1
|
Duarah A, Subedi S, Dayhoff GW, Uversky VN, Tripathi T. Proteome-wide identification and comprehensive profiling of intrinsic disorder in Fasciola gigantica. Int J Biol Macromol 2025; 314:144158. [PMID: 40383327 DOI: 10.1016/j.ijbiomac.2025.144158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
Despite the wealth of proteome sequences from multicellular parasitic helminths, studies on intrinsically disordered proteins (IDPs) in these organisms remain limited, particularly compared to viruses, bacteria, and unicellular parasites. We provide a comprehensive analysis of intrinsic disorder within the proteome of Fasciola gigantica, a parasitic liver fluke, using multiple predictive tools. Out of 12,537 proteins analyzed, a significant portion exhibited a distinct amino acid composition, characterized by an enrichment of polar and charged residues and a relative depletion of hydrophobic and aromatic residues, which are hallmarks of IDPs. These compositional features likely confer structural flexibility and functional adaptability, facilitating the survival of the parasite in diverse and hostile environments within its host. The presence of IDPs was further supported by compositional profiling of experimentally validated proteins in the DisProt database. Approximately 34.15 % of the F. gigantica proteome comprises highly disordered proteins, while 59.27 % is moderately disordered, as calculated from six well-established predictors integrated under the RIDAO platform. The consistent findings across various predictors, including PONDR® and IUPred, underscore the reliability of these results. Additionally, a detailed analysis of the distribution of charged residues in the proteome was performed. The high prevalence of IDPs in F. gigantica suggests their critical role in host-pathogen interactions, potentially providing functional advantages such as binding promiscuity and adaptability, which are essential for the survival of the parasite within the host. This study highlights the importance of IDPs in the biology of F. gigantica and provides insights into their potential roles in the parasite's pathogenesis and interactions with the host immune system.
Collapse
Affiliation(s)
- Anjelika Duarah
- Molecular and Structural Biophysics Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Guy W Dayhoff
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
2
|
Ithurbide S, Buan N, Schulze S. Advancing archaeal research through FAIR resource and data sharing, and inclusive community building. Commun Biol 2025; 8:519. [PMID: 40157984 PMCID: PMC11954925 DOI: 10.1038/s42003-025-07962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Over the last two decades archaeal research has expanded into a wide-ranging research field, driven by a fairly small research community. Archaea are now recognized as important players in the One-Health approach and expertise on the biology of archaea has become crucial in the study of a broad range of topics and environments, including the host-associated microbiomes, major nutrient cycles, greenhouse gas metabolism, the cell biology and origin of eukaryotes, adaptation of life to extremes, as well as various biotechnological applications. Here, we summarize existing resources and ongoing efforts in the engaged broader archaeal scientific community to accelerate research and resource sharing guided by FAIR (findable, accessible, interoperable, reusable) data-sharing principles. We highlight ongoing community efforts that: (i) aim to share protocols and best practices for working with archaea (e.g. ARCHAEA.bio), (ii) combine large 'omics datasets for the dissemination of unified, system-wide results (e.g. Archaeal Proteome Project, KBase) and (iii) provide opportunities for scientists to present their work in a supportive environment and to forge connections and collaborations (e.g. Archaea Power Hour). Together, these resources and projects promise to spur and cross-fertilize research, making archaeal research more accessible to a broader and more diverse audience.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Nicole Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Stefan Schulze
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
3
|
Debnath A, Sengupta A, Rudrapal S, Kumar A, Rani M. In-silico study of molecular adaptations in halophilic Cas9. Lett Appl Microbiol 2025; 78:ovaf006. [PMID: 39832801 DOI: 10.1093/lambio/ovaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
This study explores the structural adaptations of the CRISPR-Cas9 system in halophilic bacteria, focusing on Cas9 protein of halophilic bacterium Salicibibacter cibi. Protein sequences were analyzed using different tools such as ExPASy ProtParam for different physicochemical properties, Predictor of Natural Disordered Regions web server for disordered regions, and InterPro server and WebLogo for domains. Protein structures were generated using the AlphaFold database, and the quality of the modelled structure was checked through PROCHECK. The protein surface's amino acids and electrostatic potential were visualized using PyMOL, APBS server, and UCSF chimera. Comparative analysis revealed that halophilic Cas9 proteins possess a higher abundance of acidic residues, resulting in enhanced stability and hydration in saline conditions; halophilic Cas9 proteins also shows higher intrinsically disordered regions. Electrostatic potential maps confirmed that S. cibi Cas9 proteins maintain a highly negative surface charge, crucial for adaptation to salt-rich environments. These findings provide insights into the molecular mechanisms driving the structural and functional adaptations of Cas9 in salty environment, highlighting its potential applications in genome editing-based biotechnological approaches in extreme conditions.
Collapse
Affiliation(s)
- Anisha Debnath
- Microbial Adaptation Laboratory, Department of Microbiology, Tripura University (A Central University), Agartala 799022, India
| | - Aveepsa Sengupta
- Microbial Adaptation Laboratory, Department of Microbiology, Tripura University (A Central University), Agartala 799022, India
| | - Sujata Rudrapal
- Microbial Adaptation Laboratory, Department of Microbiology, Tripura University (A Central University), Agartala 799022, India
| | - Ashutosh Kumar
- Microbial Adaptation Laboratory, Department of Microbiology, Tripura University (A Central University), Agartala 799022, India
| | - Mamta Rani
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
4
|
Datta RR, Akdogan D, Tezcan EB, Onal P. Versatile roles of disordered transcription factor effector domains in transcriptional regulation. FEBS J 2025. [PMID: 39888268 DOI: 10.1111/febs.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Transcription, a crucial step in the regulation of gene expression, is tightly controlled and involves several essential processes, such as chromatin organization, recognition of the specific genomic sequences, DNA binding, and ultimately recruiting the transcriptional machinery to facilitate transcript synthesis. At the center of this regulation are transcription factors (TFs), which comprise at least one DNA-binding domain (DBD) and an effector domain (ED). Although the structure and function of DBDs have been well studied, our knowledge of the structure and function of effector domains is limited. EDs are of particular importance in generating distinct transcriptional responses between protein members of the same TF family that have similar DBDs and specificities. The study of transcriptional activity conferred by effector domains has traditionally been conducted through examining protein-protein interactions. However, recent research has uncovered alternative mechanisms by which EDs regulate gene expression, such as the formation of condensates that increase the local concentration of transcription factors, cofactors, and coregulated genes, as well as DNA binding. Here, we provide a comprehensive overview of the known roles of transcription factor EDs, with a specific focus on disordered regions. Additionally, we emphasize the significance of intrinsically disordered regions (IDRs) during transcriptional regulation. We examine the mechanisms underlying the establishment and maintenance of transcriptional specificity through the structural properties of predominantly disordered EDs. We then provide a comprehensive overview of the current understanding of these domains, including their physical and chemical characteristics, as well as their functional roles.
Collapse
Affiliation(s)
| | - Dilan Akdogan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Elif B Tezcan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Pinar Onal
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| |
Collapse
|
5
|
Mughal F, Caetano-Anollés G. Evolution of intrinsic disorder in the structural domains of viral and cellular proteomes. Sci Rep 2025; 15:2878. [PMID: 39843714 PMCID: PMC11754631 DOI: 10.1038/s41598-025-86045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Intrinsically disordered regions are flexible regions that complement the typical structured regions of proteins. Little is known however about their evolution. Here we leverage a comparative and evolutionary genomics approach to analyze intrinsic disorder in the structural domains of thousands of proteomes. Our analysis revealed that viral and cellular proteomes employ similar strategies to increase disorder but achieve different goals. Viral proteomes evolve disorder for economy of genomic material and multifunctionality. On the other hand, cellular proteomes evolve disorder to advance functionality with increasing genomic complexity. Remarkably, phylogenomic analysis of intrinsic disorder showed that ancient domains were ordered and that disorder evolved as a benefit acquired later in evolution. Evolutionary chronologies of domains indexed with disorder levels and distributions across Archaea, Bacteria, Eukarya and viruses revealed six evolutionary phases, the oldest two harboring only ordered and moderate disorder domains. A biphasic spectrum of disorder versus proteome makeup captured the dichotomy in the evolutionary trajectories of viral and cellular ancestors, one following reductive evolution driven by viral spread of molecular wealth and the other following expansive evolutionary trends to advance functionality through massive domain-forming co-option of disordered loop regions.
Collapse
Affiliation(s)
- Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
- C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Basu S, Kurgan L. Taxonomy-specific assessment of intrinsic disorder predictions at residue and region levels in higher eukaryotes, protists, archaea, bacteria and viruses. Comput Struct Biotechnol J 2024; 23:1968-1977. [PMID: 38765610 PMCID: PMC11098722 DOI: 10.1016/j.csbj.2024.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Intrinsic disorder predictors were evaluated in several studies including the two large CAID experiments. However, these studies are biased towards eukaryotic proteins and focus primarily on the residue-level predictions. We provide first-of-its-kind assessment that comprehensively covers the taxonomy and evaluates predictions at the residue and disordered region levels. We curate a benchmark dataset that uniformly covers eukaryotic, archaeal, bacterial, and viral proteins. We find that predictive performance differs substantially across taxonomy, where viruses are predicted most accurately, followed by protists and higher eukaryotes, while bacterial and archaeal proteins suffer lower levels of accuracy. These trends are consistent across predictors. We also find that current tools, except for flDPnn, struggle with reproducing native distributions of the numbers and sizes of the disordered regions. Moreover, analysis of two variants of disorder predictions derived from the AlphaFold2 predicted structures reveals that they produce accurate residue-level propensities for archaea, bacteria and protists. However, they underperform for higher eukaryotes and generally struggle to accurately identify disordered regions. Our results motivate development of new predictors that target bacteria and archaea and which produce accurate results at both residue and region levels. We also stress the need to include the region-level assessments in future assessments.
Collapse
Affiliation(s)
- Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
7
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 PMCID: PMC10966358 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew DelhiIndia
- Present address:
508/Block 3, Kirti Apartments, Mayur Vihar Phase 1 ExtensionDelhiIndia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
9
|
Patel KN, Chavda D, Manna M. Molecular Docking of Intrinsically Disordered Proteins: Challenges and Strategies. Methods Mol Biol 2024; 2780:165-201. [PMID: 38987470 DOI: 10.1007/978-1-0716-3985-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Intrinsically disordered proteins (IDPs) are a novel class of proteins that have established a significant importance and attention within a very short period of time. These proteins are essentially characterized by their inherent structural disorder, encoded mainly by their amino acid sequences. The profound abundance of IDPs and intrinsically disordered regions (IDRs) in the biological world delineates their deep-rooted functionality. IDPs and IDRs convey such extensive functionality through their unique dynamic nature, which enables them to carry out huge number of multifaceted biomolecular interactions and make them "interaction hub" of the cellular systems. Additionally, with such widespread functions, their misfunctioning is also intimately associated with multiple diseases. Thus, understanding the dynamic heterogeneity of various IDPs along with their interactions with respective binding partners is an important field with immense potentials in biomolecular research. In this context, molecular docking-based computational approaches have proven to be remarkable in case of ordered proteins. Molecular docking methods essentially model the biomolecular interactions in both structural and energetic terms and use this information to characterize the putative interactions between the two participant molecules. However, direct applications of the conventional docking methods to study IDPs are largely limited by their structural heterogeneity and demands for unique IDP-centric strategies. Thus, in this chapter, we have presented an overview of current methodologies for successful docking operations involving IDPs and IDRs. These specialized methods majorly include the ensemble-based and fragment-based approaches with their own benefits and limitations. More recently, artificial intelligence and machine learning-assisted approaches are also used to significantly reduce the complexity and computational burden associated with various docking applications. Thus, this chapter aims to provide a comprehensive summary of major challenges and recent advancements of molecular docking approaches in the IDP field for their better utilization and greater applicability.Asp (D).
Collapse
Affiliation(s)
- Keyur N Patel
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dhruvil Chavda
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
10
|
Uversky VN. Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:179-210. [PMID: 38220424 DOI: 10.1016/bs.apcsb.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Intrinsically disordered proteins (IDPs), which are functional proteins without stable tertiary structure, and hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) constitute prominent parts of all proteomes collectively known as unfoldomes. IDPs/IDRs exist as highly dynamic structural ensembles of rapidly interconverting conformations and are characterized by the exceptional structural heterogeneity, where their different parts are (dis)ordered to different degree, and their overall structure represents a complex mosaic of foldons, inducible foldons, inducible morphing foldons, non-foldons, semifoldons, and even unfoldons. Despite their lack of unique 3D structures, IDPs/IDRs play crucial roles in the control of various biological processes and the regulation of different cellular pathways and are commonly involved in recognition and signaling, indicating that the disorder-based functional repertoire is complementary to the functions of ordered proteins. Furthermore, IDPs/IDRs are frequently multifunctional, and this multifunctionality is defined by their structural flexibility and heterogeneity. Intrinsic disorder phenomenon is at the roots of the structure-function continuum model, where the structure continuum is defined by the presence of differently (dis)ordered regions, and the function continuum arises from the ability of all these differently (dis)ordered parts to have different functions. In their everyday life, IDPs/IDRs utilize a broad spectrum of interaction mechanisms thereby acting as interaction specialists. They are crucial for the biogenesis of numerous proteinaceous membrane-less organelles driven by the liquid-liquid phase separation. This review introduces functional unfoldomics by representing some aspects of the intrinsic disorder-based functionality.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
11
|
Mughal F, Caetano-Anollés G. Evolution of Intrinsic Disorder in Protein Loops. Life (Basel) 2023; 13:2055. [PMID: 37895436 PMCID: PMC10608553 DOI: 10.3390/life13102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Intrinsic disorder accounts for the flexibility of protein loops, molecular building blocks that are largely responsible for the processes and molecular functions of the living world. While loops likely represent early structural forms that served as intermediates in the emergence of protein structural domains, their origin and evolution remain poorly understood. Here, we conduct a phylogenomic survey of disorder in loop prototypes sourced from the ArchDB classification. Tracing prototypes associated with protein fold families along an evolutionary chronology revealed that ancient prototypes tended to be more disordered than their derived counterparts, with ordered prototypes developing later in evolution. This highlights the central evolutionary role of disorder and flexibility. While mean disorder increased with time, a minority of ordered prototypes exist that emerged early in evolutionary history, possibly driven by the need to preserve specific molecular functions. We also revealed the percolation of evolutionary constraints from higher to lower levels of organization. Percolation resulted in trade-offs between flexibility and rigidity that impacted prototype structure and geometry. Our findings provide a deep evolutionary view of the link between structure, disorder, flexibility, and function, as well as insights into the evolutionary role of intrinsic disorder in loops and their contribution to protein structure and function.
Collapse
Affiliation(s)
- Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
- C.R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Kumar G, Hazra JP, Sinha S. Disordered regions endow structural flexibility to shell proteins and function towards shell-enzyme interactions in 1,2-propanediol utilization microcompartment. J Biomol Struct Dyn 2023; 41:8891-8901. [PMID: 36318590 DOI: 10.1080/07391102.2022.2138552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
Abstract
Intrinsically disordered regions in proteins have been functionally linked to the protein-protein interactions and genesis of several membraneless organelles. Depending on their residual makeup, hydrophobicity or charge distribution they may remain in extended form or may assume certain conformations upon biding to a partner protein or peptide. The present work investigates the distribution and potential roles of disordered regions in the integral proteins of 1,2-propanediol utilization microcompartments. We use bioinformatics tools to identify the probable disordered regions in the shell proteins and enzyme of the 1,2-propanediol utilization microcompartment. Using a combination of computational modelling and biochemical techniques we elucidate the role of disordered terminal regions of a major shell protein and enzyme. Our findings throw light on the importance of disordered regions in the self-assembly, providing flexibility to shell protein and mediating its interaction with a native enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gaurav Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India
| | - Jagadish Prasad Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
13
|
Sengupta A, Das K, Jha N, Akhter Y, Kumar A. Molecular evolution steered structural adaptations in the DNA polymerase III α subunit of halophilic bacterium Salinibacter ruber. Extremophiles 2023; 27:20. [PMID: 37481762 DOI: 10.1007/s00792-023-01306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
A significant portion of the earth has a salty environment, and the literature on bacterial survival mechanisms in salty environments is limited. During molecular evolution, halophiles increase acidic amino acid residues on their protein surfaces which leads to a negatively charged surface potential that helps them to maintain the protein integrity and protect them from denaturation by competing with salt ions. Through protein family analysis, we have investigated the molecular-level adaptive features of DNA polymerase III's catalytic subunit (alpha) and its structure-function relationship. This study throws light on the novel understanding of halophilic bacterial replication and the molecular basis of salt adaptation. Comparisons of the amino acid contents and electronegativity of halophilic and mesophilic bacterial proteins revealed adaptations that allow halophilic bacteria to thrive in high salt concentrations. A significantly lower isoelectric point of halophilic bacterial proteins indicates the acidic nature. Also, an abundance of disordered regions in halophiles suggests the requirement of the salt ions that play a crucial role in their stable protein folding. Despite having similar topology, mesophilic and halophilic proteins, a set of very prominent molecular modifications was observed in the alpha subunit of halophiles.
Collapse
Affiliation(s)
- Aveepsa Sengupta
- Department of Microbiology, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, India
| | - Kunwali Das
- Department of Microbiology, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, India
| | - Nidhi Jha
- Department of Microbiology, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India.
| | - Ashutosh Kumar
- Department of Microbiology, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, India.
| |
Collapse
|
14
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Intrinsic disorder in the open reading frame 2 of hepatitis E virus: a protein with multiple functions beyond viral capsid. J Genet Eng Biotechnol 2023; 21:33. [PMID: 36929465 PMCID: PMC10018590 DOI: 10.1186/s43141-023-00477-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/31/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Hepatitis E virus (HEV) is the cause of a liver disease hepatitis E. The translation product of HEV ORF2 has recently been demonstrated as a protein involved in multiple functions besides performing its major role of a viral capsid. As intrinsically disordered regions (IDRs) are linked to various essential roles in the virus's life cycle, we analyzed the disorder pattern distribution of the retrieved ORF2 protein sequences by employing different online predictors. Our findings might provide some clues on the disorder-based functions of ORF2 protein that possibly help us in understanding its behavior other than as a HEV capsid protein. RESULTS The modeled three dimensional (3D) structures of ORF2 showed the predominance of random coils or unstructured regions in addition to major secondary structure components (alpha helix and beta strand). After initial scrutinization, the predictors VLXT and VSL2 predicted ORF2 as a highly disordered protein while the predictors VL3 and DISOPRED3 predicted ORF2 as a moderately disordered protein, thus categorizing HEV-ORF2 into IDP (intrinsically disordered protein) or IDPR (intrinsically disordered protein region) respectively. Thus, our initial predicted disorderness in ORF2 protein 3D structures was in excellent agreement with their predicted disorder distribution patterns (evaluated through different predictors). The abundance of MoRFs (disorder-based protein binding sites) in ORF2 was observed that signified their interaction with binding partners which might further assist in viral infection. As IDPs/IDPRs are targets of regulation, we carried out the phosphorylation analysis to reveal the presence of post-translationally modified sites. Prevalence of several disordered-based phosphorylation sites further signified the involvement of ORF2 in diverse and significant biological processes. Furthermore, ORF2 structure-associated functions revealed its involvement in several crucial functions and biological processes like binding and catalytic activities. CONCLUSIONS The results predicted ORF2 as a protein with multiple functions besides its role as a capsid protein. Moreover, the occurrence of IDPR/IDP in ORF2 protein suggests that its disordered region might serve as novel drug targets via functioning as potential interacting domains. Our data collectively might provide significant implication in HEV vaccine search as disorderness in viral proteins is related to mechanisms involved in immune evasion.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Wang H, Yang Z, Yang D. Approaches for the Identification of Intrinsically Disordered Protein Domains. Methods Mol Biol 2023; 2581:403-412. [PMID: 36413333 DOI: 10.1007/978-1-0716-2784-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intrinsically disordered protein domains are those with high disorder proportion or a consecutive disordered region. They have no stable spatial structure but play an important role in the regulation of complex cellular functions and contribute to the increasing organism complexity during evolution. Here, we describe the approaches to predict intrinsic disorder values of residues in proteins and methods to identify the intrinsically disordered domains.
Collapse
Affiliation(s)
- Huqiang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Zhixiang Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
16
|
Patil A. Enrichment patterns of intrinsic disorder in proteins. Biophys Rev 2022; 14:1487-1493. [PMID: 36659984 PMCID: PMC9842814 DOI: 10.1007/s12551-022-01016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Intrinsically disordered regions in proteins have been shown to be important in protein function. However, not all proteins contain the same amount of intrinsic disorder. The variation in the levels of intrinsic disorder in different types of proteins has been extensively studied over the last two decades. It is now known that the levels of intrinsic disorder vary in proteins across organisms, functions, diseases, and cellular locations. This review consolidates the known trends in the abundance of intrinsic disorder identified in groups of proteins across varying conditions and functions. It also presents new data towards the understanding of intrinsic disorder in cell type-specific proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-022-01016-7.
Collapse
Affiliation(s)
- Ashwini Patil
- Combinatics Inc., 2-2-6 Sugano, Ichikawa-Shi, Chiba, 272-0824 Japan
| |
Collapse
|
17
|
Kulkarni P, Salgia R, Uversky VN. Intrinsic disorder, extraterrestrial peptides, and prebiotic life on the earth. J Biomol Struct Dyn 2022:1-5. [PMID: 35723592 DOI: 10.1080/07391102.2022.2088619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The discovery of mechanisms for the synthesis of homo-polymeric oligopeptides, such as polyglycine under conditions relevant to the astrophysical environment as well as in scenarios resembling primordial conditions that prevailed soon after Earth was formed, raises hopes in the search of extraterrestrial life. It also raises the possibility of extraterrestrial contribution to origin of life on Earth in the form of simple polypeptides. Bioinformatics analyses strongly predict such homo-polymeric peptides to be intrinsically disordered underscoring the potential involvement of IDPs in the origin of life which, even in its simplest form, could emerge spontaneously by autocatalysis of the primordial IDPs in self-organizing systems that evolved over time following natural selection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA.,Department of Systems Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
18
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
19
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
20
|
Kulkarni P, Behal A, Mohanty A, Salgia R, Nedelcu AM, Uversky VN. Co-opting disorder into order: Intrinsically disordered proteins and the early evolution of complex multicellularity. Int J Biol Macromol 2022; 201:29-36. [PMID: 34998872 DOI: 10.1016/j.ijbiomac.2021.12.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid structures yet play important roles in myriad biological phenomena. A distinguishing feature of IDPs is that they often mediate specific biological outcomes via multivalent weak cooperative interactions with multiple partners. Here, we show that several proteins specifically associated with processes that were key in the evolution of complex multicellularity in the lineage leading to the multicellular green alga Volvox carteri are IDPs. We suggest that, by rewiring cellular protein interaction networks, IDPs facilitated the co-option of ancestral pathways for specialized multicellular functions, underscoring the importance of IDPs in the early evolution of complex multicellularity.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA, USA.
| | - Amita Behal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA, USA
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, Canada.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, Moscow region 141700, Russia.
| |
Collapse
|
21
|
Alghamdi M, Alamry SA, Bahlas SM, Uversky VN, Redwan EM. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 2021; 79:25. [PMID: 34971426 PMCID: PMC11072894 DOI: 10.1007/s00018-021-04020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by most cells for intracellular communication and transportation of biomolecules. EVs carry proteins, lipids, nucleic acids, and receptors that are involved in human physiology and pathology. EV cargo is variable and highly related to the type and state of the cellular origin. Three subtypes of EVs have been identified: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest and the most well-studied class of EVs that regulate different biological processes and participate in several diseases, such as cancers and autoimmune diseases. Proteomic analysis of exosomes succeeded in profiling numerous types of proteins involved in disease development and prognosis. In rheumatoid arthritis (RA), exosomes revealed a potential function in joint inflammation. These EVs possess a unique function, as they can transfer specific autoantigens and mediators between distant cells. Current proteomic data demonstrated that exosomes could provide beneficial effects against autoimmunity and exert an immunosuppressive action, particularly in RA. Based on these observations, effective therapeutic strategies have been developed for arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O Box 80215, Jeddah, 21589, Saudi Arabia
| | - Sami M Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah, 21589, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
22
|
Wang H, Zhong H, Gao C, Zang J, Yang D. The Distinct Properties of the Consecutive Disordered Regions Inside or Outside Protein Domains and Their Functional Significance. Int J Mol Sci 2021; 22:ijms221910677. [PMID: 34639018 PMCID: PMC8508753 DOI: 10.3390/ijms221910677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
The consecutive disordered regions (CDRs) are the basis for the formation of intrinsically disordered proteins, which contribute to various biological functions and increasing organism complexity. Previous studies have revealed that CDRs may be present inside or outside protein domains, but a comprehensive analysis of the property differences between these two types of CDRs and the proteins containing them is lacking. In this study, we investigated this issue from three viewpoints. Firstly, we found that in-domain CDRs are more hydrophilic and stable but have less stickiness and fewer post-translational modification sites compared with out-domain CDRs. Secondly, at the protein level, we found that proteins with only in-domain CDRs originated late, evolved rapidly, and had weak functional constraints, compared with the other two types of CDR-containing proteins. Proteins with only in-domain CDRs tend to be expressed spatiotemporal specifically, but they tend to have higher abundance and are more stable. Thirdly, we screened the CDR-containing protein domains that have a strong correlation with organism complexity. The CDR-containing domains tend to be evolutionarily young, or they changed from a domain without CDR to a CDR-containing domain during evolution. These results provide valuable new insights about the evolution and function of CDRs and protein domains.
Collapse
Affiliation(s)
| | | | | | | | - Dong Yang
- Correspondence: ; Tel.: +86-10-61777051
| |
Collapse
|
23
|
Marzullo L, Turco MC, Uversky VN. What's in the BAGs? Intrinsic disorder angle of the multifunctionality of the members of a family of chaperone regulators. J Cell Biochem 2021; 123:22-42. [PMID: 34339540 DOI: 10.1002/jcb.30123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
In humans, the family of Bcl-2 associated athanogene (BAG) proteins includes six members characterized by exceptional multifunctionality and engagement in the pathogenesis of various diseases. All of them are capable of interacting with a multitude of often unrelated binding partners. Such binding promiscuity and related functional and pathological multifacetedness cannot be explained or understood within the frames of the classical "one protein-one structure-one function" model, which also fails to explain the presence of multiple isoforms generated for BAG proteins by alternative splicing or alternative translation initiation and their extensive posttranslational modifications. However, all these mysteries can be solved by taking into account the intrinsic disorder phenomenon. In fact, high binding promiscuity and potential to participate in a broad spectrum of interactions with multiple binding partners, as well as a capability to be multifunctional and multipathogenic, are some of the characteristic features of intrinsically disordered proteins and intrinsically disordered protein regions. Such functional proteins or protein regions lacking unique tertiary structures constitute a cornerstone of the protein structure-function continuum concept. The aim of this paper is to provide an overview of the functional roles of human BAG proteins from the perspective of protein intrinsic disorder which will provide a means for understanding their binding promiscuity, multifunctionality, and relation to the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Liberato Marzullo
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Maria C Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, Baronissi, Italy.,Research and Development Division, BIOUNIVERSA s.r.l., Baronissi, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
24
|
Sharma NR, Gadhave K, Kumar P, Saif M, Khan MM, Sarkar DP, Uversky VN, Giri R. Analysis of the dark proteome of Chandipura virus reveals maximum propensity for intrinsic disorder in phosphoprotein. Sci Rep 2021; 11:13253. [PMID: 34168211 PMCID: PMC8225862 DOI: 10.1038/s41598-021-92581-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
Chandipura virus (CHPV, a member of the Rhabdoviridae family) is an emerging pathogen that causes rapidly progressing influenza-like illness and acute encephalitis often leading to coma and death of the human host. Given several CHPV outbreaks in Indian sub-continent, recurring sporadic cases, neurological manifestation, and high mortality rate of this infection, CHPV is gaining global attention. The 'dark proteome' includes the whole proteome with special emphasis on intrinsically disordered proteins (IDP) and IDP regions (IDPR), which are proteins or protein regions that lack unique (or ordered) three-dimensional structures within the cellular milieu. These proteins/regions, however, play a number of vital roles in various biological processes, such as cell cycle regulation, control of signaling pathways, etc. and, therefore, are implicated in many human diseases. IDPs and IPPRs are also abundantly found in many viral proteins enabling their multifunctional roles in the viral life cycles and their capability to highjack various host systems. The unknown abundance of IDP and IDPR in CHPV, therefore, prompted us to analyze the dark proteome of this virus. Our analysis revealed a varying degree of disorder in all five CHPV proteins, with the maximum level of intrinsic disorder propensity being found in Phosphoprotein (P). We have also shown the flexibility of P protein using extensive molecular dynamics simulations up to 500 ns (ns). Furthermore, our analysis also showed the abundant presence of the disorder-based binding regions (also known as molecular recognition features, MoRFs) in CHPV proteins. The identification of IDPs/IDPRs in CHPV proteins suggests that their disordered regions may function as potential interacting domains and may also serve as novel targets for disorder-based drug designs.
Collapse
Affiliation(s)
- Nishi R Sharma
- School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Kamand, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Kamand, Himachal Pradesh, 175005, India
| | - Mohammad Saif
- School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Md M Khan
- School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Debi P Sarkar
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA.
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290, Moscow, Russia.
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
25
|
Uversky VN, Giuliani A. Networks of Networks: An Essay on Multi-Level Biological Organization. Front Genet 2021; 12:706260. [PMID: 34234818 PMCID: PMC8255927 DOI: 10.3389/fgene.2021.706260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023] Open
Abstract
The multi-level organization of nature is self-evident: proteins do interact among them to give rise to an organized metabolism, while in the same time each protein (a single node of such interaction network) is itself a network of interacting amino-acid residues allowing coordinated motion of the macromolecule and systemic effect as allosteric behavior. Similar pictures can be drawn for structure and function of cells, organs, tissues, and ecological systems. The majority of biologists are used to think that causally relevant events originate from the lower level (the molecular one) in the form of perturbations, that “climb up” the hierarchy reaching the ultimate layer of macroscopic behavior (e.g., causing a specific disease). Such causative model, stemming from the usual genotype-phenotype distinction, is not the only one. As a matter of fact, one can observe top-down, bottom-up, as well as middle-out perturbation/control trajectories. The recent complex network studies allow to go further the pure qualitative observation of the existence of both non-linear and non-bottom-up processes and to uncover the deep nature of multi-level organization. Here, taking as paradigm protein structural and interaction networks, we review some of the most relevant results dealing with between networks communication shedding light on the basic principles of complex system control and dynamics and offering a more realistic frame of causation in biology.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
26
|
Kumar N, Kaushik R, Tennakoon C, Uversky VN, Longhi S, Zhang KYJ, Bhatia S. Comprehensive Intrinsic Disorder Analysis of 6108 Viral Proteomes: From the Extent of Intrinsic Disorder Penetrance to Functional Annotation of Disordered Viral Proteins. J Proteome Res 2021; 20:2704-2713. [PMID: 33719450 DOI: 10.1021/acs.jproteome.1c00011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Much of our understanding of proteins and proteomes comes from the traditional protein structure-function paradigm. However, in the last 2 decades, both computational and experimental studies have provided evidence that a large fraction of functional proteomes across different domains of life consists of intrinsically disordered proteins, thus triggering a quest to unravel and decipher protein intrinsic disorder. Unlike structured/ordered proteins, intrinsically disordered proteins/regions (IDPs/IDRs) do not possess a well-defined structure under physiological conditions and exist as highly dynamic conformational ensembles. In spite of this peculiarity, these proteins have crucial roles in cell signaling and regulation. To date, studies on the abundance and function of IDPs/IDRs in viruses are rather limited. To fill this gap, we carried out an extensive and thorough bioinformatics analysis of 283 000 proteins from 6108 reference viral proteomes. We analyzed protein intrinsic disorder from multiple perspectives, such as abundance of IDPs/IDRs across diverse virus types, their functional annotations, and subcellular localization in taxonomically divergent hosts. We show that the content of IDPs/IDRs in viral proteomes varies broadly as a function of virus genome types and taxonomically divergent hosts. We have combined the two most commonly used and accurate IDP predictors' results with charge-hydropathy (CH) versus cumulative distribution function (CDF) plots to categorize the viral proteins according to their IDR content and physicochemical properties. Mapping of gene ontology on the disorder content of viral proteins reveals that IDPs are primarily involved in key virus-host interactions and host antiviral immune response downregulation, which are reinforced by the post-translational modifications tied to disorder-enriched viral proteins. The present study offers detailed insights into the prevalence of the intrinsic disorder in viral proteomes and provides appealing targets for the design of novel therapeutics.
Collapse
Affiliation(s)
- Naveen Kumar
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States.,Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolecules Biologiques (AFMB), UMR 7257, Aix Marseille Université, CNRS, 13288 Marseille, France
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Sandeep Bhatia
- Diagnostics & Vaccines Group, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| |
Collapse
|
27
|
Zhao B, Katuwawala A, Uversky VN, Kurgan L. IDPology of the living cell: intrinsic disorder in the subcellular compartments of the human cell. Cell Mol Life Sci 2021; 78:2371-2385. [PMID: 32997198 PMCID: PMC11071772 DOI: 10.1007/s00018-020-03654-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Intrinsic disorder can be found in all proteomes of all kingdoms of life and in viruses, being particularly prevalent in the eukaryotes. We conduct a comprehensive analysis of the intrinsic disorder in the human proteins while mapping them into 24 compartments of the human cell. In agreement with previous studies, we show that human proteins are significantly enriched in disorder relative to a generic protein set that represents the protein universe. In fact, the fraction of proteins with long disordered regions and the average protein-level disorder content in the human proteome are about 3 times higher than in the protein universe. Furthermore, levels of intrinsic disorder in the majority of human subcellular compartments significantly exceed the average disorder content in the protein universe. Relative to the overall amount of disorder in the human proteome, proteins localized in the nucleus and cytoskeleton have significantly increased amounts of disorder, measured by both high disorder content and presence of multiple long intrinsically disordered regions. We empirically demonstrate that, on average, human proteins are assigned to 2.3 subcellular compartments, with proteins localized to few subcellular compartments being more disordered than the proteins that are localized to many compartments. Functionally, the disordered proteins localized in the most disorder-enriched subcellular compartments are primarily responsible for interactions with nucleic acids and protein partners. This is the first-time disorder is comprehensively mapped into the human cell. Our observations add a missing piece to the puzzle of functional disorder and its organization inside the cell.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA, 23284, USA
| | - Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA, 23284, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA, 23284, USA.
| |
Collapse
|
28
|
Tan F, Sun N, Zhang L, Wu J, Xiao S, Tan Q, Uversky VN, Liu Y. Functional characterization of an unknown soybean intrinsically disordered protein in vitro and in Escherichia coli. Int J Biol Macromol 2021; 166:538-549. [PMID: 33137381 DOI: 10.1016/j.ijbiomac.2020.10.211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess a wide range of biological function in all organisms, however the specific functions of most IDPs are still unknown. Soybean LOC protein, LOC for short, is a heat-stable protein, which is more abundant in the stress-resistant radicles. Sequence alignment and phylogenetic analysis showed that LOC is a functionally unknown protein and conserved in Fabaceae. LOC, being enriched in most disorder-promoting residues and depleted in most order-promoting residues, was predicted to contain high levels of intrinsic disorder by several commonly used computational tools. However, it was also predicted to contain two disorder-based protein-protein binding sites and two short α-helical segments. The circular dichroism spectroscopic analysis showed that this protein is mostly disordered in water, but can form more α-helical structure in the presence of SDS and TFE. Functional in vitro studies showed that the LOC protein is able to prevent lactate dehydrogenase inactivation by freeze-thaw at a molar ratio of 10:1. Furthermore, in vivo analyses revealed the survival rate of Escherichia coli over-expressing LOC protein under the conditions of osmotic stress was noticeably increased in comparison with the control. These observations suggest that the intrinsically disordered protein LOC might serve as a chaperone and/or cell protector.
Collapse
Affiliation(s)
- Fangmei Tan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China
| | - Linsong Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China
| | - Jiahui Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China
| | - Shifeng Xiao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China
| | - Qiulong Tan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, Florida, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow, region, Russia.
| | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
29
|
Zamora-Briseño JA, Pereira-Santana A, Reyes-Hernández SJ, Cerqueda-García D, Castaño E, Rodríguez-Zapata LC. Towards an understanding of the role of intrinsic protein disorder on plant adaptation to environmental challenges. Cell Stress Chaperones 2021; 26:141-150. [PMID: 32902806 PMCID: PMC7736417 DOI: 10.1007/s12192-020-01162-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Intrinsic protein disorder is an interesting structural feature where fully functional proteins lack a three-dimensional structure in solution. In this work, we estimated the relative content of intrinsic protein disorder in 96 plant proteomes including monocots and eudicots. In this analysis, we found variation in the relative abundance of intrinsic protein disorder among these major clades; the relative level of disorder is higher in monocots than eudicots. In turn, there is an inverse relationship between the degree of intrinsic protein disorder and protein length, with smaller proteins being more disordered. The relative abundance of amino acids depends on intrinsic disorder and also varies among clades. Within the nucleus, intrinsically disordered proteins are more abundant than ordered proteins. Intrinsically disordered proteins are specialized in regulatory functions, nucleic acid binding, RNA processing, and in response to environmental stimuli. The implications of this on plants' responses to their environment are discussed.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Alejandro Pereira-Santana
- División de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco, Camino Arenero 1227, El Bajio, C.P. 45019, Zapopan, Jalisco, México
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnologia, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, C.P. 03940, Ciudad de México, México
| | - Sandi Julissa Reyes-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Daniel Cerqueda-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional- Unidad Mérida, Carr. Mérida - Progreso, colonia Loma Bonita, C.P. 97205, Mérida, Yucatán, México
| | - Enrique Castaño
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, Número 130, Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México.
| |
Collapse
|
30
|
Uversky VN. Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Brief Funct Genomics 2020; 19:60-68. [PMID: 29982297 DOI: 10.1093/bfgp/ely023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although for more than a century a protein function was intimately associated with the presence of unique structure in a protein molecule, recent years witnessed a skyrocket rise of the appreciation of protein intrinsic disorder concept that emphasizes the importance of the biologically active proteins without ordered structures. In different proteins, the depth and breadth of disorder penetrance are different, generating an amusing spatiotemporal heterogeneity of intrinsically disordered proteins (IDPs) and intrinsically disordered protein region regions (IDPRs), which are typically described as highly dynamic ensembles of rapidly interconverting conformations (or a multitude of short lifetime structures). IDPs/IDPRs constitute a substantial part of protein kingdom and have unique functions complementary to functional repertoires of ordered proteins. They are recognized as interaction specialists and global controllers that play crucial roles in regulation of functions of their binding partners and in controlling large biological networks. IDPs/IDPRs are characterized by immense binding promiscuity and are able to use a broad spectrum of binding modes, often resulting in the formation of short lifetime complexes. In their turn, functions of IDPs and IDPRs are controlled by various means, such as numerous posttranslational modifications and alternative splicing. Some of the functions of IDPs/IDPRs are briefly considered in this review to shed some light on the biological roles of short-lived structures at large.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
31
|
Saumya KU, Kumar D, Kumar P, Giri R. Unlike dengue virus, the conserved 14–23 residues in N-terminal region of Zika virus capsid is not involved in lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183440. [DOI: 10.1016/j.bbamem.2020.183440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
|
32
|
Evolutionary Study of Disorder in Protein Sequences. Biomolecules 2020; 10:biom10101413. [PMID: 33036302 PMCID: PMC7650552 DOI: 10.3390/biom10101413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) contain regions lacking intrinsic globular structure (intrinsically disordered regions, IDRs). IDPs are present across the tree of life, with great variability of IDR type and frequency even between closely related taxa. To investigate the function of IDRs, we evaluated and compared the distribution of disorder content in 10,695 reference proteomes, confirming its high variability and finding certain correlation along the Euteleostomi (bony vertebrates) lineage to number of cell types. We used the comparison of orthologs to study the function of disorder related to increase in cell types, observing that multiple interacting subunits of protein complexes might gain IDRs in evolution, thus stressing the function of IDRs in modulating protein-protein interactions, particularly in the cell nucleus. Interestingly, the conservation of local compositional biases of IDPs follows residue-type specific patterns, with E- and K-rich regions being evolutionarily stable and Q- and A-rich regions being more dynamic. We provide a framework for targeted evolutionary studies of the emergence of IDRs. We believe that, given the large variability of IDR distributions in different species, studies using this evolutionary perspective are required.
Collapse
|
33
|
Statistical and molecular dynamics (MD) simulation approach to investigate the role of intrinsically disordered regions of shikimate dehydrogenase in microorganisms surviving at different temperatures. Extremophiles 2020; 24:831-842. [PMID: 32975630 DOI: 10.1007/s00792-020-01198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Hyperthermophiles, a subset of prokaryotes that thrive in adverse temperatures, potentially utilize the protein molecular biosystem for maintaining thermostability in a wide range of temperatures. Recent studies revealed that these organisms have smaller proportions of intrinsically disordered proteins. In this study, we performed sequence and structural analysis to investigate the maintenance of protein conformation and their stability at different temperatures. The sequence analysis reveals the higher proportion of charged amino acids are responsible for preventing the helix formation and, hence, become disordered regions. For structural analysis, we chose shikimate dehydrogenase from four species, namely Listeria monocytogenes, Escherichia coli, Thermus thermophilus, and Methanopyrus kandleri, and evaluated the protein adaptation at 283 K, 300 K, and 395 K temperatures. From this investigation, we found more residues of shikimate dehydrogenase prefer an order-to-disorder transition at 395 K only for hyperthermophilic species. The solvent-accessible surface area (SASA) and hydrogen-bond analysis revealed that the tertiary conformation and the number of hydrogen bonds for hyperthermophilic shikimate dehydrogenase are highly preserved at 395 K, compared to 300 K. Our simulation results conjointly provide shikimate dehydrogenase of hyperthermophile which resists high temperatures through stronger protein tertiary conformations.
Collapse
|
34
|
Van Bibber NW, Haerle C, Khalife R, Dayhoff GW, Uversky VN. Intrinsic Disorder in Human Proteins Encoded by Core Duplicon Gene Families. J Phys Chem B 2020; 124:8050-8070. [PMID: 32880174 DOI: 10.1021/acs.jpcb.0c07676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Segmental duplications (i.e., highly homologous DNA fragments greater than 1 kb in length that are present within a genome at more than one site) are typically found in genome regions that are prone to rearrangements. A noticeable fraction of the human genome (∼5%) includes segmental duplications (or duplicons) that are assumed to play a number of vital roles in human evolution, human-specific adaptation, and genomic instability. Despite their importance for crucial events such as synaptogenesis, neuronal migration, and neocortical expansion, these segmental duplications continue to be rather poorly characterized. Of particular interest are the core duplicon gene (CDG) families, which are replicates sharing common "core" DNA among the randomly attached pieces and which expand along single chromosomes and might harbor newly acquired protein domains. Another important feature of proteins encoded by CDG families is their multifunctionality. Although it seems that these proteins might possess many characteristic features of intrinsically disordered proteins, to the best of our knowledge, a systematic investigation of the intrinsic disorder predisposition of the proteins encoded by core duplicon gene families has not been conducted yet. To fill this gap and to determine the degree to which these proteins might be affected by intrinsic disorder, we analyzed a set of human proteins encoded by the members of 10 core duplicon gene families, such as NBPF, RGPD, GUSBP, PMS2P, SPATA31, TRIM51, GOLGA8, NPIP, TBC1D3, and LRRC37. Our analysis revealed that the vast majority of these proteins are highly disordered, with their disordered regions often being utilized as means for the protein-protein interactions and/or targeted for numerous posttranslational modifications of different nature.
Collapse
Affiliation(s)
- Nathan W Van Bibber
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Cornelia Haerle
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Roy Khalife
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, Florida 33620, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States.,USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States.,Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 4 Institutskaya St., Pushchino, 142290, Moscow Region, Russia
| |
Collapse
|
35
|
Beg MA, Athar F. Molecular modeling and in silico characterization of mycobacterial Rv3101c and Rv3102c proteins: prerequisite molecular target in cell division. ACTA ACUST UNITED AC 2020. [DOI: 10.15406/ppij.2020.08.00300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Bhardwaj T, Saumya KU, Kumar P, Sharma N, Gadhave K, Uversky VN, Giri R. Japanese encephalitis virus - exploring the dark proteome and disorder-function paradigm. FEBS J 2020; 287:3751-3776. [PMID: 32473054 DOI: 10.1111/febs.15427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/26/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
Japanese encephalitis virus (JEV) is one of the major causes of viral encephalitis all around the globe. Approximately 3 billion people in endemic areas are at risk of Japanese encephalitis. To develop a wholistic understanding of the viral proteome, it is important to investigate both its ordered and disordered proteins. However, the functional and structural significance of disordered regions in the JEV proteome has not been systematically investigated as of yet. To fill this gap, we used here a set of bioinformatics tools to analyze the JEV proteome for the predisposition of its proteins for intrinsic disorder and for the presence of the disorder-based binding regions (also known as molecular recognition features, MoRFs). We also analyzed all JEV proteins for the presence of the probable nucleic acid-binding (DNA and RNA) sites. The results of these computational studies are experimentally validated using JEV capsid protein as an illustrative example. In agreement with bioinformatic analysis, we found that the N-terminal region of the JEV capsid (residues 1-30) is intrinsically disordered. We showed that this region is characterized by the temperature response typical for highly disordered proteins. Furthermore, we have experimentally shown that this disordered N-terminal domain of a capsid protein has a noticeable 'gain-of-structure' potential. In addition, using DOPS liposomes, we demonstrated the presence of pronounced membrane-mediated conformational changes in the N-terminal region of JEV capsid. In our view, this disorder-centric analysis would be helpful for a better understanding of the JEV pathogenesis.
Collapse
Affiliation(s)
- Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Kumar Udit Saumya
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Nitin Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center 'Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences', Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, India
| |
Collapse
|
37
|
Yan J, Cheng J, Kurgan L, Uversky VN. Structural and functional analysis of "non-smelly" proteins. Cell Mol Life Sci 2020; 77:2423-2440. [PMID: 31486849 PMCID: PMC11105052 DOI: 10.1007/s00018-019-03292-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Abstract
Cysteine and aromatic residues are major structure-promoting residues. We assessed the abundance, structural coverage, and functional characteristics of the "non-smelly" proteins, i.e., proteins that do not contain cysteine residues (C-depleted) or cysteine and aromatic residues (CFYWH-depleted), across 817 proteomes from all domains of life. The analysis revealed that although these proteomes contained significant levels of the C-depleted proteins, with prokaryotes being significantly more enriched in such proteins than eukaryotes, the CFYWH-depleted proteins were relatively rare, accounting for about 0.05% of proteomes. Furthermore, CFYWH-depleted proteins were virtually never found in PDB. Depletion in cysteine and in aromatic residues was associated with the substantially increased intrinsic disorder levels across all domains of life. Archaeal and eukaryotic organisms with higher levels of the C-depleted proteins were shown to have higher levels of the intrinsic disorder and lower levels of structural coverage. We also showed that the "non-smelly" proteins typically did not independently fold into monomeric structures, and instead, they fold by interacting with nucleic acids as constituents of the ribosome and nucleosome complexes. They were shown to be involved in translation, transcription, nucleosome assembly, transmembrane transport, and protein folding functions, all of which are known to be associated with the intrinsic disorder. Our data suggested that, in general, structure of monomeric proteins is crucially dependent on the presence of cysteine and aromatic residues.
Collapse
Affiliation(s)
- Jing Yan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Room E4225, Richmond, VA, 23284, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612, USA.
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
| |
Collapse
|
38
|
Intrinsic Disorder in Tetratricopeptide Repeat Proteins. Int J Mol Sci 2020; 21:ijms21103709. [PMID: 32466138 PMCID: PMC7279152 DOI: 10.3390/ijms21103709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
Among the realm of repeat containing proteins that commonly serve as “scaffolds” promoting protein-protein interactions, there is a family of proteins containing between 2 and 20 tetratricopeptide repeats (TPRs), which are functional motifs consisting of 34 amino acids. The most distinguishing feature of TPR domains is their ability to stack continuously one upon the other, with these stacked repeats being able to affect interaction with binding partners either sequentially or in combination. It is known that many repeat-containing proteins are characterized by high levels of intrinsic disorder, and that many protein tandem repeats can be intrinsically disordered. Furthermore, it seems that TPR-containing proteins share many characteristics with hybrid proteins containing ordered domains and intrinsically disordered protein regions. However, there has not been a systematic analysis of the intrinsic disorder status of TPR proteins. To fill this gap, we analyzed 166 human TPR proteins to determine the degree to which proteins containing TPR motifs are affected by intrinsic disorder. Our analysis revealed that these proteins are characterized by different levels of intrinsic disorder and contain functional disordered regions that are utilized for protein-protein interactions and often serve as targets of various posttranslational modifications.
Collapse
|
39
|
Badierah RA, Uversky VN, Redwan EM. Dancing with Trojan horses: an interplay between the extracellular vesicles and viruses. J Biomol Struct Dyn 2020; 39:3034-3060. [DOI: 10.1080/07391102.2020.1756409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Raied A. Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Molecular Diagnostic Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center ‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’, Pushchino, Moscow Region, Russia
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Tavella D, Ertekin A, Schaal H, Ryder SP, Massi F. A Disorder-to-Order Transition Mediates RNA Binding of the Caenorhabditis elegans Protein MEX-5. Biophys J 2020; 118:2001-2014. [PMID: 32294479 PMCID: PMC7175634 DOI: 10.1016/j.bpj.2020.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 11/17/2022] Open
Abstract
CCCH-type tandem zinc finger (TZF) domains are found in many RNA-binding proteins (RBPs) that regulate the essential processes of post-transcriptional gene expression and splicing through direct protein-RNA interactions. In Caenorhabditis elegans, RBPs control the translation, stability, or localization of maternal messenger RNAs required for patterning decisions before zygotic gene activation. MEX-5 (Muscle EXcess) is a C. elegans protein that leads a cascade of RBP localization events that is essential for axis polarization and germline differentiation after fertilization. Here, we report that at room temperature, the CCCH-type TZF domain of MEX-5 contains an unstructured zinc finger that folds upon binding of its RNA target. We have characterized the structure and dynamics of the TZF domain of MEX-5 and designed a variant MEX-5 in which both fingers are fully folded in the absence of RNA. Within the thermal range experienced by C. elegans, the population of the unfolded state of the TZF domain of MEX-5 varies. We observe that the TZF domain becomes less disordered at lower temperatures and more disordered at higher temperatures. However, in the temperature range in which C. elegans is fertile, when MEX-5 needs to be functional, only one of the two zinc fingers is folded.
Collapse
Affiliation(s)
- Davide Tavella
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Asli Ertekin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Hila Schaal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Francesca Massi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
41
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
42
|
Uversky VN. Torches, Candles, Lamps, Lanterns, Flashlights, Spotlights, Night Vision Goggles… You Need Them All to See in Darkness. Proteomics 2020; 19:e1900085. [PMID: 30829430 DOI: 10.1002/pmic.201900085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Articles assembled in the second part of this Special Issue describe some experimental and computational approaches for the structural and functional characterization of intrinsically disordered proteins. Since these tools represent specialized gear for the focused analysis of various aspects of dark proteome, they can be viewed as torches, candles, lamps, lanterns, flashlights, spotlights, night vision goggles, and other means needed to see in darkness.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow, 142290, Russia
| |
Collapse
|
43
|
Abstract
Functions of intrinsically disordered proteins do not require structure. Such structure-independent functionality has melted away the classic rigid "lock and key" representation of structure-function relationships in proteins, opening a new page in protein science, where molten keys operate on melted locks and where conformational flexibility and intrinsic disorder, structural plasticity and extreme malleability, multifunctionality and binding promiscuity represent a new-fangled reality. Analysis and understanding of this new reality require novel tools, and some of the techniques elaborated for the examination of intrinsically disordered protein functions are outlined in this review.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
44
|
Oldfield CJ, Fan X, Wang C, Dunker AK, Kurgan L. Computational Prediction of Intrinsic Disorder in Protein Sequences with the disCoP Meta-predictor. Methods Mol Biol 2020; 2141:21-35. [PMID: 32696351 DOI: 10.1007/978-1-0716-0524-0_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered proteins are either entirely disordered or contain disordered regions in their native state. These proteins and regions function without the prerequisite of a stable structure and were found to be abundant across all kingdoms of life. Experimental annotation of disorder lags behind the rapidly growing number of sequenced proteins, motivating the development of computational methods that predict disorder in protein sequences. DisCoP is a user-friendly webserver that provides accurate sequence-based prediction of protein disorder. It relies on meta-architecture in which the outputs generated by multiple disorder predictors are combined together to improve predictive performance. The architecture of disCoP is presented, and its accuracy relative to several other disorder predictors is briefly discussed. We describe usage of the web interface and explain how to access and read results generated by this computational tool. We also provide an example of prediction results and interpretation. The disCoP's webserver is publicly available at http://biomine.cs.vcu.edu/servers/disCoP/ .
Collapse
Affiliation(s)
| | - Xiao Fan
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Chen Wang
- Department of Medicine, Columbia University, New York, NY, USA
| | - A Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
45
|
Uversky VN, Finkelstein AV. Life in Phases: Intra- and Inter- Molecular Phase Transitions in Protein Solutions. Biomolecules 2019; 9:E842. [PMID: 31817975 PMCID: PMC6995567 DOI: 10.3390/biom9120842] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Proteins, these evolutionarily-edited biological polymers, are able to undergo intramolecular and intermolecular phase transitions. Spontaneous intramolecular phase transitions define the folding of globular proteins, whereas binding-induced, intra- and inter- molecular phase transitions play a crucial role in the functionality of many intrinsically-disordered proteins. On the other hand, intermolecular phase transitions are the behind-the-scenes players in a diverse set of macrosystemic phenomena taking place in protein solutions, such as new phase nucleation in bulk, on the interface, and on the impurities, protein crystallization, protein aggregation, the formation of amyloid fibrils, and intermolecular liquid-liquid or liquid-gel phase transitions associated with the biogenesis of membraneless organelles in the cells. This review is dedicated to the systematic analysis of the phase behavior of protein molecules and their ensembles, and provides a description of the major physical principles governing intramolecular and intermolecular phase transitions in protein solutions.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow, Russia
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow, Russia
- Biology Department, Lomonosov Moscow State University, 119192 Moscow, Russia
- Bioltechnogy Department, Lomonosov Moscow State University, 142290 Pushchino, Moscow, Russia
| |
Collapse
|
46
|
Fonin AV, Darling AL, Kuznetsova IM, Turoverov KK, Uversky VN. Multi-functionality of proteins involved in GPCR and G protein signaling: making sense of structure-function continuum with intrinsic disorder-based proteoforms. Cell Mol Life Sci 2019; 76:4461-4492. [PMID: 31428838 PMCID: PMC11105632 DOI: 10.1007/s00018-019-03276-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
GPCR-G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signaling cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand-GPCR and GPCR-G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defines an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR-G protein system represents an illustrative example of the protein structure-function continuum, where structures of the involved proteins represent a complex mosaic of differently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fine-tuned by various post-translational modifications and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specific partners. In other words, GPCRs and G proteins exist as sets of conformational/basic, inducible/modified, and functioning proteoforms characterized by a broad spectrum of structural features and possessing various functional potentials.
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Irina M Kuznetsova
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russian Federation
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya av. 29, St. Petersburg, 195251, Russian Federation
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow, Russian Federation.
| |
Collapse
|
47
|
El Hadidy N, Uversky VN. Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development. Int J Mol Sci 2019; 20:ijms20215260. [PMID: 31652801 PMCID: PMC6862534 DOI: 10.3390/ijms20215260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The two-meter-long DNA is compressed into chromatin in the nucleus of every cell, which serves as a significant barrier to transcription. Therefore, for processes such as replication and transcription to occur, the highly compacted chromatin must be relaxed, and the processes required for chromatin reorganization for the aim of replication or transcription are controlled by ATP-dependent nucleosome remodelers. One of the most highly studied remodelers of this kind is the BRG1- or BRM-associated factor complex (BAF complex, also known as SWItch/sucrose non-fermentable (SWI/SNF) complex), which is crucial for the regulation of gene expression and differentiation in eukaryotes. Chromatin remodeling complex BAF is characterized by a highly polymorphic structure, containing from four to 17 subunits encoded by 29 genes. The aim of this paper is to provide an overview of the role of BAF complex in chromatin remodeling and also to use literature mining and a set of computational and bioinformatics tools to analyze structural properties, intrinsic disorder predisposition, and functionalities of its subunits, along with the description of the relations of different BAF complex subunits to the pathogenesis of various human diseases.
Collapse
Affiliation(s)
- Nashwa El Hadidy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, 142290 Moscow Region, Russia.
| |
Collapse
|
48
|
Uversky VN. Bringing Darkness to Light: Intrinsic Disorder as a Means to Dig into the Dark Proteome. Proteomics 2019; 18:e1800352. [PMID: 30334344 DOI: 10.1002/pmic.201800352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia
| |
Collapse
|
49
|
Djulbegovic MB, Uversky VN. Ferroptosis - An iron- and disorder-dependent programmed cell death. Int J Biol Macromol 2019; 135:1052-1069. [PMID: 31175900 DOI: 10.1016/j.ijbiomac.2019.05.221] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
Programmed cell death (PCD) is an integral component of both developmental and pathological features of an organism. Recently, ferroptosis, a new form of PCD that is dependent on reactive oxygen species and iron, has been described. As with apoptosis, necroptosis, and autophagy, ferroptosis is associated with a large set of proteins assembled in protein-protein interaction (PPI) networks, interactability of which is driven by the presence of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs). Previous investigations have identified the prevalence and functionality of IDPs/IDPRs in non-ferroptosis PCD. The intrinsic disorder in protein structures is used to increase the regulatory powers of these processes. As uncontrolled PCD is associated with the onset of various pathological traits, uncovering the association between intrinsic disorder and ferroptosis-related proteins is crucial. To understand this association, 31 human ferroptosis-related proteins were analyzed via a multi-dimensional array of bioinformatics and computational techniques. In addition, a disorder meta-predictor (PONDR® FIT) was implored to look at the evolutionary conservation of intrinsic disorder in these proteins. This study presents evidence that IDPs and IDPRs are prevalent in ferroptosis. The intrinsic disorder found in ferroptosis has far-reaching functional implications related to ferroptosis-related PPIs and molecular interactions.
Collapse
Affiliation(s)
- Mak B Djulbegovic
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Moscow region, Russia.
| |
Collapse
|
50
|
Hoyer E, Knöppel J, Liebmann M, Steppert M, Raiwa M, Herczynski O, Hanspach E, Zehner S, Göttfert M, Tsushima S, Fahmy K, Oertel J. Calcium binding to a disordered domain of a type III-secreted protein from a coral pathogen promotes secondary structure formation and catalytic activity. Sci Rep 2019; 9:7115. [PMID: 31068617 PMCID: PMC6506597 DOI: 10.1038/s41598-019-42898-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/10/2019] [Indexed: 01/05/2023] Open
Abstract
Strains of the Gram-negative bacterium Vibrio coralliilyticus cause the bleaching of corals due to decomposition of symbiotic microalgae. The V. coralliilyticus strain ATCC BAA-450 (Vc450) encodes a type III secretion system (T3SS). The gene cluster also encodes a protein (locus tag VIC_001052) with sequence homology to the T3SS-secreted nodulation proteins NopE1 and NopE2 of Bradyrhizobium japonicum (USDA110). VIC_001052 has been shown to undergo auto-cleavage in the presence of Ca2+ similar to the NopE proteins. We have studied the hitherto unknown secondary structure, Ca2+-binding affinity and stoichiometry of the "metal ion-inducible autocleavage" (MIIA) domain of VIC_001052 which does not possess a classical Ca2+-binding motif. CD and fluorescence spectroscopy revealed that the MIIA domain is largely intrinsically disordered. Binding of Ca2+ and other di- and trivalent cations induced secondary structure and hydrophobic packing after partial neutralization of the highly negatively charged MIIA domain. Mass spectrometry and isothermal titration calorimetry showed two Ca2+-binding sites which promote structure formation with a total binding enthalpy of -110 kJ mol-1 at a low micromolar Kd. Putative binding motifs were identified by sequence similarity to EF-hand domains and their structure analyzed by molecular dynamics simulations. The stoichiometric Ca2+-dependent induction of structure correlated with catalytic activity and may provide a "host-sensing" mechanism that is shared among pathogens that use a T3SS for efficient secretion of disordered proteins.
Collapse
Affiliation(s)
- Elisabeth Hoyer
- Technische Universität Dresden, Institute of Genetics, Zellescher Weg 20b, D-01217, Dresden, Germany
- Ludwig-Maximilians-Universität München, Department of Biology I, Microbiology, Großhaderner Str. 2, D-82152, Planegg-Martinsried, Germany
| | - Julius Knöppel
- Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Martina Liebmann
- Technische Universität Dresden, Institute of Genetics, Zellescher Weg 20b, D-01217, Dresden, Germany
| | - Michael Steppert
- Leibniz University Hannover, Institute of Radioecology and Radiation Protection, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Manuel Raiwa
- Leibniz University Hannover, Institute of Radioecology and Radiation Protection, Herrenhäuser Str. 2, D-30419, Hannover, Germany
| | - Olivia Herczynski
- Technische Universität Dresden, Institute of Genetics, Zellescher Weg 20b, D-01217, Dresden, Germany
| | - Erik Hanspach
- Technische Universität Dresden, Institute of Genetics, Zellescher Weg 20b, D-01217, Dresden, Germany
| | - Susanne Zehner
- Technische Universität Dresden, Institute of Genetics, Zellescher Weg 20b, D-01217, Dresden, Germany
| | - Michael Göttfert
- Technische Universität Dresden, Institute of Genetics, Zellescher Weg 20b, D-01217, Dresden, Germany
| | - Satoru Tsushima
- Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany
| | - Jana Oertel
- Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, D-01328, Dresden, Germany.
| |
Collapse
|