1
|
Ciuchcinski K, Czerwonka G, Decewicz P, Godlewska Z, Misiolek K, Zegadlo K, Styczynski M, Dziewit L. Genome-guided development of a bacterial two-strain system for low-temperature soil biocementation. Appl Microbiol Biotechnol 2025; 109:66. [PMID: 40100368 PMCID: PMC11919988 DOI: 10.1007/s00253-025-13448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Degradation and erosion of soil is a significant threat to global food security and overall agricultural productivity. This issue is exacerbated by climate change and intensive human activity, meaning that the development of sustainable solutions for those problems is critical. Microbially induced calcite precipitation (MICP) offers a promising approach to stabilise soil particles; however, its applicability at low temperatures remains limited. In our study, we introduce a novel two-strain system combining the type strain for biocementation experiments, Sporosarcina pasteurii DSM 33, and Sporosarcina sp. ANT_H38, a novel, psychrotolerant strain obtained from the Antarctic. The novel strain enabled enhanced biocementation performance when combined with the type strain. Biocementation experiments showed a 3.5-fold increase in soil cohesion, while maintaining a similar internal friction angle compared to the type strain alone (10.7 kPa vs 34.12 kPa; 0.55 kPa for untreated soil). The increased cohesion significantly reduces susceptibility to erosion, offering a practical and sustainable solution. Furthermore, to better understand the mechanisms driving this process, we conducted a comprehensive bioinformatic analysis of the ANT_H38 genome, revealing unique cold-adaptive genes, as well as urease genes, which are evolutionarily distant from other Sporosarcina ureases. Those results provide valuable insights into the strain's functional adaptations, particularly under low-temperature conditions. Overall, our study addresses a critical issue, offering a robust, nature-based solution that enhances soil resilience through MICP. Performed laboratory work confirms the potential of the system for real-world applications, while the comprehensive bioinformatic analysis provides the much needed context and information regarding the possible mechanisms behind the process. KEY POINTS: • Antarctic Sporosarcina sp. ANT_H38 contains unique urease genes • Two-strain ANT_H38/DSM33 system effectively stabilises soil at low temperatures • Two-strain system has potential for stopping soil erosion and desertification.
Collapse
Affiliation(s)
- Karol Ciuchcinski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grzegorz Czerwonka
- Division of Microbiology, Institute of Biology, Faculty of Exact and Natural Sciences, Jan Kochanowski University, Kielce, Poland
| | - Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zofia Godlewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Misiolek
- Department of Hydraulic Engineering and Hydraulics, Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Zegadlo
- Division of Microbiology, Institute of Biology, Faculty of Exact and Natural Sciences, Jan Kochanowski University, Kielce, Poland
| | - Michal Styczynski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Moon S, Ham S, Jeong J, Ku H, Kim H, Lee C. Temperature Matters: Bacterial Response to Temperature Change. J Microbiol 2023; 61:343-357. [PMID: 37010795 DOI: 10.1007/s12275-023-00031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 04/04/2023]
Abstract
Temperature is one of the most important factors in all living organisms for survival. Being a unicellular organism, bacterium requires sensitive sensing and defense mechanisms to tolerate changes in temperature. During a temperature shift, the structure and composition of various cellular molecules including nucleic acids, proteins, and membranes are affected. In addition, numerous genes are induced during heat or cold shocks to overcome the cellular stresses, which are known as heat- and cold-shock proteins. In this review, we describe the cellular phenomena that occur with temperature change and bacterial responses from a molecular perspective, mainly in Escherichia coli.
Collapse
Affiliation(s)
- Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Soojeong Ham
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Juwon Jeong
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Heechan Ku
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
3
|
Bartolo-Aguilar Y, Chávez-Cabrera C, Flores-Cotera LB, Badillo-Corona JA, Oliver-Salvador C, Marsch R. The potential of cold-shock promoters for the expression of recombinant proteins in microbes and mammalian cells. J Genet Eng Biotechnol 2022; 20:173. [PMID: 36580173 PMCID: PMC9800685 DOI: 10.1186/s43141-022-00455-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Low-temperature expression of recombinant proteins may be advantageous to support their proper folding and preserve bioactivity. The generation of expression vectors regulated under cold conditions can improve the expression of some target proteins that are difficult to express in different expression systems. The cspA encodes the major cold-shock protein from Escherichia coli (CspA). The promoter of cspA has been widely used to develop cold shock-inducible expression platforms in E. coli. Moreover, it is often necessary to employ expression systems other than bacteria, particularly when recombinant proteins require complex post-translational modifications. Currently, there are no commercial platforms available for expressing target genes by cold shock in eukaryotic cells. Consequently, genetic elements that respond to cold shock offer the possibility of developing novel cold-inducible expression platforms, particularly suitable for yeasts, and mammalian cells. CONCLUSIONS This review covers the importance of the cellular response to low temperatures and the prospective use of cold-sensitive promoters to direct the expression of recombinant proteins. This concept may contribute to renewing interest in applying white technologies to produce recombinant proteins that are difficult to express.
Collapse
Affiliation(s)
- Yaneth Bartolo-Aguilar
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- Colegio de Estudios Científicos y Tecnológicos del Estado de Michoacán, CECyTE Michoacán, Héroes de la Revolución S/N, Col. Centro, 61880, Churumuco de Morelos, Michoacán, Mexico.
| | - Luis Bernardo Flores-Cotera
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Jesús Agustín Badillo-Corona
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Carmen Oliver-Salvador
- Instituto Politécnico Nacional-Unidad Profesional Interdisciplinaria de Biotecnología, Av. Acueducto s/n, Colonia Barrio La Laguna Ticomán, 07340, Mexico City, Mexico
| | - Rodolfo Marsch
- Department of Biotechnology and Bioengineering, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
4
|
Liu Y, Cui X, Yang R, Zhang Y, Xu Y, Liu G, Zhang B, Wang J, Wang X, Zhang W, Chen T, Zhang G. Genomic Insights into the Radiation-Resistant Capability of Sphingomonas qomolangmaensis S5-59 T and Sphingomonas glaciei S8-45 T, Two Novel Bacteria from the North Slope of Mount Everest. Microorganisms 2022; 10:microorganisms10102037. [PMID: 36296313 PMCID: PMC9611098 DOI: 10.3390/microorganisms10102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Mount Everest provides natural advantages to finding radiation-resistant extremophiles that are functionally mechanistic and possess commercial significance. (1) Background: Two bacterial strains, designated S5-59T and S8-45T, were isolated from moraine samples collected from the north slope of Mount Everest at altitudes of 5700m and 5100m above sea level. (2) Methods: The present study investigated the polyphasic features and genomic characteristics of S5-59T and S8-45T. (3) Results: The major fatty acids and the predominant respiratory menaquinone of S5-59T and S8-45T were summed as feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c) and ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA sequences and average nucleotide identity values among these two strains and their reference type strains were below the species demarcation thresholds of 98.65% and 95%. Strains S5-59T and S8-45T harbored great radiation resistance. The genomic analyses showed that DNA damage repair genes, such as mutL, mutS, radA, radC, recF, recN, etc., were present in the S5-59T and S8-45T strains. Additionally, strain S5-59T possessed more genes related to DNA protection proteins. The pan-genome analysis and horizontal gene transfers revealed that strains of Sphingomonas had a consistently homologous genetic evolutionary radiation resistance. Moreover, enzymatic antioxidative proteins also served critical roles in converting ROS into harmless molecules that resulted in resistance to radiation. Further, pigments and carotenoids such as zeaxanthin and alkylresorcinols of the non-enzymatic antioxidative system were also predicted to protect them from radiation. (4) Conclusions: Type strains S5-59T (=JCM 35564T =GDMCC 1.3193T) and S8-45T (=JCM 34749T =GDMCC 1.2715T) represent two novel species of the genus Sphingomonas with the proposed name Sphingomonas qomolangmaensis sp. nov. and Sphingomonas glaciei sp. nov. The type strains, S5-59T and S8-45T, were assessed in a deeply genomic study of their radiation-resistant mechanisms and this thus resulted in a further understanding of their greater potential application for the development of anti-radiation protective drugs.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Xiaowen Cui
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
| | - Ruiqi Yang
- College of Urban Environment, Lanzhou City University, Lanzhou 730070, China
| | - Yiyang Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yeteng Xu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Binglin Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Jinxiu Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinyue Wang
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Correspondence: (T.C.); (G.Z.)
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Correspondence: (T.C.); (G.Z.)
| |
Collapse
|
5
|
Virus-Host Interaction Gets Curiouser and Curiouser. PART II: Functional Transcriptomics of the E. coli DksA-Deficient Cell upon Phage P1 vir Infection. Int J Mol Sci 2021; 22:ijms22116159. [PMID: 34200430 PMCID: PMC8201110 DOI: 10.3390/ijms22116159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
The virus–host interaction requires a complex interplay between the phage strategy of reprogramming the host machinery to produce and release progeny virions, and the host defense against infection. Using RNA sequencing, we investigated the phage–host interaction to resolve the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host. Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA, a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant; this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild type and dksA− hosts. Generally, bacterial hosts are reacting by activating their SOS response or upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development is enhanced in the dksA mutant due to several improvements, including replication and virion assembly, as well as a less efficient lysis.
Collapse
|
6
|
Listeria monocytogenes Cold Shock Proteins: Small Proteins with A Huge Impact. Microorganisms 2021; 9:microorganisms9051061. [PMID: 34068949 PMCID: PMC8155936 DOI: 10.3390/microorganisms9051061] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes has evolved an extensive array of mechanisms for coping with stress and adapting to changing environmental conditions, ensuring its virulence phenotype expression. For this reason, L. monocytogenes has been identified as a significant food safety and public health concern. Among these adaptation systems are cold shock proteins (Csps), which facilitate rapid response to stress exposure. L. monocytogenes has three highly conserved csp genes, namely, cspA, cspB, and cspD. Using a series of csp deletion mutants, it has been shown that L. monocytogenes Csps are important for biofilm formation, motility, cold, osmotic, desiccation, and oxidative stress tolerance. Moreover, they are involved in overall virulence by impacting the expression of virulence-associated phenotypes, such as hemolysis and cell invasion. It is postulated that during stress exposure, Csps function to counteract harmful effects of stress, thereby preserving cell functions, such as DNA replication, transcription and translation, ensuring survival and growth of the cell. Interestingly, it seems that Csps might suppress tolerance to some stresses as their removal resulted in increased tolerance to stresses, such as desiccation for some strains. Differences in csp roles among strains from different genetic backgrounds are apparent for desiccation tolerance and biofilm production. Additionally, hierarchical trends for the different Csps and functional redundancies were observed on their influences on stress tolerance and virulence. Overall current data suggest that Csps have a wider role in bacteria physiology than previously assumed.
Collapse
|
7
|
Virtanen JP, Keto-Timonen R, Jaakkola K, Salin N, Korkeala H. Changes in Transcriptome of Yersinia pseudotuberculosis IP32953 Grown at 3 and 28°C Detected by RNA Sequencing Shed Light on Cold Adaptation. Front Cell Infect Microbiol 2018; 8:416. [PMID: 30538955 PMCID: PMC6277586 DOI: 10.3389/fcimb.2018.00416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/09/2018] [Indexed: 11/17/2022] Open
Abstract
Yersinia pseudotuberculosis is a bacterium that not only survives, but also thrives, proliferates, and remains infective at cold-storage temperatures, making it an adept foodborne pathogen. We analyzed the differences in gene expression between Y. pseudotuberculosis IP32953 grown at 3 and 28°C to investigate which genes were significantly more expressed at low temperature at different phases of growth. We isolated and sequenced the RNA from six distinct corresponding growth points at both temperatures to also outline the expression patterns of the differentially expressed genes. Genes involved in motility, chemotaxis, phosphotransferase systems (PTS), and ATP-binding cassette (ABC) transporters of different nutrients such as fructose and mannose showed higher levels of transcripts at 3°C. At the beginning of growth, especially genes involved in securing nutrients, glycolysis, transcription, and translation were upregulated at 3°C. To thrive as well as it does at low temperature, Y. pseudotuberculosis seems to require certain cold shock proteins, especially those encoded by yptb3585, yptb3586, yptb2414, yptb2950, and yptb1423, and transcription factors, like Rho, IF-1, and RbfA, to maintain its protein synthesis. We also found that genes encoding RNA-helicases CsdA (yptb0468), RhlE (yptb1214), and DbpA (yptb1652), which unwind frozen secondary structures of nucleic acids with cold shock proteins, were significantly more expressed at 3°C, indicating that these RNA-helicases are important or even necessary during cold. Genes involved in excreting poisonous spermidine and acquiring compatible solute glycine betaine, by either uptake or biosynthesis, showed higher levels of transcripts at low temperatures. This is the first finding of a strong connection between the aforementioned genes and the cold adaptation of Y. pseudotuberculosis. Understanding the mechanisms behind the cold adaptation of Y. pseudotuberculosis is crucial for controlling its growth during cold storage of food, and will also shed light on microbial cold adaptation in general.
Collapse
Affiliation(s)
- Jussa-Pekka Virtanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Keto-Timonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kaisa Jaakkola
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Noora Salin
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Segura A, Auffret P, Bibbal D, Bertoni M, Durand A, Jubelin G, Kérourédan M, Brugère H, Bertin Y, Forano E. Factors Involved in the Persistence of a Shiga Toxin-Producing Escherichia coli O157:H7 Strain in Bovine Feces and Gastro-Intestinal Content. Front Microbiol 2018; 9:375. [PMID: 29593666 PMCID: PMC5854682 DOI: 10.3389/fmicb.2018.00375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/19/2018] [Indexed: 11/28/2022] Open
Abstract
Healthy cattle are the primary reservoir for O157:H7 Shiga toxin-producing E. coli responsible for human food-borne infections. Because farm environment acts as a source of cattle contamination, it is important to better understand the factors controlling the persistence of E. coli O157:H7 outside the bovine gut. The E. coli O157:H7 strain MC2, identified as a persistent strain in French farms, possessed the characteristics required to cause human infections and genetic markers associated with clinical O157:H7 isolates. Therefore, the capacity of E. coli MC2 to survive during its transit through the bovine gastro-intestinal tract (GIT) and to respond to stresses potentially encountered in extra-intestinal environments was analyzed. E. coli MC2 survived in rumen fluids, grew in the content of posterior digestive compartments and survived in bovine feces at 15°C predicting a successful transit of the bacteria along the bovine GIT and its persistence outside the bovine intestine. E. coli MC2 possessed the genetic information encoding 14 adherence systems including adhesins with properties related to colonization of the bovine intestine (F9 fimbriae, EhaA and EspP autotransporters, HCP pilus, FdeC adhesin) reflecting the capacity of the bacteria to colonize different segments of the bovine GIT. E. coli MC2 was also a strong biofilm producer when incubated in fecal samples at low temperature and had a greater ability to form biofilms than the bovine commensal E. coli strain BG1. Furthermore, in contrast to BG1, E. coli MC2 responded to temperature stresses by inducing the genes cspA and htrA during its survival in bovine feces at 15°C. E. coli MC2 also activated genes that are part of the GhoT/GhoS, HicA/HicB and EcnB/EcnA toxin/antitoxin systems involved in the response of E. coli to nutrient starvation and chemical stresses. In summary, the large number of colonization factors known to bind to intestinal epithelium and to biotic or abiotic surfaces, the capacity to produce biofilms and to activate stress fitness genes in bovine feces could explain the persistence of E. coli MC2 in the farm environment.
Collapse
Affiliation(s)
- Audrey Segura
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pauline Auffret
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Delphine Bibbal
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Marine Bertoni
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Alexandra Durand
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Grégory Jubelin
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Monique Kérourédan
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Hubert Brugère
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Yolande Bertin
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Evelyne Forano
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
9
|
Kim MJ, Adeline Ng BX, Zwe YH, Yuk HG. Photodynamic inactivation of Salmonella enterica Enteritidis by 405 ± 5-nm light-emitting diode and its application to control salmonellosis on cooked chicken. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.06.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Yu TF, Xu ZS, Guo JK, Wang YX, Abernathy B, Fu JD, Chen X, Zhou YB, Chen M, Ye XG, Ma YZ. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Sci Rep 2017; 7:44050. [PMID: 28281578 PMCID: PMC5345034 DOI: 10.1038/srep44050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/02/2017] [Indexed: 11/28/2022] Open
Abstract
Cold shock proteins (CSPs) enhance acclimatization of bacteria to adverse environmental circumstances. The Escherichia coli CSP genes CspA and CspB were modified to plant-preferred codon sequences and named as SeCspA and SeCspB. Overexpression of exogenous SeCspA and SeCspB in transgenic Arabidopsis lines increased germination rates, survival rates, and increased primary root length compared to control plants under drought and salt stress. Investigation of several stress-related parameters in SeCspA and SeCspB transgenic wheat lines indicated that these lines possessed stress tolerance characteristics, including lower malondialdehyde (MDA) content, lower water loss rates, lower relative Na+ content, and higher chlorophyll content and proline content than the control wheat plants under drought and salt stresses. RNA-seq and qRT-PCR expression analysis showed that overexpression of SeCsp could enhance the expression of stress-responsive genes. The field experiments showed that the SeCspA transgenic wheat lines had great increases in the 1000-grain weight and grain yield compared to the control genotype under drought stress conditions. Significant differences in the stress indices revealed that the SeCspA transgenic wheat lines possessed significant and stable improvements in drought tolerance over the control plants. No such improvement was observed for the SeCspB transgenic lines under field conditions. Our results indicated that SeCspA conferred drought tolerance and improved physiological traits in wheat plants.
Collapse
Affiliation(s)
- Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jin-Kao Guo
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, Hebei 050041, China
| | - Yan-Xia Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Research Center of Wheat Engineering Technology of Hebei, Shijiazhuang, Hebei 050041, China
| | - Brian Abernathy
- Center for Applied Genetic Technologies, Department of Plant Sciences, University of Georgia, 30602, Athens, GA, United States
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Xiao Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Xing-Guo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
11
|
Antibacterial Mechanism of 405-Nanometer Light-Emitting Diode against Salmonella at Refrigeration Temperature. Appl Environ Microbiol 2017; 83:AEM.02582-16. [PMID: 28003197 DOI: 10.1128/aem.02582-16] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/10/2016] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to elucidate the antibacterial mechanism of 405 ± 5-nm light-emitting diode (LED) illumination against Salmonella at 4°C in phosphate-buffered saline (PBS) by determining endogenous coproporphyrin content, DNA oxidation, damage to membrane function, and morphological change. Gene expression levels, including of oxyR, recA, rpoS, sodA, and soxR, were also examined to understand the response of Salmonella to LED illumination. The results showed that Salmonella strains responded differently to LED illumination, revealing that S. enterica serovar Enteritidis (ATCC 13076) and S. enterica subsp. enterica serovar Saintpaul (ATCC 9712) were more susceptible and resistant, respectively, than the 16 other strains tested. There was no difference in the amounts of endogenous coproporphyrin in the two strains. Compared with that in nonilluminated cells, the DNA oxidation levels in illuminated cells increased. In illuminated cells, we observed a loss of efflux pump activity, damage to the glucose uptake system, and changes in membrane potential and integrity. Transmission electron microscopy revealed a disorganization of chromosomes and ribosomes due to LED illumination. The levels of the five genes measured in the nonilluminated and illuminated S Saintpaul cells were upregulated in PBS at a set temperature of 4°C, indicating that increased gene expression levels might be due to a temperature shift and nutrient deficiency rather than to LED illumination. In contrast, only oxyR in S Enteritidis cells was upregulated. Thus, different sensitivities of the two strains to LED illumination were attributed to differences in gene regulation.IMPORTANCE Bacterial inactivation using visible light has recently received attention as a safe and environmentally friendly technology, in contrast with UV light, which has detrimental effects on human health and the environment. This study was designed to understand how 405 ± 5-nm light-emitting diode (LED) illumination kills Salmonella strains at refrigeration temperature. The data clearly demonstrated that the effectiveness of LED illumination on Salmonella strains depended highly on the serotype and strain. Our findings also revealed that its antibacterial mechanism was mainly attributed to DNA oxidation and a loss of membrane functions rather than membrane lipid peroxidation, which has been proposed by other researchers who studied the antibacterial effect of LED illumination by adding exogenous photosensitizers, such as chlorophyllin and hypericin. Therefore, this study suggests that the detailed antibacterial mechanisms of 405-nm LED illumination without additional photosensitizers may differ from that by exogenous photosensitizers. Furthermore, a change in stress-related gene regulation may alter the susceptibility of Salmonella cells to LED illumination at refrigeration temperature. Thus, our study provides new insights into the antibacterial mechanism of 405 ± 5-nm LED illumination on Salmonella cells.
Collapse
|
12
|
Hücker SM, Simon S, Scherer S, Neuhaus K. Transcriptional and translational regulation by RNA thermometers, riboswitches and the sRNA DsrA in Escherichia coli O157:H7 Sakai under combined cold and osmotic stress adaptation. FEMS Microbiol Lett 2016; 364:fnw262. [PMID: 27856567 DOI: 10.1093/femsle/fnw262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/22/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
The enteric pathogen Escherichia coli O157:H7 Sakai (EHEC) is able to grow at lower temperatures compared to commensal E. coli Growth at environmental conditions displays complex challenges different to those in a host. EHEC was grown at 37°C and at 14°C with 4% NaCl, a combination of cold and osmotic stress as present in the food chain. Comparison of RNAseq and RIBOseq data provided a snap shot of ongoing transcription and translation, differentiating transcriptional and post-transcriptional gene regulation, respectively. Indeed, cold and osmotic stress related genes are simultaneously regulated at both levels, but translational regulation clearly dominates. Special emphasis was given to genes regulated by RNA secondary structures in their 5'UTRs, such as RNA thermometers and riboswitches, or genes controlled by small RNAs encoded in trans The results reveal large differences in gene expression between short-time shock compared to adaptation in combined cold and osmotic stress. Whereas the majority of cold shock proteins, such as CspA, are translationally downregulated after adaptation, many osmotic stress genes are still significantly upregulated mainly translationally, but several also transcriptionally.
Collapse
Affiliation(s)
- Sarah Maria Hücker
- Chair for Microbial Ecology, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Svenja Simon
- Chair for Data Analysis and Visualization, Department of Computer and Information Science, University of Konstanz, Box 78, 78457 Konstanz, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
13
|
Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindström M, Korkeala H. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia. Front Microbiol 2016; 7:1151. [PMID: 27499753 PMCID: PMC4956666 DOI: 10.3389/fmicb.2016.01151] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/11/2016] [Indexed: 02/04/2023] Open
Abstract
Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp) as a response to rapid temperature downshift (cold shock). During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0°C and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia.
Collapse
Affiliation(s)
- Riikka Keto-Timonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| | - Nina Hietala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| | - Eveliina Palonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| | - Anna Hakakorpi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki Helsinki, Finland
| |
Collapse
|
14
|
Kennedy NM, Mukherjee N, Banerjee P. Escherichia coli O157:H7 Cells Exposed to Lettuce Leaf Lysate in Refrigerated Conditions Exhibit Differential Expression of Selected Virulence and Adhesion-Related Genes with Altered Mammalian Cell Adherence. J Food Prot 2016; 79:1259-65. [PMID: 27357048 DOI: 10.4315/0362-028x.jfp-15-504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contamination by and persistence of pathogenic bacteria in ready-to-eat produce have emerged as significant food safety and public health concerns. Viable produceborne pathogens cope with several stresses (e.g., temperature fluctuations and lowtemperature storage) during production and storage of the commodities. In this study, we investigated the impact of transient cold shock on Escherichia coli O157:H7 (EcO157) cells in a produce matrix (romaine lettuce leaf lysate). EcO157 cells were exposed to 25°C for 1 h, 4°C for 1 h, and 4°C for 10 min in lettuce lysate. The expression of selected genes coding for virulence, stress response, and heat and cold shock proteins was quantified by real-time quantitative reverse transcription PCR assay. Treated EcO157 cells adhered to MAC-T mammalian cells were enumerated by in vitro bioassay. Expression of the Shiga toxin 1 gene (stx1a) was upregulated significantly (P < 0.05) upon cold shock treatments, but virulence genes related to EcO157 attachment (eaeA, lpfA, and hcpA) were down-regulated. Two key members of the cold shock regulon, cold shock protein (cspA) and gyrA, were significantly induced (P < 0.05) at the refrigeration temperature (4°C). Significant upregulation of an SOS response gene, recA, was also observed. E. coli heat shock regulon member grpE was induced, but a universal stress protein (uspA) was downregulated at the refrigeration temperatures in lettuce lysate. The adhesion assay revealed a temperature-dependent reduction in the attachment of cold-shocked EcO157 cells. The results of the current study indicate a reduction in the attachment of cold-shocked EcO157 to epithelial cells and higher levels of Shiga toxin gene expression at the molecular level.
Collapse
Affiliation(s)
- Nicole M Kennedy
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA
| | - Nabanita Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA
| | - Pratik Banerjee
- Department of Food and Animal Sciences, Alabama A&M University, Huntsville, Alabama 35762, USA; Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee 38152, USA.
| |
Collapse
|
15
|
Petelinc T, Polak T, Jamnik P. Insight into the molecular mechanisms of propolis activity using a subcellular proteomic approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11502-11510. [PMID: 24195611 DOI: 10.1021/jf4042003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The effects of a fractionated 70% ethanolic extract of propolis were analyzed at the subproteome level by two-dimensional electrophoresis. Differential detergent fractionation was used to fractionate proteins from the yeast Saccharomyces cerevisiae according to their subcellular localization. Thus, four subcellular proteomes were obtained: cytosolic, membrane/organelle, nuclear, and cytoskeletal. Yeast treatment resulted in changes in the levels of proteins involved in carbohydrate and energy metabolism, antioxidant defense, actin filament dynamics, folding of proteins, and others. On the basis of this information, we can obtain better insights into the processes that are carried out in cells exposed to propolis extract.
Collapse
Affiliation(s)
- Tanja Petelinc
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana , Ljubljana SI-1000, Slovenia
| | | | | |
Collapse
|