful in both groups. The SEM analysis revealed multispecies biofilms on both membranes, with membranes from group C showing a denser extracellular matrix compared with membranes from group P. The qPCR analysis indicated a higher overall bacterial load on group C membranes. The NGS demonstrated significantly higher alpha diversity on group C membranes, while beta diversity indicated comparable microbiota compositions between the groups. CONCLUSION This study highlights the distinct microbial profiles of two d-PTFE membranes during the four-week socket preservation period. Therefore, the membrane type and design do, indeed, influence the biofilm composition and microbial diversity. These findings may have implications for healing outcomes and the risk of infection in the dental implant bed and should therefore be further explored.
Collapse
Affiliation(s)
- Barbara Franović
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia;
- Doctoral School of Biomedicine and Health, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia
| | - Marija Čandrlić
- Department of Integrative Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia;
| | - Marko Blašković
- Department of Oral Surgery, Faculty of Dental Medicine Rijeka, University of Rijeka, Krešmirova ulica 40/42, 51000 Rijeka, Croatia;
- Dental Clinic Dr. Blašković, Linićeva ulica 16, 51000 Rijeka, Croatia
| | - Ira Renko
- Laboratory for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva ulica 6, 10000 Zagreb, Croatia;
- Center for Gut Microbiome, 10000 Zagreb, Croatia
| | - Katarina Komar Milas
- Department of Dental Medicine, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia;
- Interdisciplinary University Study of Molecular Biosciences, J.J. Strossmayer University of Osijek, Trg Sv. Trojstva 3, 31000 Osijek, Croatia
| | - Elitza Petkova Markova-Car
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia;
| | - Bojana Mohar Vitezić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia; (B.M.V.); (I.G.)
- Department of Clinical Microbiology, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Dragana Gabrić
- Department of Oral Surgery, School of Dental Medicine, University of Zagreb, Gundulićeva 5, 10000 Zagreb, Croatia;
- Department of Dental Medicine, Clinical Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia; (B.M.V.); (I.G.)
| | - Sabina Mahmutović Vranić
- Department of Microbiology, Faculty of Medicine, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Željka Perić Kačarević
- Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Crkvena21, 31000 Osijek, Croatia
- Botiss Biomaterials GmbH, 15806 Zossen, Germany
| | - Olga Cvijanović Peloza
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20/1, 51000 Rijeka, Croatia;
| |
Collapse
|
3
|
Jahangirnezhad M, Mahmoudinezhad SS, Moradi M, Moradi K, Rohani A, Tayebi L. Bone Scaffold Materials in Periodontal and Tooth-supporting Tissue Regeneration: A Review. Curr Stem Cell Res Ther 2024; 19:449-460. [PMID: 36578254 DOI: 10.2174/1574888x18666221227142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontium is an important tooth-supporting tissue composed of both hard (alveolar bone and cementum) and soft (gingival and periodontal ligament) sections. Due to the multi-tissue architecture of periodontium, reconstruction of each part can be influenced by others. This review focuses on the bone section of the periodontium and presents the materials used in tissue engineering scaffolds for its reconstruction. MATERIALS AND METHODS The following databases (2015 to 2021) were electronically searched: ProQuest, EMBASE, SciFinder, MRS Online Proceedings Library, Medline, and Compendex. The search was limited to English-language publications and in vivo studies. RESULTS Eighty-three articles were found in primary searching. After applying the inclusion criteria, seventeen articles were incorporated into this study. CONCLUSION In complex periodontal defects, various types of scaffolds, including multilayered ones, have been used for the functional reconstruction of different parts of periodontium. While there are some multilayered scaffolds designed to regenerate alveolar bone/periodontal ligament/cementum tissues of periodontium in a hierarchically organized construct, no scaffold could so far consider all four tissues involved in a complete periodontal defect. The progress and material considerations in the regeneration of the bony part of periodontium are presented in this work to help investigators develop tissue engineering scaffolds suitable for complete periodontal regeneration.
Collapse
Affiliation(s)
- Mahmood Jahangirnezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadaf Sadat Mahmoudinezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Melika Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kooshan Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Rohani
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, 53233, USA
| |
Collapse
|
4
|
Santos MS, dos Santos AB, Carvalho MS. New Insights in Hydrogels for Periodontal Regeneration. J Funct Biomater 2023; 14:545. [PMID: 37998114 PMCID: PMC10672517 DOI: 10.3390/jfb14110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Periodontitis is a destructive inflammatory disease characterized by microbial infection that damages the tissues supporting the tooth (alveolar bone, gingiva, periodontal ligament, and cementum), ultimately resulting in the loss of teeth. The ultimate goal of periodontal therapy is to achieve the regeneration of all of the periodontal tissues. Thus, tissue engineering approaches have been evolving from simple membranes or grafts to more complex constructs. Hydrogels are highly hydrophilic polymeric networks with the ability to simulate the natural microenvironment of cells. In particular, hydrogels offer several advantages when compared to other forms of scaffolds, such as tissue mimicry and sustained drug delivery. Moreover, hydrogels can maintain a moist environment similar to the oral cavity. Hydrogels allow for precise placement and retention of regenerative materials at the defect site, minimizing the potential for off-target effects and ensuring that the treatment is focused on the specific defect site. As a mechanism of action, the sustained release of drugs presented by hydrogels allows for control of the disease by reducing the inflammation and attracting host cells to the defect site. Several therapeutic agents, such as antibiotics, anti-inflammatory and osteogenic drugs, have been loaded into hydrogels, presenting effective benefits in periodontal health and allowing for sustained drug release. This review discusses the causes and consequences of periodontal disease, as well as the advantages and limitations of current treatments applied in clinics. The main components of hydrogels for periodontal regeneration are discussed focusing on their different characteristics, outcomes, and strategies for drug delivery. Novel methods for the fabrication of hydrogels are highlighted, and clinical studies regarding the periodontal applications of hydrogels are reviewed. Finally, limitations in current research are discussed, and potential future directions are proposed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Alexandra B. dos Santos
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Nayak VV, Mirsky NA, Slavin BV, Witek L, Coelho PG, Tovar N. Non-Thermal Plasma Treatment of Poly(tetrafluoroethylene) Dental Membranes and Its Effects on Cellular Adhesion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6633. [PMID: 37895615 PMCID: PMC10608478 DOI: 10.3390/ma16206633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Non-resorbable dental barrier membranes entail the risk of dehiscence due to their smooth and functionally inert surfaces. Non-thermal plasma (NTP) treatment has been shown to increase the hydrophilicity of a biomaterials and could thereby enhance cellular adhesion. This study aimed to elucidate the role of allyl alcohol NTP treatment of poly(tetrafluoroethylene) in its cellular adhesion. The materials (non-treated PTFE membranes (NTMem) and NTP-treated PTFE membranes (PTMem)) were subjected to characterization using scanning electron microscopy (SEM), contact angle measurements, X-ray photoelectron spectroscopy (XPS), and electron spectroscopy for chemical analysis (ESCA). Cells were seeded upon the different membranes, and cellular adhesion was analyzed qualitatively and quantitatively using fluorescence labeling and a hemocytometer, respectively. PTMem exhibited higher surface energies and the incorporation of reactive functional groups. NTP altered the surface topography and chemistry of PTFE membranes, as seen through SEM, XPS and ESCA, with partial defluorination and polymer chain breakage. Fluorescence labeling indicated significantly higher cell populations on PTMem relative to its untreated counterparts (NTMem). The results of this study support the potential applicability of allyl alcohol NTP treatment for polymeric biomaterials such as PTFE-to increase cellular adhesion for use as dental barrier membranes.
Collapse
Affiliation(s)
- Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (V.V.N.); (N.A.M.); (B.V.S.); (P.G.C.)
| | - Nicholas Alexander Mirsky
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (V.V.N.); (N.A.M.); (B.V.S.); (P.G.C.)
| | - Blaire V. Slavin
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (V.V.N.); (N.A.M.); (B.V.S.); (P.G.C.)
| | - Lukasz Witek
- Biomaterials Division, College of Dentistry, New York University, New York, NY 10010, USA;
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, Grossman School of Medicine, New York University, New York, NY 10017, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (V.V.N.); (N.A.M.); (B.V.S.); (P.G.C.)
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Nick Tovar
- Biomaterials Division, College of Dentistry, New York University, New York, NY 10010, USA;
- Department of Oral and Maxillofacial Surgery, New York University, Langone Medical Center and Bellevue Hospital Center, New York, NY 10016, USA
| |
Collapse
|
6
|
Ma YF, Yan XZ. Periodontal Guided Tissue Regeneration Membranes: Limitations and Possible Solutions for the Bottleneck Analysis. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:532-544. [PMID: 37029900 DOI: 10.1089/ten.teb.2023.0040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Guided tissue regeneration (GTR) is an important surgical method for periodontal regeneration. By placing barrier membrane on the root surface of the tooth to guide the adhesion and proliferation of periodontal ligament cells, periodontal tissue regeneration can be achieved. This review intends to analyze the current limitations of GTR membranes and to propose possible solutions for developing new ones. Limitations of current GTR membranes include nonabsorbable membranes and absorbable synthetic polymer membranes exhibit weak biocompatibility; when applying to a large defect wound, the natural collagen membrane with fast degradation rate have limited mechanical strength, and the barrier function may not be maintained well. Although the degradation time can be prolonged after cross-linking, it may cause foreign body reaction and affect tissue integration; The clinical operation of current barrier membranes is inconvenient. In addition, most of the barrier membranes lack bioactivity and will not actively promote periodontal tissue regeneration. Possible solutions include using electrospinning (ELS) techniques, nanofiber scaffolds, or developing functional gradient membranes to improve their biocompatibility; adding Mg, Zn, and/or other metal alloys, or using 3D printing technology to improve their mechanical strength; increasing the concentration of nanoparticles or using directional arrangement of membrane fibers to control the fiber diameter and porosity of the membrane, which can improve their barrier function; mixing natural and synthetic polymers as well as other biomaterials with different degradation rates in proportion to change the degradation rate and maintain barrier function; to improve the convenience of clinical operation, barrier membranes that meets personalized adhesion to the wound defect can be manufactured; developing local controlled release drug delivery systems to improve their bioactivity. Impact statement This review provides an up-to-date summary of commonly commercial periodontal guided tissue regeneration membranes, and analyze their limitations in clinical use. Using studies published recently to explore possible solutions from several perspectives and to raise possible strategies in the future. Several strategies have tested in vivo/in vitro, which will guide the way to propel clinical translation, meeting clinical needs.
Collapse
Affiliation(s)
- Yi-Fei Ma
- Department of Periodontology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, People's Republic of China
| | - Xiang-Zhen Yan
- Department of Periodontology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Ma Z, Guo K, Chen L, Chen X, Zou D, Yang C. Role of periosteum in alveolar bone regeneration comparing with collagen membrane in a buccal dehiscence model of dogs. Sci Rep 2023; 13:2505. [PMID: 36781898 PMCID: PMC9925434 DOI: 10.1038/s41598-023-28779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
To investigate the role of periosteum on the treatment of buccal dehiscence defects comparing with collagen membrane in canine model. Bilateral dehiscence-type defects at the buccal side on the distal root of the lower 3rd/4th premolars were created in six beagle dogs with a total of 24 defects and assigned into three groups: Group A: blood clot in an untreated defect; Group B: deproteinized bovine bone material (DBBM) covered with an absorbable membrane; Group C: DBBM covered with the periosteum. The structural parameters for trabecular architecture and vertical bone regeneration were evaluated. Histological and histomorphometric evaluation were carried out to observe new bone formation and mineralization in the graft site. Immunohistochemical analysis was performed to identify the expression of osteopontin (OPN) and osteocalcin (OCN) at postoperative 3 months. Group C achieved greater vertical alveolar bone gain than that of group A and group B. The periosteum-covered group showed significantly greater new bone formation and accelerated mineralization. The greater immunolabeling for OPN and OCN was observed in group C than in group A. Periosteal coverage has explicit advantages over collagen membranes for the quality and quantity of new bone regeneration in dehiscence defects repairing.
Collapse
Affiliation(s)
- Zhigui Ma
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200001, People's Republic of China
| | - Ke Guo
- Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lu Chen
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200001, People's Republic of China
| | - Xinwei Chen
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200001, People's Republic of China
| | - Duohong Zou
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200001, People's Republic of China.
| | - Chi Yang
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Shanghai, 200001, People's Republic of China.
| |
Collapse
|
8
|
Two Gingival Cell Lines Response to Different Dental Implant Abutment Materials: An In Vitro Study. Dent J (Basel) 2022; 10:dj10100192. [PMID: 36286002 PMCID: PMC9600692 DOI: 10.3390/dj10100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives: This study aimed to investigate the response of human gingival fibroblasts (HGFB) and human gingival keratinocytes (HGKC) towards different dental implant abutment materials. Methods: Five materials were investigated: (1) titanium (Ti), (2) titanium nitride (TiN), (3) cobalt-chromium (CoCr), (4) zirconia (ZrO2), and (5) modified polyether ether ketone (m-PEEK). Both cell lines were cultured, expanded, and seeded in accordance with the protocol of their supplier. Cell proliferation and cytotoxicity were evaluated at days 1, 3, 5, and 10 using colourimetric viability and cytotoxicity assays. Data were analysed via two-way ANOVA, one-way ANOVA, and Tukey’s post hoc test (p < 0.05 for all tests). Results: There was a statistically significant difference in cell proliferation of HGKC and HGFB cells in contact with different abutment materials at different time points, with no significant interaction between different materials. There was a significant effect on cell proliferation and cytotoxicity with different exposure times (p < 0.0001) for each material. Cell proliferation rates were comparable for both cell lines at the beginning of the study, however, HGFB showed higher proliferation rates for all materials at day 10 with better proliferation activities with ZrO and m-PEEK (40.27%) and (48.38%) respectively. HGKC showed significant interactions (p < 0.0001) in cytotoxicity between different materials. Conclusion: The present in vitro assessment investigated the biocompatibility of different abutment materials with soft tissue cells (HGFB and HGKC). The findings suggest that m-PEEK and TiN are biologically compatible materials with human cells that represent the soft tissue and can be considered as alternative implant abutment materials to Ti and ZrO2, especially when the aesthetic is of concern.
Collapse
|
9
|
Osman MA, Alamoush RA, Kushnerev E, Seymour KG, Shawcross S, Yates JM. Human osteoblasts response to different dental implant abutment materials: An in-vitro study. Dent Mater 2022; 38:1547-1557. [PMID: 35909000 DOI: 10.1016/j.dental.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES This study aimed to investigate human osteoblasts (HOB) response towards different dental implant abutment materials. METHODS Five dental implant abutment materials were investigated: (1) titanium (Ti), (2) titanium coated nitride (TiN), (3) cobalt chromium (CoCr), (4) zirconia (ZrO₂), and (5) modified polyether ether ketone (m-PEEK). HOBs were cultured, expanded, and seeded according to the supplier's protocol (PromoCell, UK). Cell proliferation and cytotoxicity were evaluated at days 1, 3, 5, and 10 using Alamar Blue (alamarBlue) and lactate dehydrogenase (LDH) colorimetric assays. Data were analysed via two-way ANOVA, one-way ANOVA and Tukey's post hoc test (significance was determined as p < 0.05 for all tests). RESULTS All the investigated materials showed high and comparable initial proliferation activities apart from ZrO₂ (46.92%), with P% of 79.91%, 68.77%, 73.20%, and 65.46% for Ti, TiN, CoCr, and m-PEEK, respectively. At day 10, all materials exhibited comparable and lower P% than day 1 apart from TiN (70.90%) with P% of 30.22%, 40.64%, 37.27%, and 50.65% for Ti, CoCr, ZrO₂, and m-PEEK, respectively. The cytotoxic effect of the investigated materials was generally low throughout the whole experiment. At day 10, the cytotoxicity % was 7.63%, 0.21%, 13.30%, 5.32%, 8.60% for Ti, TiN, CoCr, ZrO₂, and m-PEEK. The Two-way ANOVA and Tukey's Multiple Comparison Method highlighted significant material and time effects on cell proliferation and cytotoxicity, and a significant interaction (p < 0.0001) between the tested materials. Notably, TiN and m-PEEK showed improved HOB proliferation activity and cytotoxic levels than the other investigated materials. In addition, a non-significant negative correlation between viability and cytotoxicity was found for all tested materials. Ti (p = 0.07), TiN (p = 0.28), CoCr (p = 0.15), ZrO₂ (p = 0.17), and m-PEEK (p = 0.12). SIGNIFICANCE All the investigated materials showed excellent biocompatibility properties with more promising results for the newly introduced TiN and m-PEEK as alternatives to the traditionally used dental implant and abutment materials.
Collapse
Affiliation(s)
- Muataz A Osman
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom; Periodontology Department, Faculty of Dentistry, The University of Benghazi, Benghazi, Libya; Restorative Department, Faculty of Dentistry, Libyan International Medical University, Benghazi, Libya; Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, 3.106 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Rasha A Alamoush
- Prosthodontic Department, School of Dentistry, University of Jordan, Amman, Jordan
| | - Evgeny Kushnerev
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Kevin G Seymour
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Susan Shawcross
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, 3.106 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Julian M Yates
- Division of Dentistry, School of Medical Sciences, University of Manchester, Coupland 3 Building, Oxford Road, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
10
|
Zelikman H, Slutzkey G, Rosner O, Levartovsky S, Matalon S, Beitlitum I. Bacterial Growth on Three Non-Resorbable Polytetrafluoroethylene (PTFE) Membranes-An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5705. [PMID: 36013840 PMCID: PMC9414989 DOI: 10.3390/ma15165705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
GBR (Guided Bone Regeneration) procedure is challenged by the risk of membrane exposure to the oral cavity and contamination. The barrier quality of these membranes serve as a mechanical block from bacterial penetration into the GBR site. The purpose of this in vitro study was to evaluate the antibacterial effect of three commercial non-resorbable polytetrafluoroethylene membranes. (Two d-PTFE membranes and one double layer e-PTFE +d-PTFE membrane). A validated in vitro model with two bacterial species (Streptococcus sanguinis and Fusobacterium nucleatum) was used. Eight samples from membrane each were placed in a 96-well microtiter plate. The experimental and positive control groups were exposed to a bacterial suspension which involved one bacterial species in each plate. Bacterial growth was monitored spectrophotometrically at 650 nm for 24 h in temperature controlled microplate spectrophotometer under anaerobic conditions. One- Sample Kolmogorov−Smirnov Normal test and the Kruskal−Wallis test was used for the statistical analysis. As shown by the bacterial growth curves obtained from the spectrophotometer readings, all three membranes resulted in bacterial growth. We have not found a statistical difference in F. nucleatum growth between different membrane samples and the positive control group. However, S. sanguinis growth was reduced significantly in the presence of two membranes (CYTOPLAST TXT-200 and NeoGenTM) when compared to the control (p < 0.01). The presence of Permamem® had no significant influence on S. sanguinis growth. Some types of commercial non-resorbable PTFE membranes may have an impact on the growth dynamics of specific bacterial species.
Collapse
Affiliation(s)
- Helena Zelikman
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Slutzkey
- Department of Periodontology and Dental Implantology, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofir Rosner
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shifra Levartovsky
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomo Matalon
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ilan Beitlitum
- Department of Periodontology and Dental Implantology, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Huang CC. Design and Characterization of a Bioinspired Polyvinyl Alcohol Matrix with Structural Foam-Wall Microarchitectures for Potential Tissue Engineering Applications. Polymers (Basel) 2022; 14:polym14081585. [PMID: 35458338 PMCID: PMC9029864 DOI: 10.3390/polym14081585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Traditional medical soft matrix used in a surgical treatment or in wound management was not good enough in both the structural support and interconnectivity to be applied in tissue engineering as a scaffold. Avian skeleton and feather rachises might be good reference objects to mimic in designing a scaffold material with good structural support and high interconnectivity because of its structural foam-wall microarchitectures and structural pneumaticity. In this study, a biomimetic airstream pore-foaming process was built up and the corresponding new medical soft matrix derived from polyvinyl alcohol matrix (PVAM) with air cavities inspired by avian skeleton and feather rachises was prepared. Furthermore, the resulting medical soft matrix and bovine Achilles tendon type I collagen could be employed to prepare a new collagen-containing composite matrix. Characterization, thermal stability and cell morphology of the bioinspired PVA matrix and the corresponding collagen-modified PVA composite matrix with open-cell foam-wall microarchitectures were studied for evaluation of potential tissue engineering applications. TGA, DTG, DSC, SEM and FTIR results of new bioinspired PVA matrix were employed to build up the effective system identification approach for biomimetic structure, stability, purity, and safety of target soft matrix. The bioinspired PVA matrix and the corresponding collagen-modified PVA composite matrix would be conductive to human hepatoblastoma HepG2 cell proliferation, migration, and expression which might serve as a promising liver cell culture carrier to be used in the biological artificial liver reactor.
Collapse
Affiliation(s)
- Ching-Cheng Huang
- Department of Biomedical Engineering, Ming-Chuan University, Guishan District, Taoyuan 320-33, Taiwan;
- PARSD Biomedical Material Research Center, Xitun District, Taichung 407-49, Taiwan
| |
Collapse
|
12
|
Mhatre A, Shetty D, Shetty A, Dharmadhikari S, Wadkar P. Comparative evaluation of the physical properties of membranes for periodontal regeneration: An In vitro Study. ADVANCES IN HUMAN BIOLOGY 2022. [DOI: 10.4103/aihb.aihb_113_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Reisie BH, Farhad SZ, Sadeh SA. Evaluation and comparison number of gingival fibroblast and osteosarcoma cell (MG-63 cell line) adhesive to mocugraft, alloderm, and collagen membrane with or without advanced platelet-rich fibrin. Dent Res J (Isfahan) 2021; 18:82. [PMID: 34760073 PMCID: PMC8554468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/25/2020] [Accepted: 04/19/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The tissue engineering has recently shown a significant progress in the fields of membranes and biosynthetic materials. Advanced platelet-rich fibrin (A-PRF) contains functional molecules that have newly shown great interest in regenerative therapies. The purpose of this study was to evaluate the effect of A-PRF on the adhesion of gingival fibroblast cells and osteosarcoma cells to different membranes. MATERIALS AND METHODS In this experimental in vitro study, three collagen, alloderm, and mucograft membranes were studied, which were cut into four 5 mm × 5 mm pieces and placed in the bottom of a 24-well culture medium. One milliliter of A-PRF was added to two wells from each group and the other two wells remained without A-PRF. The gingival fibroblasts and osteosarcoma cells were individually added to each well. The cell adhesion was studied using an electron microscope after 24 h. The data were analyzed by independent t-test, one-way analysis of variance, and least significant difference test. RESULTS In the presence of A-PRF, there was a significant higher osteoblast adhesion to collagen membrane compared to alloderm and mucograft membranes (P < 0.001). In the absence of A-PRF, adhesion of osteoblasts to collagen membrane was significantly higher than alloderm and mucograft (P = 0.019). Moreover, in the presence of A-PRF, fibroblast adhesion to collagen membrane was significantly higher than alloderm and mucograft membranes (P < 0.001). Furthermore, in the absence of A-PRF, no significant difference was found among the study groups (P = 0.830). CONCLUSION A-PRF was effective on fibroblast adhesion to the collagen membrane, which is similar to its absence. A-PRF was also found to be very effective on the adhesion of fibroblast cells to the collagen membrane, and in its absence, even less adhesion was observed compared to the other membranes. The presence or absence of A-PRF showed no significant differences in both cells' adhesion for alloderm and mucograft membranes.
Collapse
Affiliation(s)
- Bentol Hoda Reisie
- Department of Periodontics, Faculty of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Shirin Zahra Farhad
- Department of Periodontics, Faculty of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Shirin Amini Sadeh
- Department of Periodontics, Faculty of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
14
|
Kaga N, Fujimoto H, Morita S, Yamaguchi Y, Matsuura T. Contact Angle and Cell Adhesion of Micro/Nano-Structured Poly(lactic- co-glycolic acid) Membranes for Dental Regenerative Therapy. Dent J (Basel) 2021; 9:dj9110124. [PMID: 34821588 PMCID: PMC8622355 DOI: 10.3390/dj9110124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
Biodegradable membranes are used in regenerative dentistry for guided tissue regeneration (GTR) and guided bone regeneration (GBR). In this study, patterned poly(lactic-co-glycolic acid) (PLGA) membranes with groove, pillar, and hole structures were successfully fabricated by thermal nanoimprinting. Their surfaces were evaluated for topography by scanning electron microscopy and laser microscopy, for hydrophobicity/hydrophilicity by contact angle analysis, and for MC3T3-E1 cell adhesion. The sizes of the patterns on the surfaces of the membranes were 0.5, 1.0, and 2.0 μm, respectively, with the height/depth being 1.0 μm. The pillared and holed PLGA membranes were significantly more hydrophobic than the non-patterned PLGA membranes (p < 0.05). However, the 0.5 μm- and 1.0 μm-grooved PLGA membranes were significantly more hydrophilic than the non-patterned PLGA membranes (p < 0.05). The 0.5 μm-grooved, pillared, and holed membranes exhibited significantly superior adhesion to the MC3T3-E1 cells than the non-patterned PLGA (p < 0.05). These results suggest that patterned PLGA membranes can be clinically used for GTR and GBR in the dental regeneration field.
Collapse
Affiliation(s)
- Naoyuki Kaga
- Section of Fixed Prosthodontics, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka 814-0193, Japan; (H.F.); (S.M.); (Y.Y.); (T.M.)
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
- Correspondence: ; Tel.: +81-92-801-0411
| | - Hiroki Fujimoto
- Section of Fixed Prosthodontics, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka 814-0193, Japan; (H.F.); (S.M.); (Y.Y.); (T.M.)
| | - Sho Morita
- Section of Fixed Prosthodontics, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka 814-0193, Japan; (H.F.); (S.M.); (Y.Y.); (T.M.)
| | - Yuichiro Yamaguchi
- Section of Fixed Prosthodontics, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka 814-0193, Japan; (H.F.); (S.M.); (Y.Y.); (T.M.)
| | - Takashi Matsuura
- Section of Fixed Prosthodontics, Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka 814-0193, Japan; (H.F.); (S.M.); (Y.Y.); (T.M.)
| |
Collapse
|
15
|
Bapat RA, Parolia A, Chaubal T, Dharamadhikari S, Abdulla AM, Sakkir N, Arora S, Bapat P, Sindi AM, Kesharwani P. Recent update on potential cytotoxicity, biocompatibility and preventive measures of biomaterials used in dentistry. Biomater Sci 2021; 9:3244-3283. [PMID: 33949464 DOI: 10.1039/d1bm00233c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dental treatment is provided for a wide variety of oral health problems like dental caries, periodontal diseases, periapical infections, replacement of missing teeth and orthodontic problems. Various biomaterials, like composite resins, amalgam, glass ionomer cement, acrylic resins, metal alloys, impression materials, bone grafts, membranes, local anaesthetics, etc., are used for dental applications. The physical and chemical characteristics of these materials influence the outcome of dental treatment. It also impacts on the biological, allergic and toxic potential of biomaterials. With innovations in science and their positive results, there is also a need for awareness about the biological risks of these biomaterials. The aim of dental treatment is to have effective, yet safe, and long-lasting results for the benefit of patients. For this, it is important to have a thorough understanding of biomaterials and their effects on local and systemic health. Materials used in dentistry undergo a series of analyses before their oral applications. To the best of our knowledge, this is the first and original review that discusses the reasons for and studies on the toxicity of commonly used biomaterials for applications in dentistry. It will help clinicians to formulate a methodical approach for the selection of dental biomaterials, thus providing an awareness for forecasting their risk of toxic reactions.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Faculty, Division of Clinical Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Abhishek Parolia
- Faculty, Division of Clinical Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Tanay Chaubal
- Faculty, Division of Clinical Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | | | - Anshad Mohamed Abdulla
- Faculty, Department of Pediatric Dentistry and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Nasil Sakkir
- Registrar Endodontist, Central Security Hospital, Abha, Kingdom of Saudi Arabia
| | - Suraj Arora
- Faculty, Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Prachi Bapat
- Dentist, Modern Dental College, Indore 453112, Madhya Pradesh, India
| | - Amal M Sindi
- Faculty, Oral Diagnostic Sciences Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant Kesharwani
- Faculty, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
16
|
The apoptotic and autophagic effects of cast Au-Pt, and differently manufactured Co-Cr and cp-Ti on three-dimensional oral mucosal model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111672. [PMID: 33545837 DOI: 10.1016/j.msec.2020.111672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
The application of digitally manufactured dental metals has aroused the attention on their biocompatibilities. Three-dimensional oral mucosal model (3D OMM) would provide excellent assessments to the biocompatibility. In the current study, we set to measure metal ion release levels in the extracts of cast gold-platinum alloy (Au-Pt), differently manufactured cobalt-chromium alloy (Co-Cr) and commercially pure titanium (cp-Ti). We further tested two scaffold materials of 3D OMM to determine the better one for the succedent work. Lastly, we evaluated the apoptotic and autophagic effects of cast Au-Pt, and differently manufactured Co-Cr and cp-Ti on mucosal cells based on 3D OMM. We found that, in the construction of 3D OMM, Matrigel showed better performance than bovine acellular dermal matrix. Thus, Matrigel was chosen to construct the 3D OMM in the succedent studies. The results of ion release and biological assessments showed that, firstly, cast Au-Pt and cp-Ti triggered less early apoptotic cells and ion release than cast Co-Cr, implying better chemical stability and biocompatibility of them; secondly, digitally manufactured (including CAD/CAM milling and SLM) Co-Cr showed significantly lower ion release levels and lesser early apoptotic effects on 3D OMM as compared to the cast one. Although cast cp-Ti released much more ions than CAD/CAM milling one, manufacturing methods had no impact on apoptotic effect of cp-Ti. Therefore, we believe that digital methods possess same or even better chemical stability and biocompatibility than conventional casting one. Thirdly, although increased autophagic levels are observed in all test groups, so far there is no evidence that the test metals trigger different levels of autophagy as compared to each other. In addition, correlation analysis indicates that Co, W, and Mn appear to be the potential inducements for the apoptotic and autophagic effects of Co-Cr.
Collapse
|
17
|
Kim D, Gwon Y, Park S, Kim W, Yun K, Kim J. Eggshell membrane as a bioactive agent in polymeric nanotopographic scaffolds for enhanced bone regeneration. Biotechnol Bioeng 2021; 118:1862-1875. [PMID: 33527343 DOI: 10.1002/bit.27702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
A bone regeneration scaffold is typically designed as a platform to effectively heal a bone defect while preventing soft tissue infiltration. Despite the wide variety of scaffold materials currently available, such as collagen, critical problems in achieving bone regeneration remain, including a rapid absorption period and low tensile strength as well as high costs. Inspired by extracellular matrix protein and topographical cues, we developed a polycaprolactone-based scaffold for bone regeneration using a soluble eggshell membrane protein (SEP) coating and a nanotopography structure for enhancing the physical properties and bioactivity. The scaffold exhibited adequate flexibility and mechanical strength as a biomedical platform for bone regeneration. The highly aligned nanostructures and SEP coating were found to regulate and enhance cell morphology, adhesion, proliferation, and differentiation in vitro. In a calvaria bone defect mouse model, the scaffolds coated with SEP applied to the defect site promoted bone regeneration along the direction of the nanotopography in vivo. These findings demonstrate that bone-inspired nanostructures and SEP coatings have high potential to be applicable in the design and manipulation of scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Daun Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Yonghyun Gwon
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Woochan Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Kwidug Yun
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
18
|
Farhad S, Reisie B, Sadeh S. Evaluation and comparison number of gingival fibroblast and osteosarcoma cell (MG-63 cell line) adhesive to mocugraft, alloderm, and collagen membrane with or without advanced platelet-rich fibrin. Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.328750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Neto AMD, Sartoretto SC, Duarte IM, Resende RFDB, Neves Novellino Alves AT, Mourão CFDAB, Calasans-Maia J, Montemezzi P, Tristão GC, Calasans-Maia MD. In Vivo Comparative Evaluation of Biocompatibility and Biodegradation of Bovine and Porcine Collagen Membranes. MEMBRANES 2020; 10:membranes10120423. [PMID: 33333940 PMCID: PMC7765348 DOI: 10.3390/membranes10120423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Mechanical barriers prevent the invasion of the surrounding soft tissues within the bone defects. This concept is known as Guided Bone Regeneration (GBR). The knowledge about the local tissue reaction and the time of degradation of absorbable membranes favors the correct clinical indication. This study aimed to evaluate the biocompatibility and biodegradation of a bovine collagen membrane (Lyostypt®, São Gonçalo, Brazil) and compare it to a porcine collagen membrane (Bio-Gide®) implanted in the subcutaneous tissue of mice, following ISO 10993-6:2016. Thirty Balb-C mice were randomly divided into three experimental groups, LT (Lyostypt®), BG (Bio-Gide®), and Sham (without implantation), and subdivided according to the experimental periods (7, 21, and 63 days). The BG was considered non-irritant at seven days and slight and moderate irritant at 21 and 63 days, respectively. The LT presented a small irritant reaction at seven days, a mild reaction after 21, and a reduction in the inflammatory response at 63 days. The biodegradation of the LT occurred more rapidly compared to the BG after 63 days. This study concluded that both membranes were considered biocompatible since their tissue reactions were compatible with the physiological inflammatory process; however, the Bio-Gide® was less degraded during the experimental periods, favoring the guided bone regeneration process.
Collapse
Affiliation(s)
- Abdu Mansur Dacache Neto
- Graduate Program, Dentistry School, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil;
| | - Suelen Cristina Sartoretto
- Oral Surgery Department, Dentistry School, Universidade Veiga de Almeida, Rio de Janeiro 20271-020, RJ, Brazil;
- Oral Surgery Department, Dentistry School, Universidade Iguaçu, Nova Iguaçu 26260-045, RJ, Brazil;
- Clinical Research Laboratory in Dentistry, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil
| | - Isabelle Martins Duarte
- Post-Graduation Program in Dentistry, Universidade Veiga de Almeida, Rio de Janeiro 20271-020, RJ, Brazil;
| | - Rodrigo Figueiredo de Brito Resende
- Oral Surgery Department, Dentistry School, Universidade Iguaçu, Nova Iguaçu 26260-045, RJ, Brazil;
- Oral Surgery Department, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil
| | | | | | - Jose Calasans-Maia
- Orthodontics Department, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil;
| | | | | | - Mônica Diuana Calasans-Maia
- Clinical Research Laboratory in Dentistry, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil
- Oral Surgery Department, Universidade Federal Fluminense, Niteroi 24020-140, RJ, Brazil
- Correspondence: ; Tel.: +55-21-98153-5884
| |
Collapse
|
20
|
Cha JK, Song YW, Kim S, Thoma DS, Jung UW, Jung RE. Core Ossification of Bone Morphogenetic Protein-2-Loaded Collagenated Bone Mineral in the Sinus. Tissue Eng Part A 2020; 27:905-913. [PMID: 32940142 DOI: 10.1089/ten.tea.2020.0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to investigate in vitro release kinetics and ossification patterns of bone morphogenetic protein-2-soaked collagenated porcine bone mineral (BMP-2/CPBM) in rabbit sinuses. Release kinetics of BMP-2/CPBM was determined in vitro up to 56 days. In 16 rabbits, BMP-2/CPBM (BMP group) and CPBM alone (control group) were bilaterally grafted in both sinuses. After 4 (N = 8) and 12 (N = 8) weeks, radiographic and histologic analyses were performed. Approximately 40% of BMP-2 was released from CPBM during 3 days in vitro; release maintained at a reduced level until day 56. In vivo, new bone formation in BMP group was dominant at the center and decreased toward the borders of the sinus, while it mainly possessed close to the sinus membrane and basal bone in control group. At the center, significantly more new bone was found in BMP group compared to control group at 4 weeks (29.14% vs. 16.50%; p < 0.05). The total augmented volume of BMP group was significantly greater than control group at 4 (370.13 mm3 vs. 299.32 mm3) and 12 (400.40 mm3 vs. 290.10 mm3) weeks (p < 0.05). In conclusion, BMP-2/CPBM demonstrated a core ossification with a greater augmented volume and new bone formation in the center of the sinus compared to CPBM alone. Impact statement The center of the augmented maxillary sinus tends to show a slower and inferior new bone formation compared to the sites near the sinus membrane and basal bone. In this study, bone morphogenetic protein-2 (BMP-2) loaded onto collagenated porcine bone mineral (CPBM) resulted in a greater augmented volume and new bone formation at the center of the grafted sinus compared to CPBM alone. Therefore, BMP-2-added CPBM in maxillary sinus augmentation may potentially be beneficial to the clinicians, in terms of accelerating the new bone formation at the center area where the apical half of the implant fixture usually places.
Collapse
Affiliation(s)
- Jae-Kook Cha
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Young Woo Song
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sungtae Kim
- Department of Periodontology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Daniel S Thoma
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea.,Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ronald E Jung
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Zhou T, Zheng K, Sui B, Boccaccini AR, Sun J. In vitro evaluation of poly (vinyl alcohol)/collagen blended hydrogels for regulating human periodontal ligament fibroblasts and gingival fibroblasts. Int J Biol Macromol 2020; 163:1938-1946. [PMID: 32910967 DOI: 10.1016/j.ijbiomac.2020.09.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
Periodontitis is a chronic inflammatory disease that can destroy periodontal tissue. Guided tissue regeneration (GTR) is widely applied to treat periodontitis. However, the challenge is to develop a GTR membrane capable of simultaneously regenerating periodontal tissue and preventing epithelial downgrowth into the defect. Herein, blended hydrogels composed of polyvinyl alcohol (PVA) and fish collagen (Col) were prepared as GTR membranes. The morphology, Col release, and cellular behavior of the blended hydrogels were evaluated. The results showed that the surface porosity and Col release of the PVA/Col blended hydrogels were enhanced by increasing the Col concentration. The adhesion and proliferation of human periodontal ligament fibroblasts (HPDLFs) and human gingival fibroblasts (HGFs) on the PVA/Col blended hydrogels can be regulated by tuning the PVA/Col ratio. The PVA/Col (50:50) blended hydrogel exhibited the highest cell proliferation rate for HPDLFs with spread cell morphology; the lowest viability for HGFs was found on the PVA/Col (100:0) hydrogel. Thus, by controlling the ratio of PVA to Col, multifunctional PVA/Col blended hydrogels able to regulate the cellular behavior of HPDLFs and HGFs can be developed, demonstrating their potential as GTR membrances for guiding periodontal tissue regeneration.
Collapse
Affiliation(s)
- Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200023, PR China
| | - Kai Zheng
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Baiyan Sui
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China.
| | - Aldo R Boccaccini
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Jiao Sun
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200023, PR China.
| |
Collapse
|
22
|
Tiwari S, Patil R, Dubey SK, Bahadur P. Graphene nanosheets as reinforcement and cell-instructive material in soft tissue scaffolds. Adv Colloid Interface Sci 2020; 281:102167. [PMID: 32361407 DOI: 10.1016/j.cis.2020.102167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Mechanical strength of polymeric scaffolds deteriorates quickly in the physiological mileu. This can be minimized by reinforcing the polymeric matrix with graphene, a planar two-dimensional material with unique physicochemical and biological properties. Association between the sheet and polymer chains offers a range of porosity commensurate with tissue requirements. Besides, studies suggest that corrugated structure of graphene offers desirable bio-mechanical cues for tissue regeneration. This review covers three important aspects of graphene-polymer composites, (a) the opportunity on reinforcing the polymer matrix with graphene, (b) challenges associated with limited aqueous processability of graphene, and (c) physiological signaling in the presence of graphene. Among numerous graphene materials, our discussion is limited to graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets. Challenges associated with limited dispersity of hydrophobic sheets within the polymeric matrix have been discussed at molecular level.
Collapse
|
23
|
Abe GL, Sasaki JI, Katata C, Kohno T, Tsuboi R, Kitagawa H, Imazato S. Fabrication of novel poly(lactic acid/caprolactone) bilayer membrane for GBR application. Dent Mater 2020; 36:626-634. [DOI: 10.1016/j.dental.2020.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
24
|
Zheng X, Ke X, Yu P, Wang D, Pan S, Yang J, Ding C, Xiao S, Luo J, Li J. A facile strategy to construct silk fibroin based GTR membranes with appropriate mechanical performance and enhanced osteogenic capacity. J Mater Chem B 2020; 8:10407-10415. [PMID: 33112359 DOI: 10.1039/d0tb01962c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A facile method to modify electrospun silk fibroin nanofibrous membranes for enhanced mechanical properties and osteogenic function via polyphenol chemistry.
Collapse
|
25
|
Silva MJ, Gonçalves CP, Galvão KM, D'Alpino PHP, Nascimento FD. Synthesis and Characterizations of a Collagen-Rich Biomembrane with Potential for Tissue-Guided Regeneration. Eur J Dent 2019; 13:295-302. [PMID: 31476776 PMCID: PMC6890486 DOI: 10.1055/s-0039-1693751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objectives
In this study, a collagen-rich biomembrane obtained from porcine intestinal submucosa for application in guided bone regeneration was developed and characterized. Then, its biological and mechanical properties were compared with that of commercial products (
GenDerm
[Baumer],
Lumina-Coat
[Critéria],
Surgitime PTFE
[Bionnovation], and
Surgidry Dental F
[Technodry]).
Materials and Methods
The biomembrane was extracted from porcine intestinal submucosa. Scanning electron microscopy, spectroscopic dispersive energy, glycosaminoglycan quantification, and confocal microscopy by intrinsic fluorescence were used to evaluate the collagen structural patterns of the biomembrane. Mechanical tensile and deformation tests were also performed.
Statistical Analysis
The results of the methods used for experimental membrane characterizations were compared with that obtained by the commercial membranes and statistically analyzed (significance of 5%).
Results
The collagen-rich biomembrane developed also exhibited a more organized, less porous collagen fibril network, with the presence of glycosaminoglycans. The experimental biomembrane exhibited mechanical properties, tensile strength, and deformation behavior with improved average stress/strain when compared with other commercial membranes tested. Benefits also include a structured, flexible, and bioresorbable characteristics scaffold.
Conclusions
The experimental collagen-rich membrane developed presents physical–chemical, molecular, and mechanical characteristics similar to or better than that of the commercial products tested, possibly allowing it to actively participating in the process of bone neoformation.
Collapse
Affiliation(s)
- Marcos J Silva
- Universidade Anhanguera de São Paulo-UNIAN, Osasco, SP, Brazil.,Universidade de Araraquara, Núcleo de Pesquisa em Biotecnologia, Centro, Araraquara, SP, Brazil.,Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN/SP), São Paulo, SP, Brazil
| | | | - Kleber M Galvão
- Universidade Anhanguera de São Paulo-UNIAN, Osasco, SP, Brazil
| | - Paulo H P D'Alpino
- Biotechnology and Innovation in Health Program, Universidade Anhanguera de São Paulo (UNIAN/SP), São Paulo, SP, Brazil
| | - Fábio D Nascimento
- Universidade de Mogi das Cruzes, Centro de Ciências Biomédicas, Mogi das Cruzes, SP, Brazil
| |
Collapse
|
26
|
Zahid S, Khalid H, Ikram F, Iqbal H, Samie M, Shahzadi L, Shah AT, Yar M, Chaudhry AA, Awan SJ, Khan AF, Rehman IU. Bi-layered α-tocopherol acetate loaded membranes for potential wound healing and skin regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:438-447. [DOI: 10.1016/j.msec.2019.03.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
|
27
|
Martínez-Martínez MA, Hernandez-Delgadillo R, Abada BS, Pineda-Aguilar N, Solís-Soto JM, Nakagoshi-Cepeda MAA, Nakagoshi-Cepeda SE, Chellam S, Sánchez-Nájera RI, Cabral-Romero C. Antimicrobial potential of bismuth lipophilic nanoparticles embedded into chitosan-based membrane. Dent Mater J 2019; 38:611-620. [PMID: 31105160 DOI: 10.4012/dmj.2018-173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of this work was to analyze the antimicrobial and antibiofilm activities of bismuth lipophilic nanoparticles (BisBAL NPs) incorporated into chitosan-based membranes. Chitosan-based membranes were homogeneously embedded with BisBAL NPs, confirming the bismuth presence by scanning electron microscopy. The tensile strength of chitosan-based membrane alone or with BisBAL NPs showed similar results as elongation, suggesting that BisBAL NP addition did not affect membrane mechanical properties. Chitosan-based membranes complemented with 100 µM of BisBAL NPs caused a complete inhibition of biofilm formation and a 90-98% growth inhibition of six different oral pathogens. Cytotoxicity studies revealed that 80% of human gingival fibroblasts were viable after a 24-h exposure to the chitosan-based membrane with 100 µM of BisBAL NPs and collagen. Altogether, we conclude that the biological properties of chitosan-based membranes supplemented with BisBAL NPs could be a very interesting option for tissue regeneration.
Collapse
|
28
|
Vahabi S, Yadegary Z, Karamshahi M. Evaluating the adhesion of human gingival fibroblasts and MG-63 osteoblast-like cells to activated PRP-coated membranes. Cell Tissue Bank 2019; 20:339-349. [DOI: 10.1007/s10561-019-09772-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/10/2019] [Indexed: 01/04/2023]
|
29
|
In Vitro Effect of Modified Polyetheretherketone (PEEK) Implant Abutments on Human Gingival Epithelial Keratinocytes Migration and Proliferation. MATERIALS 2019; 12:ma12091401. [PMID: 31036797 PMCID: PMC6539123 DOI: 10.3390/ma12091401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/29/2022]
Abstract
Improving soft tissue attachment to implant abutments is a crucial factor for enduring health and maintenance of soft peri-implant tissue health. In this in vitro study we aimed to compare the biocompatibility of three different abutment surfaces: titanium, zirconia and modified polyetheretherketone (PEEK). Surface topography, roughness and wettability were investigated with scanning electron microscopy, profilometer and contact angle meter, respectively. Human gingival epithelial keratinocytes were examined for viability, morphology, proliferation and migration by using tetrazolium salt colorimetric assay, scanning electron microscopy imaging, immunofluorescence bromodeoxyuridine analysis and scratch wound healing assays. Roughness measurements revealed differences between the investigated surfaces. Keratinocytes cultured on all examined surfaces indicated adhesion and attachment by means of scanning electron microscopy imaging. Cell viability assays showed no significant differences between the groups (p > 0.05). The modified PEEK surface similarly improved surface roughness in comparison to titanium and zirconia, which resulted in greater and equivalent cell proliferation and migration. The study methodology showed here may emphasize the importance of cell interactions with different abutment materials, which in part increases the changes of implant success. PEEK, titanium and zirconia surface types used in this study showed mostly similar epithelial biological responses.
Collapse
|
30
|
PRGF-Modified Collagen Membranes for Guided Bone Regeneration: Spectroscopic, Microscopic and Nano-Mechanical Investigations. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9051035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aim of our study was to evaluate the properties of different commercially available resorbable collagen membranes for guided bone regeneration, upon addition of plasma rich in growth factors (PRGF). The structural and morphological details, mechanical properties, and enzymatic degradation were investigated in a new approach, providing clinicians with new data in order to help them in a successful comparison and better selection of membranes with respect to their placement and working condition. Particular characteristics such as porosity, fiber density, and surface topography may influence the mechanical behavior and performances of the membranes, as revealed by SEM/AFM and nanoindentation measurements. The mechanical properties and enzymatic degradation of the membranes were analyzed in a comparative manner, before and after PRGF-modification. The changes in Young modulus values are correlated with the ultrastructural properties of each membrane type. The enzymatic (trypsin) degradation test also emphasized that PRGF-modified membranes exhibit a slower degradation compared to the native ones.
Collapse
|
31
|
Susanto A, Susanah S, Priosoeryanto BP, Satari MH, Komara I. The effect of the chitosan-collagen membrane on wound healing process in rat mandibular defect. J Indian Soc Periodontol 2019; 23:113-118. [PMID: 30983781 PMCID: PMC6434731 DOI: 10.4103/jisp.jisp_232_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Collagen and chitosan are potential biomaterials for medical applications; chitosan-collagen membranes are used as a barrier membrane in guided tissue regeneration and guided bone regeneration. Aims: The purpose of this study was to analyze the effect of the chitosan-collagen membrane on wound healing in rat mandibular defect by counting the number of fibroblasts and new blood vessels. Materials and Methods: As much as 24 male Wistar rats were divided into two groups, the treatment and control group. Bone defects were made In the rat mandible with diamond bur with a diameter of 2 mm, then the defect was covered with a chitosan-collagen membrane, and the control group was covered without application of chitosan-collagen membrane. After the 3rd, 7th, 14th, and the 21st day, the defect site was analyzed histologically. The number of fibroblasts and blood vessels was counted under a light microscope, at five fields with ×1000 and ×400 microscope magnification. Statistical Analysis Used: This study was done by using analysis of variance and unpaired t-test. Results: The average number of fibroblasts and blood vessels in the treatment group was higher than the control group. There was a significant difference in the number of fibroblasts on the 3rd and 7th day (P = 0.001; P = 0.001) and the number of blood vessels on the 3rd day (P = 0.04). Conclusion: The chitosan-collagen membrane was able to increase the number of fibroblasts and new blood vessels in the wound healing process.
Collapse
Affiliation(s)
- Agus Susanto
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Indonesia
| | - Susi Susanah
- Department of Pediatrics, Faculty of Medicine, Universitas Padjadjaran, Indonesia
| | | | | | - Ira Komara
- Department of Periodontics, Faculty of Dentistry, Universitas Padjadjaran, Indonesia
| |
Collapse
|
32
|
Rathod ML, Ahn J, Saha B, Purwar P, Lee Y, Jeon NL, Lee J. PDMS Sylgard 527-Based Freely Suspended Ultrathin Membranes Exhibiting Mechanistic Characteristics of Vascular Basement Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40388-40400. [PMID: 30360091 DOI: 10.1021/acsami.8b12309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the past, significant effort has been made to develop ultrathin membranes exhibiting physiologically relevant mechanical properties, such as thickness and elasticity of native basement membranes. However, most of these fabricated membranes have a relatively high elastic modulus, ∼MPa-GPa, relevant only to retinal and epithelial basement membranes. Vascular basement membranes exhibiting relatively low elastic modulus, ∼kPa, on the contrary, have seldom been mimicked. Membranes demonstrating high compliance, with moduli ranging in ∼kPa along with sub-microscale thicknesses have rarely been reported, and would be ideal to mimic vascular basement membranes in vitro. To address this, we fabricate ultrathin membranes demonstrating the mechanistic features exhibited by their vascular biological counterparts. Salient features of the fabricated ultrathin membranes include free suspension, physiologically relevant thickness ∼sub-micrometers, relatively low modulus ∼kPa, and sufficiently large culture area ∼20 mm2. To fabricate such ultrathin membranes, undiluted PDMS Sylgard 527 was utilized as opposed to the conventional diluted polymer-solvent mixture approach. In addition, the necessity to have a sacrificial layer for releasing membranes from the underlying substrates was also eliminated in our approach. The novelty of our work lies in achieving the distinct combination of membranes having thickness in sub-micrometers and the associated elasticity in kilopascal using undiluted polymer, which past approaches with dilution have not been able to accomplish. The ultrathin membranes with average thickness of 972 nm (thick) and 570 nm (thin) were estimated to have an elastic modulus of 45 and 214 kPa, respectively. Contact angle measurements revealed the ultrathin membranes exhibited hybrophobic characteristics in unpeeled state and transformed to hydrophilic behavior when freely suspended. Human umbilical vein endothelial cells were cultured on the polymeric ultrathin membranes, and the temporal cell response to change in local compliance of the membranes was studied by evaluating the cell spread area, density, percentage area coverage, and spread rate. After 24 h, single cells, pairs, and group of three to four cells were noticed on highly compliant thick membranes, having average thickness of 972 nm and modulus of 45 kPa. On the contrary, the cell monolayer was noted on the glass slide acting as a control. For the thin membranes featuring average thickness of 570 nm and modulus of 214 kPa, the cells tend to exhibit response similar to that on control with initiation of monolayer formation. Our results indicate, the local compliance, in turn, the membrane thickness governs the cell behavior and this can have vital implications during disease initiation and progression, wound healing, and cancer cell metastasis.
Collapse
Affiliation(s)
- Mitesh L Rathod
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
| | - Jungho Ahn
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
- George W. Woodruff School of Mechanical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Biswajit Saha
- Chemical Engineering Department , National Institute of Technology , Rourkela , Odisha , India 769008
| | - Prashant Purwar
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
| | - Yejin Lee
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
| | - Noo Li Jeon
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
| | - Junghoon Lee
- School of Mechanical and Aerospace Engineering , Seoul National University , Seoul 151-744 , South Korea
| |
Collapse
|
33
|
Siddeshappa ST, Bhatnagar S, Diwan V, Parvez H. Regenerative potential of subepithelial connective tissue graft in the treatment of periodontal infrabony defects. J Indian Soc Periodontol 2018; 22:492-497. [PMID: 30631227 PMCID: PMC6305092 DOI: 10.4103/jisp.jisp_312_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Due to high prevalence and progression of infrabony defects lead to increase in the possibility of tooth loss. Various regenerative techniques such as guided tissue regeneration, bone grafts, and biomimetic agents have been proposed. Subepithelial connective tissue graft (SCTG) is an autogenous membrane, which contains mesenchymal cells and has osteogenic, chondrogenic, and osteoblastic activities. The present study investigates the effective application of SCTG as an autogenous barrier membrane in the treatment of periodontal infrabony defect. MATERIALS AND METHODS Ten patients in the age group of 30-45 years suffering from chronic periodontitis with clinical and radiographic evidence of vertical defects were selected for the study. Clinical parameters evaluated were gingival index, plaque index, probing pocket depth, clinical attachment level, and gingival recession. These parameters were assessed at baseline, 6 and 9 months. Radiographic parameter (defect fill) was evaluated at baseline, 6, and 9 months postoperatively. Sites were treated with PERIOGLAS® and connective tissue graft. Statistical analysis was done using paired t-test. RESULTS All the patients finished the study. A significant improvement was observed regarding clinical parameters from baseline to 9 months. The radiographic defect fill was seen in all the cases at the end of 9 months, which was statistically significant in comparison with baseline scores. CONCLUSION SCTG could be effectively used as a barrier membrane for the treatment of periodontal infrabony defects.
Collapse
Affiliation(s)
| | - Shruti Bhatnagar
- Department of Periodontology, Rungta College of Dental Sciences and Research, Bhilai, Chhattisgarh, India
| | - Vikas Diwan
- Consultant Periodontist, Balaji Wards, Jagadalpur, Bastar, India
| | - Humera Parvez
- Consultant Periodontist, Ralas Enclave Society, Dagania, Raipur, Chhattisgarh, India
| |
Collapse
|
34
|
Genderen AM, Jansen J, Cheng C, Vermonden T, Masereeuw R. Renal Tubular- and Vascular Basement Membranes and their Mimicry in Engineering Vascularized Kidney Tubules. Adv Healthc Mater 2018; 7:e1800529. [PMID: 30091856 DOI: 10.1002/adhm.201800529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/18/2018] [Indexed: 01/09/2023]
Abstract
The high prevalence of chronic kidney disease leads to an increased need for renal replacement therapies. While there are simply not enough donor organs available for transplantation, there is a need to seek other therapeutic avenues as current dialysis modalities are insufficient. The field of regenerative medicine and whole organ engineering is emerging, and researchers are looking for innovative ways to create (part of) a functional new organ. To biofabricate a kidney or its functional units, it is necessary to understand and learn from physiology to be able to mimic the specific tissue properties. Herein is provided an overview of the knowledge on tubular and vascular basement membranes' biochemical components and biophysical properties, and the major differences between the two basement membranes are highlighted. Furthermore, an overview of current trends in membrane technology for developing renal replacement therapies and to stimulate kidney regeneration is provided.
Collapse
Affiliation(s)
- Anne Metje Genderen
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Jitske Jansen
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Caroline Cheng
- Regenerative Medicine Center UtrechtUniversity Medical Center Utrecht 3584 CT Utrecht The Netherlands
- Department of Nephrology and HypertensionUniversity Medical Center Utrecht 3508 GA Utrecht The Netherlands
- Department of Experimental CardiologyErasmus Medical Center 3015 GD Rotterdam The Netherlands
| | - Tina Vermonden
- Division of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| | - Rosalinde Masereeuw
- Division of PharmacologyUtrecht Institute for Pharmaceutical Sciences 3584 CG Utrecht The Netherlands
| |
Collapse
|
35
|
Sigusch BW, Dietsch S, Berg A, Voelpel A, Guellmar A, Rabe U, Schnabelrauch M, Steen D, Gitter B, Albrecht V, Watts DC, Kranz S. Antimicrobial photodynamic active biomaterials for periodontal regeneration. Dent Mater 2018; 34:1542-1554. [PMID: 29970234 DOI: 10.1016/j.dental.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Biomaterials for periodontal regeneration may have insufficient mechanical and antimicrobial properties or are difficult to apply under clinical conditions. The aim of the present study was to develop a polymeric bone grafting material of suitable physical appearance and antimicrobial photodynamic activity. METHODS Two light curable biomaterials based on urethane dimethacrylate (BioM1) and a tri-armed oligoester-urethane methacrylate (BioM2) that additionally contained a mixture of β-tricalcium phosphate microparticles and 20wt% photosensitizer mTHPC (PS) were fabricated and analyzed by their compressive strength, flexural strength and modulus of elasticity. Cytotoxicity was observed by incubating eluates and in direct-contact to MC3T3-E1 cells. Antimicrobial activity was ascertained on Porphyromonas gingivalis and Enterococcus faecalis upon illumination with laser light (652nm, 1×100J/cm2, 2×100J/cm2). RESULTS The compressive strength, flexural strength and elastic modulus were, respectively, 311.73MPa, 22.81MPa and 318.85MPa for BioM1+PS and 742.37MPa, 7.58MPa and 406.23MPa for BioM2+PS. Both materials did not show any cytotoxic behavior. Single laser-illumination (652nm) caused total suppression of P. gingivalis (BioM2+PS), while repeated irradiation reduced E. faecalis by 3.7 (BioM1+PS) and 3.1 (BioM2+PS) log-counts. SIGNIFICANCE Both materials show excellent mechanical and cytocompatible properties. In addition, irradiation with 652nm induced significant bacterial suppression. The manufactured biomaterials might enable a more efficient cure of periodontal bone lesions. Due to the mechanical properties functional stability might be increased. Further, the materials are antimicrobial upon illumination with light that enables a trans-mucosal eradication of residual pathogens.
Collapse
Affiliation(s)
- B W Sigusch
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany
| | - S Dietsch
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany
| | - A Berg
- Biomaterials Department, INNOVENT e.V. Pruessingstrasse 27 B, 07745 Jena, Germany
| | - A Voelpel
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany
| | - A Guellmar
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany
| | - U Rabe
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany
| | - M Schnabelrauch
- Biomaterials Department, INNOVENT e.V. Pruessingstrasse 27 B, 07745 Jena, Germany
| | - D Steen
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - B Gitter
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - V Albrecht
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany
| | - D C Watts
- University of Manchester, School of Medical Sciences,Oxford Road, M13 9PL Manchester, UK
| | - S Kranz
- Department of Conservative Dentistry and Periodontology, University Hospitals Jena, An der alten Post 4, 07743 Jena, Germany.
| |
Collapse
|
36
|
Batool F, Morand DN, Thomas L, Bugueno IM, Aragon J, Irusta S, Keller L, Benkirane-Jessel N, Tenenbaum H, Huck O. Synthesis of a Novel Electrospun Polycaprolactone Scaffold Functionalized with Ibuprofen for Periodontal Regeneration: An In Vitro andIn Vivo Study. MATERIALS 2018; 11:ma11040580. [PMID: 29642582 PMCID: PMC5951464 DOI: 10.3390/ma11040580] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/23/2022]
Abstract
Ibuprofen (IBU) has been shown to improve periodontal treatment outcomes. The aim of this study was to develop a new anti-inflammatory scaffold by functionalizing an electrospun nanofibrous poly-ε-caprolactone membrane with IBU (IBU-PCL) and to evaluate its impact on periodontal inflammation, wound healing and regeneration in vitro and in vivo. IBU-PCL was synthesized through electrospinning. The effects of IBU-PCL on the proliferation and migration of epithelial cells (EC) and fibroblasts (FB) exposed to Porphyromonas gingivlais lipopolysaccharide (Pg-LPS) were evaluated through the AlamarBlue test and scratch assay, respectively. Anti-inflammatory and remodeling properties were investigated through Real time qPCR. Finally, the in vivo efficacy of the IBU-PCL membrane was assessed in an experimental periodontitis mouse model through histomorphometric analysis. The results showed that the anti-inflammatory effects of IBU on gingival cells were effectively amplified using the functionalized membrane. IBU-PCL reduced the proliferation and migration of cells challenged by Pg-LPS, as well as the expression of fibronectin-1, collagen-IV, integrin α3β1 and laminin-5. In vivo, the membranes significantly improved the clinical attachment and IBU-PCL also reduced inflammation-induced bone destruction. These data showed that the IBU-PCL membrane could efficiently and differentially control inflammatory and migratory gingival cell responses and potentially promote periodontal regeneration.
Collapse
Affiliation(s)
- Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - David-Nicolas Morand
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Lionel Thomas
- Institute Pluridisciplinaire Hubert CURIEN (IPHC), Strasbourg 67000, France.
| | - Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Javier Aragon
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
| | - Silvia Irusta
- Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), University of Zaragoza, 50018 Zaragoza, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Henri Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France.
- Université de Strasbourg, Faculté de Chirurgie-dentaire, 67000 Strasbourg, France.
- Hopitaux Universitaires de Strasbourg, Pôle de médecine et chirurgie bucco-dentaire, Department of Periodontology, 67000 Strasbourg, France.
| |
Collapse
|
37
|
Yoshimoto I, Sasaki JI, Tsuboi R, Yamaguchi S, Kitagawa H, Imazato S. Development of layered PLGA membranes for periodontal tissue regeneration. Dent Mater 2018; 34:538-550. [DOI: 10.1016/j.dental.2017.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 12/29/2022]
|
38
|
An SJ, Lee SH, Huh JB, Jeong SI, Park JS, Gwon HJ, Kang ES, Jeong CM, Lim YM. Preparation and Characterization of Resorbable Bacterial Cellulose Membranes Treated by Electron Beam Irradiation for Guided Bone Regeneration. Int J Mol Sci 2017; 18:ijms18112236. [PMID: 29068426 PMCID: PMC5713206 DOI: 10.3390/ijms18112236] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022] Open
Abstract
Bacterial cellulose (BC) is an excellent biomaterial with many medical applications. In this study, resorbable BC membranes were prepared for guided bone regeneration (GBR) using an irradiation technique for applications in the dental field. Electron beam irradiation (EI) increases biodegradation by severing the glucose bonds of BC. BC membranes irradiated at 100 kGy or 300 kGy were used to determine optimal electron beam doses. Electron beam irradiated BC membranes (EI-BCMs) were evaluated by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermal gravimetric analysis (TGA), and using wet tensile strength measurements. In addition, in vitro cell studies were conducted in order to confirm the cytocompatibility of EI-BCMs. Cell viabilities of NIH3T3 cells on 100k and 300k EI-BCMs (100 kGy and 300 kGy irradiated BC membranes) were significantly greater than on NI-BCMs after 3 and 7 days (p < 0.05). Bone regeneration by EI-BCMs and their biodegradabilities were also evaluated using in vivo rat calvarial defect models for 4 and 8 weeks. Histometric results showed 100k EI-BCMs exhibited significantly larger new bone area (NBA; %) than 300k EI-BCMs at 8 weeks after implantation (p < 0.05). Mechanical, chemical, and biological analyses showed EI-BCMs effectively interacted with cells and promoted bone regeneration.
Collapse
Affiliation(s)
- Sung-Jun An
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - So-Hyoun Lee
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Sung In Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Jong-Seok Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Hui-Jeong Gwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Eun-Sook Kang
- Department of Prosthodontics, In-Je University Haeundae Paik Hospital, Busan 48108, Korea.
| | - Chang-Mo Jeong
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Youn-Mook Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| |
Collapse
|
39
|
Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int J Biol Macromol 2017; 103:467-476. [DOI: 10.1016/j.ijbiomac.2017.05.086] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
|
40
|
Abstract
No current therapy promotes root canal disinfection and regeneration of the pulp-dentin complex in cases of pulp necrosis. Antibiotic pastes used to eradicate canal infection negatively affect stem cell survival. Three-dimensional easy-to-fit antibiotic-eluting nanofibers, combined with injectable scaffolds, enriched or not with stem cells and/or growth factors, may increase the likelihood of achieving predictable dental pulp regeneration. Periodontitis is an aggressive disease that impairs the integrity of tooth-supporting structures and may lead to tooth loss. The latest advances in membrane biomodification to endow needed functionalities and technologies to engineer patient-specific membranes/constructs to amplify periodontal regeneration are presented.
Collapse
Affiliation(s)
- Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
| | - Divya Pankajakshan
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Jacques E Nör
- Department of Biomedical and Applied Sciences, Indiana, University School of Dentistry, Indianapolis, IN 46202, USA
| |
Collapse
|
41
|
Zhou T, Liu X, Sui B, Liu C, Mo X, Sun J. Development of fish collagen/bioactive glass/chitosan composite nanofibers as a GTR/GBR membrane for inducing periodontal tissue regeneration. ACTA ACUST UNITED AC 2017; 12:055004. [PMID: 28902637 DOI: 10.1088/1748-605x/aa7b55] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of a guided tissue or bone regeneration (GTR/GBR) membrane with excellent performance has been a major challenge in the biomedical field. The present study was designed to prepare a biomimetic electrospun fish collagen/bioactive glass/chitosan (Col/BG/CS) composite nanofiber membrane and determine its structure, mechanical property, antibacterial activity, and biological effects on human periodontal ligament cells (HPDLCs). The effects of this composite membrane on inducing periodontal tissue regeneration were evaluated using a dog class II furcation defect model. It was found that the composite membrane had a biomimetic structure with good hydrophilicity (the contact angle was 12.83 ± 3°) and a tensile strength of 13.1 ± 0.43 Mpa. Compared to the pure fish collagen membrane, the composite membrane showed some degree of antibacterial activity on Streptococcus mutans. The composite membrane not only enhanced the cell viability and osteogenic gene expression of the HPDLCs, but also promoted the expression of RUNX-2 and OPN protein. Further animal experiments confirmed that the composite membrane was able to promote bone regeneration in the furcation defect of dogs. In conclusion, a biomimetic fish Col/BG/CS composite membrane has been developed in the present study, which can induce tissue regeneration with a certain degree antibacterial activity, providing a basis for potential application as a GTR/GBR membrane.
Collapse
Affiliation(s)
- Tian Zhou
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200023, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
The Mechanical Properties and Biometrical Effect of 3D Preformed Titanium Membrane for Guided Bone Regeneration on Alveolar Bone Defect. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7102123. [PMID: 29018818 PMCID: PMC5605874 DOI: 10.1155/2017/7102123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to evaluate the effect of three-dimensional preformed titanium membrane (3D-PFTM) to enhance mechanical properties and ability of bone regeneration on the peri-implant bone defect. 3D-PFTMs by new mechanically compressive molding technology and manually shaped- (MS-) PFTMs by hand manipulation were applied in artificial peri-implant bone defect model for static compressive load test and cyclic fatigue load test. In 12 implants installed in the mandibular of three beagle dogs, six 3D-PFTMs, and six collagen membranes (CM) randomly were applied to 2.5 mm peri-implant buccal bone defect with particulate bone graft materials for guided bone regeneration (GBR). The 3D-PFTM group showed about 7.4 times higher mechanical stiffness and 5 times higher fatigue resistance than the MS-PFTM group. The levels of the new bone area (NBA, %), the bone-to-implant contact (BIC, %), distance from the new bone to the old bone (NB-OB, %), and distance from the osseointegration to the old bone (OI-OB, %) were significantly higher in the 3D-PFTM group than the CM group (p < .001). It was verified that the 3D-PFTM increased mechanical properties which were effective in supporting the space maintenance ability and stabilizing the particulate bone grafts, which led to highly efficient bone regeneration.
Collapse
|
43
|
Lee SH, An SJ, Lim YM, Huh JB. The Efficacy of Electron Beam Irradiated Bacterial Cellulose Membranes as Compared with Collagen Membranes on Guided Bone Regeneration in Peri-Implant Bone Defects. MATERIALS 2017; 10:ma10091018. [PMID: 28862689 PMCID: PMC5615673 DOI: 10.3390/ma10091018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/16/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Bacterial cellulose (BC) is a natural polysaccharide produced by some bacteria, and consists of a linear polymer linked by β-(1,4) glycosidic bonds. BC has been developed as a material for tissue regeneration purposes. This study was conducted to evaluate the efficacy of resorbable electron beam irradiated BC membranes (EI-BCMs) for guided bone regeneration (GBR). The electron beam irradiation (EI) was introduced to control the biodegradability of BC for dental applications. EI-BCMs had higher porosity than collagen membranes (CMs), and had similar wet tensile strengths to CMs. NIH3T3 cell adhesion and proliferation on EI-BCMs were not significantly different from those on CMs (p > 0.05). Micro-computed tomography (μCT) and histometric analysis in peri-implant dehiscence defects of beagle dogs showed that EI-BCMs were non-significantly different from CMs in terms of new bone area (NBA; %), remaining bone substitute volume (RBA; %) and bone-to-implant contact (BIC; %) (p > 0.05). These results suggest resorbable EI-BCMs can be used as an alternative biomaterial for bone tissue regeneration.
Collapse
Affiliation(s)
- So-Hyoun Lee
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Sung-Jun An
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Youn-Mook Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 56212, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
44
|
Inhibiting PHD2 in bone marrow mesenchymal stem cells via lentiviral vector-mediated RNA interference facilitates the repair of periodontal tissue defects in SD rats. Oncotarget 2017; 8:72676-72699. [PMID: 29069818 PMCID: PMC5641161 DOI: 10.18632/oncotarget.20243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) play an important role in angiogenesis, and they can activate the expression of several downstream angiogenic factors. HIF-1 is a major transcriptor of HIFs, composed of α and β subunits. Prolyl hydroxylase domain-containing protein 2 (PHD2) is the main catabolic enzyme for HIF-1α, and it can accelerate its degradation under normoxic conditions. PHD2 expression in bone marrow mesenchymal stem cells (BMMSCs) of SD rats was down-regulated under normoxic conditions in this study by utilizing lentiviral vector-mediated RNA interference to promote HIF-1α accumulation, thus enhancing the expression of angiogenic factors. A tissue-engineered compound was constructed using the composite collagen membrane of BMMSCs after PHD2 gene silencing to repair periodontal fenestration defects in SD rats. The results of this study indicated that, after PHD2 gene silencing, the osteogenic differentiation of BMMSCs was enhanced in vitro, the resistance of cells to oxidative stress was also validated in vitro, thereby illustrating the promotion of the repair of artificially constructed periodontal tissue defects in rats. The results of this study provide a reference and guidance for future applications of RNA interference in periodontal tissue engineering and serve as a basis for improving the survival of seed cells in recipient tissues.
Collapse
|
45
|
The Effect of Thickness of Resorbable Bacterial Cellulose Membrane on Guided Bone Regeneration. MATERIALS 2017; 10:ma10030320. [PMID: 28772680 PMCID: PMC5503340 DOI: 10.3390/ma10030320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 11/25/2022]
Abstract
This study introduces the effect of the thickness of a bacterial cellulose membrane by comparing the bone regeneration effect on rat skulls when using a collagen membrane and different thicknesses of resorbable bacterial cellulose membranes for guided bone regeneration. Barrier membranes of 0.10 mm, 0.15 mm, and 0.20 mm in thickness were made using bacterial cellulose produced as microbial fermentation metabolites. Mechanical strength was investigated, and new bone formation was evaluated through animal experimental studies. Experimental animals were sacrificed after having 2 weeks and 8 weeks of recovery, and specimens were processed for histologic and histomorphometric analyses measuring the area of bone regeneration (%) using an image analysis program. In 2 weeks, bone-like materials and fibrous connective tissues were observed in histologic analysis. In 8 weeks, all experimental groups showed the arrangement of osteoblasts surrounding the supporting body on the margin and center of the bone defect region. However, the amount of new bone formation was significantly higher (p < 0.05) in bacterial cellulose membrane with 0.10 mm in thickness compared to the other experimental groups. Within the limitations of this study, a bacterial cellulose membrane with 0.10 mm thickness induced the most effective bone regeneration.
Collapse
|
46
|
Grenade C, Moniotte N, Rompen E, Vanheusden A, Mainjot A, De Pauw-Gillet MC. A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials. Cytotechnology 2016; 68:2437-2448. [PMID: 27015830 DOI: 10.1007/s10616-016-9964-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/07/2016] [Indexed: 11/30/2022] Open
Abstract
In vitro studies about biomaterials biological properties are essential screening tests. Yet cell cultures encounter difficulties related to cell retention on material surface or to the observation of both faces of permeable materials. The objective of the present study was to develop a reliable in vitro method to study cell behavior on rigid and flexible/permeable biomaterials elaborating two specific insert-based systems (IBS-R and IBS-F respectively). IBS-R was designed as a specific cylindrical polytetrafluoroethylene (PTFE) system to evaluate attachment, proliferation and morphology of human gingival fibroblasts (HGFs) on grade V titanium and lithium disilicate glass-ceramic discs characteristics of dental prostheses. The number of cells, their covering on discs and their morphology were determined from MTS assays and microscopic fluorescent images after 24, 48 and 72 h. IBS-F was developed as a two components system to study HGFs behavior on guided bone regeneration polyester membranes. The viability and the membrane barrier effect were evaluated by metabolic MTS assays and by scanning electron microscopy. IBS-R and IBS-F were shown to promote (1) easy and rapid handling; (2) cell retention on biomaterial surface; (3) accurate evaluation of the cellular proliferation, spreading and viability; (4) use of non-toxic material. Moreover IBS-F allowed the study of the cell migration through degradable membranes, with an access to both faces of the biomaterial and to the bottom of culture wells for medium changing.
Collapse
Affiliation(s)
- Charlotte Grenade
- Dental Biomaterials Research Unit (d-BRU) and Department of Fixed Prosthodontics, Institute of Dentistry, University of Liège (ULg) and University of Liège Hospital (CHU), Quai Godefroid Kurth 45, 4020, Liège, Belgium.
| | - Nicolas Moniotte
- Mammalian Cell Culture Laboratory, GIGA-R, University of Liège (ULg), Liège, Belgium.,GlaxoSmithKline Vaccines, Parc de la Noire Epine, Rue Fleming, 20, 1300-, Wavre, Belgium
| | - Eric Rompen
- Department of Periodontology and Oral Surgery, Dental Biomaterials Research Unit (d-BRU), Institute of Dentistry, University of Liège (ULg) and University of Liège Hospital (CHU), Liège, Belgium
| | - Alain Vanheusden
- Dental Biomaterials Research Unit (d-BRU) and Department of Fixed Prosthodontics, Institute of Dentistry, University of Liège (ULg) and University of Liège Hospital (CHU), Quai Godefroid Kurth 45, 4020, Liège, Belgium
| | - Amélie Mainjot
- Dental Biomaterials Research Unit (d-BRU) and Department of Fixed Prosthodontics, Institute of Dentistry, University of Liège (ULg) and University of Liège Hospital (CHU), Quai Godefroid Kurth 45, 4020, Liège, Belgium
| | | |
Collapse
|
47
|
Lee SH, Lim YM, Jeong SI, An SJ, Kang SS, Jeong CM, Huh JB. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration. J Adv Prosthodont 2015; 7:484-95. [PMID: 26816579 PMCID: PMC4722153 DOI: 10.4047/jap.2015.7.6.484] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/29/2022] Open
Abstract
PURPOSE This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (α<.05). RESULTS BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane.
Collapse
Affiliation(s)
- So-Hyoun Lee
- Department of Prosthodontics, Dental Research Institute, Biomedical Research Institute, School of Dentistry, Pusan National University, YangSan, Republic of Korea
| | - Youn-Mook Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sung In Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sung-Jun An
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Seong-Soo Kang
- Department of Veterinary Surgery, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Chang-Mo Jeong
- Department of Prosthodontics, Dental Research Institute, Biomedical Research Institute, School of Dentistry, Pusan National University, YangSan, Republic of Korea
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Biomedical Research Institute, School of Dentistry, Pusan National University, YangSan, Republic of Korea
| |
Collapse
|
48
|
Active Nanofibrous Membrane Effects on Gingival Cell Inflammatory Response. MATERIALS 2015; 8:7217-7229. [PMID: 28793632 PMCID: PMC5455376 DOI: 10.3390/ma8105376] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022]
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) is involved in normal skin wound healing and also has anti-inflammatory properties. The association of α-MSH to polyelectrolyte layers with various supports has been shown to improve these anti-inflammatory properties. This study aimed to evaluate the effects of nanofibrous membrane functionalized with α-MSH linked to polyelectrolyte layers on gingival cell inflammatory response. Human oral epithelial cells (EC) and fibroblasts (FB) were cultured on plastic or electrospun Poly-#-caprolactone (PCL) membranes with α-MSH covalently coupled to Poly-L-glutamic acid (PGA-α-MSH), for 6 to 24 h. Cells were incubated with or without Porphyromonas gingivalis lipopolysaccharide (Pg-LPS). Cell proliferation and migration were determined using AlamarBlue test and scratch assay. Expression of interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and transforming growth factor-beta (TGF-β) was evaluated using RT-qPCR method. Cell cultures on plastic showed that PGA-α-MSH reduced EC and FB migration and decreased IL-6 and TGF-β expression in Pg-LPS stimulated EC. PGA-α-MSH functionalized PCL membranes reduced proliferation of Pg-LPS stimulated EC and FB. A significant decrease of IL-6, TNF-α, and TGF-β expression was also observed in Pg-LPS stimulated EC and FB. This study showed that the functionalization of nanofibrous PCL membranes efficiently amplified the anti-inflammatory effect of PGA-α-MSH on gingival cells.
Collapse
|
49
|
Zhang E, Zhu C, Yang J, Sun H, Zhang X, Li S, Wang Y, Sun L, Yao F. Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:278-85. [PMID: 26478312 DOI: 10.1016/j.msec.2015.08.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/18/2015] [Accepted: 08/22/2015] [Indexed: 01/14/2023]
Abstract
With the aim to explore a membrane system with appropriate degradation rate and excellent cell-occlusiveness for guided tissue regeneration (GTR), a series of poly(D, L-lactic acid) (PDLLA)/poly(D, L-lactic-co-glycolic acid) (PLGA) (100/0, 70/30, 50/50, 30/70, 0/100, w/w) composite membranes were fabricated via electrospinning. The fabricated membranes were evaluated by morphological characterization, water contact angle measurement and tensile test. In vitro degradation was characterized in terms of the weight loss and the morphological change. Moreover, in vitro cytologic research revealed that PDLLA/PLGA composite membranes could efficiently inhibit the infiltration of 293 T cells. Finally, subcutaneous implant test on SD rat in vivo showed that PDLLA/PLGA (70/30, 50/50) composite membranes could function well as a physical barrier to prevent cellular infiltration within 13 weeks. These results suggested that electrospun PDLLA/PLGA (50/50) composite membranes could serve as a promising barrier membrane for guided tissue regeneration due to suitable biodegradability, preferable mechanical properties and excellent cellular shielding effects.
Collapse
Affiliation(s)
- Ershuai Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Chuanshun Zhu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, China
| | - Xiaomin Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Suhua Li
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yonglan Wang
- Stomatological Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Lu Sun
- Stomatological Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
50
|
Cao C, Song Y, Yao Q, Yao Y, Wang T, Huang B, Gong P. Preparation and preliminaryin vitroevaluation of a bFGF-releasing heparin-conjugated poly(ε-caprolactone) membrane for guided bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:600-16. [DOI: 10.1080/09205063.2015.1049044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|