1
|
Zhu M, Wu SCM, Tam WK, Wong CK, Liao P, Cheah KS, Chan D, James AW, Leung VY. Biglycan fragment modulates TGF-β activity in intervertebral disc via an eIF6-coupled intracellular path. SCIENCE ADVANCES 2025; 11:eadq8545. [PMID: 39951526 PMCID: PMC11827866 DOI: 10.1126/sciadv.adq8545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025]
Abstract
Biglycan, a pericellular small leucine-rich proteoglycan, is crucial in skeletal development and regeneration. Intervertebral disc degeneration (IDD) contributes to back pain and disability. Previous studies have shown that biglycan promotes hypoxic survival of disc progenitor cells, while its depletion accelerates IDD. An association of pathological tissue remodeling with a biglycan fragment 344YWEVQPATFR, termed Bgm1, has been reported, however its role is yet to be defined. Using a custom antibody, we detected Bgm1 in human and mouse nucleus pulposus, with prominent intracellular expression in notochordal cells. Proteomic analysis revealed that Bgm1 interacts with eukaryotic translation initiation factor 6 (eIF6), a key player in ribosome biogenesis. Bgm1 dysregulates eIF6 localization in notochordal cells, affecting nucleocytoplasmic transport. Induced IDD in mice showed elevated nuclear eIF6 expression and reduced Bgm1 in degenerating nucleus pulposus. Transcriptome analysis suggests that Bgm1 regulates fatty acid metabolism and glycolysis in a transforming growth factor-β-dependent manner, highlighting its potential role in metabolic control in spinal joint homeostasis.
Collapse
Affiliation(s)
- Manyu Zhu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stanley Chun Ming Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Wai-Kit Tam
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chun Kit Wong
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peng Liao
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kathryn S. Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Victor Y. Leung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Holm Nielsen S, Karsdal M, Manoel B, Bay-Jensen AC, Henriksen K. Diagnostic potential of blood-based biomarkers in multiple sclerosis. Front Neurol 2024; 15:1425046. [PMID: 39811453 PMCID: PMC11729991 DOI: 10.3389/fneur.2024.1425046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system (CNS). There is a significant delay in diagnosing MS as the symptoms and tests overlap with other diseases. Blood-based biomarkers, which quantify fragments of proteins involved in MS pathophysiology, have the potential as diagnostic biomarkers. In this study, we evaluated biomarkers by immunoassays, of tissue destruction, reflected by biglycan degraded by matrix metalloproteinases (MMPs) (BGM), cathepsin S-degraded nidogen (NIC), and MMP-degraded secreted protein acidic and rich in cysteine (SPARC-M) in healthy donors and patients diagnosed with MS. The biomarkers were able to separate the two groups with an AUC = 0.710, AUC = 0.765, and AUC = 0.875, respectively. These pathologically released protein fragments could potentially be used as biomarkers in clinical management providing a specific protein fingerprint.
Collapse
|
3
|
Poulsen A, Ovesen PD, Lu C, Bettenworth D, Jairath V, Feagan BG, Seidelin JB, Rieder F. Serum Extracellular Matrix Molecules and Their Fragments as Biomarkers of Inflammation and Fibrosis in Inflammatory Bowel Diseases: A Systematic Review. J Crohns Colitis 2024; 18:1894-1934. [PMID: 38758527 DOI: 10.1093/ecco-jcc/jjae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND AIM Contemporary techniques to assess disease activity or bowel damage in patients with inflammatory bowel disease [IBD], such as endoscopy and imaging, are either invasive or lack accuracy. Non-invasive biomarkers for this purpose remain an unmet medical need. Herein, we provide a comprehensive systematic review of studies evaluating blood extracellular matrix [ECM] biomarkers and their relevance in IBD. METHODS We conducted a systematic review of PubMed, EMBASE, Web of Science, and Scopus to identify citations pertaining to ECM biomarkers of IBD up to March 1, 2024. Studies were categorized based on marker subtype and clinical use. RESULTS Thirty-one ECM markers were identified, 28 of which demonstrated the ability to differentiate IBD disease activity. Collagen III emerged as the most extensively investigated [1212 IBD patients], with the degradation marker C3M and deposition marker PRO-C3 being associated with IBD and subtypes. Collagen V markers C5M and PRO-C5 emerged as the most accurate single markers for diagnosis of IBD, with an area under the curve of 0.91 and 0.93, respectively. Overall, studies were characterized by variable endpoints. None of the studies included histological grading of intestinal damage, repair, or fibrosis formation as the primary outcome in relation to the ECM blood markers. CONCLUSIONS Multiple ECM markers are linked with IBD and its phenotypes. However, more rigorous study designs and clearly defined endpoints are needed to ensure reproducibility and develop reliable and accurate biomarkers. ECM markers hold promise as they provide a 'window' into transmural tissue remodelling and fibrosis burden, warranting further investigation.
Collapse
Affiliation(s)
- Anja Poulsen
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Dige Ovesen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Cathy Lu
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dominik Bettenworth
- Medical Faculty, University of Münster, Münster, Germany
- CED Schwerpunktpraxis, Münster, Germany
| | - Vipul Jairath
- Division of Gastroenterology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON N6A, Canada
| | - Brian G Feagan
- Division of Gastroenterology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Epidemiology and Biostatistics, Western University, London, ON N6A, Canada
- Alimentiv Inc, London, ON N6A 5B6, Canada
| | - Jakob Benedict Seidelin
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Program for Global Translational Inflammatory Bowel Diseases, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Szabados T, Molnár A, Kenyeres É, Gömöri K, Pipis J, Pósa B, Makkos A, Ágg B, Giricz Z, Ferdinandy P, Görbe A, Bencsik P. Identification of New, Translatable ProtectomiRs against Myocardial Ischemia/Reperfusion Injury and Oxidative Stress: The Role of MMP/Biglycan Signaling Pathways. Antioxidants (Basel) 2024; 13:674. [PMID: 38929113 PMCID: PMC11201193 DOI: 10.3390/antiox13060674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Ischemic conditionings (ICon) were intensively investigated and several protective signaling pathways were identified. Previously, we have shown the role of matrix metalloproteinases (MMP) in myocardial ischemia/reperfusion injury (MIRI) and the cardioprotective role of biglycan (BGN), a small leucine-rich proteoglycan in vitro. Here, we hypothesized that cardiac MMP and BGN signaling are involved in the protective effects of ICon. METHODS A reverse target-microRNA prediction was performed by using the miRNAtarget™ 2.0 software to identify human microRNAs with a possible regulatory effect on MMP and BGN, such as on related genes. To validate the identified 1289 miRNAs in the predicted network, we compared them to two cardioprotective miRNA omics datasets derived from pig and rat models of MIRI in the presence of ICons. RESULTS Among the experimentally measured miRNAs, we found 100% sequence identity to human predicted regulatory miRNAs in the case of 37 porcine and 24 rat miRNAs. Upon further analysis, 42 miRNAs were identified as MIRI-associated miRNAs, from which 24 miRNAs were counter-regulated due to ICons. CONCLUSIONS Our findings highlight 24 miRNAs that potentially regulate cardioprotective therapeutic targets associated with MMPs and BGN in a highly translatable porcine model of acute myocardial infarction.
Collapse
Affiliation(s)
- Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - Arnold Molnár
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
| | - Éva Kenyeres
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - Judit Pipis
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
| | - Bence Pósa
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
| | - András Makkos
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Bence Ágg
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Zoltán Giricz
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Péter Ferdinandy
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary;
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 12, H-6720 Szeged, Hungary; (T.S.); (A.M.); (É.K.); (K.G.); (J.P.); (B.P.); (A.G.)
- Pharmahungary Group, Hajnóczy u. 6, H-6722 Szeged, Hungary; (B.Á.); (Z.G.); (P.F.)
| |
Collapse
|
5
|
Maiti G, Ashworth S, Choi T, Chakravarti S. Molecular cues for immune cells from small leucine-rich repeat proteoglycans in their extracellular matrix-associated and free forms. Matrix Biol 2023; 123:48-58. [PMID: 37793508 PMCID: PMC10841460 DOI: 10.1016/j.matbio.2023.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
In this review we highlight emerging immune regulatory functions of lumican, keratocan, fibromodulin, biglycan and decorin, which are members of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). These SLRPs have been studied extensively as collagen-fibril regulatory structural components of the skin, cornea, bone and cartilage in homeostasis. However, SLRPs released from a remodeling ECM, or synthesized by activated fibroblasts and immune cells contribute to an ECM-free pool in tissues and circulation, that may have a significant, but poorly understood foot print in inflammation and disease. Their molecular interactions and the signaling networks they influence also require investigations. Here we present studies on the leucine-rich repeat (LRR) motifs of SLRP core proteins, their evolutionary and functional relationships with other LRR pathogen recognition receptors, such as the toll-like receptors (TLRs) to bring some molecular clarity in the immune regulatory functions of SLRPs. We discuss molecular interactions of fragments and intact SLRPs, and how some of these interactions are likely modulated by glycosaminoglycan side chains. We integrate findings on molecular interactions of these SLRPs together with what is known about their presence in circulation and lymph nodes (LN), which are important sites of immune cell regulation. Recent bulk and single cell RNA sequencing studies have identified subsets of stromal reticular cells that express these SLRPs within LNs. An understanding of the cellular source, molecular interactions and signaling consequences will lead to a fundamental understanding of how SLRPs modulate immune responses, and to therapeutic tools based on these SLRPs in the future.
Collapse
Affiliation(s)
- George Maiti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Sean Ashworth
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Tansol Choi
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, United States; Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States.
| |
Collapse
|
6
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
7
|
Adepu S, Lord M, Hugoh Z, Nyström S, Mattsson-Hulten L, Abrahamsson-Aurell K, Lützelschwab C, Skiöldebrand E. Salivary Biglycan-neo-epitope-BGN262: a novel surrogate biomarker for equine osteoarthritic sub-chondral bone sclerosis and to monitor the effect of short-term training and surface arena. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100354. [PMID: 36968250 PMCID: PMC10033749 DOI: 10.1016/j.ocarto.2023.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Objective We aimed to delineate a novel soluble Biglycan Neo-epitope-BGN262 in saliva from young reference and osteoarthritic horses in conjunction with the influence of short-term training exercise, riding surface hardness, circadian rhythm, and feeding on its soluble levels. Design A custom-made inhibition ELISA was used for the quantification of BGN262 in saliva. Cohort 1: A cross-sectional study comprising reference (N = 19) and OA horses (N = 9) with radiographically classified subchondral bone sclerosis. Receiver operating characteristic curve analysis was performed to evaluate the robustness of BGN262. Cohorts 2 (N = 5) & 3 (N = 7): Longitudinal studies of sampling during a short-term training exercise (sand-fibre) and a cross-over design of short-training exercise on 2 different riding arenas (sand and sand-fibre), respectively. Capillary western immunoassay was used to determine the BGN262 molecular size in a selection of saliva samples collected from cohort 1. Results Cohort 1: Salivary BGN262 levels were significantly higher in the OA group. The Receiver operating characteristic curve analysis showed an area under the curve of 0.8304 [0.6386 to 1.022], indicating a good separation from the reference group. Cohorts 2 & 3: Salivary BGN262 levels significantly changed during the exercise on sand and sand-fibre arena, with a trend towards higher levels for sand-fibre. The size of the BGN262 fragment determined by Capillary western assay was 18 kDa. Conclusions The data presented show saliva BGN262 levels as a novel biomarker in evaluating the influence of exercise, and interaction with riding arenas alongside assessing osteoarthritis severity.
Collapse
Affiliation(s)
- S. Adepu
- Department of Pathology, Institute of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Corresponding author.
| | - M. Lord
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Z. Hugoh
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - S. Nyström
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - L. Mattsson-Hulten
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - K. Abrahamsson-Aurell
- Hallands Djursjukhus Kungsbacka Hästklinik, Älvsåkers Byväg 20, 434 95 Kungsbacka, Sweden
| | - C. Lützelschwab
- Department of Pathology, Institute of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E. Skiöldebrand
- Department of Pathology, Institute of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
James S, Daffy J, Cook J, Samiric T. Short-Term Exposure to Ciprofloxacin Reduces Proteoglycan Loss in Tendon Explants. Genes (Basel) 2022; 13:genes13122210. [PMID: 36553476 PMCID: PMC9777606 DOI: 10.3390/genes13122210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Fluoroquinolone antibiotics are associated with increased risk of tendinopathy and tendon rupture, which can occur well after cessation of treatment. We have previously reported that the fluoroquinolone ciprofloxacin (CPX) reduced proteoglycan synthesis in equine tendon explants. This study aimed to determine the effects of CPX on proteoglycan catabolism and whether any observed effects are reversible. Equine superficial digital flexor tendon explant cultures were treated for 4 days with 1, 10, 100 or 300 µg/mL CPX followed by 8 days without CPX. The loss of [35S]-labelled proteoglycans and chemical pool of aggrecan and versican was studied as well as the gene expression levels of matrix-degrading enzymes responsible for proteoglycan catabolism. CPX suppressed [35S]-labelled proteoglycan and total aggrecan loss from the explants, although not in a dose-dependent manner, which coincided with downregulation of mRNA expression of MMP-9, -13, ADAMTS-4, -5. The suppressed loss of proteoglycans was reversed upon removal of the fluoroquinolone with concurrent recovery of MMP and ADAMTS mRNA expression, and downregulated TIMP-2 and upregulated TIMP-1 expression. No changes in MMP-3 expression by CPX was observed at any stage. These findings suggest that CPX suppresses proteoglycan catabolism in tendon, and this is partially attributable to downregulation of matrix-degrading enzymes.
Collapse
Affiliation(s)
- Stuart James
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia
| | - John Daffy
- Department of Infectious Diseases, St Vincent’s Hospital, Melbourne, VIC 3065, Australia
| | - Jill Cook
- Sports and Exercise Medicine Research Centre, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tom Samiric
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
9
|
Szeremeta A, Jura-Półtorak A, Zoń-Giebel A, Olczyk K, Komosińska-Vassev K. TNF-α Inhibitors in Combination with MTX Reduce Circulating Levels of Heparan Sulfate/Heparin and Endothelial Dysfunction Biomarkers (sVCAM-1, MCP-1, MMP-9 and ADMA) in Women with Rheumatoid Arthritis. J Clin Med 2022; 11:jcm11144213. [PMID: 35887981 PMCID: PMC9320287 DOI: 10.3390/jcm11144213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfated glycosaminoglycans (sGAGs) are likely to play an important role in the development and progression of rheumatoid arthritis (RA)-associated atherosclerosis. The present study investigated the effect of anti-tumor necrosis factor-α (anti-TNF-α) therapy in combination with methotrexate on plasma sGAG levels and serum markers of endothelial dysfunction. Among sGAG types, plasma chondroitin/dermatan sulfate (CS/DS) and heparan sulfate/heparin (HS/H) were characterized using electrophoretic fractionation. Serum levels of soluble vascular cell adhesion molecule-1 (sVCAM-1), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) and asymmetric dimethylarginine (ADMA) were measured by immunoassays. The measurements were carried out four times: at baseline and after 3, 9 and 15 months of anti-TNF-α therapy. All analyzed parameters, excluding ADMA, were significantly elevated in patients with RA before the implementation of biological therapy compared to healthy subjects. Performed anti-TNF-α treatment led to a successive decrease in HS/H levels toward normal values, without any effect on CS/DS levels in female RA patients. The treatment was also effective at lowering the serum levels of sVCAM-1, MCP-1, MMP-9 and ADMA. Moreover, a significant positive correlation was found between the circulating HS/H and the 28 joint disease activity score based on the erythrocyte sedimentation rate (DAS28-ESR, r = 0.408; p <0.05), MCP-1 (r = 0.398; p <0.05) and ADMA (r = 0.396; p <0.05) in patients before the first dose of TNF-α inhibitor. In conclusion, a beneficial effect of anti-TNF-α therapy on cell-surface heparan sulfate proteoglycans (HSPGs)/HS turnover and endothelial dysfunction was observed in this study. This was manifested by a decrease in blood HS/H levels and markers of endothelial activation, respectively. Moreover, the decrease in the concentration of HS/H in the blood of patients during treatment, progressing with the decline in disease activity, indicates that the plasma HS/H profile may be useful for monitoring the efficacy of anti-TNF-α treatment in patients with RA.
Collapse
Affiliation(s)
- Anna Szeremeta
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
- Correspondence: ; Tel.: +48-32-364-11-50
| | - Agnieszka Jura-Półtorak
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| | - Aleksandra Zoń-Giebel
- Department of Rheumatology and Rehabilitation, Specialty Hospital No. 1, Żeromskiego 7, 41-902 Bytom, Poland;
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (A.J.-P.); (K.O.); (K.K.-V.)
| |
Collapse
|
10
|
Kiripolsky J, Kasperek EM, Zhu C, Li QZ, Wang J, Yu G, Kramer JM. Immune-Intrinsic Myd88 Directs the Production of Antibodies With Specificity for Extracellular Matrix Components in Primary Sjögren's Syndrome. Front Immunol 2021; 12:692216. [PMID: 34381449 PMCID: PMC8350326 DOI: 10.3389/fimmu.2021.692216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Primary Sjögren's syndrome is an autoimmune disease that is predominantly seen in women. The disease is characterized by exocrine gland dysfunction in combination with serious systemic manifestations. At present, the causes of pSS are poorly understood. Pulmonary and renal inflammation are observed in pSS mice, reminiscent of a subset of pSS patients. A growing body of evidence indicates that inflammation mediated by Damage-Associated Molecular Patterns (DAMPs) contributes to autoimmunity, although this is not well-studied in pSS. Degraded extracellular matrix (ECM) constituents can serve as DAMPs by binding pattern-recognition receptors and activating Myd88-dependent signaling cascades, thereby exacerbating and perpetuating inflammatory cascades. The ECM components biglycan (Bgn) and decorin (Dcn) mediate sterile inflammation and both are implicated in autoimmunity. The objective of this study was to determine whether these ECM components and anti-ECM antibodies are altered in a pSS mouse model, and whether this is dependent on Myd88 activation in immune cells. Circulating levels of Bgn and Dcn were similar among pSS mice and controls and tissue expression studies revealed pSS mice had robust expression of both Bgn and Dcn in the salivary tissue, saliva, lung and kidney. Sera from pSS mice displayed increased levels of autoantibodies directed against ECM components when compared to healthy controls. Further studies using sera derived from conditional knockout pSS mice demonstrated that generation of these autoantibodies relies, at least in part, on Myd88 expression in the hematopoietic compartment. Thus, this study demonstrates that ECM degradation may represent a novel source of chronic B cell activation in the context of pSS.
Collapse
Affiliation(s)
- Jeremy Kiripolsky
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Eileen M. Kasperek
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Chengsong Zhu
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Quan-Zhen Li
- Department of Immunology, Microarray & Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jia Wang
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Guan Yu
- Department of Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jill M. Kramer
- Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
- Department of Oral Diagnostics Sciences, School of Dental Medicine, The University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
11
|
Mygind ND, Nielsen SH, Michelsen MM, Pena A, Bechsgaard DF, Suhrs E, Bove KB, Genovese F, Nielsen HB, Karsdal M, Vejlstrup N, Prescott E, Kastrup J. Proteoglycan Remodeling Is Accelerated in Females with Angina Pectoris and Diffuse Myocardial Fibrosis: the iPOWER Study. J Cardiovasc Transl Res 2021; 14:921-929. [PMID: 33649986 DOI: 10.1007/s12265-021-10106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
Abstract
Angina and no obstructive coronary artery disease (CAD) have an unfavorable prognosis, possibly due to diffuse myocardial fibrosis (DMF). In DMF the proteoglycans biglycan and versican are actively remodeled by matrix metalloproteinase. We investigated biglycan and versican in females with angina and possible DMF assessed by cardiac magnetic resonance (CMR). Seventy-one females with angina and no obstructive CAD were included. Asymptomatic females served as controls. Versican and biglycan were measured and CMR was performed measuring extracellular volume. Biglycan and versican levels were higher in symptomatic females compared with controls; 31.4 ng/mL vs. 16.4 ng/mL (p < 0.001) and 2.1 ng/mL vs. 1.8 ng/mL (p < 0.001) and moderately correlated to extracellular volume (r2 = 0.38, p<0.001 and r2 = 0.26, p = 0.015). Turnover of biglycan and versican was increased in angina females compared with controls and associated with extracellular volume, supporting a link between angina with no obstructive CAD and fibrotic remodeling.
Collapse
Affiliation(s)
- Naja Dam Mygind
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Signe Holm Nielsen
- Fibrosis Biology and Biomarkers, Nordic Bioscience A/S, Herlev, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Marie Mide Michelsen
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Adam Pena
- Department of Cardiology, Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Elena Suhrs
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kira Bang Bove
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Federica Genovese
- Fibrosis Biology and Biomarkers, Nordic Bioscience A/S, Herlev, Denmark
| | | | - Morten Karsdal
- Fibrosis Biology and Biomarkers, Nordic Bioscience A/S, Herlev, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Eva Prescott
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Dobrota R, Jordan S, Juhl P, Maurer B, Wildi L, Bay-Jensen AC, Karsdal MA, Herrick AL, Distler JHW, Allanore Y, Hoffmann-Vold AM, Siebuhr AS, Distler O. Circulating collagen neo-epitopes and their role in the prediction of fibrosis in patients with systemic sclerosis: a multicentre cohort study. THE LANCET. RHEUMATOLOGY 2021; 3:e175-e184. [PMID: 38279380 DOI: 10.1016/s2665-9913(20)30385-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Extracellular matrix remodelling is a hallmark of systemic sclerosis. We evaluated extracellular matrix neo-epitopes as potential serum biomarkers for progression of fibrosis in systemic sclerosis. METHODS We included patients meeting the 2013 American College of Rheumatology and European League Against Rheumatism criteria and healthy controls from a derivation and validation cohort. The primary outcome was progression of fibrosis at follow-up, defined as decline in percentage of predicted forced vital capacity of 10% or more in patients with interstitial lung disease or increase in modified Rodnan skin score of 25% or more and more than 5 points at a 1-year follow-up visit. Longitudinal assessment and biobanking followed European Scleroderma Trials and Research standards. Extracellular matrix-degradation (BGM, C3M, C4M, and C6M) and extracellular matrix-formation neo-epitopes (PRO-C1, PRO-C3, PRO-C4, PRO-C5, and PRO-C6) were measured in serum using validated ELISAs. FINDINGS Between Aug 18, 2011, and Jan 19, 2015, 149 patients with systemic sclerosis (27 [18%] progressors and 122 [82%] non-progressors) and 29 healthy controls were included in the derivation cohort. Concentrations of type III and IV collagen neo-epitopes were higher in patients with systemic sclerosis compared with healthy controls and were significantly associated with systemic sclerosis in univariable logistic regression. Concentrations of degradation neo-epitopes of type III and IV collagens and their turnover ratios distinguished between progressors and non-progressors (C3M area under the curve 0·77 [95% CI 0·67-0·86], p<0·0001; PRO-C3:C3M 0·70 [0·59-0·80], p=0·0013; C4M 0·73 [0·63-0·82], p<0·0001; PRO-C4:C4M 0·75 [0·64-0·86], p<0·0001). 384 patients with systemic sclerosis (73 [19%] progressors) and 60 healthy controls were included in the multicentre validation cohort between April 17, 2003, and Jan 24, 2017. Analysis of the validation cohort confirmed that neo-epitopes of type III and IV collagens are changed in progressors. In a pooled analysis of both cohorts, the serum concentrations of formation neo-epitopes PRO-C3 and PRO-C4 and the turnover ratio of type IV collagen (PRO-C4:C4M) were higher in skin progressors. The turnover ratio of type IV collagen and PRO-C3 significantly predicted skin progression in a multivariable model adjusted for modified Rodnan skin score, sex, and age. INTERPRETATION These data suggest that neo-epitopes of type III and IV collagens are promising biomarkers for the assessment and prediction of extracellular matrix remodelling in systemic sclerosis. They could be used in clinical practice to risk stratify patients at risk of progression of fibrosis. FUNDING None.
Collapse
Affiliation(s)
- Rucsandra Dobrota
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Suzana Jordan
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pernille Juhl
- Immuno-Science, Nordic Bioscience, Biomarker and Research, Herlev, Denmark; Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Britta Maurer
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lukas Wildi
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Ariane L Herrick
- Division of Musculoskeletal & Dermatological Sciences, The University of Manchester, Salford Royal Hospital NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jörg H W Distler
- Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Allanore
- INSERM U1016, Department of Rheumatology, Cochin Hospital, AP-HP, Paris Descartes University, Paris, France
| | | | - Anne Sofie Siebuhr
- Immuno-Science, Nordic Bioscience, Biomarker and Research, Herlev, Denmark
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Zeng-Brouwers J, Pandey S, Trebicka J, Wygrecka M, Schaefer L. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J Histochem Cytochem 2020; 68:887-906. [PMID: 32623933 PMCID: PMC7708667 DOI: 10.1369/0022155420930303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sony Pandey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
14
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
15
|
Vesterhus M, Nielsen MJ, Hov JR, Saffioti F, Manon-Jensen T, Leeming DJ, Moum B, Boberg KM, Pinzani M, Karlsen TH, Karsdal MA, Thorburn D. Comprehensive assessment of ECM turnover using serum biomarkers establishes PBC as a high-turnover autoimmune liver disease. JHEP Rep 2020; 3:100178. [PMID: 33225252 PMCID: PMC7666353 DOI: 10.1016/j.jhepr.2020.100178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background & Aims Primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH) are phenotypically distinct autoimmune liver diseases that progress to cirrhosis and liver failure; however, their histological fibrosis distribution differs. We investigated the extracellular matrix (ECM) profiles of patients with PSC, PBC, and AIH to establish whether the diseases display differential patterns of ECM turnover. Methods Serum samples were retrospectively collected from the UK (test cohort; PSC n = 78; PBC n = 74; AIH n = 58) and Norway (validation cohort; PSC n = 138; PBC n = 28; AIH n = 27). Patients with ulcerative colitis without liver disease (n = 194) served as controls. We assessed specific serological biomarkers of ECM turnover: type III and V collagen formation (PRO-C3, PRO-C5), degradation of type III and IV collagen (C3M, C4M), biglycan (BGM) and citrullinated vimentin (VICM). Results Most of the ECM markers showed elevated serum levels in PBC compared with PSC or AIH (p <0.01). PRO-C3 correlated well with liver stiffness and showed the most striking differences between advanced and non-advanced liver disease; several of the other ECM markers were also associated with stage. PRO-C3 and other ECM markers were inversely associated with ursodeoxycholic acid treatment response in PBC and remission in AIH. All ECM remodelling markers were significantly elevated (p <0.05) in patients with PSC, PBC, or AIH compared with ulcerative colitis. Conclusions In this first study comparing ECM turnover in autoimmune liver diseases, we found increased ECM turnover in PBC compared with either PSC or AIH. The study indicates that ECM remodelling is different in PSC, PBC, and AIH, suggesting differing opportunities for therapeutic intervention. Lay summary The level of scarring is linked to prognosis in autoimmune liver diseases such as primary sclerosing cholangitis, primary biliary cholangitis, and autoimmune hepatitis; hence, the scarring process is a possible target for novel therapy. Investigating the scarring process using highly specific technology, we show that the scarring process is different between the 3 autoimmune liver diseases, and this may have important implications for the development of medical treatment. Serological biomarkers specifically targeting extracellular matrix remodelling enable evaluation of the dynamics of fibrosis evolution. ECM turnover was increased in PBC compared with PSC and AIH. ECM markers, particularly PRO-C3, were associated with disease stage in the autoimmune liver diseases and with clinical outcome in PSC.
Collapse
Key Words
- AIH, autoimmune hepatitis
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- APRI, AST to platelet ratio index
- AST, aspartate aminotransferase
- AUROC, area under the receiver operator characteristics curve
- BGM, marker of biglycan degradation
- Biomarker
- C3M, marker of type III collagen degradation
- C4M, marker of type IV collagen degradation
- CI, confidence interval
- ECM, extracellular matrix
- ELF, enhanced liver fibrosis
- Fibrosis
- GGT, gamma glutamyltransferase
- HYA, hyaluronic acid
- IBD, inflammatory bowel disease
- INR, international normalised ratio
- LSM, liver stiffness measurement
- PBC, primary biliary cholangitis
- PIIINP, N-terminal procollagen type III
- PRO-C3
- PRO-C3, marker of type III collagen formation
- PRO-C5, marker of type V collagen formation
- PSC, primary sclerosing cholangitis
- Primary biliary cholangitis
- Primary sclerosing cholangitis
- TE, transient elastography
- TIMP-1, tissue inhibitor of metalloproteinase
- UC, ulcerative colitis
- VICM, marker of citrullinated vimentin degradation
Collapse
Affiliation(s)
- Mette Vesterhus
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Johannes Roksund Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Francesca Saffioti
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London & Royal Free Hospital, London, UK.,Department of Clinical and Experimental Medicine, Division of Clinical and Molecular Hepatology, University of Messina, Messina, Italy
| | | | | | - Bjørn Moum
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Medicine, Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Kirsten Muri Boberg
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London & Royal Free Hospital, London, UK
| | - Tom Hemming Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | - Douglas Thorburn
- UCL Institute for Liver and Digestive Health, Division of Medicine, University College London & Royal Free Hospital, London, UK
| |
Collapse
|
16
|
Matsuda M, Seki E. The liver fibrosis niche: Novel insights into the interplay between fibrosis-composing mesenchymal cells, immune cells, endothelial cells, and extracellular matrix. Food Chem Toxicol 2020; 143:111556. [PMID: 32640349 DOI: 10.1016/j.fct.2020.111556] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is a hepatic wound-healing response caused by chronic liver diseases that include viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis, and cholestatic liver disease. Liver fibrosis eventually progresses to cirrhosis that is histologically characterized by an abnormal liver architecture that includes distortion of liver parenchyma, formation of regenerative nodules, and a massive accumulation of extracellular matrix (ECM). Despite intensive investigations into the underlying mechanisms of liver fibrosis, developments of anti-fibrotic therapies for liver fibrosis are still unsatisfactory. Recent novel experimental approaches, such as single-cell RNA sequencing and proteomics, have revealed the heterogeneity of ECM-producing cells (mesenchymal cells) and ECM-regulating cells (immune cells and endothelial cells). These approaches have accelerated the identification of fibrosis-specific subpopulations among these cell types. The ECM also consists of heterogenous components. Their production, degradation, deposition, and remodeling are dynamically regulated in liver fibrosis, further affecting the functions of cells responsible for fibrosis. These cellular and ECM elements cooperatively form a unique microenvironment: a fibrotic niche. Understanding the complex interplay between these elements could lead to a better understanding of underlying fibrosis mechanisms and to the development of effective therapies.
Collapse
Affiliation(s)
- Michitaka Matsuda
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ekihiro Seki
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Zappia J, Joiret M, Sanchez C, Lambert C, Geris L, Muller M, Henrotin Y. From Translation to Protein Degradation as Mechanisms for Regulating Biological Functions: A Review on the SLRP Family in Skeletal Tissues. Biomolecules 2020; 10:E80. [PMID: 31947880 PMCID: PMC7023458 DOI: 10.3390/biom10010080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix can trigger cellular responses through its composition and structure. Major extracellular matrix components are the proteoglycans, which are composed of a core protein associated with glycosaminoglycans, among which the small leucine-rich proteoglycans (SLRPs) are the largest family. This review highlights how the codon usage pattern can be used to modulate cellular response and discusses the biological impact of post-translational events on SLRPs, including the substitution of glycosaminoglycan moieties, glycosylation, and degradation. These modifications are listed, and their impacts on the biological activities and structural properties of SLRPs are described. We narrowed the topic to skeletal tissues undergoing dynamic remodeling.
Collapse
Affiliation(s)
- Jérémie Zappia
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Marc Joiret
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Cécile Lambert
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Liesbet Geris
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Avenue de l’Hôpital, B-4000 Liège, Belgium;
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
- Physical therapy and Rehabilitation department, Princess Paola Hospital, Vivalia, B-6900 Marche-en-Famenne, Belgium
- Artialis SA, GIGA Tower, Level 3, CHU Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
18
|
Roedig H, Nastase MV, Wygrecka M, Schaefer L. Breaking down chronic inflammatory diseases: the role of biglycan in promoting a switch between inflammation and autophagy. FEBS J 2019; 286:2965-2979. [PMID: 30776184 DOI: 10.1111/febs.14791] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Heiko Roedig
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| | - Madalina Viviana Nastase
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry Faculty of Medicine Universities of Giessen and Marburg Lung Center Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES Institut für Allgemeine Pharmakologie und Toxikologie Klinikum der Goethe‐Universität Frankfurt am Main Germany
| |
Collapse
|
19
|
Siebuhr AS, Juhl P, Bay-Jensen AC, Karsdal MA, Franchimont N, Chavez JC. Citrullinated vimentin and biglycan protein fingerprints as candidate serological biomarkers for disease activity in systemic sclerosis: a pilot study. Biomarkers 2018; 24:249-254. [PMID: 30457356 DOI: 10.1080/1354750x.2018.1548032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Extracellular matrix (ECM) deposition and remodelling in skin and lungs of systemic sclerosis (SSc) subjects lead to release of metabolites/biomarkers into circulation. We investigated if biomarkers of ECM degradation (biglycan and elastin) and macrophage activation (citrullinated vimentin) could identify diffuse SSc (dSSc) subjects from controls and the biomarkers discriminative power. Methods: DSSc subjects (n = 40) fulfilling the 2013 EULAR/ACR classification criteria were divided in early (<2years of symptoms) and late (≥10 years of symptoms). Early were subdivided into intermediate and rapid skin thickness progression rate (STPR). Twenty controls were included. Citrullinated and matrix metalloproteinase (MMP)-2/8-degraded vimentin (VICM), MMP-9/12-degraded biglycan (BGM) and MMP-7-degraded elastin (ELM-7) were assessed in serum. Analysis between groups was by Kruskal-Wallis and ROC AUC for discriminative power. Results: VICM and BGM levels were increased in early compared with late dSSc (p< =0.023). VICM was increased in rapid and intermediate STPR compared with controls (p< =0.025). No differences in ELM-7 levels were observed. AUC of VICM was 0.71 for early versus late dSSc and BGM had an AUC of 0.79 for dSSc versus controls. Conclusion: This pilot study found differences in biomarker levels between early and late dSSc. This study offers new perspectives of ECM metabolites as potential biomarkers of dSSc.
Collapse
Affiliation(s)
- Anne Sofie Siebuhr
- a Department of Rheumatology, Biomarkers and Research, Nordic Bioscience , Herlev , Denmark
| | - Pernille Juhl
- a Department of Rheumatology, Biomarkers and Research, Nordic Bioscience , Herlev , Denmark
| | - Anne-C Bay-Jensen
- a Department of Rheumatology, Biomarkers and Research, Nordic Bioscience , Herlev , Denmark
| | - Morten A Karsdal
- a Department of Rheumatology, Biomarkers and Research, Nordic Bioscience , Herlev , Denmark
| | | | - Juan C Chavez
- b Clinical Development, Biogen , Cambridge , MA , USA
| |
Collapse
|
20
|
A Serological Biomarker of Versican Degradation is Associated with Mortality Following Acute Exacerbations of Idiopathic Interstitial Pneumonia. Respir Res 2018; 19:82. [PMID: 29728109 PMCID: PMC5935977 DOI: 10.1186/s12931-018-0779-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/16/2018] [Indexed: 12/23/2022] Open
Abstract
Background Idiopathic interstitial pneumonia (IIP) is characterized by an increased rate of extracellular matrix (ECM) remodeling resulting in fibrosis. Acute exacerbations of IIP represent periods of increased disease activity, thus we hypothesized that ECM remodeling was altered during acute exacerbations and investigated this by serological neo-epitope biomarkers. Methods Patients who were sequentially admitted to the hospital with acute exacerbations of IIP were retrospectively analyzed for ECM remodeling at time of exacerbation (AE-IIP) and at clinical stability (S-IIP). Biomarkers released by matrix metalloproteinase-mediated degradation of collagen type I (C1M), III (C3M), IV (C4M), and VI (C6M), elastin (ELM7), versican (VCANM), biglycan (BGM), and C-reactive protein (CRPM) were assessed in serum by competitive ELISAs utilizing neo-epitope specific monoclonal antibodies. Results Sixty-eight patients at AE-IIP and 29 at S-IIP were included in this retrospective analysis. Of these, 28 and 11 patients, respectively, had idiopathic pulmonary fibrosis. At AE-IIP, serum levels of C4M (p = 0.002) and C6M (p = 0.024) were increased as compared with S-IIP, while ELM7 (p = 0.024) and VCANM (p < 0.0001) were decreased. Lower VCANM levels at AE-IIP were associated with increased risk of mortality (HR 0.64 [95% CI 0.43–0.94], p = 0.022). Conclusions The ECM remodeling profile was significantly altered during acute exacerbations of IIP, and a biomarker of versican degradation was related to mortality outcome. These results indicate that biomarkers of ECM remodeling may be useful in the non-invasive evaluation of acute exacerbations of IIP. Especially versican degradation, as measured serologically by VCANM, may have prognostic potential and help guide treatment for acute exacerbations.
Collapse
|
21
|
Hernández-Aguilera A, Nielsen SH, Bonache C, Fernández-Arroyo S, Martín-Paredero V, Fibla M, Karsdal MA, Genovese F, Menendez JA, Camps J, Joven J. Assessment of extracellular matrix-related biomarkers in patients with lower extremity artery disease. J Vasc Surg 2018; 68:1135-1142.e6. [PMID: 29615349 DOI: 10.1016/j.jvs.2017.12.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The prevalence of lower extremity artery disease (LEAD) is high (20%-25%) in the population older than 65 years, but patients are seldom identified until the disease is advanced. Circulating markers of disease activity might provide patients with a key opportunity for timely treatment. We tested the hypothesis that measuring blood-specific fragments generated during degradation of the extracellular matrix (ECM) could provide further insight into the pathophysiologic mechanism of arterial remodeling. METHODS The protein profile of diseased arteries from patients undergoing infrainguinal limb revascularization was assessed by a liquid chromatography and tandem mass spectrometry, nontargeted proteomic approach. The information retrieved was the basis for measurement of neoepitope fragments of ECM proteins in the blood of 195 consecutive patients with LEAD by specific enzyme-linked immunosorbent assays. RESULTS Histologic and proteomic analyses confirmed the structural disorganization of affected arteries. Fourteen of 81 proteins were identified as differentially expressed in diseased arteries with respect to healthy tissues. Most of them were related to ECM components, and the difference in expression was used in multivariate analyses to establish that severe arterial lesions in LEAD patients have a specific proteome. Analysis of neoepitope fragments in blood revealed that fragments of versican and collagen type IV, alone or in combination, segregated patients with mild to moderate symptoms (intermittent claudication, Fontaine I-II) from those with severe LEAD (critical limb ischemia, Fontaine III-IV). CONCLUSIONS We propose noninvasive candidate biomarkers with the ability to be clinically useful across the LEAD spectrum.
Collapse
Affiliation(s)
- Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Signe Holm Nielsen
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Cristina Bonache
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | - Montserrat Fibla
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; Department of Pathology, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Morten A Karsdal
- Fibrosis Biology and Biomarkers, Nordic Bioscience, Herlev, Denmark
| | | | - Javier A Menendez
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
22
|
Frevert CW, Felgenhauer J, Wygrecka M, Nastase MV, Schaefer L. Danger-Associated Molecular Patterns Derived From the Extracellular Matrix Provide Temporal Control of Innate Immunity. J Histochem Cytochem 2018; 66:213-227. [PMID: 29290139 DOI: 10.1369/0022155417740880] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is evident that components of the extracellular matrix (ECM) act as danger-associated molecular patterns (DAMPs) through direct interactions with pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) and inflammasomes. Through these interactions, ECM-derived DAMPs autonomously trigger sterile inflammation or prolong pathogen-induced responses through the production of proinflammatory mediators and the recruitment of leukocytes to sites of injury and infection. Recent research, however, suggests that ECM-derived DAMPs are additionally involved in the resolution and fine-tuning of inflammation by orchestrating the production of anti-inflammatory mediators that are required for the resolution of tissue inflammation and the transition to acquired immunity. Thus, in this review, we discuss the current knowledge of the interplay between ECM-derived DAMPs and the innate immune signaling pathways that are activated to provide temporal control of innate immunity.
Collapse
Affiliation(s)
- Charles W Frevert
- Center for Lung Biology, University of Washington, Seattle, Washington
| | | | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Frankfurt am Main, Germany.,National Institute for Chemical-Pharmaceutical Research and Development, Bucharest, Romania
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Mortensen JH, Manon-Jensen T, Jensen MD, Hägglund P, Klinge LG, Kjeldsen J, Krag A, Karsdal MA, Bay-Jensen AC. Ulcerative colitis, Crohn's disease, and irritable bowel syndrome have different profiles of extracellular matrix turnover, which also reflects disease activity in Crohn's disease. PLoS One 2017; 12:e0185855. [PMID: 29028807 PMCID: PMC5640222 DOI: 10.1371/journal.pone.0185855] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background Increased protease activity is a key pathological feature of inflammatory bowel disease (IBD). However, the differences in extracellular matrix remodelling (ECM) in Crohn’s disease (CD) and ulcerative colitis (UC) are not well described. An increased understanding of the inflammatory processes may provide optimized disease monitoring and diagnostics. We investigated the tissue remodelling in IBD and IBS patients by using novel blood-based biomarkers reflecting ECM remodelling. Methods Five ECM biomarkers (VICM, BGM, EL-NE, C5M, Pro-C5) were measured by competitive ELISAs in serum from 72 CD patients, 60 UC patients, 22 patients with irritable bowel syndrome (IBS), and 24 healthy donors. One-way analysis of variance, Mann-Whitney U-test, logistic regression models, and receiver operator characteristics (ROC) curve analysis was carried out to evaluate the diagnostic accuracy of the biomarkers. Results The ECM remodelling was significantly different in UC compared to CD. The best biomarker combination to differentiate UC from CD and colonic CD was BGM and VICM (AUC = 0.98, P<0.001; AUC = 0.97, P<0.001), and the best biomarker combination to differentiate IBD from IBS patients were BGM, EL-NE, and Pro-C5 (AUC = 0.8, P<0.001). When correcting for the use of immunosuppressant and elevated CRP levels (CRP>5mg/mL), correlation of Pro-C5 (r = 0.36) with CDAI was slightly improved compared to CRP (r = 0.27) corrected for the use of immunosuppressant. Furthermore, BGM and EL-NE biomarkers were highly associated with colon inflammation in CD patients. Conclusion ECM fragments of tissue remodelling in IBD affect UC and CD differently, and may aid in differentiating IBD from IBS (EL-NE, BGM, Pro-C5), and UC from CD patients (BGM, VICM). Formation of type V collagen is related to the level of inflammation in CD and may reflect disease activity in CD.
Collapse
Affiliation(s)
| | | | - Michael Dam Jensen
- Department of Internal Medicine, Lillebaelt Hospital Vejle, Vejle, Denmark
| | - Per Hägglund
- Department of Biotechnology and Biomedicin, Technical University of Denmark
| | | | - Jens Kjeldsen
- Odense University Hospital, Department of Gastroenterology, Odense, Denmark
| | - Aleksander Krag
- Odense University Hospital, Department of Gastroenterology, Odense, Denmark
| | | | | |
Collapse
|
24
|
Ciftciler R, Ozenirler S, Yucel AA, Cengiz M, Erkan G, Buyukdemirci E, Sönmez C, Esendaglı GY. The importance of serum biglycan levels as a fibrosis marker in patients with chronic hepatitis B. J Clin Lab Anal 2017; 31:e22109. [PMID: 27925300 PMCID: PMC6817276 DOI: 10.1002/jcla.22109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Liver biopsy is recommended in the majority of patients with chronic viral hepatitis for fibrosis evaluation. Because of the potential risks of liver biopsy, many studies related to non-invasive biomarkers of hepatic fibrosis have been performed. We aimed to assess the diagnostic value of serum biglycan as a non-invasive fibrosis marker in chronic hepatitis B patients. METHODS This study included 120 patients with biopsy-proven hepatitis B patients and 60 healthy controls. Fibrosis stage and necroinflammatory activity were assessed in liver biopsy specimens. Biglycan level was measured using an ELISA assay. RESULTS Serum biglycan levels of chronic hepatitis B patients were found to be significantly higher than those of healthy controls (337.3±363.0 pg/mL vs 189.1±61.9 pg/mL, respectively, P<.001). There was a statistically significant positive correlation between serum biglycan level and fibrosis stage (P=.004; r=.213). Besides, a statistically significant positive correlation was found between serum biglycan level and necroinflammatory activity (P<.001; r=.271). The AUROC of BGN levels was 0.702 for fibrosis stage, differentiating patients from healthy controls with statistical significance (P<.001). The AUROC of BGN levels was 0.632 for necroinflammatory activity score, differentiating patients from healthy controls with statistical significance (P=.004). CONCLUSIONS Serum biglycan might be used as a non-invasive marker of liver fibrosis. Further studies are needed to evaluate the usefulness of this marker.
Collapse
Affiliation(s)
- Rafiye Ciftciler
- Department of Internal MedicineGazi University Faculty of MedicineAnkaraTurkey
| | - Seren Ozenirler
- Department of GastroenterologyGazi University Faculty of MedicineAnkaraTurkey
| | | | - Mustafa Cengiz
- Department of GastroenterologyAnkara Oncology Education and Research HospitalAnkaraTurkey
| | - Gulbanu Erkan
- Department of GastroenterologyIstanbul Medipol University Faculty of MedicineIstanbulTurkey
| | - Erkan Buyukdemirci
- Department of Public HealthGazi University Faculty of MedicineAnkaraTurkey
| | - Cemile Sönmez
- Microbiology SpecialistVaccine preventable Bacterial Diseases Research LaboratoryPublic Health Institution of TurkeyAnkaraTurkey
| | | |
Collapse
|
25
|
Müller C, Andersson-Sjöland A, Schultz HH, Eriksson LT, Andersen CB, Iversen M, Westergren-Thorsson G. Early extracellular matrix changes are associated with later development of bronchiolitis obliterans syndrome after lung transplantation. BMJ Open Respir Res 2017; 4:e000177. [PMID: 28469930 PMCID: PMC5411729 DOI: 10.1136/bmjresp-2016-000177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Background Chronic lung allograft dysfunction in the form of bronchiolitis obliterans syndrome (BOS) is the main cause of death beyond 1-year post-lung transplantation. The disease-initiating triggers as well as the molecular changes leading to fibrotic alterations in the transplanted lung are largely unknown. The aim of this study was to identify potential early changes in the extracellular matrix (ECM) in different compartments of the transplanted lung prior to the development of BOS. Methods Transbronchial biopsies from a cohort of 58 lung transplantation patients at the Copenhagen University hospital between 2005 and 2006, with or without development of BOS in a 5-year follow-up, were obtained 3 and 12 months after transplantation. Biopsies were assessed for total collagen, collagen type IV and biglycan in the alveolar and small airway compartments using Masson's Trichrome staining and immunohistochemistry. Results A time-specific and compartment-specific pattern of ECM changes was detected. Alveolar total collagen (p=0.0190) and small airway biglycan (p=0.0199) increased between 3 and 12 months after transplantation in patients developing BOS, while collagen type IV (p=0.0124) increased in patients without BOS. Patients with early-onset BOS mirrored this increase. Patients developing grade 3 BOS showed distinct ECM changes already at 3 months. Patients with BOS with treated acute rejections displayed reduced alveolar total collagen (p=0.0501) and small airway biglycan (p=0.0485) at 3 months. Conclusions Patients with future BOS displayed distinct ECM changes compared with patients without BOS. Our data indicate an involvement of alveolar and small airway compartments in post-transplantation changes in the development of BOS.
Collapse
Affiliation(s)
- Catharina Müller
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Hans Henrik Schultz
- Section for Lung Transplantation, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Leif T Eriksson
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Respiratory Medicine and Allergology, Lund University Hospital, Lund, Sweden
| | - Claus B Andersen
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Martin Iversen
- Section for Lung Transplantation, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
26
|
Sand JMB, Leeming DJ, Byrjalsen I, Bihlet AR, Lange P, Tal-Singer R, Miller BE, Karsdal MA, Vestbo J. High levels of biomarkers of collagen remodeling are associated with increased mortality in COPD - results from the ECLIPSE study. Respir Res 2016; 17:125. [PMID: 27716343 PMCID: PMC5050854 DOI: 10.1186/s12931-016-0440-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/21/2016] [Indexed: 12/31/2022] Open
Abstract
Background There is a need to identify individuals with COPD at risk for disease progression and mortality. Lung tissue remodeling is associated with the release of extracellular matrix (ECM) fragments into the peripheral circulation. We hypothesized that ECM remodeling was associated with mortality in COPD and measured neo-epitopes originating from ECM proteins associated with lung tissue remodeling. Methods Biomarkers of ECM remodeling were assessed in a subpopulation (n = 1000) of the Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) cohort. Validated immunoassays measuring serological neo-epitopes produced by proteolytic cleavage associated with degradation of collagen type I, III, IV, and VI, elastin, and biglycan, and formation of collagen type VI as well as fibrinogen and C-reactive protein were used. Multivariate models were used to assess the prognostic value of these biomarkers. Results Thirty subjects (3.0 %) died during follow-up. Non-survivors were older, had reduced exercise capacity, increased dyspnea score, and included fewer current smokers. All collagen biomarkers were significantly elevated in non-survivors compared to survivors. Mortality risk was significantly increased for subjects with collagen remodeling biomarkers in the upper quartile, especially for the degradation fragment of collagen type IV C6M (hazard ratio 6.6 [95 % confidence interval 2.9-15.2], P < 0.0001) after adjusting for relevant confounders. Conclusions Serological biomarkers of collagen remodeling were strongly associated with mortality in subjects with COPD indicating that assessment of tissue turnover in the parenchyma and small airways may be useful in the prognosis of COPD. Trial registration NCT00292552, GSK Study No. SCO104960. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0440-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jannie M B Sand
- Nordic Bioscience, Herlev, Denmark. .,Section of Social Medicine, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | - Peter Lange
- Section of Social Medicine, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Section of Respiratory Medicine, Hvidovre Hospital, Hvidovre, Denmark
| | - Ruth Tal-Singer
- Respiratory Therapy Area Unit, GSK Research and Development, King of Prussia, PA, USA
| | - Bruce E Miller
- Respiratory Therapy Area Unit, GSK Research and Development, King of Prussia, PA, USA
| | | | - Jørgen Vestbo
- Centre for Respiratory Medicine and Allergy, Manchester Academic Science Centre, The University of Manchester and University Hospital South Manchester NHS Foundation Trust, Manchester, UK
| |
Collapse
|
27
|
Fuller E, Little CB, Melrose J. Interleukin-1α induces focal degradation of biglycan and tissue degeneration in an in-vitro ovine meniscal model. Exp Mol Pathol 2016; 101:214-220. [PMID: 27615609 DOI: 10.1016/j.yexmp.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
We have developed an ovine meniscal explant model where the focal degradative events leading to characteristic fragmentation patterns of biglycan in human OA of the knee and hip, and evident in animal models of knee OA and IVD degeneration are reproduced in culture. Lateral and medial menisci were dissected into outer, mid and inner zones and established in explant culture±IL-1 (10ng/ml). The biglycan species present in conditioned media samples and in GuHCl extracts of tissues were examined by Western blotting using two C-terminal antibodies PR-85 and EF-Bgn. Clear differences were evident in the biglycan species in each meniscal tissue zone with the medial outer meniscus having lower biglycan levels and major fragments of 20, 28, 33 and 36, 39kDa. Similar fragmentation was detected in articular cartilage samples, 42-45kDa core protein species were also detected. Biglycan fragmentation was not as extensive in the IL-1 stimulated meniscal cultures with 36, 39, 42 and 45kDa biglycan species evident. Thus the medial meniscus outer zone displayed the highest levels of biglycan processing in this model and correlated with a major zone of meniscal remodelling in OA in man. Significantly, enzymatic digests of meniscal tissues with MMP-13, ADAMTS-4 and ADAMTS-5 have also generated similar biglycan species in-vitro. Zymography confirmed that the medial outer zone was the region of maximal MMP activity. This model represents a convenient system to recapitulate matrix remodelling events driven by IL-1 in pathological cartilages and in animal models of joint degeneration.
Collapse
Affiliation(s)
- Emily Fuller
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Australia
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, Australia; School of Biomedical Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
28
|
Anti-MMP-9 Antibody: A Promising Therapeutic Strategy for Treatment of Inflammatory Bowel Disease Complications with Fibrosis. Inflamm Bowel Dis 2016; 22:2041-57. [PMID: 27542125 DOI: 10.1097/mib.0000000000000863] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Despite medical treatments or surgical options, more than one-third of patients with Crohn's disease suffer from recurring fistulae. Matrix metalloprotease 9 (MMP-9), a type IV collagenase that cleaves components of the extracellular matrix leading to tissue remodeling, is upregulated in crypt abscesses and around fistulae suggesting an important role for this enzyme in fistula formation. Our aims were (1) to correlate serum levels of MMP-9 degradation products in patients with CD with the presence of fistulae and (2) to investigate the impact of selective MMP-9 inhibition in a mouse model of intestinal fibrosis. METHODS Serum MMP-9 degradation products were quantified in subjects affected with nonstricturing and nonpenetrating CD (n = 50), stricturing CD (n = 41), penetrating CD (n = 22), CD with perianal fistula (n = 29), and healthy controls (n = 10). Therapeutic efficacy of anti-MMP-9 monoclonal antibodies was assessed in a heterotopic xenograft model of intestinal fibrosis. RESULTS C3M, an MMP-9 degradation product of collagen III, demonstrated the highest serum levels in patients with penetrating CD and differentiated penetrating CD from other CD subgroups and healthy controls, P = 0.0005. Anti-MMP-9 treatments reduced collagen deposition and hydroxyproline content in day-14 intestinal grafts indicating reduced fibrosis. CONCLUSIONS The serologic biomarker C3M can discriminate penetrating CD from other CD subgroups and could serve as marker for the development of penetrating CD. Anti-MMP-9 antibody has therapeutic potential to prevent intestinal fibrosis in CD complications.
Collapse
|
29
|
Peffers MJ, Thornton DJ, Clegg PD. Characterization of neopeptides in equine articular cartilage degradation. J Orthop Res 2016; 34:106-20. [PMID: 26124002 PMCID: PMC4737130 DOI: 10.1002/jor.22963] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/04/2015] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is characterized by a loss of extracellular matrix that leads to cartilage degradation and joint space narrowing. Specific proteases, including the aggrecanases ADAMTS-4 and matrix metalloproteinase 3, are important in initiating and promoting cartilage degradation in osteoarthritis. This study investigated protease-specific and disease-specific cleavage patterns of particular extracellular matrix proteins by comparing new peptide fragments, neopeptides, in specific exogenous protease-driven digestion of a crude cartilage proteoglycan extract and an in-vitro model of early osteoarthritis. Additionally, equine cartilage explants were treated with interleukin-1 and the media collected. Proteolytic cleavage products following trypsin digestion were then identified using tandem mass spectrometry. Complete sequences of proteolytically cleaved neopeptides were determined for the major cartilage proteoglycans aggrecan, biglycan, decorin, fibromodulin plus cartilage oligomeric matrix protein. The generation of neopeptides varied with enzyme specificity; however, some peptides were common to all samples. Previous known and novel cleavage sites were identifies. The identification of novel peptide fragments provides a platform for the development of antibodies that could assist in the identification of biomarkers for osteoarthritis (OA), as well as the identification of basic biochemical processes underlying OA.
Collapse
Affiliation(s)
- Mandy Jayne Peffers
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseUniversity of Liverpool, LeahurstChester High RoadNestonWirralCH64 7TEUK
| | - David James Thornton
- Wellcome Trust Centre for Cell Matrix ResearchFaculty of Life SciencesMichael Smith BuildingOxford RoadManchesterM13 9PTUK
| | - Peter David Clegg
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseUniversity of Liverpool, LeahurstChester High RoadNestonWirralCH64 7TEUK
| |
Collapse
|
30
|
Karsdal MA, Genovese F, Madsen EA, Manon-Jensen T, Schuppan D. Collagen and tissue turnover as a function of age: Implications for fibrosis. J Hepatol 2016; 64:103-9. [PMID: 26307398 DOI: 10.1016/j.jhep.2015.08.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/06/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The extracellular matrix (ECM) is the backbone of all tissues. It is a complex grid consisting of multiple structural proteins which each play a vital role for the function and maintenance of normal tissue function. In development and growth, tissue is being formed and elaborated (tissue modeling), while in adult life, tissues are being maintained and remodeled. These processes involve likely different mechanisms. During tissue modeling and remodeling, small fragments of proteins are released into the circulation, where they may be used as biomarkers for tissue turnover. The aim of the study was to investigate ECM turnover in rodents as a function of age. METHODS Serum of rats of 1, 2, 3, 4, 5, 6, 10 and 12months of age was profiled for 15 markers of ECM turnover, including: fragments of type I, II, III, IV, V and VI collagen formation (P1NP, P4NP-7S, Pro-C5, Pro-C6) and degradation (C1M, C2M, C2M-beta, C3M, C4M, C5M, C6M); biglycan (BGM) and elastin (ELM7) degradation; and the type I and II collagen telopeptides CTX-I and CTX-II. RESULTS Type I and II collagen turnover was up to 93% and 97% downregulated in old (one year) compared to young (one month) old animals (p<0.0001), while type IV and V collagen and biglycan turnover was upregulated 2.5-, 2- and 2-fold, respectively (p<0.0001). Type III and VI collagen and elastin turnover was not influenced significantly by age. CONCLUSIONS ECM turnover rates were consistently different in young vs. old animals, up to 30 fold. This appears to be due to body growth, a different ECM composition and a higher regenerative capability of connective tissues in young vs. old animals. These changes have to be accounted for in translational science. Both in measuring serum levels of ECM biomarkers and in the development of therapies to speed up wound healing or inhibit fibrogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Guo X, Higgs BW, Bay-Jensen AC, Karsdal MA, Yao Y, Roskos LK, White WI. Suppression of T Cell Activation and Collagen Accumulation by an Anti-IFNAR1 mAb, Anifrolumab, in Adult Patients with Systemic Sclerosis. J Invest Dermatol 2015; 135:2402-2409. [DOI: 10.1038/jid.2015.188] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/30/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022]
|
32
|
Hannesson KO, Ytteborg E, Takle H, Enersen G, Bæverfjord G, Pedersen ME. Sulphated glycosaminoglycans and proteoglycans in the developing vertebral column of juvenile Atlantic salmon (Salmo salar). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1029-1051. [PMID: 25963942 PMCID: PMC4495713 DOI: 10.1007/s10695-015-0067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400 d° was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were addressed by immunohistochemistry using monoclonal antibodies against the different GAGs. The specific pattern obtained with the different antibodies suggests a unique role of the different GAG types in pattern formation and mineralization. In addition, the distribution of the different GAG types in normal and malformed vertebral columns from 15 g salmon was compared. A changed expression pattern of GAGs was found in the malformed vertebrae, indicating the involvement of these molecules during the pathogenesis. The molecular size of proteoglycans (PGs) in the vertebrae carrying GAGs was analysed with western blotting, and mRNA transcription of the PGs aggrecan, decorin, biglycan, fibromodulin and lumican by real-time qPCR. Our study reveals the importance of GAGs in development of vertebral column also in Atlantic salmon and indicates that a more comprehensive approach is necessary to completely understand the processes involved.
Collapse
|
33
|
Bihlet AR, Karsdal MA, Bay-Jensen AC, Read S, Kristensen JH, Sand JMB, Leeming DJ, Andersen JR, Lange P, Vestbo J. Clinical Drug Development Using Dynamic Biomarkers to Enable Personalized Health Care in COPD. Chest 2015; 148:16-23. [DOI: 10.1378/chest.15-0296] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
34
|
Interleukin and growth factor gene variants and risk of carpal tunnel syndrome. Gene 2015; 564:67-72. [DOI: 10.1016/j.gene.2015.03.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 11/22/2022]
|
35
|
Karsdal MA, Manon-Jensen T, Genovese F, Kristensen JH, Nielsen MJ, Sand JMB, Hansen NUB, Bay-Jensen AC, Bager CL, Krag A, Blanchard A, Krarup H, Leeming DJ, Schuppan D. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2015; 308:G807-30. [PMID: 25767261 PMCID: PMC4437019 DOI: 10.1152/ajpgi.00447.2014] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing the essential information needed for maintenance of a sophisticated structure anchoring the cells and sustaining normal function of tissues. Therefore, the matrix itself may be considered as a paracrine/endocrine entity, with more complex functions than previously appreciated. The aims of this review are to 1) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components and their posttranslational modifications often harbor multiple domains with different signaling potential, in particular when modified during inflammation or wound healing. This signaling by the ECM should be considered a paracrine/endocrine function, as it affects cell phenotype, function, fate, and finally tissue homeostasis. These properties should be exploited to establish novel biochemical markers and antifibrotic treatment strategies for liver fibrosis as well as other fibrotic diseases.
Collapse
Affiliation(s)
- Morten A. Karsdal
- 1Nordic Bioscience A/S, Herlev Hovedgade, Herlev, Denmark; ,2University of Southern Denmark, SDU, Odense, Denmark;
| | | | | | | | | | | | | | | | | | - Aleksander Krag
- 3Department of Gastroenterology and Hepatology, Odense University Hospital, University of Southern Denmark, Odense, Denmark;
| | - Andy Blanchard
- 4GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom;
| | - Henrik Krarup
- 5Section of Molecular Biology, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark;
| | | | - Detlef Schuppan
- 6Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; ,7Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
36
|
Land WG. The Role of Damage-Associated Molecular Patterns in Human Diseases: Part I - Promoting inflammation and immunity. Sultan Qaboos Univ Med J 2015; 15:e9-e21. [PMID: 25685392 PMCID: PMC4318613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/05/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023] Open
Abstract
There is increasing interest by physicians in the impact of the innate immune system on human diseases. In particular, the role of the molecules that initiate and amplify innate immune pathways, namely damage-associated molecular patterns (DAMPs), is of interest as these molecules are involved in the pathogenesis of many human disorders. The first part of this review identifies five classes of cell stress/tissue injury-induced DAMPs that are sensed by various recognition receptor-bearing cells of the innate immune system, thereby mounting inflammation, promoting apoptosis and shaping adaptive immune responses. The DAMPs activate and orchestrate several innate immune machineries, including inflammasomes and the unfolded protein response that synergistically operates to induce inflammatory, metabolic and adaptive immune pathologies. Two examples of autoimmune diseases are discussed as they represent a typical paradigm of the intimate interplay between innate and adaptive immune responses.
Collapse
Affiliation(s)
- Walter G Land
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d'Immunologie et d'Hématologie, Université de Strasbourg, Strasbourg, France, E-mail:
| |
Collapse
|
37
|
Heppner JM, Zaucke F, Clarke LA. Extracellular matrix disruption is an early event in the pathogenesis of skeletal disease in mucopolysaccharidosis I. Mol Genet Metab 2015; 114:146-55. [PMID: 25410057 DOI: 10.1016/j.ymgme.2014.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022]
Abstract
Progressive skeletal and connective tissue disease represents a significant clinical burden in all of the mucopolysaccharidoses. Despite the introduction of enzyme replacement strategies for many of the mucopolysaccharidoses, symptomatology related to bone and joint disease appears to be recalcitrant to current therapies. In order to address these unmet medical needs a clearer understanding of skeletal and connective tissue disease pathogenesis is required. Historically the pathogenesis of the mucopolysaccharidoses has been assumed to directly relate to progressive storage of glycosaminoglycans. It is now apparent for many lysosomal storage disorders that more complex pathogenic mechanisms underlie patients' clinical symptoms. We have used proteomic and genome wide expression studies in the murine mucopolysaccharidosis I model to identify early pathogenic events occurring in micro-dissected growth plate tissue. Studies were conducted using 3 and 5-week-old mice thus representing a time at which no obvious morphological changes of bone or joints have taken place. An unbiased iTRAQ differential proteomic approach was used to identify candidates followed by validation with multiple reaction monitoring mass spectrometry and immunohistochemistry. These studies reveal significant decreases in six key structural and signaling extracellular matrix proteins; biglycan, fibromodulin, PRELP, type I collagen, lactotransferrin, and SERPINF1. Genome-wide expression studies in embryonic day 13.5 limb cartilage and 5 week growth plate cartilage followed by specific gene candidate qPCR studies in the 5week growth plate identified fourteen significantly deregulated mRNAs (Adamts12, Aspn, Chad, Col2a1, Col9a1, Hapln4, Lum, Matn1, Mmp3, Ogn, Omd, P4ha2, Prelp, and Rab32). The involvement of biglycan, PRELP and fibromodulin; all members of the small leucine repeat proteoglycan family is intriguing, as this protein family is implicated in the pathogenesis of late onset osteoarthritis. Taken as a whole, our data indicates that alteration of the extracellular matrix represents a very early event in the pathogenesis of the mucopolysaccharidoses and implies that biomechanical failure of chondro-osseous tissue may underlie progressive bone and joint disease symptoms. These findings have important therapeutic implications.
Collapse
Affiliation(s)
- Jonathan M Heppner
- Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada; The Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Lorne A Clarke
- Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada; The Child and Family Research Institute, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia V5Z-4H4, Canada.
| |
Collapse
|
38
|
Ošt'ádal M, Eckhardt A, Herget J, Mikšík I, Dungl P, Chomiak J, Frydrychová M, Burian M. Proteomic analysis of the extracellular matrix in idiopathic pes equinovarus. Mol Cell Biochem 2014; 401:133-9. [PMID: 25472880 DOI: 10.1007/s11010-014-2300-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/27/2014] [Indexed: 11/29/2022]
Abstract
Idiopathic pes equinovarus is a congenital deformity of the foot and lower leg defined as a fixation of the foot in adduction, supination, and varus. Although the pathogenesis of clubfoot remains unclear, it has been suggested that fibroblasts and growth factors are involved. To directly analyze the protein composition of the extracellular matrix in contracted tissue of patients with clubfoot. A total of 13 infants with idiopathic clubfoot treated with the Ponseti method were included in the present study. Tissue samples were obtained from patients undergoing surgery for relapsed clubfeet. Contracted tissues were obtained from the medial aspect of the talonavicular joint. Protein was extracted after digestion and delipidation using zip-tip C18. Individual collagenous fractions were detected using a chemiluminescent assay. Amino acid analysis of tissue samples revealed a predominance of collagens, namely collagen types I, III, and VI. The high content of glycine and h-proline suggests a predominance of collagens I and III. A total of 19 extracellular matrix proteins were identified. The major result of the present study was the observation that the extracellular matrix in clubfoot is composed of an additional 16 proteins, including collagens V, VI, and XII, as well as the previously described collagen types I and III and transforming growth factor β. The characterization of the general protein composition of the extracellular matrix in various regions of clubfoot may help in understanding the pathogenesis of this anomaly and, thus, contribute to the development of more efficacious therapeutic approaches.
Collapse
Affiliation(s)
- Martin Ošt'ádal
- Department of Orthopaedics, 1st Faculty of Medicine, University Hospital Bulovka, Charles University, Budínova 2, 180 00, Prague 8, Czech Republic,
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kristensen JH, Karsdal MA, Genovese F, Johnson S, Svensson B, Jacobsen S, Hägglund P, Leeming DJ. The Role of Extracellular Matrix Quality in Pulmonary Fibrosis. Respiration 2014; 88:487-99. [DOI: 10.1159/000368163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
|
40
|
Combined antiretroviral therapy attenuates hepatic extracellular matrix remodeling in HIV patients assessed by novel protein fingerprint markers. AIDS 2014; 28:2081-90. [PMID: 25136933 DOI: 10.1097/qad.0000000000000388] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Combined antiretroviral therapy (cART) attenuates hepatic fibrosis in hepatitis C virus and HIV coinfected patients. However, the role of HIV or cART on hepatic fibrosis in HIV monoinfection is discussed controversially. During liver fibrosis, matrix metalloproteinases (MMPs) degrade extracellular matrix (ECM) proteins into small soluble fragments, which reflect hepatic remodeling processes. This study used these novel biomarkers to investigate the effect of HIV and cART on hepatic fibrosis remodeling. DESIGN In 249 patients with HIV monoinfection and 55 healthy controls, the serum levels of MMP-degraded collagen type III (C3M), biglycan (BGM), elastin (ELM), as well as the formation marker 7S (P4NP 7S), and MMP-degraded collagen type IV (C4M) were determined using specific ELISAs. Sixty-eight patients underwent a follow-up visit 3 years later including assessment of ECM markers and fibrosis using transient elastography (Fibroscan). RESULTS C3M, BGM, C4M and P4NP 7S were significantly elevated in HIV patients compared to controls and correlated to HIV viral loads and inversely to cART duration. C4M, P4NP 7S and ELM were lower in patients under cART therapy and in patients without HIV viremia, indicating that lowering of the HIV load by cART attenuates remodeling of ECM. The levels of C3M, C4M, P4NP 7S and ELM correlated significantly with the progression of fibrosis in these patients. CONCLUSION Specific therapy of patients with HIV monoinfection also beneficially influences liver fibrosis. These novel markers of liver fibrosis remodeling may help to monitor the hepatic effects by HIV therapy.
Collapse
|
41
|
Karsdal MA, Krarup H, Sand JMB, Christensen PB, Gerstoft J, Leeming DJ, Weis N, Schaffalitzky de Muckadell OB, Krag A. Review article: the efficacy of biomarkers in chronic fibroproliferative diseases - early diagnosis and prognosis, with liver fibrosis as an exemplar. Aliment Pharmacol Ther 2014; 40:233-49. [PMID: 24909260 DOI: 10.1111/apt.12820] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/06/2014] [Accepted: 05/14/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nearly 45% of all deaths are associated with chronic fibroproliferative diseases, of which the primary characteristic is altered remodelling of the extracellular matrix. A major difficulty in developing anti-fibrotic therapies is the lack of accurate and established techniques to estimate dynamics of fibrosis, regression or progression, in response to therapy. AIM One of the most pressing needs in modern clinical chemistry for fibroproliferative disorders is the development of biomarkers for early diagnosis, prognosis, and early efficacy for the benefit of patients and to facilitate improved drug development. The aim of this article was to review the serological biomarkers that may assist in early diagnosis of patients, separate fast from slow- or nonprogressors, and possibly assist in drug development for fibroproliferative diseases, exemplified by liver fibrosis. The lack of success of biochemical markers and the possible reasons for this is discussed in the context of other fields with biomarker success. METHOD This is a personal opinion review article. RESULTS Biochemical markers, originating from the fibrotic structure, may have increased specificity and sensitivity for disease. Assessment of the tissue turnover balance by measurement of tissue formation and tissue degradation separately by novel technologies may provide value. CONCLUSIONS Novel technologies focused on the protein fingerprint in addition to biomarker classification, may increase the quality of biomarker development and provide the much needed biomarkers to further the fibroproliferative field. This is in direct alignment with the Food and Drug Administration and European Medicinal Agencies initiatives of personal health care.
Collapse
|
42
|
Hsieh LTH, Nastase MV, Zeng-Brouwers J, Iozzo RV, Schaefer L. Soluble biglycan as a biomarker of inflammatory renal diseases. Int J Biochem Cell Biol 2014; 54:223-35. [PMID: 25091702 DOI: 10.1016/j.biocel.2014.07.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
Chronic renal inflammation is often associated with a progressive accumulation of various extracellular matrix constituents, including several members of the small leucine-rich proteoglycan (SLRP) gene family. It is becoming increasingly evident that the matrix-unbound SLRPs strongly regulate the progression of inflammation and fibrosis. Soluble SLRPs are generated either via partial proteolytic processing of collagenous matrices or by de novo synthesis evoked by stress or injury. Liberated SLRPs can then bind to and activate Toll-like receptors, thus modulating downstream inflammatory signaling. Preclinical animal models and human studies have recently identified soluble biglycan as a key initiator and regulator of various inflammatory renal diseases. Biglycan, generated by activated macrophages, can enter the circulation and its elevated levels in plasma and renal parenchyma correlate with unfavorable renal function and outcome. In this review, we will focus on the critical role of soluble biglycan in inflammatory signaling in various renal disorders. Moreover, we will provide new data implicating proinflammatory effects of soluble decorin in unilateral ureteral obstruction. Finally, we will critically evaluate the potential application of soluble biglycan vis-à-vis other SLRPs (decorin, lumican and fibromodulin) as a promising target and novel biomarker of inflammatory renal diseases.
Collapse
Affiliation(s)
- Louise Tzung-Harn Hsieh
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Madalina-Viviana Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
43
|
Anders HJ, Schaefer L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol 2014; 25:1387-400. [PMID: 24762401 PMCID: PMC4073442 DOI: 10.1681/asn.2014010117] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tissue injury initiates an inflammatory response through the actions of immunostimulatory molecules referred to as damage-associated molecular patterns (DAMPs). DAMPs encompass a group of heterogenous molecules, including intracellular molecules released during cell necrosis and molecules involved in extracellular matrix remodeling such as hyaluronan, biglycan, and fibronectin. Kidney-specific DAMPs include crystals and uromodulin released by renal tubular damage. DAMPs trigger innate immunity by activating Toll-like receptors, purinergic receptors, or the NLRP3 inflammasome. However, recent evidence revealed that DAMPs also trigger re-epithelialization upon kidney injury and contribute to epithelial-mesenchymal transition and, potentially, to myofibroblast differentiation and proliferation. Thus, these discoveries suggest that DAMPs drive not only immune injury but also kidney regeneration and renal scarring. Here, we review the data from these studies and discuss the increasingly complex connection between DAMPs and kidney diseases.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrological Center, Medizinische Klinik und Poliklinik IV, University of Munich, Munich, Germany; and
| | - Liliana Schaefer
- Pharmazentrum Frankfurt, Institute of General Pharmacology and Toxicology, Goethe-University of Frankfurt/Main, Frankfurt/Main, Germany
| |
Collapse
|
44
|
Siebuhr AS, He Y, Gudmann NS, Gram A, Kjelgaard-Petersen CF, Qvist P, Karsdal MA, Bay-Jensen AC. Biomarkers of cartilage and surrounding joint tissue. Biomark Med 2014; 8:713-31. [DOI: 10.2217/bmm.13.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The identification and clinical demonstration of efficacy and safety of osteo- and chondro-protective drugs are met with certain difficulties. During the last few decades, the pharmaceutical industry has, in the field of rheumatology, experienced disappointments associated with the development of disease modification. Today, the vast amount of patients suffering from serious, chronic joint diseases can only be offered treatments aimed at improving symptoms, such as pain and acute inflammation, and are not aimed at protecting the joint tissue. This huge, unmet medical need has been the driver behind the development of improved analytical techniques allowing better and more efficient clinical trial design, implementation and analysis. With this review, we aim to provide a brief and general overview of biochemical markers of joint tissue, with special focus on neoepitopes. Furthermore, we highlight recent studies applying biochemical markers in joint degenerative diseases. These disorders, including osteoarthritis, rheumatoid arthritis and spondyloarthropathies, are the most predominant disorders in Europe and the USA, and have enormous socioeconomical impact.
Collapse
Affiliation(s)
- Anne S Siebuhr
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Yi He
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Natasja S Gudmann
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Aurelie Gram
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | | | - Per Qvist
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Morten A Karsdal
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| | - Anne C Bay-Jensen
- Nordic Bioscience, Biomarkers & Research, Herlev Hovedgade 207, Herlev DK-2730, Denmark
| |
Collapse
|
45
|
Rybinski B, Franco-Barraza J, Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics 2014; 46:223-44. [PMID: 24520152 PMCID: PMC4035661 DOI: 10.1152/physiolgenomics.00158.2013] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/04/2014] [Indexed: 02/07/2023] Open
Abstract
For decades tumors have been recognized as "wounds that do not heal." Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing.
Collapse
Affiliation(s)
- Brad Rybinski
- Cancer Biology Program, Fox Chase Cancer Center/Temple Health, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
46
|
The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? FIBROGENESIS & TISSUE REPAIR 2014; 7:4. [PMID: 24678881 PMCID: PMC3986639 DOI: 10.1186/1755-1536-7-4] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023]
Abstract
Interstitial fibrosis is the common endpoint of end-stage chronic kidney disease (CKD) leading to kidney failure. The clinical course of many renal diseases, and thereby of CKD, is highly variable. One of the major challenges in deciding which treatment approach is best suited for a patient but also in the development of new treatments is the lack of markers able to identify and stratify patients with stable versus progressive disease. At the moment renal biopsy is the only means of diagnosing renal interstitial fibrosis. Novel biomarkers should improve diagnosis of a disease, estimate its prognosis and assess the response to treatment, all in a non-invasive manner. Existing markers of CKD do not fully and specifically address these requirements and in particular do not specifically reflect renal fibrosis. The aim of this review is to give an insight of the involvement of the extracellular matrix (ECM) proteins in kidney diseases and as a source of potential novel biomarkers of renal fibrosis. In particular the use of the protein fingerprint technology, that identifies neo-epitopes of ECM proteins generated by proteolytic cleavage by proteases or other post-translational modifications, might identify such novel biomarkers of renal fibrosis.
Collapse
|
47
|
Leeming DJ, Karsdal MA, Byrjalsen I, Bendtsen F, Trebicka J, Nielsen MJ, Christiansen C, Møller S, Krag A. Novel serological neo-epitope markers of extracellular matrix proteins for the detection of portal hypertension. Aliment Pharmacol Ther 2013; 38:1086-96. [PMID: 24099470 PMCID: PMC3935409 DOI: 10.1111/apt.12484] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/08/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The hepatic venous pressure gradient (HVPG) is an invasive, but important diagnostic and prognostic marker in cirrhosis with portal hypertension (PHT). During cirrhosis, remodelling of fibrotic tissue by matrix metalloproteinases (MMPs) is a permanent process generating small fragments of degraded extracellular matrix (ECM) proteins known as neoepitopes, which are then released into the circulation. AIM To investigate their potential as plasma markers for detection of PHT. METHODS Ninety-four patients with alcoholic cirrhosis and 20 liver-healthy controls were included. Clinical and laboratory data of the patients were collected. All patients received HVPG measurement with blood sampling. In these samples, the following degradation or formation markers were measured: C1M (type I-collagen), C3M and PRO-C3 (type III collagen), C4M and P4NP 7S (type IV collagen), C5M (type V collagen), C6M (type VI collagen), BGM (biglycan), ELM (elastin), CRPM (CRP). RESULTS All ECM markers except for CRPM correlated significantly with HVPG. Interestingly, C4M, C5M and ELM levels were significantly higher in patients with HVPG >10 mmHg. Multiple regression analysis identified PRO-C3, C6M and ELM as significant determinants, while the models A and B including PRO-C3, ELM, C6M and model for end-stage liver disease (MELD) provided better description of PHT (r = 0.75, P < 0.0001). The models provided odds ratios of >100 for having clinical significant PHT. CONCLUSIONS These novel non-invasive extracellular matrix markers reflect the degree of liver dysfunction. The different degrees of portal hypertension correlated with these circulating neoepitopes. Using a single blood sample, these neoepitopes in combination with MELD detect the level of portal hypertension.
Collapse
Affiliation(s)
- D J Leeming
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - M A Karsdal
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - I Byrjalsen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - F Bendtsen
- Department of Gastroenterology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark
| | - J Trebicka
- Department of Internal Medicine I, University of BonnBonn, Germany
| | - M J Nielsen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - C Christiansen
- Nordic Bioscience, Fibrosis Biology and BiomarkersHerlev, Denmark
| | - S Møller
- Department of Clinical Physiology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark
| | - A Krag
- Department of Gastroenterology Faculty of Health Sciences, Hvidovre Hospital, University of CopenhagenCopenhagen, Denmark,Department of Gastroenterology Odense University Hospital, University of Southern DenmarkOdense, Denmark
| |
Collapse
|