1
|
Chen WQ, Yuan YF, Hu KN, Sun DL, Wang SW, He QB, Liu YM, Han CY, Zhang J, Li YZ. Identification of novel variations in three cases with rare inherited neuromuscular disorder. Exp Ther Med 2024; 27:270. [PMID: 38756899 PMCID: PMC11097291 DOI: 10.3892/etm.2024.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/22/2024] [Indexed: 05/18/2024] Open
Abstract
Inherited neuromuscular disorder (IND) is a broad-spectrum, clinically diverse group of diseases that are caused due to defects in the neurosystem, muscles and related tissue. Since IND may originate from mutations in hundreds of different genes, the resulting heterogeneity of IND is a great challenge for accurate diagnosis and subsequent management. Three pediatric cases with IND were enrolled in the present study and subjected to a thorough clinical examination. Next, a genetic investigation was conducted using whole-exome sequencing (WES). The suspected variants were validated through Sanger sequencing or quantitative fluorescence PCR assay. A new missense variant of the Spastin (SPAST) gene was found and analyzed at the structural level using molecular dynamics (MD) simulations. All three cases presented with respective specific clinical manifestations, which reflected the diversity of IND. WES detected the diagnostic variants in all 3 cases: A compound variation comprising collagen type VI α3 chain (COL6A3) (NM_004369; exon19):c.6322G>T(p.E1208*) and a one-copy loss of COL6A3:exon19 in Case 1, which are being reported for the first time; a de novo SPAST (NM_014946; exon8):c.1166C>A(p.T389K) variant in Case 2; and a de novo Duchenne muscular dystrophy (NM_004006; exon11):c.1150-17_1160delACTTCCTTCTTTGTCAGGGGTACATGATinsC variant in Case 3. The structural and MD analyses revealed that the detected novel SPAST: c.1166C>A(p.T389K) variant mainly altered the intramolecular hydrogen bonding status and the protein segment's secondary structure. In conclusion, the present study expanded the IND mutation spectrum. The study not only detailed the precise diagnoses of these cases but also furnished substantial grounds for informed consultations. The approach involving the genetic evaluation strategy using WES for variation screening followed by validation using appropriate methods is beneficial due to the considerable heterogeneity of IND.
Collapse
Affiliation(s)
- Wen-Qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Yu-Fan Yuan
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Ke-Na Hu
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Dong-Lan Sun
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Si-Wen Wang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Qing-Bing He
- Department of Pediatric Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yan-Ming Liu
- Prenatal Diagnosis Center, Langfang Maternal and Child Health Care Hospital, Langfang, Hebei 065000, P.R. China
| | - Cong-Ying Han
- Prenatal Diagnosis Center, Langfang Maternal and Child Health Care Hospital, Langfang, Hebei 065000, P.R. China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei 050011, P.R. China
- Hebei Key Laboratory of Maternal and Fetal Medicine, Shijiazhuang, Hebei 050011, P.R. China
- Shijiazhuang Key Laboratory of Reproductive Health, Shijiazhuang, Hebei 050011, P.R. China
| | - Ya-Zhou Li
- Department of Pediatric Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
2
|
Cubillos-Arcila DM, Martins VF, Zanardi APJ, Machado GD, Burguêz D, Gomeñuka NA, Peyré-Tartaruga LA, Saute JAM. Static Balance in Hereditary Spastic Paraplegias: a Cross-sectional Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:162-171. [PMID: 36692709 DOI: 10.1007/s12311-023-01518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
Motor and somatosensory pathway dysfunction due to degeneration of long tracts in hereditary spastic paraplegias (HSP) indicates that postural abnormalities may be a relevant disease feature. However, balance assessments have been underutilized to study these conditions. How does the static balance of individuals with HSP with eyes open and closed differ from healthy controls, and how does it relate to disease severity? This cross-sectional case-control study assessed the static balance of 17 subjects with genetically confirmed HSP and 17 healthy individuals, evaluating the center of pressure (COP) variables captured by a force platform. The root-mean-square of velocities and mean of displacements amplitudes in mediolateral and anteroposterior axes were correlated with disease severity. All COP parameters' performances were significantly impaired in HSP subjects compared to controls (p < 0.001 for all comparisons). COP with eyes open and closed differed for all variables within the HSP group, whereas in the control group, differences were observed only for anteroposterior velocity and amplitude. Spastic Paraplegia Rating Scale presented moderate direct correlations with the most COP variables (Rho = - 0.520 to - 0.736). HSP individuals presented significant postural instability with eyes open and to a greater extent with eyes closed, corroborating the clinical findings of somatosensorial and proprioceptive pathways dysfunction. The degrees of proprioceptive and motor impairments are mutually correlated, suggesting that similar pathophysiological mechanisms operate for the degeneration of these long tracts. COP parameters can be seen as disease severity biomarkers of HSP, and they should be assessed in future clinical trials.
Collapse
Affiliation(s)
- Diana Maria Cubillos-Arcila
- Neurogenetics: Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Exercise Research Laboratory, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Valéria Feijó Martins
- Graduate Program in Human Movement Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Paula Janner Zanardi
- Graduate Program in Human Movement Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Gustavo Dariva Machado
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, Porto Alegre, 2350, Zip-code 90035-903, Brazil
| | - Daniela Burguêz
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, Porto Alegre, 2350, Zip-code 90035-903, Brazil
| | - Natalia Andrea Gomeñuka
- Exercise Research Laboratory, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Research Center, Universidad Católica de Las Misiones, UCAMI, Posadas, Argentina
| | - Leonardo Alexandre Peyré-Tartaruga
- Exercise Research Laboratory, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Graduate Program in Human Movement Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Jonas Alex Morales Saute
- Neurogenetics: Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Graduate Program in Medicine: Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos, Porto Alegre, 2350, Zip-code 90035-903, Brazil.
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Internal Medicine Department, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
3
|
Alecu JE, Saffari A, Ziegler M, Jordan C, Tam A, Kim S, Leung E, Szczaluba K, Mierzewska H, King SD, Santorelli FM, Yoon G, Trombetta B, Kivisäkk P, Zhang B, Sahin M, Ebrahimi-Fakhari D. Plasma Neurofilament Light Chain Is Elevated in Adaptor Protein Complex 4-Related Hereditary Spastic Paraplegia. Mov Disord 2023; 38:1742-1750. [PMID: 37482941 PMCID: PMC10529494 DOI: 10.1002/mds.29524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/15/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Adaptor protein complex 4-associated hereditary spastic paraplegia (AP-4-HSP) is caused by pathogenic biallelic variants in AP4B1, AP4M1, AP4E1, and AP4S1. OBJECTIVE The aim was to explore blood markers of neuroaxonal damage in AP-4-HSP. METHODS Plasma neurofilament light chain (pNfL) and glial fibrillary acidic protein (GFAP) levels were measured in samples from patients and age- and sex-matched controls (NfL: n = 46 vs. n = 46; GFAP: n = 14 vs. n = 21) using single-molecule array assays. Patients' phenotypes were systematically assessed using the AP-4-HSP natural history study questionnaires, the Spastic Paraplegia Rating Scale, and the SPATAX disability score. RESULTS pNfL levels increased in AP-4-HSP patients, allowing differentiation from controls (Mann-Whitney U test: P = 3.0e-10; area under the curve = 0.87 with a 95% confidence interval of 0.80-0.94). Phenotypic cluster analyses revealed a subgroup of individuals with severe generalized-onset seizures and developmental stagnation, who showed differentially higher pNfL levels (Mann-Whitney U test between two identified clusters: P = 2.5e-6). Plasma GFAP levels were unchanged in patients with AP-4-HSP. CONCLUSIONS pNfL is a potential disease marker in AP-4-HSP and can help differentiate between phenotypic subgroups. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Julian E. Alecu
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Afshin Saffari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marvin Ziegler
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine Jordan
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Tam
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Soyoung Kim
- Sozialpaediatrisches Zentrum Frankfurt Mitte, Frankfurt am Main, Germany
| | - Edward Leung
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Hanna Mierzewska
- Department of Neurology, Institute of Mother and Child, Warsaw, Poland
| | - Staci D. King
- Department of Neurology, Texas Children’s Hospital, Houston, Texas, USA
| | | | - Grace Yoon
- Divisions of Clinical and Metabolic Genetics and Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bianca Trombetta
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pia Kivisäkk
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bo Zhang
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- ICCTR Biostatistics and Research Design Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mustafa Sahin
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, Massachusetts, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, Massachusetts, USA
- Intellectual and Developmental Disabilities Research Center, Boston Children’s Hospital, Boston, Massachusetts, USA
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Kang YR, Nam TS, Kim JM, Kang KW, Choi SM, Lee SH, Kim BC, Kim MK. Clinical analysis in patients with SPG11 hereditary spastic paraplegia. Front Neurol 2023; 14:1198728. [PMID: 37396771 PMCID: PMC10310533 DOI: 10.3389/fneur.2023.1198728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Background To analyze the clinical phenotype of hereditary spastic paraplegia (HSP) caused by SPG11 mutations (SPG11-HSP). Methods Among the 17 patients with sporadic HSP who performed whole exome sequencing analysis, six were diagnosed with SPG11-HSP. The clinical and radiologic findings and the results of the electrodiagnostic and neuropsychologic tests were reviewed retrospectively. Results The median age at onset was 16.5 years (range, 13-38 years). Progressive spastic paraparesis was a core feature, and the median spastic paraplegia rating scale score was 24/52 (range, 16-31 points). Additional major symptoms were pseudobulbar dysarthria, intellectual disability, bladder dysfunction, and being overweight. Minor symptoms included upper limbs rigidity and sensory axonopathy. The median body mass index was 26.2 kg/m2 (range, 25.2-32.3 kg/m2). The thin corpus callosum (TCC) was predominant at the rostral body or anterior midbody, and the ears of the lynx sign was seen in all. The follow-up MRI showed the worsening of periventricular white matter (PVWM) signal abnormalities with ventricular widening or the extension of the TCC. Motor evoked potentials (MEP) to the lower limbs showed an absent central motor conduction time (CMCT) in all subjects. The upper limb CMCT was initially absent in three subjects, although it became abnormal in all at the follow-up. The mini-mental state examination median score was 27/30 (range, 26-28) with selective impairment of the attention/calculation domain. The median score of the full-scale intelligence quotient was 48 (range, 42-72) on the Wechsler Adult Intelligence Scale test. Conclusion Attention/calculation deficits and being overweight as well as pseudobulbar dysarthria were common additional symptoms in patients with SPG11-HSP. The rostral body and anterior midbody of the corpus callosum were preferentially thinned, especially in the early stage of the disease. The TCC, PVWM signal changes, and MEP abnormality worsened as the disease progressed.
Collapse
Affiliation(s)
- You-Ri Kang
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Tai-Seung Nam
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae-Myung Kim
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Kyung Wook Kang
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seung-Han Lee
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Myeong-Kyu Kim
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Lindig T, Ruff C, Rattay TW, König S, Schöls L, Schüle R, Nägele T, Ernemann U, Klose U, Bender B. Detection of spinal long fiber tract degeneration in HSP: Improved diffusion tensor imaging. Neuroimage Clin 2022; 36:103213. [PMID: 36270162 PMCID: PMC9668628 DOI: 10.1016/j.nicl.2022.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Spinal diffusion tensor imaging (sDTI) is still a challenging technique for selectively evaluating anatomical areas like the pyramidal tracts (PT), dorsal columns (DC), and anterior horns (AH) in clinical routine and for reliably quantifying white matter anisotropy and diffusivity. In neurodegenerative diseases, the value of sDTI is promising but not yet well understood. The objective of this prospective, single-center study was to evaluate the long fiber tract degeneration within the spinal cord in normal aging (n = 125) and to prove its applicability in pathologic conditions as in patients with molecular genetically confirmed hereditary spastic paraplegias (HSP; n = 40), a prototypical disease of the first motor neuron and in some genetic variants with affection of the dorsal columns. An optimized monopolar Stejskal-Tanner sequence for high-resolution, axial sDTI of the cervical spinal cord at 3.0 T with advanced standardized evaluation methods was developed for a robust DTI value estimation of PT, DC, and AH in both groups. After sDTI measurement at C2, an automatic motion correction and an advanced semi-automatic ROI-based, standardized evaluation of white matter anisotropy and diffusivity was performed to obtain regional diffusivity measures for PT, DC, and AH. Reliable and stable sDTI values were acquired in a healthy population without significant decline between age 20 and 65. Reference values for PT, DC, and AH for fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were established. In HSP patients, the decline of the long spinal fiber tracts could be demonstrated by diffusivity abnormalities in the pyramidal tracts with significantly reduced PTFA (p < 0.001), elevated PTRD (p = 0.002) and reduced PTMD (p = 0.003) compared to healthy controls. Furthermore, FA was significantly reduced in DCFA (p < 0.001) with no differences in AH. In a genetically homogeneous subgroup of SPG4 patients (n = 12) with affection of the dorsal columns, DCRD significantly correlated with the overall disease severity as measured by the Spastic Paraplegia Rating Scale (SPRS) (r = - 0.713, p = 0.009). With the most extensive sDTI study in vivo to date, we showed that axial sDTI combined with motion correction and advanced data post-processing strategies enables robust measurements and is ready to use, allowing recognition and quantification of disease- and age-related changes of the PT, DC, and AH. These results may also encourage the usage of sDTI in other neurodegenerative diseases with spinal cord involvement to explore its capability as selective biomarkers.
Collapse
Affiliation(s)
- Tobias Lindig
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Christer Ruff
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany.
| | - Tim W Rattay
- Center for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen 72076, Germany
| | - Stephan König
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Ludger Schöls
- Center for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen 72076, Germany
| | - Rebecca Schüle
- Center for Neurology, Department of Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, Tübingen 72076, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Str. 23, Tübingen 72076, Germany
| | - Thomas Nägele
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Ulrike Ernemann
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, Tübingen 72076, Germany
| |
Collapse
|
6
|
Narendiran S, Debnath M, Shivaram S, Kannan R, Sharma S, Christopher R, Seshagiri DV, Jain S, Purushottam M, Mangalore S, Bharath RD, Bindu PS, Sinha S, Taly AB, Nagappa M. Novel insights into the genetic profile of hereditary spastic paraplegia in India. J Neurogenet 2022; 36:21-31. [DOI: 10.1080/01677063.2022.2064463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sundarapandian Narendiran
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sumanth Shivaram
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ramakrishnan Kannan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shivani Sharma
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Doniparthi V. Seshagiri
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Meera Purushottam
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandhya Mangalore
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rose Dawn Bharath
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Sanjib Sinha
- National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Arun B. Taly
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Departments of Neurology and Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
7
|
Jordans S, Hardt R, Becker I, Winter D, Wang-Eckhardt L, Eckhardt M. Age-Dependent Increase in Schmidt-Lanterman Incisures and a Cadm4-Associated Membrane Skeletal Complex in Fatty Acid 2-hydroxylase Deficient Mice: a Mouse Model of Spastic Paraplegia SPG35. Mol Neurobiol 2022; 59:3969-3979. [PMID: 35445918 PMCID: PMC9167166 DOI: 10.1007/s12035-022-02832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
Abstract
PNS and CNS myelin contain large amounts of galactocerebroside and sulfatide with 2-hydroxylated fatty acids. The underlying hydroxylation reaction is catalyzed by fatty acid 2-hydroxylase (FA2H). Deficiency in this enzyme causes a complicated hereditary spastic paraplegia, SPG35, which is associated with leukodystrophy. Mass spectrometry-based proteomics of purified myelin isolated from sciatic nerves of Fa2h-deficient (Fa2h−/−) mice revealed an increase in the concentration of the three proteins Cadm4, Mpp6 (Pals2), and protein band 4.1G (Epb41l2) in 17-month-old, but not in young (4 to 6-month-old), Fa2h−/− mice. These proteins are known to form a complex, together with the protein Lin7, in Schmidt-Lanterman incisures (SLIs). Accordingly, the number of SLIs was significantly increased in 17-month-old but not 4-month-old Fa2h−/− mice compared to age-matched wild-type mice. On the other hand, the relative increase in the SLI frequency was less pronounced than expected from Cadm4, Lin7, Mpp6 (Pals2), and band 4.1G (Epb41l2) protein levels. This suggests that the latter not only reflect the higher SLI frequency but that the concentration of the Cadm4 containing complex itself is increased in the SLIs or compact myelin of Fa2h−/− mice and may potentially play a role in the pathogenesis of the disease. The proteome data are available via ProteomeXchange with identifier PXD030244.
Collapse
Affiliation(s)
- Silvia Jordans
- Department for Pediatric Hematology and Oncology, Center for Pediatrics, University Hospital Bonn, Venusberg-Campus 1, 53117, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Robert Hardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Dominic Winter
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
8
|
Brighente SF, Vicuña P, Rodrigues Louzada AL, Giordani GM, Fussiger H, dos Santos MAR, Cubillos-Arcila DM, Winckler PB, Saute JAM. Evoked potentials as biomarkers of hereditary spastic paraplegias: A case-control study. PLoS One 2021; 16:e0259397. [PMID: 34847171 PMCID: PMC8631666 DOI: 10.1371/journal.pone.0259397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The Hereditary Spastic Paraplegias (HSP) are a group of genetic diseases that lead to slow deterioration of locomotion. Clinical scales seem to have low sensitivity in detecting disease progression, making the search for additional biomarkers a paramount task. This study aims to evaluate the role of evoked potentials (EPs) as disease biomarkers of HSPs. Methods A single center cross-sectional case-control study was performed, in which 18 individuals with genetic diagnosis of HSP and 21 healthy controls were evaluated. Motor evoked potentials (MEP) obtained with transcranial magnetic stimulation and somatosensory evoked potentials (SSEP) were performed in lower (LL) and upper limbs (UL). Results Central motor conduction time in lower limbs (CMCT-LL) was prolonged in HSP subjects, with marked reductions in MEP-LL amplitudes when compared to the control group (p<0.001 for both comparisons). CMCT-UL was 3.59ms (95% CI: 0.73 to 6.46; p = 0.015) prolonged and MEP-UL amplitudes were reduced (p = 0.008) in the HSP group. SSEP-LL latencies were prolonged in HSP subjects when compared to controls (p<0.001), with no statistically significant differences for upper limbs (p = 0.147). SSEP-UL and SSEP-LL latencies presented moderate to strong correlations with age at onset (Rho = 0.613, p = 0.012) and disease duration (Rho = 0.835, p<0.001), respectively. Similar results were obtained for the SPG4 subgroups of patients. Conclusion Motor and somatosensory evoked potentials can adequately differentiate HSP individuals from controls. MEP were severely affected in HSP subjects and SSEP-LL latencies were prolonged, with longer latencies being related to more severe disease. Future longitudinal studies should address if SSEP is a sensitive disease progression biomarker for HSP.
Collapse
Affiliation(s)
- Samanta Ferraresi Brighente
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paul Vicuña
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Gabriela Marchisio Giordani
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Helena Fussiger
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Diana Maria Cubillos-Arcila
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Brea Winckler
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Jonas Alex Morales Saute
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- * E-mail:
| |
Collapse
|
9
|
Jordan C, Geisel G, Alecu JE, Zhang B, Sahin M, Ebrahimi-Fakhari D. Disease Severity and Motor Impairment Correlate With Health-Related Quality of Life in AP-4-Associated Hereditary Spastic Paraplegia. NEUROLOGY-GENETICS 2021; 7:e605. [PMID: 34295967 PMCID: PMC8293284 DOI: 10.1212/nxg.0000000000000605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/23/2021] [Indexed: 11/15/2022]
Abstract
Objective AP-4-associated hereditary spastic paraplegia (AP-4-HSP) is a childhood-onset neurogenetic disease and mimic of cerebral palsy. Data on health-related quality of life (HRQoL) are lacking. To establish a metric for HRQoL and caregiver priorities, we used the Caregiver Priorities and Child Health Index of Life with Disabilities (CPCHILD) questionnaire to assess HRQoL in correlation with disease severity in 64 patients with AP-4-HSP. Methods A cross-sectional analysis of caregiver-reported HRQoL was performed using the CPCHILD questionnaire in combination with a detailed clinical characterization. Results HRQoL was impaired in all domains in patients with AP-4-HSP (mean score: 59.6 ± 12.6 [SD]), with no significant difference between the 4 subtypes. Age, as a surrogate for disease duration, and Spastic Paraplegia Rating Scale scores, as an indicator for corticospinal tract dysfunction and motor impairment, correlated with lower CPCHILD scores (Pearson r = −0.31, p = 0.01 and r = −0.52, p < 0.0001, respectively). Patients with tetraplegia showed lower CPCHILD scores compared with individuals with diplegia or no spasticity. Wheelchair dependence reduced HRQoL in all domains. The presence of seizures, including medically refractory epilepsy, was not associated with lower CPCHILD scores. Standardized assessment of caregiver priorities identified several areas of high importance to HRQoL. Conclusions We show that the CPCHILD questionnaire, developed for use in children with cerebral palsy, can be used to assess HRQoL in patients with childhood-onset complex hereditary spastic paraplegia. HRQoL is reduced in patients with AP-4-HSP and correlates with the degree of motor impairment. These results provide a framework for medical decision making and a baseline for the future development of treatment guidelines and interventional trials.
Collapse
Affiliation(s)
- Catherine Jordan
- Department of Neurology and The F.M. Kirby Neurobiology Center (C.J., G.G., J.E.A., M.S., D.E.-F.), Rosamund Stone Zander Translational Neuroscience Center (G.G., M.S.), and ICCTR Biostatistics and Research Design Center (B.Z.), Boston Children's Hospital, Harvard Medical School, MA
| | - Gregory Geisel
- Department of Neurology and The F.M. Kirby Neurobiology Center (C.J., G.G., J.E.A., M.S., D.E.-F.), Rosamund Stone Zander Translational Neuroscience Center (G.G., M.S.), and ICCTR Biostatistics and Research Design Center (B.Z.), Boston Children's Hospital, Harvard Medical School, MA
| | - Julian E Alecu
- Department of Neurology and The F.M. Kirby Neurobiology Center (C.J., G.G., J.E.A., M.S., D.E.-F.), Rosamund Stone Zander Translational Neuroscience Center (G.G., M.S.), and ICCTR Biostatistics and Research Design Center (B.Z.), Boston Children's Hospital, Harvard Medical School, MA
| | - Bo Zhang
- Department of Neurology and The F.M. Kirby Neurobiology Center (C.J., G.G., J.E.A., M.S., D.E.-F.), Rosamund Stone Zander Translational Neuroscience Center (G.G., M.S.), and ICCTR Biostatistics and Research Design Center (B.Z.), Boston Children's Hospital, Harvard Medical School, MA
| | - Mustafa Sahin
- Department of Neurology and The F.M. Kirby Neurobiology Center (C.J., G.G., J.E.A., M.S., D.E.-F.), Rosamund Stone Zander Translational Neuroscience Center (G.G., M.S.), and ICCTR Biostatistics and Research Design Center (B.Z.), Boston Children's Hospital, Harvard Medical School, MA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology and The F.M. Kirby Neurobiology Center (C.J., G.G., J.E.A., M.S., D.E.-F.), Rosamund Stone Zander Translational Neuroscience Center (G.G., M.S.), and ICCTR Biostatistics and Research Design Center (B.Z.), Boston Children's Hospital, Harvard Medical School, MA
| |
Collapse
|
10
|
Pinto de Souza C, Coelho DB, Campos DDSF, Dos Santos Ghilardi MG, de Oliveira Vicente EC, González-Salazar C, Junior MCF, Barsottini OGP, Pedroso JL, Fonoff ET. Spinal cord stimulation improves motor function and gait in spastic paraplegia type 4 (SPG4): Clinical and neurophysiological evaluation. Parkinsonism Relat Disord 2021; 83:1-5. [PMID: 33385858 DOI: 10.1016/j.parkreldis.2020.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/06/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Hereditary spastic paraplegia is a heterogeneous group of genetic disorders characterized by degeneration of the corticospinal tracts, coursing with progressive weakness and spasticity of the lower limbs. To date, there are no effective treatments for progressive deficits or disease-modifying therapy for those patients. We report encouraging results for spastic paraparesis after spinal cord stimulation. METHODS A 51-year-old woman suffering from progressive weakness and spasticity in lower limbs related to hereditary spastic paraplegia type 4 underwent spinal cord stimulation (SCS) and experienced also significant improvement in motor function. Maximum ballistic voluntary isometric contraction test, continuous passive motion test and gait analysis using a motion-capture system were performed in ON and OFF SCS conditions. Neurophysiologic assessment consisted of obtaining motor evoked potentials in both conditions. RESULTS Presurgical Spastic Paraplegia Rating Scale (SPRS) score was 26. One month after effective SCS was initiated, SPRS went down to 15. At 12 months follow up, she experienced substantial improvement in motor function and in gait performance, with SPRS scores 23 (OFF) and down to 20 (ON). There was an increased isometric muscle strength (knee extension, OFF: 41 N m; ON: 71 N m), lower knee extension and flexion torque values in continuous passive motion test (decrease in spastic tone) and improvement in gait (for example, step length increase). CONCLUSION Despite being a case study, our findings suggest innovative lines of research for the treatment of spastic paraplegia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - José Luiz Pedroso
- Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
11
|
Ebrahimi-Fakhari D, Teinert J, Behne R, Wimmer M, D'Amore A, Eberhardt K, Brechmann B, Ziegler M, Jensen DM, Nagabhyrava P, Geisel G, Carmody E, Shamshad U, Dies KA, Yuskaitis CJ, Salussolia CL, Ebrahimi-Fakhari D, Pearson TS, Saffari A, Ziegler A, Kölker S, Volkmann J, Wiesener A, Bearden DR, Lakhani S, Segal D, Udwadia-Hegde A, Martinuzzi A, Hirst J, Perlman S, Takiyama Y, Xiromerisiou G, Vill K, Walker WO, Shukla A, Dubey Gupta R, Dahl N, Aksoy A, Verhelst H, Delgado MR, Kremlikova Pourova R, Sadek AA, Elkhateeb NM, Blumkin L, Brea-Fernández AJ, Dacruz-Álvarez D, Smol T, Ghoumid J, Miguel D, Heine C, Schlump JU, Langen H, Baets J, Bulk S, Darvish H, Bakhtiari S, Kruer MC, Lim-Melia E, Aydinli N, Alanay Y, El-Rashidy O, Nampoothiri S, Patel C, Beetz C, Bauer P, Yoon G, Guillot M, Miller SP, Bourinaris T, Houlden H, Robelin L, Anheim M, Alamri AS, Mahmoud AAH, Inaloo S, Habibzadeh P, Faghihi MA, Jansen AC, Brock S, Roubertie A, Darras BT, Agrawal PB, Santorelli FM, Gleeson J, Zaki MS, Sheikh SI, Bennett JT, Sahin M. Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia. Brain 2020; 143:2929-2944. [PMID: 32979048 PMCID: PMC7780481 DOI: 10.1093/brain/awz307] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Bi-allelic loss-of-function variants in genes that encode subunits of the adaptor protein complex 4 (AP-4) lead to prototypical yet poorly understood forms of childhood-onset and complex hereditary spastic paraplegia: SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). Here, we report a detailed cross-sectional analysis of clinical, imaging and molecular data of 156 patients from 101 families. Enrolled patients were of diverse ethnic backgrounds and covered a wide age range (1.0-49.3 years). While the mean age at symptom onset was 0.8 ± 0.6 years [standard deviation (SD), range 0.2-5.0], the mean age at diagnosis was 10.2 ± 8.5 years (SD, range 0.1-46.3). We define a set of core features: early-onset developmental delay with delayed motor milestones and significant speech delay (50% non-verbal); intellectual disability in the moderate to severe range; mild hypotonia in infancy followed by spastic diplegia (mean age: 8.4 ± 5.1 years, SD) and later tetraplegia (mean age: 16.1 ± 9.8 years, SD); postnatal microcephaly (83%); foot deformities (69%); and epilepsy (66%) that is intractable in a subset. At last follow-up, 36% ambulated with assistance (mean age: 8.9 ± 6.4 years, SD) and 54% were wheelchair-dependent (mean age: 13.4 ± 9.8 years, SD). Episodes of stereotypic laughing, possibly consistent with a pseudobulbar affect, were found in 56% of patients. Key features on neuroimaging include a thin corpus callosum (90%), ventriculomegaly (65%) often with colpocephaly, and periventricular white-matter signal abnormalities (68%). Iron deposition and polymicrogyria were found in a subset of patients. AP4B1-associated SPG47 and AP4M1-associated SPG50 accounted for the majority of cases. About two-thirds of patients were born to consanguineous parents, and 82% carried homozygous variants. Over 70 unique variants were present, the majority of which are frameshift or nonsense mutations. To track disease progression across the age spectrum, we defined the relationship between disease severity as measured by several rating scales and disease duration. We found that the presence of epilepsy, which manifested before the age of 3 years in the majority of patients, was associated with worse motor outcomes. Exploring genotype-phenotype correlations, we found that disease severity and major phenotypes were equally distributed among the four subtypes, establishing that SPG47, SPG50, SPG51 and SPG52 share a common phenotype, an 'AP-4 deficiency syndrome'. By delineating the core clinical, imaging, and molecular features of AP-4-associated hereditary spastic paraplegia across the age spectrum our results will facilitate early diagnosis, enable counselling and anticipatory guidance of affected families and help define endpoints for future interventional trials.
Collapse
Affiliation(s)
- Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julian Teinert
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Child Neurology and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Robert Behne
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Wimmer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelica D'Amore
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Molecular Medicine, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Kathrin Eberhardt
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara Brechmann
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marvin Ziegler
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dana M Jensen
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Premsai Nagabhyrava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Geisel
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin Carmody
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Uzma Shamshad
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kira A Dies
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher J Yuskaitis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine L Salussolia
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Ebrahimi-Fakhari
- Pediatric Neurology, Saarland University Medical Center, Homburg/Saar, Germany
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster, Germany
| | - Toni S Pearson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Afshin Saffari
- Division of Child Neurology and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Ziegler
- Division of Child Neurology and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David R Bearden
- Child Neurology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Shenela Lakhani
- Center for Neurogenetics, Weill Cornell Medical College, New York, NY, USA
| | - Devorah Segal
- Center for Neurogenetics, Weill Cornell Medical College, New York, NY, USA
- Division of Child Neurology, Weill Cornell Medicine, New York City, NY, USA
| | - Anaita Udwadia-Hegde
- Department of Pediatric Neurology, Jaslok Hospital and Research Centre, Mumbai, India
| | - Andrea Martinuzzi
- Scientific Institute, IRCCS E. Medea, Unità Operativa Conegliano, Treviso, Italy
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Seth Perlman
- Division of Neurology, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | - Katharina Vill
- Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - William O Walker
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | | | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ayse Aksoy
- Pediatric Neurology, Dr. Sami Ulus Hospital, Ankara, Turkey
| | - Helene Verhelst
- Pediatric Neurology, Ghent University Hospital, Ghent, Belgium
| | - Mauricio R Delgado
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Radka Kremlikova Pourova
- Department of Biology and Medical Genetics, Second Medical Faculty, Charles University and UH Motol, Prague, Czech Republic
| | - Abdelrahim A Sadek
- Pediatric Neurology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Lubov Blumkin
- Movement Disorders Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, Sackler School of Medicine, Tel-Aviv University, Israel
| | | | - David Dacruz-Álvarez
- Neurología Pediátrica, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Thomas Smol
- CHU Lille, Institut de Génétique Médicale, RADEME, Lille, France
| | - Jamal Ghoumid
- CHU Lille, Institut de Génétique Médicale, RADEME, Lille, France
| | - Diego Miguel
- Serviço de Genética Médica, Universidade Federal da Bahia, Salvador, Brazil
| | - Constanze Heine
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | | | | | - Jonathan Baets
- Neurogenetics Group and Neuromuscular Reference Center, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Saskia Bulk
- Medical Genetics, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Hossein Darvish
- Cancer Research Center and Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Somayeh Bakhtiari
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Michael C Kruer
- Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Elizabeth Lim-Melia
- Pediatric Medical Genetics, Maria Fareri Children's Hospital, Valhalla, NY, USA
| | - Nur Aydinli
- Pediatric Genetics, Department of Pediatrics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Yasemin Alanay
- Pediatric Neurology, Istanbul Medical Faculty, Istanbul, Turkey
| | | | | | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | | | - Grace Yoon
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mireille Guillot
- Department of Paediatrics, The Hospital for Sick Children and The University of Toronto, Toronto, Canada
| | - Steven P Miller
- Department of Paediatrics, The Hospital for Sick Children and The University of Toronto, Toronto, Canada
| | - Thomas Bourinaris
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Laura Robelin
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Abdullah S Alamri
- Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adel A H Mahmoud
- Pediatrics, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Soroor Inaloo
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Anna C Jansen
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium
| | - Stefanie Brock
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium
| | | | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pankaj B Agrawal
- Divisions of Newborn Medicine and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Joseph Gleeson
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, USA
| | - Maha S Zaki
- Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | | | - James T Bennett
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Fay A, Garcia Y, Margeta M, Maharjan S, Jürgensen C, Briceño J, Garcia M, Yin S, Bassaganyas L, McMahon T, Hou YM, Fu YH, Ptáček LJ. A Mitochondrial tRNA Mutation Causes Axonal CMT in a Large Venezuelan Family. Ann Neurol 2020; 88:830-842. [PMID: 32715519 DOI: 10.1002/ana.25854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this study was to identify the genetic cause for progressive peripheral nerve disease in a Venezuelan family. Despite the growing list of genes associated with Charcot-Marie-Tooth disease, many patients with axonal forms lack a genetic diagnosis. METHODS A pedigree was constructed, based on family clinical data. Next-generation sequencing of mitochondrial DNA (mtDNA) was performed for 6 affected family members. Muscle biopsies from 4 family members were used for analysis of muscle histology and ultrastructure, mtDNA sequencing, and RNA quantification. Ultrastructural studies were performed on sensory nerve biopsies from 2 affected family members. RESULTS Electrodiagnostic testing showed a motor and sensory axonal polyneuropathy. Pedigree analysis revealed inheritance only through the maternal line, consistent with mitochondrial transmission. Sequencing of mtDNA identified a mutation in the mitochondrial tRNAVal (mt-tRNAVal ) gene, m.1661A>G, present at nearly 100% heteroplasmy, which disrupts a Watson-Crick base pair in the T-stem-loop. Muscle biopsies showed chronic denervation/reinnervation changes, whereas biochemical analysis of electron transport chain (ETC) enzyme activities showed reduction in multiple ETC complexes. Northern blots from skeletal muscle total RNA showed severe reduction in abundance of mt-tRNAVal , and mildly increased mt-tRNAPhe , in subjects compared with unrelated age- and sex-matched controls. Nerve biopsies from 2 affected family members demonstrated ultrastructural mitochondrial abnormalities (hyperplasia, hypertrophy, and crystalline arrays) consistent with a mitochondrial neuropathy. CONCLUSION We identify a previously unreported cause of Charcot-Marie-Tooth (CMT) disease, a mutation in the mt-tRNAVal , in a Venezuelan family. This work expands the list of CMT-associated genes from protein-coding genes to a mitochondrial tRNA gene. ANN NEUROL 2020;88:830-842.
Collapse
Affiliation(s)
- Alexander Fay
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yngo Garcia
- Department of Biochemistry, Faculty of Medicine, University of The Andes, Mérida, Venezuela.,Unit of Surgery, Neurosurgery Service, Medical Surgery Clinical Institute, Mérida, Venezuela
| | - Marta Margeta
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claudia Jürgensen
- Department of Biology, Faculty of Science, University of The Andes, Mérida, Venezuela
| | - Jose Briceño
- Physiotherapy and Rehabilitation Service, University Hospital of The Andes, Mérida, Venezuela
| | - Mariaelena Garcia
- Department of Biology, Faculty of Science, University of The Andes, Mérida, Venezuela
| | - Sitao Yin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laia Bassaganyas
- Department of Medical Genetics, University of Cambridge and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Thomas McMahon
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ying-Hui Fu
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Louis J Ptáček
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Non-motor symptoms are relevant and possibly treatable in hereditary spastic paraplegia type 4 (SPG4). J Neurol 2019; 267:369-379. [PMID: 31646384 DOI: 10.1007/s00415-019-09573-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Hereditary spastic paraplegias (HSP) share as cardinal feature progressive spastic gait disorder. SPG4 accounts for about 25% of cases and is caused by mutations in the SPAST gene. Although HSP is an upper motor neuron disease, the relevance of non-motor symptoms is increasingly recognized because of the potential response to treatment. Our study sets out to evaluate non-motor symptoms and their relevance with regard to health-related quality of life. In 118 genetically confirmed SPG4 cases and age- and gender-matched controls, validated questionnaires were used to evaluate fatigue, depression, pain, and restless legs syndrome. In addition, self-reported medical information was collected concerning comorbidities and bladder, bowel, and sexual dysfunction. In a sub-study, cognition was evaluated using the CANTAB® test-battery and the Montreal Cognitive Assessment in 26 SPG4 patients. We found depression and pain to be significantly increased. The frequency of restless legs syndrome varied largely depending on defining criteria. There were no significant deficits in cognition as examined by CANTAB® despite a significant increase in self-reported memory impairment in SPG4 patients. Bladder, sexual, and defecation problems were frequent and seemed to be underrecognized in current treatment strategies. All identified non-motor symptoms correlated with health-related quality of life, which was reduced in SPG4 compared to controls. We recommend that clinicians regularly screen for depression, pain, and fatigue and ask for bladder, sexual, and defecation problems to recognize and treat non-motor symptoms accordingly to improve quality of life in patients with SPG4.
Collapse
|
14
|
Siow SF, Cameron Smail R, Ng K, Kumar KR, Sue CM. Motor Evoked Potentials in Hereditary Spastic Paraplegia-A Systematic Review. Front Neurol 2019; 10:967. [PMID: 31620065 PMCID: PMC6759520 DOI: 10.3389/fneur.2019.00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Hereditary Spastic Paraplegia (HSP) is a slowly progressive neurodegenerative disorder with no disease modifying treatment. Potential therapeutic approaches are emerging and large-scale clinical drug trials for patients with HSP are imminent. A sensitive biomarker to measure the drug efficacy in these trials is required. Motor evoked potentials (MEPs) are a potential biomarker for HSP as they assess the central motor pathways and can be standardized with set protocols and guidelines. Objectives: We performed a systematic review to investigate the utility of MEPs as a diagnostic and disease severity biomarker for HSP. Search Methods: Systematic searches of PubMed, Embase, Medline, and Scopus were performed. Selection Criteria: Studies reporting on central motor conduction time measured with MEPs in adult and pediatric patients with HSP were included. We excluded studies in non-HSP patient cohorts, not in English, not original research, and unpublished journal articles. Data Collection and analysis: Search results were de-duplicated and screened according to the inclusion and exclusion criteria. The included papers were reviewed independently by two reviewers and data was collected on patient cohorts, test methods, results, and study quality. Results were analyzed using descriptive methods. Results: Of the 882 search results, 32 studies were included in the review. The most common finding was absent or prolonged lower limb (LL) central motor conduction time (CMCT) in patients with HSP (78% of patients studied). Quality assessment revealed variability in study methodology and reporting of results. Variations included patient cohorts of various genotypes as well as variations in equipment and techniques used. Aside from CMCT, none of the MEP parameter measures correlated with disease severity and many did not show significant difference between HSP patients and controls. Conclusion: Systematic review of MEP studies in HSP patient cohorts demonstrated mixed findings. Lower limb CMCT was the most promising parameter in terms of differentiating HSP patients from controls, with one study demonstrating a weak correlation with clinical disease severity. It is possible that the lack of consistency in study methodologies and small patient cohorts have contributed to the variable findings. A longitudinal study of MEPs in a large cohort of HSP patients with the same genotype will help clarify the utility of MEPs as a biomarker for disease severity and use in clinical trials.
Collapse
Affiliation(s)
- Sue-Faye Siow
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Ruaridh Cameron Smail
- Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Karl Ng
- Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Kishore R Kumar
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Neurology, Concord Hospital, Sydney, NSW, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.,Department of Neurology and Neurophysiology, Royal North Shore Hospital, St Leonards, NSW, Australia.,Northern Clinical School, Kolling Institute, Royal North Shore Hospital, St Leonards, NSW, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
The Effect of Repetitive Transcranial Magnetic Stimulation on Motor Symptoms in Hereditary Spastic Paraplegia. Neural Plast 2019; 2019:7638675. [PMID: 31214256 PMCID: PMC6535885 DOI: 10.1155/2019/7638675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/11/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hereditary spastic paraplegia (HSP) is a heterogeneous group of inherited disorders affecting predominantly the motor cortex and pyramidal tract, which results in slowly progressing gait disorders, as well as spasticity and weakness of lower extremities. Repetitive transcranial magnetic stimulation (rTMS) has been previously investigated as a therapeutic tool for similar motor deficits in a number of neurologic conditions. The aim of this randomized, controlled trial was to investigate the therapeutic potential of rTMS in various forms of HSP, including pure and complicated forms, as well as adrenomyeloneuropathy. Methods We recruited 15 patients (five women and 10 men; mean age 43.7 ± 10.6 years) with the mentioned forms of HSP. The intervention included five sessions of bilateral 10 Hz rTMS over primary motor areas of the muscles of lower extremities and five sessions of similar sham stimulation. Results One patient dropped out due to seizure, and 14 patients completed the study protocol. After real stimulation, the strength of the proximal and distal muscles of lower extremities increased, and the spasticity of the proximal muscles decreased. Change in spasticity was still present during follow-up assessment. No effect was observed regarding gait velocity. No changes were seen after sham stimulation. A post hoc analysis revealed an inverse relation between motor threshold and the change of the strength after active rTMS. Conclusions rTMS may have potential in improving weakness and spasticity of lower extremities in HSP, especially of proximal muscles whose motor areas are located more superficially. This trial is registered with Clinicaltrials.gov NCT03627416.
Collapse
|
16
|
da Graça FF, de Rezende TJR, Vasconcellos LFR, Pedroso JL, Barsottini OGP, França MC. Neuroimaging in Hereditary Spastic Paraplegias: Current Use and Future Perspectives. Front Neurol 2019; 9:1117. [PMID: 30713518 PMCID: PMC6346681 DOI: 10.3389/fneur.2018.01117] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a large group of genetic diseases characterized by progressive degeneration of the long tracts of the spinal cord, namely the corticospinal tracts and dorsal columns. Genotypic and phenotypic heterogeneity is a hallmark of this group of diseases, which makes proper diagnosis and management often challenging. In this scenario, magnetic resonance imaging (MRI) emerges as a valuable tool to assist in the exclusion of mimicking disorders and in the detailed phenotypic characterization. Some neuroradiological signs have been reported in specific subtypes of HSP and are therefore helpful to guide genetic testing/interpretation. In addition, advanced MRI techniques enable detection of subtle structural abnormalities not visible on routine scans in the spinal cord and brain of subjects with HSP. In particular, quantitative spinal cord morphometry and diffusion tensor imaging look promising tools to uncover the pathophysiology and to track progression of these diseases. In the current review article, we discuss the current use and future perspectives of MRI in the context of HSP.
Collapse
Affiliation(s)
- Felipe Franco da Graça
- Department of Neurology and Neuroimaging Laboratory, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - José Luiz Pedroso
- Department of Neurology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Marcondes C França
- Department of Neurology and Neuroimaging Laboratory, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
17
|
González‐Salazar C, Takazaki KAG, Martinez ARM, Pimentel‐Silva LR, Jacinto‐Scudeiro LA, Nakagawa ÉY, Fujiwara Murakami CE, Saute JAM, Pedroso JL, Barsottini OGP, Teive HAG, França Jr MC. Autonomic dysfunction in hereditary spastic paraplegia type 4. Eur J Neurol 2019; 26:687-693. [DOI: 10.1111/ene.13878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 11/19/2018] [Indexed: 02/03/2023]
Affiliation(s)
- C. González‐Salazar
- Department of Neurology School of Medical Sciences University of Campinas (UNICAMP) CampinasBrazil
| | - K. A. G. Takazaki
- Department of Neurology School of Medical Sciences University of Campinas (UNICAMP) CampinasBrazil
| | - A. R. M. Martinez
- Department of Neurology School of Medical Sciences University of Campinas (UNICAMP) CampinasBrazil
| | - L. R. Pimentel‐Silva
- Department of Neurology School of Medical Sciences University of Campinas (UNICAMP) CampinasBrazil
| | - L. A. Jacinto‐Scudeiro
- Medical Genetics and Neurology Services Hospital de Clínicas de Porto Alegre Porto AlegreBrazil
- Department of Internal Medicine and Sciences Universidade Federal do Rio Grande do Sul (UFRGS) Porto AlegreBrazil
| | - É. Y. Nakagawa
- Department of Internal Medicine Neurology Service Universidade Federal do Paraná CuritibaBrazil
| | - C. E. Fujiwara Murakami
- Department of Internal Medicine Neurology Service Universidade Federal do Paraná CuritibaBrazil
| | - J. A. M. Saute
- Medical Genetics and Neurology Services Hospital de Clínicas de Porto Alegre Porto AlegreBrazil
- Department of Internal Medicine and Sciences Universidade Federal do Rio Grande do Sul (UFRGS) Porto AlegreBrazil
| | - J. L. Pedroso
- Department of Neurology Federal University of São Paulo (UNIFESP) São Paulo Brazil
| | - O. G. P. Barsottini
- Department of Neurology Federal University of São Paulo (UNIFESP) São Paulo Brazil
| | - H. A. G. Teive
- Department of Internal Medicine Neurology Service Universidade Federal do Paraná CuritibaBrazil
| | - M. C. França Jr
- Department of Neurology School of Medical Sciences University of Campinas (UNICAMP) CampinasBrazil
| |
Collapse
|
18
|
Trummer B, Haubenberger D, Blackstone C. Clinical Trial Designs and Measures in Hereditary Spastic Paraplegias. Front Neurol 2018; 9:1017. [PMID: 30627115 PMCID: PMC6309810 DOI: 10.3389/fneur.2018.01017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/12/2018] [Indexed: 01/19/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) are a large group of genetically-diverse neurologic disorders characterized clinically by a common feature of lower extremity spasticity and gait difficulties. Current therapies are predominantly symptomatic, and even then usually provide inadequate relief of symptoms. Going forward, HSP therapeutics development requires a systematic analysis of quantifiable measures and tools to assess treatment response. This review summarizes promising therapeutic targets, assessment measures, and previous clinical trials for the HSPs. Oxidative stress, signaling pathways, microtubule dynamics, and gene rescue/replacement have been proposed as potential treatment targets or modalities. Quantitative evaluation of pre-clinical rodent HSP models emphasize rotarod performance, foot base angle, grip strength, stride length, beam walking, critical speed, and body weight. Clinical measures of HSP in humans include 10-m gait velocity, the Spastic Paraplegia Rating Scale (SPRS), Ashworth Spasticity Scale, Fugl-Meyer Scale, timed up-and-go, and the Gillette Functional Assessment Questionnaire. We conducted a broad search for past clinical trials in HSPs and identified trials that investigated pharmacological agents including atorvastatin, gabapentin, L-threonine, botulinum toxin, dalfampridine, methylphenidate, and baclofen. We provide recommendations for future HSP treatment directions based on these prior research experiences as well as regulatory insight.
Collapse
Affiliation(s)
- Brian Trummer
- Neurogenetics Branch, Clinical Research Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Clinical Trials Unit, Clinical Research Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Dietrich Haubenberger
- Clinical Trials Unit, Clinical Research Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Craig Blackstone
- Neurogenetics Branch, Clinical Research Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Leveille E, Gonorazky HD, Rioux MF, Hazrati LN, Ruskey JA, Carnevale A, Spiegelman D, Dionne-Laporte A, Rouleau GA, Yoon G, Gan-Or Z. Triple A syndrome presenting as complicated hereditary spastic paraplegia. Mol Genet Genomic Med 2018; 6:1134-1139. [PMID: 30381913 PMCID: PMC6305671 DOI: 10.1002/mgg3.492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a group of rare disorders characterized by spastic paraparesis and other symptoms. Often, other diseases can mimic HSP, which may delay diagnosis and treatment. METHODS Whole exome sequencing was performed in families with clinically suspected HSP without a genetic diagnosis. RESULTS We report three patients from two families who presented with lower limb spasticity, muscular atrophy, and other neurological symptoms, who were clinically diagnosed with complicated HSP. Whole exome sequencing revealed bi-allelic AAAS nonsense mutations; one individual was homozygous for the p.(Arg478*) mutation, and two siblings were homozygous for the p.(Arg286*) mutation, leading to the diagnosis of triple A syndrome. This rare syndrome is typically characterized by a triad of symptoms: achalasia, adrenal insufficiency, and alacrima, and is often accompanied by other neurological abnormalities. CONCLUSIONS Our findings suggest that triple A syndrome should be suspected in complicated HSP patients without a known genetic cause, especially if at least one of the main triad of triple A syndrome symptoms is present.
Collapse
Affiliation(s)
- Etienne Leveille
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Hernan D Gonorazky
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Marie-France Rioux
- Department of Neurology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Amanda Carnevale
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Alexandre Dionne-Laporte
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Grace Yoon
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
20
|
Cui F, Sun L, Qiao J, Xiong J, Zhao Y, Li J, Li M, Chen S, Huang X. Hereditary and idiopathic spastic paraparesis: preliminary findings of a single center experience. Neurol Res 2018; 40:1088-1093. [PMID: 30352018 DOI: 10.1080/01616412.2018.1522412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Hereditary spastic paraplegias (HSP) is a heterogeneous group of inherited neurologic disorders with diversified clinical manifestations. The purpose of this study was to summarize the clinical manifestations of HSP by analyzing the clinical data of 56 HSP patients. METHODS A total of 56 HSP patients treated in our hospital from January 2014 to March 2016 were included. Demographic and clinical characteristics of patients were collected. The severity of HSP was assessed by disease severity score. RESULTS The patients included 40 males and 16 females. The mean onset age was 17.86 ± 12.56 years (range: 1-47). The mean disease duration was 13.46 ± 12.82 years (range: 1-63). There were 29 pure (51.8%) forms and 27 complicated (48.2%) HSP. The common manifestations included increased deep tendon reflexes in the lower extremities (94.6%), positive Babinski sign (94.6%), increased muscle tone of lower extremities (91.1%), scissors gait (83.9%), ankle clonus (69.6%), reduced muscle strength in the lower extremities (48.2%) and skeletal deformities (37.5%). Reduced cognitive function was the most common manifestation (55.6%) of the complicated HSP patients. The mean disease severity score was significantly higher in males than in females (2.75 ± 0.55 vs. 2.18 ± 1.13, P = 0.013). Patients with a disease duration >30 years had a significantly higher disease severity score than those with disease duration of 1-10 and 21-30 years. DISCUSSION We reported the clinical features of HSP from 56 patients in our hospital. Our findings should be helpful for better understanding of clinical features of HSP.
Collapse
Affiliation(s)
- Fang Cui
- a Department of Neurology , Hainan Branch of Chinese PLA General Hospital , Sanya , Hainan Province , China
| | - Liuqing Sun
- a Department of Neurology , Hainan Branch of Chinese PLA General Hospital , Sanya , Hainan Province , China
| | - Jie Qiao
- b Department of Neurology , Chinese PLA General Hospital , Beijing , China
| | - Jianmei Xiong
- a Department of Neurology , Hainan Branch of Chinese PLA General Hospital , Sanya , Hainan Province , China
| | - Yangang Zhao
- a Department of Neurology , Hainan Branch of Chinese PLA General Hospital , Sanya , Hainan Province , China
| | - Jianyong Li
- a Department of Neurology , Hainan Branch of Chinese PLA General Hospital , Sanya , Hainan Province , China
| | - Mao Li
- b Department of Neurology , Chinese PLA General Hospital , Beijing , China
| | - Siyu Chen
- b Department of Neurology , Chinese PLA General Hospital , Beijing , China
| | - Xusheng Huang
- b Department of Neurology , Chinese PLA General Hospital , Beijing , China
| |
Collapse
|
21
|
[Motor neuron diseases : Clinical and genetic differential diagnostics]. DER NERVENARZT 2018; 89:658-665. [PMID: 29767817 DOI: 10.1007/s00115-018-0524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The causes of degenerative disease of the upper and lower motor neurons are incompletely understood. In this review the current concepts in the clinical and genetic differential diagnostics of motor neuron diseases are presented. Hereditary spastic paraplegia, primary lateral sclerosis, spinal muscular atrophy and amyotrophic lateral sclerosis are explained, structured according to the affection of the upper and/or lower motor neuron. The substantial variability in the presentation and course of motor neuron diseases as well as the lack of specific laboratory tests hinder an early diagnosis. The precise description of the clinical picture, thorough testing of possible differential diagnoses as well as monitoring of the clinical course are essential. Genetic analyses should be offered to patients with a positive family history. Early identification of clinical and genetic subentities of the individual motor neuron diseases is a prerequisite for future neuroprotective interventions.
Collapse
|
22
|
Carotenuto A, Iodice R, Petracca M, Inglese M, Cerillo I, Cocozza S, Saiote C, Brunetti A, Tedeschi E, Manganelli F, Orefice G. Upper motor neuron evaluation in multiple sclerosis patients treated with Sativex ®. Acta Neurol Scand 2017; 135:442-448. [PMID: 27500463 DOI: 10.1111/ane.12660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Spasticity in multiple sclerosis (MS) results from an imbalance of inputs from descending pathways to the spinal motor circuits, as well as from a damage of the corticospinal tract (CST). OBJECTIVES To assess CST impairment in MS patients with and without spasticity and to evaluate its evolution under Sativex® treatment. METHODS Ten MS patients with spasticity ("cases") underwent clinical (EDSS, 9-hole Peg, Ashworth scale, Timed 25-Foot Walk, and NRS for spasticity), MRI (CST fractional anisotropy [FA]), and electrophysiological (central motor conduction time [CMCT] and H/M ratio) evaluations at baseline and after 12 months. We selected 20 MS patients without spasticity as control group at baseline. RESULTS At baseline, cases showed a lower CST FA (0.492±0.045 vs 0.543±0.047; P=.01) and a higher CMCT (P=.001) compared to the control group. No correlations were found between clinical, electrophysiological, and MRI features. After 12 months, cases showed a decrease in non-prevalent degree of impairment (PDI) side FA (0.502±0.023 vs 0.516±0.033; P=.01) without differences for electrophysiological features compared to baseline. Treatment with Sativex® resulted in a reduction of NRS for spasticity (P=.01). CONCLUSIONS We confirm the presence of CST impairment in MS patients with spasticity. We did not identify structural/electrophysiological correlates that could explain Sativex® clinical effect.
Collapse
Affiliation(s)
- A. Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences; Federico II University of Naples; Naples Italy
| | - R. Iodice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences; Federico II University of Naples; Naples Italy
| | - M. Petracca
- Department of Neurosciences, Reproductive and Odontostomatological Sciences; Federico II University of Naples; Naples Italy
- Department of Neurology, Radiology, Neuroscience; Icahn School of Medicine; Mount Sinai NY USA
| | - M. Inglese
- Department of Neurology, Radiology, Neuroscience; Icahn School of Medicine; Mount Sinai NY USA
| | - I. Cerillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences; Federico II University of Naples; Naples Italy
| | - S. Cocozza
- Department of Advanced Biomedical Sciences; Federico II University of Naples; Naples Italy
| | - C. Saiote
- Department of Neurology; Icahn School of Medicine; Mount Sinai NY USA
| | - A. Brunetti
- Department of Advanced Biomedical Sciences; Federico II University of Naples; Naples Italy
| | - E. Tedeschi
- Department of Advanced Biomedical Sciences; Federico II University of Naples; Naples Italy
| | - F. Manganelli
- Department of Neurosciences, Reproductive and Odontostomatological Sciences; Federico II University of Naples; Naples Italy
| | - G. Orefice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences; Federico II University of Naples; Naples Italy
| |
Collapse
|
23
|
Schüle R, Wiethoff S, Schöls L. Reply. Ann Neurol 2016; 80:170-1. [PMID: 27121776 DOI: 10.1002/ana.24670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Rebecca Schüle
- Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL.,Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Sarah Wiethoff
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
24
|
Martinuzzi A, Montanaro D, Vavla M, Paparella G, Bonanni P, Musumeci O, Brighina E, Hlavata H, Rossi G, Aghakhanyan G, Martino N, Baratto A, D’Angelo MG, Peruch F, Fantin M, Arnoldi A, Citterio A, Vantaggiato C, Rizzo V, Toscano A, Bresolin N, Bassi MT. Clinical and Paraclinical Indicators of Motor System Impairment in Hereditary Spastic Paraplegia: A Pilot Study. PLoS One 2016; 11:e0153283. [PMID: 27077743 PMCID: PMC4831837 DOI: 10.1371/journal.pone.0153283] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/25/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hereditary spastic paraplegias (HSP) are a composite and genetically heterogeneous group of conditions mainly expressed by the impairment of the central motor system ("pure" forms). The involvement of other components of the central nervous system or of other systems is described in the "complicate" forms. The definition of an investigation protocol capable, by assembling clinical and paraclinical indicators to fully represent the extent of the motor system impairment, would help both the clinical handling of these conditions and contribute to our understanding of their pathogenesis. METHODS We applied a clinical and paraclinical protocol which included tools exploring motor and non motor functioning, neurophysiology and MRI to a composite cohort of 70 molecularly defined HSP patients aged 3 to 65, to define for each indicator its significance in detailing the presence and the severity of the pathology. RESULTS Clinically increased deep tendon reflexes and lower limb (LL) weakness are constant findings in all patients. The "complicated" forms are characterized by peripheral motor impairment, cognitive and cerebellar involvement. The Spastic Paraplegia Rating Scale efficiently reflects the severity of functional problems and correlates with disease duration. Neurophysiology consistently documents the impairment of the central motor pathway to the LLs. Nevertheless, the upper extremities and sensory system involvement is a frequent finding. MRI diffusion tensor imaging (DTI) highlighted a significant alteration of FA and MD. Combining the sampling of the various portion of the cortico-spinal tract (CST) DTI consistently discriminated patients from controls. CONCLUSION We propose a graded clinical and paraclinical protocol for HSP phenotype definition, indicating for each tool the discriminative and descriptive capacity. Our protocol applied to 9 different forms of HSP showed that the functional impairment often extends beyond the CST. The novel DTI approach may add significant elements in disease recognition, staging and mapping.
Collapse
Affiliation(s)
- Andrea Martinuzzi
- IRCCS E. Medea, Polo Regionale di Conegliano, Conegliano (TV), Italy
- * E-mail:
| | - Domenico Montanaro
- Fondazione CNR/Regione Toscana G. Monasterio, Unit of Neuroradiology, Pisa, Italy
| | - Marinela Vavla
- IRCCS E. Medea, Polo Regionale di Conegliano, Conegliano (TV), Italy
| | | | - Paolo Bonanni
- IRCCS E. Medea, Polo Regionale di Conegliano, Conegliano (TV), Italy
| | - Olimpia Musumeci
- University of Messina, Department of Neurosciences, Messina, Italy
| | - Erika Brighina
- IRCCS E. Medea, Neurorehabilitation Department, Bosisio Parini (LC), Italy
| | - Hana Hlavata
- Fondazione CNR/Regione Toscana G. Monasterio, Unit of Neuroradiology, Pisa, Italy
| | - Giuseppe Rossi
- Institute of Clinical Physiology, National Council of Research, Unit of Epidemiology and Biostatistics, Pisa, Italy
| | - Gayane Aghakhanyan
- Fondazione CNR/Regione Toscana G. Monasterio, Unit of Neuroradiology, Pisa, Italy
| | - Nicola Martino
- ULSS 7-Pieve di Soligo, Department of Imaging, Conegliano (TV), Italy
| | | | | | - Francesca Peruch
- IRCCS E. Medea, Polo Regionale di Conegliano, Conegliano (TV), Italy
| | - Marianna Fantin
- IRCCS E. Medea, Polo Regionale di Conegliano, Conegliano (TV), Italy
| | - Alessia Arnoldi
- IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini (LC), Italy
| | - Andrea Citterio
- IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini (LC), Italy
| | - Chiara Vantaggiato
- IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini (LC), Italy
| | - Vincenzo Rizzo
- University of Messina, Department of Neurosciences, Messina, Italy
| | - Antonio Toscano
- University of Messina, Department of Neurosciences, Messina, Italy
| | - Nereo Bresolin
- IRCCS Fondazione Policlinico, University of Milano, Department of Neuroscience, Milano, Italy
| | - Maria Teresa Bassi
- IRCCS E. Medea, Laboratory of Molecular Biology, Bosisio Parini (LC), Italy
| |
Collapse
|
25
|
Gray and white matter alterations in hereditary spastic paraplegia type SPG4 and clinical correlations. J Neurol 2015; 262:1961-71. [PMID: 26050637 DOI: 10.1007/s00415-015-7791-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
Abstract
Hereditary spastic paraplegias (HSP) are a group of clinically and genetically heterogeneous disorders with the hallmark of progressive spastic gait disturbance. We used advanced neuroimaging to identify brain regions involved in SPG4, the most common HSP genotype. Additionally, we analyzed correlations between imaging and clinical findings. We performed 3T MRI scans including isotropic high-resolution 3D T1, T2-FLAIR, and DTI sequences in 15 adult patients with genetically confirmed SPG4 and 15 age- and sex-matched healthy controls. Brain volume loss of gray and white matter was evaluated through voxel-based morphometry (VBM) for supra- and infratentorial regions separately. DTI maps of axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), fractional anisotropy (FA), and measured anisotropy (MA1) were analyzed through tract-based special statistics (TBSS). VBM and TBSS revealed a widespread affection of gray and white matter in SPG4 including the corpus callosum, medio-dorsal thalamus, parieto-occipital regions, upper brainstem, cerebellum, and corticospinal tract. Significant correlations with correlation coefficients r > 0.6 between clinical data and DTI findings could be demonstrated for disease duration and disease severity as assessed by the spastic paraplegia rating scale for the pontine crossing tract (AD) and the corpus callosum (RD and FA). Imaging also provided evidence that SPG4 underlies a primarily axonal rather than demyelinating damage in accordance with post-mortem data. DTI is an attractive tool to assess subclinical affection in SPG4. The correlation of imaging findings with disease duration and severity suggests AD, RD, and FA as potential progression markers in interventional studies.
Collapse
|
26
|
Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171:505-30. [PMID: 26008818 DOI: 10.1016/j.neurol.2015.02.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically determined neurodegenerative disorders characterized by progressive weakness and spasticity of lower limbs, and are among the most clinically and genetically heterogeneous human diseases. All modes of inheritance have been described, and the recent technological revolution in molecular genetics has led to the identification of 76 different spastic gait disease-loci with 59 corresponding spastic paraplegia genes. Autosomal recessive HSP are usually associated with diverse additional features (referred to as complicated forms), contrary to autosomal dominant HSP, which are mostly pure. However, the identification of additional mutations and families has considerably enlarged the clinical spectra, and has revealed a huge clinical variability for almost all HSP; complicated forms have also been described for primary pure HSP subtypes, adding further complexity to the genotype-phenotype correlations. In addition, the introduction of next generation sequencing in clinical practice has revealed a genetic and phenotypic overlap with other neurodegenerative disorders (amyotrophic lateral sclerosis, neuropathies, cerebellar ataxias, etc.) and neurodevelopmental disorders, including intellectual disability. This review aims to describe the most recent advances in the field and to provide genotype-phenotype correlations that could help clinical diagnoses of this heterogeneous group of disorders.
Collapse
Affiliation(s)
- S Klebe
- Department of neurology, university hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - G Stevanin
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; École pratique des hautes études, 4-14, rue Ferrus, 75014 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Depienne
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
27
|
Rezende TJR, de Albuquerque M, Lamas GM, Martinez ARM, Campos BM, Casseb RF, Silva CB, Branco LMT, D'Abreu A, Lopes-Cendes I, Cendes F, França MC. Multimodal MRI-based study in patients with SPG4 mutations. PLoS One 2015; 10:e0117666. [PMID: 25658484 PMCID: PMC4320056 DOI: 10.1371/journal.pone.0117666] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/29/2014] [Indexed: 01/18/2023] Open
Abstract
Mutations in the SPG4 gene (SPG4-HSP) are the most frequent cause of hereditary spastic paraplegia, but the extent of the neurodegeneration related to the disease is not yet known. Therefore, our objective is to identify regions of the central nervous system damaged in patients with SPG4-HSP using a multi-modal neuroimaging approach. In addition, we aimed to identify possible clinical correlates of such damage. Eleven patients (mean age 46.0 ± 15.0 years, 8 men) with molecular confirmation of hereditary spastic paraplegia, and 23 matched healthy controls (mean age 51.4 ± 14.1years, 17 men) underwent MRI scans in a 3T scanner. We used 3D T1 images to perform volumetric measurements of the brain and spinal cord. We then performed tract-based spatial statistics and tractography analyses of diffusion tensor images to assess microstructural integrity of white matter tracts. Disease severity was quantified with the Spastic Paraplegia Rating Scale. Correlations were then carried out between MRI metrics and clinical data. Volumetric analyses did not identify macroscopic abnormalities in the brain of hereditary spastic paraplegia patients. In contrast, we found extensive fractional anisotropy reduction in the corticospinal tracts, cingulate gyri and splenium of the corpus callosum. Spinal cord morphometry identified atrophy without flattening in the group of patients with hereditary spastic paraplegia. Fractional anisotropy of the corpus callosum and pyramidal tracts did correlate with disease severity. Hereditary spastic paraplegia is characterized by relative sparing of the cortical mantle and remarkable damage to the distal portions of the corticospinal tracts, extending into the spinal cord.
Collapse
Affiliation(s)
- Thiago J. R. Rezende
- Departament of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Milena de Albuquerque
- Departament of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gustavo M. Lamas
- Departament of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Brunno M. Campos
- Departament of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raphael F. Casseb
- Departament of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Cynthia B. Silva
- Departament of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lucas M. T. Branco
- Departament of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Anelyssa D'Abreu
- Departament of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics, University of Campinas (UNICAMP), São Paulo, Campinas, Brazil
| | - Fernando Cendes
- Departament of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcondes C. França
- Departament of Neurology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
28
|
Synofzik M, Schüle R, Schulze M, Gburek-Augustat J, Schweizer R, Schirmacher A, Krägeloh-Mann I, Gonzalez M, Young P, Züchner S, Schöls L, Bauer P. Phenotype and frequency of STUB1 mutations: next-generation screenings in Caucasian ataxia and spastic paraplegia cohorts. Orphanet J Rare Dis 2014; 9:57. [PMID: 24742043 PMCID: PMC4021831 DOI: 10.1186/1750-1172-9-57] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/11/2014] [Indexed: 02/02/2023] Open
Abstract
Background Mutations in the gene STUB1, encoding the protein CHIP (C-terminus of HSC70-interacting protein), have recently been suggested as a cause of recessive ataxia based on the findings in few Chinese families. Here we aimed to investigate the phenotypic and genotypic spectrum of STUB1 mutations, and to assess their frequency in different Caucasian disease cohorts. Methods 300 subjects with degenerative ataxia (n = 167) or spastic paraplegia (n = 133) were screened for STUB1 variants by whole-exome-sequencing (n = 204) or shotgun-fragment-library-sequencing (n = 96). To control for the specificity of STUB1 variants, we screened an additional 1707 exomes from 891 index families with other neurological diseases. Results We identified 3 ataxia patients (3/167 = 1.8%) with 4 novel missense mutations in STUB1, including 3 mutations in its tetratricopeptide-repeat domain. All patients showed evidence of pyramidal tract damage. Cognitive impairment was present only in one and hypogonadism in none of them. Ataxia did not start before age 48 years in one subject. No recessive STUB1 variants were identified in families with other neurological diseases, demonstrating that STUB1 variants are not simply rare polymorphisms ubiquitous in neurodegenerative disease. Conclusions STUB1-disease occurs also in Caucasian ataxia populations (1.8%). Our results expand the genotypic spectrum of STUB1-disease, showing that pathogenic mutations affect also the tetratricopeptide-repeat domain, thus providing clinical evidence for the functional importance of this domain. Moreover, they further delineate the phenotypic core features of STUB1-ataxia. Pyramidal tract damage is a common accompanying feature and can include lower limb spasticity, thus adding STUB1-ataxia to the differential diagnosis of “spastic ataxias”. However, STUB1 is rare in subjects with predominant spastic paraplegia (0/133). In contrast to previous reports, STUB1-ataxia can start even above age 40 years, and neither hypogonadism nor prominent cognitive impairment are obligatory features.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str, 3, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|