1
|
Sardiña-Peña AJ, Mesa-Ramos L, Iglesias-Figueroa BF, Ballinas-Casarrubias L, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Flores-Holguín NR, Arévalo-Gallegos S, Rascón-Cruz Q. Analyzing Current Trends and Possible Strategies to Improve Sucrose Isomerases' Thermostability. Int J Mol Sci 2023; 24:14513. [PMID: 37833959 PMCID: PMC10572972 DOI: 10.3390/ijms241914513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their ability to produce isomaltulose, sucrose isomerases are enzymes that have caught the attention of researchers and entrepreneurs since the 1950s. However, their low activity and stability at temperatures above 40 °C have been a bottleneck for their industrial application. Specifically, the instability of these enzymes has been a challenge when it comes to their use for the synthesis and manufacturing of chemicals on a practical scale. This is because industrial processes often require biocatalysts that can withstand harsh reaction conditions, like high temperatures. Since the 1980s, there have been significant advancements in the thermal stabilization engineering of enzymes. Based on the literature from the past few decades and the latest achievements in protein engineering, this article systematically describes the strategies used to enhance the thermal stability of sucrose isomerases. Additionally, from a theoretical perspective, we discuss other potential mechanisms that could be used for this purpose.
Collapse
Affiliation(s)
- Amado Javier Sardiña-Peña
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Liber Mesa-Ramos
- Laboratorio de Microbiología III, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico;
| | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Lourdes Ballinas-Casarrubias
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Tania Samanta Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Edward Alexander Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Norma Rosario Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
2
|
Janíčková Z, Janeček Š. In Silico Analysis of Fungal and Chloride-Dependent α-Amylases within the Family GH13 with Identification of Possible Secondary Surface-Binding Sites. Molecules 2021; 26:molecules26185704. [PMID: 34577174 PMCID: PMC8467227 DOI: 10.3390/molecules26185704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
This study brings a detailed bioinformatics analysis of fungal and chloride-dependent α-amylases from the family GH13. Overall, 268 α-amylase sequences were retrieved from subfamilies GH13_1 (39 sequences), GH13_5 (35 sequences), GH13_15 (28 sequences), GH13_24 (23 sequences), GH13_32 (140 sequences) and GH13_42 (3 sequences). Eight conserved sequence regions (CSRs) characteristic for the family GH13 were identified in all sequences and respective sequence logos were analysed in an effort to identify unique sequence features of each subfamily. The main emphasis was given on the subfamily GH13_32 since it contains both fungal α-amylases and their bacterial chloride-activated counterparts. In addition to in silico analysis focused on eventual ability to bind the chloride anion, the property typical mainly for animal α-amylases from subfamilies GH13_15 and GH13_24, attention has been paid also to the potential presence of the so-called secondary surface-binding sites (SBSs) identified in complexed crystal structures of some particular α-amylases from the studied subfamilies. As template enzymes with already experimentally determined SBSs, the α-amylases from Aspergillus niger (GH13_1), Bacillus halmapalus, Bacillus paralicheniformis and Halothermothrix orenii (all from GH13_5) and Homo sapiens (saliva; GH13_24) were used. Evolutionary relationships between GH13 fungal and chloride-dependent α-amylases were demonstrated by two evolutionary trees—one based on the alignment of the segment of sequences spanning almost the entire catalytic TIM-barrel domain and the other one based on the alignment of eight extracted CSRs. Although both trees demonstrated similar results in terms of a closer evolutionary relatedness of subfamilies GH13_1 with GH13_42 including in a wider sense also the subfamily GH13_5 as well as for subfamilies GH13_32, GH13_15 and GH13_24, some subtle differences in clustering of particular α-amylases may nevertheless be observed.
Collapse
Affiliation(s)
- Zuzana Janíčková
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, SK-91701 Trnava, Slovakia;
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
| | - Štefan Janeček
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, SK-91701 Trnava, Slovakia;
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
3
|
Lim SJ, Oslan SN. Native to designed: microbial -amylases for industrial applications. PeerJ 2021; 9:e11315. [PMID: 34046253 PMCID: PMC8139272 DOI: 10.7717/peerj.11315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work. Survey methodology and objectives A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries. Conclusions Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Tagomori BY, dos Santos FC, Barbosa-Tessmann IP. Recombinant expression, purification, and characterization of an α-amylase from Massilia timonae. 3 Biotech 2021; 11:13. [PMID: 33442512 DOI: 10.1007/s13205-020-02505-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/24/2020] [Indexed: 10/22/2022] Open
Abstract
This work reports the amy1 gene cloning from Massilia timonae CTI-57, and its successful expression in Escherichia coli Rosetta™ (DE3) from the pTRCHis2B plasmid. The recombinant AMY1 protein had 47 kDa, and its modeled structure showed a monomer composed of three domains. An N-terminal domain with the characteristic (β/α)8-barrel structure of α-amylases, which contained the catalytic amino acid residues. The second domain was small, and the C-terminal domain was similar to those found in the barley α-amylase. A phylogenetic analysis demonstrated a high sequence identity of the studied protein with bacterial and plant α-amylases from the GH13_6 subfamily. This is the first characterized bacterial α-amylase from this glucoside hydrolase subfamily. Besides starch, the enzyme was also active against maltodextrin, amylopectin, and blocked p-nitrophenyl α-d-maltoheptaoside, but could not use β-cyclodextrin or 4-nitrophenyl α-d-glucopyranoside. The K M for highly pure grade soluble starch from potato and V max values were 0.79 mg/mL and 0.04 mg/min, respectively. The calcium ion showed to be essential for the purified enzyme's activity, while EDTA, molybdenum, cobalt, and mercury were strong inhibitors. The enzyme was almost fully active in SDS presence. The enzyme's optimal pH and temperature were 6.0 and 60 °C, respectively, and its denaturation T m was 79 °C. A TLC analysis revealed that glucose and maltose are products of the enzyme's action on starch. In conclusion, this work described the M. timonae GH13_6 subfamily α-amylase, which showed to be thermostable and anionic detergent-resistant.
Collapse
|
5
|
Pinto ÉSM, Dorn M, Feltes BC. The tale of a versatile enzyme: Alpha-amylase evolution, structure, and potential biotechnological applications for the bioremediation of n-alkanes. CHEMOSPHERE 2020; 250:126202. [PMID: 32092569 DOI: 10.1016/j.chemosphere.2020.126202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
As the primary source of a wide range of industrial products, the study of petroleum-derived compounds is of pivotal importance. However, the process of oil extraction and refinement is among the most environmentally hazardous practices, impacting almost all levels of the ecological chain. So far, the most appropriate strategy to overcome such an issue is through bioremediation, which revolves around the employment of different microorganisms to degrade hazardous compounds, generating less environmental impact and lower monetary costs. In this sense, a myriad of organisms and enzymes are considered possible candidates for the bioremediation process. Amidst the potential candidates is α-amylase, an evolutionary conserved starch-degrading enzyme. Notably, α-amylase was not only seen to degrade n-alkanes, a subclass of alkanes considered the most abundant petroleum-derived compounds but also low-density polyethylene, a dangerous pollutant produced from petroleum. Thus, due to its high conservation in both eukaryotic and prokaryotic lineages, in addition to the capability to degrade different types of hazardous compounds, the study of α-amylase becomes a rising interest. Nevertheless, there are no studies that review all biotechnological applications of α-amylase for bioremediation. In this work, we critically review the potential biotechnological applications of α-amylase, focusing on the biodegradation of petroleum-derived compounds. Evolutionary aspects are discussed, as well for all structural information and all features that could impact on the employment of this protein in the biotechnological industry, such as pH, temperature, and medium conditions. New perspectives and critical assessments are conducted regarding the application of α-amylase in the bioremediation of n-alkanes.
Collapse
Affiliation(s)
- Éderson Sales Moreira Pinto
- Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Márcio Dorn
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil; Laboratory of Structural Bioinformatics and Computational Biology, Center for Biotechnology, Federal University of Rio Grande do Sul, Brazil
| | - Bruno César Feltes
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Yin H, Zhang L, Yang Z, Li S, Nie X, Wang Y, Yang C. Contribution of domain B to the catalytic properties of a Flavobacteriaceae α-amylase. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Hleap JS, Blouin C. The response to selection in Glycoside Hydrolase Family 13 structures: A comparative quantitative genetics approach. PLoS One 2018; 13:e0196135. [PMID: 29698417 PMCID: PMC5919626 DOI: 10.1371/journal.pone.0196135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/07/2018] [Indexed: 12/16/2022] Open
Abstract
The Glycoside Hydrolase Family 13 (GH13) is both evolutionarily diverse and relevant to many industrial applications. Its members hydrolyze starch into smaller carbohydrates and members of the family have been bioengineered to improve catalytic function under industrial environments. We introduce a framework to analyze the response to selection of GH13 protein structures given some phylogenetic and simulated dynamic information. We find that the TIM-barrel (a conserved protein fold consisting of eight α-helices and eight parallel β-strands that alternate along the peptide backbone, common to all amylases) is not selectable since it is under purifying selection. We also show a method to rank important residues with higher inferred response to selection. These residues can be altered to effect change in properties. In this work, we define fitness as inferred thermodynamic stability. We show that under the developed framework, residues 112Y, 122K, 124D, 125W, and 126P are good candidates to increase the stability of the truncated α-amylase protein from Geobacillus thermoleovorans (PDB code: 4E2O; α-1,4-glucan-4-glucanohydrolase; EC 3.2.1.1). Overall, this paper demonstrates the feasibility of a framework for the analysis of protein structures for any other fitness landscape.
Collapse
Affiliation(s)
- Jose Sergio Hleap
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- SQUALUS Foundation, Cali, Colombia
- * E-mail:
| | - Christian Blouin
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Yin H, Yang Z, Nie X, Li S, Sun X, Gao C, Wang Z, Zhou G, Xu P, Yang C. Functional and cooperative stabilization of a two-metal (Ca, Zn) center in α-amylase derived from Flavobacteriaceae species. Sci Rep 2017; 7:17933. [PMID: 29263337 PMCID: PMC5738361 DOI: 10.1038/s41598-017-18085-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/06/2017] [Indexed: 11/09/2022] Open
Abstract
Mesophilic α-amylase from Flavobacteriaceae (FSA) is evolutionary closely related to thermophilic archaeal Pyrococcus furiosus α-amylase (PWA), but lacks the high thermostability, despite the conservation of most residues involved in the two-metal (Ca, Zn) binding center of PWA. In this study, a disulfide bond was introduced near the two-metal binding center of FSA (designated mutant EH-CC) and this modification resulted in a slight improvement in thermostability. As expected, E204G mutations in FSA and EH-CC led to the recovery of Ca2+-binding site. Interestingly, both Ca2+- and Zn2+-dependent thermostability were significantly enhanced; 153.1% or 50.8% activities was retained after a 30-min incubation period at 50 °C, in the presence of Ca2+ or Zn2+. The C214S mutation, which affects Zn2+-binding, also remarkably enhanced Zn2+- and Ca2+- dependent thermostability, indicating that Ca2+- and Zn2+-binding sites function cooperatively to maintain protein stability. Furthermore, an isothermal titration calorimetry (ITC) analysis revealed a novel Zn2+-binding site in mutant EH-CC-E204G. This metal ion cooperation provides a possible method for the generation of α-amylases with desired thermal properties by in silico rational design and systems engineering, to generate a Zn2+-binding site adjacent to the conserved Ca2+-binding site.
Collapse
Affiliation(s)
- Huijia Yin
- State Key Laboratory of Microbial Biotechnology, Shandong University, Jinan, 250100, People's Republic of China
| | - Zhou Yang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Jinan, 250100, People's Republic of China
| | - Xinyu Nie
- State Key Laboratory of Microbial Biotechnology, Shandong University, Jinan, 250100, People's Republic of China
| | - Shannan Li
- State Key Laboratory of Microbial Biotechnology, Shandong University, Jinan, 250100, People's Republic of China
| | - Xuyang Sun
- State Key Laboratory of Microbial Biotechnology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Biotechnology, Shandong University, Jinan, 250100, People's Republic of China
| | - Zenghang Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Jinan, 250100, People's Republic of China
| | - Guangming Zhou
- State Key Laboratory of Microbial Biotechnology, Shandong University, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Jinan, 250100, People's Republic of China
| | - Chunyu Yang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
9
|
Singh K, Ahmad F, Singh VK, Kayastha K, Kayastha AM. Purification, biochemical characterization and Insilico modeling of α-amylase from Vicia faba. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Cui Y, Meng Y, Zhang J, Cheng B, Yin H, Gao C, Xu P, Yang C. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide. Protein Expr Purif 2017; 129:69-74. [DOI: 10.1016/j.pep.2016.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
|
11
|
Dey TB, Kumar A, Banerjee R, Chandna P, Kuhad RC. Improvement of microbial α-amylase stability: Strategic approaches. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
13
|
Chai KP, Othman NFB, Teh AH, Ho KL, Chan KG, Shamsir MS, Goh KM, Ng CL. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci Rep 2016; 6:23126. [PMID: 26975884 PMCID: PMC4791539 DOI: 10.1038/srep23126] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
A new subfamily of glycosyl hydrolase family GH13 was recently proposed for α-amylases from Anoxybacillus species (ASKA and ADTA), Geobacillus thermoleovorans (GTA, Pizzo, and GtamyII), Bacillus aquimaris (BaqA), and 95 other putative protein homologues. To understand this new GH13 subfamily, we report crystal structures of truncated ASKA (TASKA). ASKA is a thermostable enzyme capable of producing high levels of maltose. Unlike GTA, biochemical analysis showed that Ca2+ ion supplementation enhances the catalytic activities of ASKA and TASKA. The crystal structures reveal the presence of four Ca2+ ion binding sites, with three of these binding sites are highly conserved among Anoxybacillus α-amylases. This work provides structural insights into this new GH13 subfamily both in the apo form and in complex with maltose. Furthermore, structural comparison of TASKA and GTA provides an overview of the conformational changes accompanying maltose binding at each subsite.
Collapse
Affiliation(s)
- Kian Piaw Chai
- Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering, 81310 Skudai, Johor, Malaysia
| | - Noor Farhan Binti Othman
- Universiti Kebangsaan Malaysia, Institute of Systems Biology, 43600 UKM Bangi, Selangor, Malaysia
| | - Aik-Hong Teh
- Universiti Sains Malaysia, Centre for Chemical Biology, 11800 Penang, Malaysia
| | - Kok Lian Ho
- Universiti Putra Malaysia, Department of Pathology, Faculty of Medicine and Health Sciences, 43400 Serdang, Selangor, Malaysia
| | - Kok-Gan Chan
- University of Malaya, Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, 50603 Kuala Lumpur, Malaysia
| | - Mohd Shahir Shamsir
- Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering, 81310 Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering, 81310 Skudai, Johor, Malaysia
| | - Chyan Leong Ng
- Universiti Kebangsaan Malaysia, Institute of Systems Biology, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
14
|
A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci Rep 2016; 6:22229. [PMID: 26916714 PMCID: PMC4768087 DOI: 10.1038/srep22229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/12/2022] Open
Abstract
Extracellular α-amylase from Pyrococcus furiosus (PFA) shows great starch-processing potential for industrial application due to its thermostability, long half-life and optimal activity at low pH; however, it is difficult to produce in large quantities. In contrast, α-amylase from Bacillus amyloliquefaciens (BAA) can be produced in larger quantities, but shows lower stability at high temperatures and low pH. Here, we describe a BAA protein expression pattern-mimicking strategy to express PFA in B. amyloliquefaciens using the expression and secretion elements of BAA, including the codon usage bias and mRNA structure of gene, promoter, signal peptide, host and cultivation conditions. This design was assessed to be successful by comparing the various genes (mpfa and opfa), promoters (PamyA and P43), and strains (F30, F31, F32 and F30-∆amyA). The final production of PFA yielded 2714 U/mL, about 3000- and 14-fold that reportedly produced in B. subtilis or E. coli, respectively. The recombinant PFA was optimally active at ~100 °C and pH 5 and did not require Ca2+ for activity or thermostability, and >80% of the enzyme activity was retained after treatment at 100 °C for 4 h.
Collapse
|
15
|
A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Zhang Z, Chen Y, Wang R, Cai R, Fu Y, Jiao N. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities. PLoS One 2015; 10:e0142690. [PMID: 26571122 PMCID: PMC4646686 DOI: 10.1371/journal.pone.0142690] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/26/2015] [Indexed: 12/02/2022] Open
Abstract
Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not be completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. The fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.
Collapse
Affiliation(s)
- Zilian Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
- * E-mail: (NJ); (ZZ)
| | - Yi Chen
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Rui Wang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Yingnan Fu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, People’s Republic of China
- * E-mail: (NJ); (ZZ)
| |
Collapse
|
17
|
Ma Y, Yang H, Chen X, Sun B, Du G, Zhou Z, Song J, Fan Y, Shen W. Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): Alkaline α-amylase as a case study. Protein Expr Purif 2015; 114:82-8. [DOI: 10.1016/j.pep.2015.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
18
|
Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G. Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 2015; 25:113-9. [PMID: 26066287 DOI: 10.1016/j.mib.2015.05.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 01/17/2023]
Abstract
Industrial processes often take place under harsh conditions that are hostile to microorganisms and their biocatalysts. Microorganisms surviving at temperatures above 60°C represent a chest of biotechnological treasures for high-temperature bioprocesses by producing a large portfolio of biocatalysts (thermozymes). Due to the unique requirements to cultivate thermophilic (60-80°C) and hyperthermophilic (80-110°C) Bacteria and Archaea, less than 5% are cultivable in the laboratory. Therefore, other approaches including sequence-based screenings and metagenomics have been successful in providing novel thermozymes. In particular, polysaccharide-degrading enzymes (amylolytic enzymes, hemicellulases, cellulases, pectinases and chitinases), lipolytic enzymes and proteases from thermophiles have attracted interest due to their potential for versatile applications in pharmaceutical, chemical, food, textile, paper, leather and feed industries as well as in biorefineries.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg, Germany
| | - Christian Schäfers
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg, Germany
| | - Saskia Blank
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg, Germany
| | - Carola Schröder
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, D-21073 Hamburg, Germany.
| |
Collapse
|
19
|
Natalia D, Vidilaseris K, Ismaya WT, Puspasari F, Prawira I, Hasan K, Fibriansah G, Permentier HP, Nurachman Z, Subroto T, Dijkstra BW, Soemitro S. Effect of introducing a disulphide bond between the A and C domains on the activity and stability of Saccharomycopsis fibuligera R64 α-amylase. J Biotechnol 2014; 195:8-14. [PMID: 25533400 DOI: 10.1016/j.jbiotec.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/26/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022]
Abstract
Native enzyme and a mutant containing an extra disulphide bridge of recombinant Saccharomycopsis fibuligera R64 α-amylase, designated as Sfamy01 and Sfamy02, respectively, have successfully been overexpressed in the yeast Pichia pastoris KM71H. The purified α-amylase variants demonstrated starch hydrolysis resulting in a mixture of maltose, maltotriose, and glucose, similar to the wild type enzyme. Introduction of the disulphide bridge shifted the melting temperature (TM) from 54.5 to 56 °C and nearly tripled the enzyme half-life time at 65 °C. The two variants have similar kcat/KM values. Similarly, inhibition by acarbose was only slightly affected, with the IC50 of Sfamy02 for acarbose being 40 ± 3.4 μM, while that of Sfamy01 was 31 ± 3.9 μM. On the other hand, the IC50 of Sfamy02 for EDTA was 0.45 mM, nearly two times lower than that of Sfamy01 at 0.77 mM. These results show that the introduction of a disulphide bridge had little effect on the enzyme activity, but made the enzyme more susceptible to calcium ion extraction. Altogether, the new disulphide bridge improved the enzyme stability without affecting its activity, although minor changes in the active site environment cannot be excluded.
Collapse
Affiliation(s)
- Dessy Natalia
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jalan Ganesa No 10, Bandung 40132, Indonesia; Center for Life Sciences, Bandung Institute of Technology, Jalan Ganesa No. 10, Bandung 40132, Indonesia.
| | - Keni Vidilaseris
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jalan Ganesa No 10, Bandung 40132, Indonesia
| | - Wangsa T Ismaya
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Biochemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jalan Singaperbangsa No. 2, Bandung 40133, Indonesia.
| | - Fernita Puspasari
- Center for Life Sciences, Bandung Institute of Technology, Jalan Ganesa No. 10, Bandung 40132, Indonesia
| | - Iman Prawira
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jalan Ganesa No 10, Bandung 40132, Indonesia
| | - Khomaini Hasan
- Center for Life Sciences, Bandung Institute of Technology, Jalan Ganesa No. 10, Bandung 40132, Indonesia
| | - Guntur Fibriansah
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Hjalmar P Permentier
- Mass Spectrometry Core Facility, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Zeily Nurachman
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jalan Ganesa No 10, Bandung 40132, Indonesia
| | - Toto Subroto
- Biochemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jalan Singaperbangsa No. 2, Bandung 40133, Indonesia
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Soetijoso Soemitro
- Biochemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jalan Singaperbangsa No. 2, Bandung 40133, Indonesia
| |
Collapse
|
20
|
Draft Genome Sequence of the Novel Exopolysaccharide-Producing Bacterium Altibacter lentus Strain JLT2010T, Isolated from Deep Seawater of the South China Sea. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00954-14. [PMID: 25342673 PMCID: PMC4208317 DOI: 10.1128/genomea.00954-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Altibacter lentus strain JLT2010T is the type strain of the recently identified novel genus and species of the family Flavobacteriaceae and was first isolated from deep seawater of the South China Sea. It can produce exopolysaccharide. Here we report the first draft genome of JLT2010T (3,160,033 bp, with GC content of 42.12%) and major findings from its annotation. It is the first reported genome in the genus Altibacter.
Collapse
|
21
|
Cheng B, Li C, Lai Q, Du M, Shao Z, Xu P, Yang C. Sinomicrobium pectinilyticum sp. nov., a pectinase-producing bacterium isolated from alkaline and saline soil, and emended description of the genus Sinomicrobium. Int J Syst Evol Microbiol 2014; 64:2939-2943. [DOI: 10.1099/ijs.0.061671-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-reaction-negative, non-spore-forming strain, designated 5DNS001T, was isolated from soil of an ancient salt-extracting facility in China. Analysis of the almost-complete 16S rRNA gene sequence of the bacterium suggested that it belongs to the genus
Sinomicrobium
in the family
Flavobacteriaceae
. It exhibited highest 16S rRNA gene sequence similarity with
Sinomicrobium oceani
SCSIO 03483T (96.3 %), but less than 93 % sequence similarity with members of the genera
Imtechella
,
Zhouia
and
Joostella
and other recognized members of the family
Flavobacteriaceae
. The strain was able to hydrolyse pectin and starch by producing pectinase and α-amylase. The DNA G+C content of the strain was 42.6 mol%. The major respiratory quinone was MK-6. The major polar lipid detected in the strain was phosphatidylethanolamine. The dominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω6c/C16 : 1ω7c). Based on phenotypic, genotypic, chemotaxonomic and phylogenetic analyses, a novel species, Sinomicrobium pectinilyticum, is proposed. The type strain is 5DNS001T ( = CGMCC1.11000T = KCTC23776T).
Collapse
Affiliation(s)
- Bin Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, PR China
| | - Chunfang Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Miaofen Du
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, PR China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Ping Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, PR China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
22
|
Ranjani V, Janeček Š, Chai KP, Shahir S, Rahman RNZRA, Chan KG, Goh KM. Protein engineering of selected residues from conserved sequence regions of a novel Anoxybacillus α-amylase. Sci Rep 2014; 4:5850. [PMID: 25069018 PMCID: PMC5376179 DOI: 10.1038/srep05850] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/08/2014] [Indexed: 11/08/2022] Open
Abstract
The α-amylases from Anoxybacillus species (ASKA and ADTA), Bacillus aquimaris (BaqA) and Geobacillus thermoleovorans (GTA, Pizzo and GtamyII) were proposed as a novel group of the α-amylase family GH13. An ASKA yielding a high percentage of maltose upon its reaction on starch was chosen as a model to study the residues responsible for the biochemical properties. Four residues from conserved sequence regions (CSRs) were thus selected, and the mutants F113V (CSR-I), Y187F and L189I (CSR-II) and A161D (CSR-V) were characterised. Few changes in the optimum reaction temperature and pH were observed for all mutants. Whereas the Y187F (t1/2 43 h) and L189I (t1/2 36 h) mutants had a lower thermostability at 65°C than the native ASKA (t1/2 48 h), the mutants F113V and A161D exhibited an improved t1/2 of 51 h and 53 h, respectively. Among the mutants, only the A161D had a specific activity, k(cat) and k(cat)/K(m) higher (1.23-, 1.17- and 2.88-times, respectively) than the values determined for the ASKA. The replacement of the Ala-161 in the CSR-V with an aspartic acid also caused a significant reduction in the ratio of maltose formed. This finding suggests the Ala-161 may contribute to the high maltose production of the ASKA.
Collapse
Affiliation(s)
- Velayudhan Ranjani
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701 Trnava, Slovakia
| | - Kian Piaw Chai
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia
| | - Shafinaz Shahir
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia
| | - Raja Noor Zaliha Raja Abdul Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia
| |
Collapse
|