1
|
Cifuentes SJ, Theran-Suarez NA, Rivera-Crespo C, Velez-Roman L, Thacker B, Glass C, Domenech M. Heparan Sulfate-Collagen Surface Multilayers Support Serum-Free Microcarrier Culture of Mesenchymal Stem Cells. ACS Biomater Sci Eng 2024; 10:5739-5751. [PMID: 39187752 DOI: 10.1021/acsbiomaterials.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The increasing cost of high-volume cultures and dependence on serum and growth factor supplementation limit the affordability of mesenchymal stromal cell (MSC) therapies. This has spurred interest in developing strategies that support adherent cell expansion while reducing raw material costs. Culture surfaces coated with sulfated glycosaminoglycans (GAGs), specifically heparan sulfate (HS), are an alternative to prolong growth factor retention in cell cultures. Unlike heparin, recombinant HS (rHS) offers strong binding affinity for multiple growth factors and extracellular matrix components, such as collagen I, without undesirable anticoagulant effects or xenobiotic health risks. The potential of rHS as a factor reservoir in MSC cultures remains underexplored. This study investigated the impact of rHS on the growth and anti-inflammatory properties of undifferentiated bone marrow MSCs in both planar and microcarrier-based cultures. It was hypothesized that rHS would enable MSC growth with minimal growth factor supplementation in a sulfation level-dependent manner. Cell culture surfaces were assembled via the layer-by-layer (LbL) method, combining alternating collagen I (COL) and rHS. These bilayers support cell adhesion and enable the incorporation of distinct sulfation levels on the culture surface. Examination of pro-mitogenic FGF and immunostimulatory IFN-γ release dynamics confirmed prolonged availability and sulfate level dependencies. Sulfated surfaces supported cell growth in low serum (2% FBS) and serum-free (SF) media at levels equivalent to standard culture conditions. Cell growth on rHS-coated surfaces in SF was comparable to that on heparin-coated surfaces and commercial surface-coated microcarriers in low serum. These growth benefits were observed in both planar and microcarrier (μCs) cultures. Additionally, rHS surfaces reduced β-galactosidase expression relative to uncoated surfaces, delaying cell senescence. Multivariate analysis of cytokines in conditioned media indicated that rHS-containing surfaces enhanced cytokine levels relative to uncoated surfaces during IFN-γ stimulation and correlated with decreased pro-inflammatory macrophage activity. Overall, utilizing highly sulfated rHS with COL reduces the need for exogenous growth factors and effectively supports MSC growth and anti-inflammatory potency on planar and microcarrier surfaces under minimal factor supplementation.
Collapse
Affiliation(s)
- Said J Cifuentes
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
- Bioengineering Department, Moffitt Cancer Center, Tampa, Florida 32611, United States
| | - Natalia A Theran-Suarez
- Chemical Engineering Department, University of Puerto Rico Mayaguez, 3550 General Atomics Ct, G02-102, Mayaguez, Puerto Rico 00681-9000, United States
| | - Carolina Rivera-Crespo
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - Leonel Velez-Roman
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - Bryan Thacker
- TEGA Therapeutics, Inc., 3550 General Atomics Ct, G02-102, San Diego, California 92121, United States
| | - Charles Glass
- TEGA Therapeutics, Inc., 3550 General Atomics Ct, G02-102, San Diego, California 92121, United States
| | - Maribella Domenech
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
- Chemical Engineering Department, University of Puerto Rico Mayaguez, 3550 General Atomics Ct, G02-102, Mayaguez, Puerto Rico 00681-9000, United States
| |
Collapse
|
2
|
Libertini G, Corbi G, Shubernetskaya O, Ferrara N. Is Human Aging a Form of Phenoptosis? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1446-1464. [PMID: 36717439 DOI: 10.1134/s0006297922120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A much debated question is whether aging is the cumulative consequence of degenerative factors insufficiently opposed by natural selection, or, on the contrary, an ordered process, genetically determined and regulated, modeled by natural selection, and for which the definition of phenoptotic phenomenon would be entirely appropriate. In this review, theoretical arguments and empirical data about the two hypotheses are exposed, with more evidence in support of the thesis of aging as a form of phenoptosis. However, as the thesis of aging as an adaptive and programmed phenomenon necessarily requires the existence of specific mechanisms that determine to age, such as the subtelomere-telomere theory proposed for this purpose, the evidence supporting the mechanisms described by this theory is reported. In particular, it is highlighted that the recent interpretation of the role of TERRA sequences in the context of subtelomere-telomere theory is a fundamental point in supporting the hypothesized mechanisms. Furthermore, some characteristics of the mechanisms proposed by the theory, such as epigenetic modifications in aging, gradual cell senescence, cell senescence, limits in cell duplications, and fixed size of the telomeric heterochromatin hood, are exposed in their compatibility with both the thesis of aging as phenoptotic phenomenon and the opposite thesis. In short, aging as a form of phenoptosis appears a scientifically sound hypothesis while the opposite thesis should clarify the meaning of various phenomena that appear to invalidate it.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (SIBE), Asti, 14100, Italy. .,Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy. .,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - Olga Shubernetskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy. .,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
3
|
Libertini G, Shubernetskaya O, Corbi G, Ferrara N. Is Evidence Supporting the Subtelomere-Telomere Theory of Aging? BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1526-1539. [PMID: 34937532 DOI: 10.1134/s0006297921120026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The telomere theory tries to explain cellular mechanisms of aging as mainly caused by telomere shortening at each duplication. The subtelomere-telomere theory overcomes various shortcomings of telomere theory by highlighting the essential role of subtelomeric DNA in aging mechanisms. The present work illustrates and deepens the correspondence between assumptions and implications of subtelomere-telomere theory and experimental results. In particular, it is investigated the evidence regarding the relationships between aging and (i) epigenetic modifications; (ii) oxidation and inflammation; (iii) telomere protection; (iv) telomeric heterochromatin hood; (v) gradual cell senescence; (vi) cell senescence; and (vii) organism decline with telomere shortening. The evidence appears broadly in accordance or at least compatible with the description and implications of the subtelomere-telomere theory. In short, phenomena of cellular aging, by which the senescence of the whole organism is determined in various ways, appear substantially dependent on epigenetic modifications regulated by the subtelomere-telomere-telomeric hood-telomerase system. These phenomena appear to be not random, inevitable, and irreversible but rather induced and regulated by genetically determined mechanisms, and modifiable and reversible by appropriate methods. All this supports the thesis that aging is a genetically programmed and regulated phenoptotic phenomenon and is against the opposite thesis of aging as caused by random and inevitable degenerative factors.
Collapse
Affiliation(s)
- Giacinto Libertini
- Member of the Italian Society for Evolutionary Biology (SIBE), Asti, 14100, Italy. .,Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Olga Shubernetskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy. .,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy. .,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
4
|
Kwon JH, Kim M, Um S, Lee HJ, Bae YK, Choi SJ, Hwang HH, Oh W, Jin HJ. Senescence-Associated Secretory Phenotype Suppression Mediated by Small-Sized Mesenchymal Stem Cells Delays Cellular Senescence through TLR2 and TLR5 Signaling. Cells 2021; 10:cells10010063. [PMID: 33401590 PMCID: PMC7824096 DOI: 10.3390/cells10010063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
In order to provide a sufficient number of cells for clinical use, mesenchymal stem cells (MSCs) must be cultured for long-term expansion, which inevitably triggers cellular senescence. Although the small size of MSCs is known as a critical determinant of their fate, the main regulators of stem cell senescence and the underlying signaling have not been addressed. Umbilical cord blood-derived MSCs (UCB-MSCs) were obtained using size-isolation methods and then cultured with control or small cells to investigate the major factors that modulate MSC senescence. Cytokine array data suggested that the secretion of interukin-8 (IL-8) or growth-regulated oncogene-alpha (GROa) by senescent cells was markedly inhibited during incubation of small cells along with suppression of cognate receptor (C-X-C motif chemokine receptor2, CXCR2) via blockade of the autocrine/paracrine positive loop. Moreover, signaling via toll-like receptor 2 (TLR2) and TLR5, both pattern recognition receptors, drove cellular senescence of MSCs, but was inhibited in small cells. The activation of TLRs (2 and 5) through ligand treatment induced a senescent phenotype in small cells. Collectively, our data suggest that small cell from UCB-MSCs exhibit delayed cellular senescence by inhibiting the process of TLR signaling-mediated senescence-associated secretory phenotype (SASP) activation.
Collapse
Affiliation(s)
- Ji Hye Kwon
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Miyeon Kim
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Soyoun Um
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Hyang Ju Lee
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Yun Kyung Bae
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Hyun Ho Hwang
- King Abdullah University of Science and Technology, Thuwal 47000, Makkah Province, Saudi Arabia;
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea; (J.H.K.); (M.K.); (S.U.); (H.J.L.); (Y.K.B.); (S.J.C.); (W.O.)
- Correspondence:
| |
Collapse
|
5
|
Ofiteru AM, Becheru DF, Gharbia S, Balta C, Herman H, Mladin B, Ionita M, Hermenean A, Burns JS. Qualifying Osteogenic Potency Assay Metrics for Human Multipotent Stromal Cells: TGF-β2 a Telling Eligible Biomarker. Cells 2020; 9:E2559. [PMID: 33260388 PMCID: PMC7760953 DOI: 10.3390/cells9122559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potency assays are critical for regenerative medicine, addressing the known challenge of functional heterogeneity among human multipotent stromal cells (hMSC). Necessary laboratory cell expansion allows analysis before implantation in the patient. Levels of induction of five signature gene biomarkers, ALPL, COL1A2, DCN, ELN and RUNX2, constituted a previously reported proof-of-principle osteogenic potency assay. We tested assay modification to enhance reproducibility using six consistent bone marrow derived hBM-MSC and explored applicability to three adipose tissue derived hAT-MSC. Using a potent proprietary osteogenic induction factor, the GUSB/YWAHZ reference gene pair provided real time PCR consistency. The novel assay conditions supported the concept that genes encoding extracellular matrix proteins one week after osteogenic induction were informative. Nonetheless, relatively low induction of COL1A2 and ELN encouraged search for additional biomarkers. TGFB2 mRNA induction, important for osteogenic commitment, was readily quantifiable in both hBM-MSC and hAT-MSC. Combined with DCN, TGFB2 mRNA induction data provided discriminatory power for resolving donor-specific heterogeneity. Histomorphometric decorin and TGF-β2 protein expression patterns in eight-week heterotopic bone implants also discriminated the two non-bone-forming hMSC. We highlight progress towards prompt osteogenic potency assays, needed by current clinical trials to accelerate improved intervention with enhanced stem cell therapy for serious bone fractures.
Collapse
Affiliation(s)
- Augustin M. Ofiteru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
| | - Diana F. Becheru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Sami Gharbia
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Jorge S. Burns
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Zhou X, Hong Y, Zhang H, Li X. Mesenchymal Stem Cell Senescence and Rejuvenation: Current Status and Challenges. Front Cell Dev Biol 2020; 8:364. [PMID: 32582691 PMCID: PMC7283395 DOI: 10.3389/fcell.2020.00364] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, mesenchymal stem cell (MSC)-based therapy has been intensively investigated and shown promising results in the treatment of various diseases due to their easy isolation, multiple lineage differentiation potential and immunomodulatory effects. To date, hundreds of phase I and II clinical trials using MSCs have been completed and many are ongoing. Accumulating evidence has shown that transplanted allogeneic MSCs lose their beneficial effects due to immunorejection. Nevertheless, the function of autologous MSCs is adversely affected by age, a process termed senescence, thus limiting their therapeutic potential. Despite great advances in knowledge, the potential mechanisms underlying MSC senescence are not entirely clear. Understanding the molecular mechanisms that contribute to MSC senescence is crucial when exploring novel strategies to rejuvenate senescent MSCs. In this review, we aim to provide an overview of the biological features of senescent MSCs and the recent progress made regarding the underlying mechanisms including epigenetic changes, autophagy, mitochondrial dysfunction and telomere shortening. We also summarize the current approaches to rejuvenate senescent MSCs including gene modification and pretreatment strategies. Collectively, rejuvenation of senescent MSCs is a promising strategy to enhance the efficacy of autologous MSC-based therapy, especially in elderly patients.
Collapse
Affiliation(s)
- Xueke Zhou
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yimei Hong
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Xin Li
- Department of Emergency Medicine, Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Neri S, Borzì RM. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules 2020; 10:E340. [PMID: 32098040 PMCID: PMC7072652 DOI: 10.3390/biom10020340] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status. The present review will focus on current scientific knowledge about MSC aging mechanisms, control and effects, including possible anti-aging treatments.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy;
| | | |
Collapse
|
8
|
Fernandez-Rebollo E, Franzen J, Goetzke R, Hollmann J, Ostrowska A, Oliverio M, Sieben T, Rath B, Kornfeld JW, Wagner W. Senescence-Associated Metabolomic Phenotype in Primary and iPSC-Derived Mesenchymal Stromal Cells. Stem Cell Reports 2020; 14:201-209. [PMID: 31983656 PMCID: PMC7013233 DOI: 10.1016/j.stemcr.2019.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Long-term culture of primary cells is characterized by functional and secretory changes, which ultimately result in replicative senescence. It is largely unclear how the metabolome of cells changes during replicative senescence and if such changes are consistent across different cell types. We have directly compared culture expansion of primary mesenchymal stromal cells (MSCs) and induced pluripotent stem cell-derived MSCs (iMSCs) until they reached growth arrest. Both cell types acquired similar changes in morphology, in vitro differentiation potential, senescence-associated β-galactosidase, and DNA methylation. Furthermore, MSCs and iMSCs revealed overlapping gene expression changes, particularly in functional categories related to metabolic processes. We subsequently compared the metabolomes of MSCs and iMSCs and observed overlapping senescence-associated changes in both cell types, including downregulation of nicotinamide ribonucleotide and upregulation of orotic acid. Taken together, replicative senescence is associated with a highly reproducible senescence-associated metabolomics phenotype, which may be used to monitor the state of cellular aging.
Collapse
Affiliation(s)
- Eduardo Fernandez-Rebollo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany; University of Southern Denmark, Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, Campusvej 55, Odense 5230, Denmark.
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Jonathan Hollmann
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Alina Ostrowska
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Matteo Oliverio
- Max Planck Institute for Metabolism Research (MPI-MR), Noncoding RNAs and Energy Homeostasis, Gleueler Strasse 50, Cologne 50931, Germany; Cologne Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Torsten Sieben
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Björn Rath
- Department for Orthopedics, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Jan-Wilhelm Kornfeld
- Max Planck Institute for Metabolism Research (MPI-MR), Noncoding RNAs and Energy Homeostasis, Gleueler Strasse 50, Cologne 50931, Germany; Cologne Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany; University of Southern Denmark, Functional Genomics and Metabolism Unit, Department for Biochemistry and Molecular Biology, Campusvej 55, Odense 5230, Denmark
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen 52074, Germany; Institute for Biomedical Technology - Cell Biology, RWTH Aachen University Medical School, Aachen 52074, Germany.
| |
Collapse
|
9
|
Khalil C, Moussa M, Azar A, Tawk J, Habbouche J, Salameh R, Ibrahim A, Alaaeddine N. Anti-proliferative effects of mesenchymal stem cells (MSCs) derived from multiple sources on ovarian cancer cell lines: an in-vitro experimental study. J Ovarian Res 2019; 12:70. [PMID: 31351482 PMCID: PMC6660927 DOI: 10.1186/s13048-019-0546-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have surfaced as ideal candidates for treatment of different therapeutically challenging diseases however their effect on cancer cells is not well determined. In this study, we investigated the effect of MSCs derived from human bone marrow (BM), adipose tissue (AT), and umbilical cord derived MSCs (UC-MSCs) on ovarian cancer.Measurements of ovarian tumor marker proteins were computed by ELISA. Proliferative, apoptosis and anti-inflammatory effects of the MSCs were measured by Flow cytometry (FCM). MMPs expression was measured by RT-PCR.The co-culture of cancer cell lines OVCAR3, CAOV3, IGROV3 and SKOV3 with the conditioned media of MSCs (CM-MSC) and MSCs showed an increase in cellular apoptosis, along with a reduction in the level of CA-125 and a decline of LDH and beta-hCG. A decrease in CD24 of the cancer cell lines in co-culture with the CM-MSCs showed a reduction of the cancer tumorigenicity. In addition, the invasion and aggressiveness of cancer cell lines was significantly decreased by CM-MSC; this was translated by a decrease in MMP-2, MMP-9, and CA-125 mRNA expression, and an increase in TIMP 1, 2, and 3 mRNA expression. An increase in IL-4 and IL-10 cytokines, and a decrease in GM-CSF, IL-6, and IL-9, were also noted.In conclusion, mesenchymal stem cells derived from different sources and their conditioned media appear to have a major role in inhibition of cancer aggressiveness and might be considered as a potential therapeutic tool in ovarian cancer.
Collapse
Affiliation(s)
- C Khalil
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
- Reviva Research and Application Center-Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
| | - M Moussa
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - A Azar
- Reviva Research and Application Center-Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
| | - J Tawk
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - J Habbouche
- Reviva Research and Application Center-Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
| | - R Salameh
- Reviva Research and Application Center-Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
| | - A Ibrahim
- Reviva Research and Application Center-Lebanese University, Middle East Institute of Health University Hospital, Beirut, Lebanon
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - N Alaaeddine
- Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon.
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
10
|
Neri S. Genetic Stability of Mesenchymal Stromal Cells for Regenerative Medicine Applications: A Fundamental Biosafety Aspect. Int J Mol Sci 2019; 20:ijms20102406. [PMID: 31096604 PMCID: PMC6566307 DOI: 10.3390/ijms20102406] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) show widespread application for a variety of clinical conditions; therefore, their use necessitates continuous monitoring of their safety. The risk assessment of mesenchymal stem cell-based therapies cannot be separated from an accurate and deep knowledge of their biological properties and in vitro and in vivo behavior. One of the most relevant safety issues is represented by the genetic stability of MSCs, that can be altered during in vitro manipulation, frequently required before clinical application. MSC genetic stability has the potential to influence the transformation and the therapeutic effect of these cells. At present, karyotype evaluation represents the definitely prevailing assessment of MSC stability, but DNA alterations of smaller size should not be underestimated. This review will focus on current scientific knowledge about the genetic stability of mesenchymal stem cells. The techniques used and possible improvements together with regulatory aspects will also be discussed.
Collapse
Affiliation(s)
- Simona Neri
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
11
|
DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev 2018; 174:3-17. [DOI: 10.1016/j.mad.2017.12.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
|
12
|
|
13
|
Franzen J, Zirkel A, Blake J, Rath B, Benes V, Papantonis A, Wagner W. Senescence-associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells. Aging Cell 2017; 16:183-191. [PMID: 27785870 PMCID: PMC5242294 DOI: 10.1111/acel.12544] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 01/01/2023] Open
Abstract
Replicative senescence has a major impact on function and integrity of cell preparations. This process is reflected by continuous DNA methylation (DNAm) changes at specific CpG dinucleotides in the course of in vitro culture, and such modifications can be used to estimate the state of cellular senescence for quality control of cell preparations. Still, it is unclear how senescence‐associated DNAm changes are regulated and whether they occur simultaneously across a cell population. In this study, we analyzed global DNAm profiles of human mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) to demonstrate that senescence‐associated DNAm changes are overall similar in these different cell types. Subsequently, an Epigenetic‐Senescence‐Signature, based on six CpGs, was either analyzed by pyrosequencing or by bar‐coded bisulfite amplicon sequencing. There was a good correlation between predicted and real passage numbers in bulk populations of MSCs (R2 = 0.67) and HUVECs (R2 = 0.97). However, when we analyzed the Epigenetic‐Senescence‐Signature in subclones of MSCs, the predictions revealed high variation and they were not related to the adipogenic or osteogenic differentiation potential of the subclones. Notably, in clonally derived subpopulations, the DNAm levels of neighboring CpGs differed extensively, indicating that these genomic regions are not synchronously modified during senescence. Taken together, senescence‐associated DNAm changes occur in a highly reproducible manner, but they are not synchronously co‐regulated. They rather appear to be acquired stochastically—potentially evoked by other epigenetic modifications.
Collapse
Affiliation(s)
- Julia Franzen
- Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University Medical School; 52074 Aachen Germany
| | - Anne Zirkel
- Center for Molecular Medicine (CMMC); University of Cologne; 50931 Cologne Germany
| | - Jonathon Blake
- Genomics Core Facility; European Molecular Biology Laboratory (EMBL); 69117 Heidelberg Germany
| | - Björn Rath
- Department for Orthopedics; RWTH Aachen University Medical School; 52074 Aachen Germany
| | - Vladimir Benes
- Genomics Core Facility; European Molecular Biology Laboratory (EMBL); 69117 Heidelberg Germany
| | - Argyris Papantonis
- Center for Molecular Medicine (CMMC); University of Cologne; 50931 Cologne Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University Medical School; 52074 Aachen Germany
| |
Collapse
|
14
|
Stab BR, Martinez L, Grismaldo A, Lerma A, Gutiérrez ML, Barrera LA, Sutachan JJ, Albarracín SL. Mitochondrial Functional Changes Characterization in Young and Senescent Human Adipose Derived MSCs. Front Aging Neurosci 2016; 8:299. [PMID: 28018212 PMCID: PMC5156959 DOI: 10.3389/fnagi.2016.00299] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles that in response to the cell's bio-energetic state continuously undergo structural remodeling fission and fusion processes. This mitochondrial dynamic activity has been implicated in cell cycle, autophagy, and age-related diseases. Adult tissue-derived mesenchymal stromal/stem cells present a therapeutic potential. However, to obtain an adequate mesenchymal stromal/stem cell number for clinical use, extensive in vitro expansion is required. Unfortunately, these cells undergo replicative senescence rapidly by mechanisms that are not well understood. Senescence has been associated with metabolic changes in the oxidative state of the cell, a process that has been also linked to mitochondrial fission and fusion events, suggesting an association between mitochondrial dynamics and senescence. In the present work, we studied the mitochondrial structural remodeling process of mesenchymal stromal/stem cells isolated from adipose tissue in vitro to determine if mitochondrial phenotypic changes were associated with mesenchymal stromal/stem cell senescence. For this purpose, mitochondrial dynamics and oxidative state of stromal/stem cell were compared between young and old cells. With increased cell passage, we observed a significant change in cell morphology that was associated with an increase in β-galactosidase activity. In addition, old cells (population doubling seven) also showed increased mitochondrial mass, augmented superoxide production, and decreased mitochondrial membrane potential. These changes in morphology were related to slightly levels increases in mitochondrial fusion proteins, Mitofusion 1 (MFN1), and Dynamin-related GTPase (OPA1). Collectively, our results showed that adipose tissue-derived MSCs at population doubling seven developed a senescent phenotype that was characterized by metabolic cell changes that can lead to mitochondrial fusion.
Collapse
Affiliation(s)
- Bernd R Stab
- Department of Nutrition and Biochemistry, School of Sciences, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Laura Martinez
- Department of Nutrition and Biochemistry, School of Sciences, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Adriana Grismaldo
- Department of Nutrition and Biochemistry, School of Sciences, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Alejandra Lerma
- Department of Nutrition and Biochemistry, School of Sciences, Pontificia Universidad Javeriana Bogotá, Colombia
| | - María L Gutiérrez
- Department of Nutrition and Biochemistry, School of Sciences, Pontificia Universidad JaverianaBogotá, Colombia; Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad JaverianaBogotá, Colombia
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Sciences, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Jhon J Sutachan
- Department of Nutrition and Biochemistry, School of Sciences, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Sonia L Albarracín
- Department of Nutrition and Biochemistry, School of Sciences, Pontificia Universidad Javeriana Bogotá, Colombia
| |
Collapse
|
15
|
Kalwa M, Hänzelmann S, Otto S, Kuo CC, Franzen J, Joussen S, Fernandez-Rebollo E, Rath B, Koch C, Hofmann A, Lee SH, Teschendorff AE, Denecke B, Lin Q, Widschwendter M, Weinhold E, Costa IG, Wagner W. The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation. Nucleic Acids Res 2016; 44:10631-10643. [PMID: 27634931 PMCID: PMC5159544 DOI: 10.1093/nar/gkw802] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023] Open
Abstract
There is a growing perception that long non-coding RNAs (lncRNAs) modulate cellular function. In this study, we analyzed the role of the lncRNA HOTAIR in mesenchymal stem cells (MSCs) with particular focus on senescence-associated changes in gene expression and DNA-methylation (DNAm). HOTAIR binding sites were enriched at genomic regions that become hypermethylated with increasing cell culture passage. Overexpression and knockdown of HOTAIR inhibited or stimulated adipogenic differentiation of MSCs, respectively. Modification of HOTAIR expression evoked only very moderate effects on gene expression, particularly of polycomb group target genes. Furthermore, overexpression and knockdown of HOTAIR resulted in DNAm changes at HOTAIR binding sites. Five potential triple helix forming domains were predicted within the HOTAIR sequence based on reverse Hoogsteen hydrogen bonds. Notably, the predicted triple helix target sites for these HOTAIR domains were also enriched in differentially expressed genes and close to DNAm changes upon modulation of HOTAIR Electrophoretic mobility shift assays provided further evidence that HOTAIR domains form RNA-DNA-DNA triplexes with predicted target sites. Our results demonstrate that HOTAIR impacts on differentiation of MSCs and that it is associated with senescence-associated DNAm. Targeting of epigenetic modifiers to relevant loci in the genome may involve triple helix formation with HOTAIR.
Collapse
Affiliation(s)
- Marie Kalwa
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH University Medical School, Aachen 52074, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen 52074, Germany
| | - Sonja Hänzelmann
- Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen 52074, Germany.,Interdisciplinary Centre for Clinical Research (IZKF) Aachen, RWTH University Medical School, Aachen 52074, Germany
| | - Sabrina Otto
- Institute of Organic Chemistry, RWTH Aachen University, Aachen 52056, Germany
| | - Chao-Chung Kuo
- Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen 52074, Germany.,Interdisciplinary Centre for Clinical Research (IZKF) Aachen, RWTH University Medical School, Aachen 52074, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH University Medical School, Aachen 52074, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen 52074, Germany
| | - Sylvia Joussen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH University Medical School, Aachen 52074, Germany.,Interdisciplinary Centre for Clinical Research (IZKF) Aachen, RWTH University Medical School, Aachen 52074, Germany
| | - Eduardo Fernandez-Rebollo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH University Medical School, Aachen 52074, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen 52074, Germany
| | - Björn Rath
- Department for Orthopedics, RWTH Aachen University Medical School, Aachen 52074, Germany
| | - Carmen Koch
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH University Medical School, Aachen 52074, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen 52074, Germany
| | - Andrea Hofmann
- Institute of Human Genetics, Department of Genomics, Life & Brain Center, University of Bonn, Bonn 53127, Germany
| | - Shih-Han Lee
- Department of Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, University College London, London WC1E 6AU, UK.,Statistical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK.,Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew E Teschendorff
- Department of Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, University College London, London WC1E 6AU, UK.,Statistical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK.,CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bernd Denecke
- Interdisciplinary Centre for Clinical Research (IZKF) Aachen, RWTH University Medical School, Aachen 52074, Germany
| | - Qiong Lin
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH University Medical School, Aachen 52074, Germany.,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen 52074, Germany
| | - Martin Widschwendter
- Department of Women's Cancer, University College London Elizabeth Garrett Anderson Institute for Women's Health, University College London, London WC1E 6AU, UK.,Statistical Genomics Group, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, Aachen 52056, Germany
| | - Ivan G Costa
- Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen 52074, Germany .,Interdisciplinary Centre for Clinical Research (IZKF) Aachen, RWTH University Medical School, Aachen 52074, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH University Medical School, Aachen 52074, Germany .,Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen 52074, Germany
| |
Collapse
|
16
|
Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. Int J Mol Sci 2016; 17:ijms17071164. [PMID: 27447618 PMCID: PMC4964536 DOI: 10.3390/ijms17071164] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022] Open
Abstract
Regenerative medicine is extensively interested in developing cell therapies using mesenchymal stem cells (MSCs), with applications to several aging-associated diseases. For successful therapies, a substantial number of cells are needed, requiring extensive ex vivo cell expansion. However, MSC proliferation is limited and it is quite likely that long-term culture evokes continuous changes in MSCs. Therefore, a substantial proportion of cells may undergo senescence. In the present review, we will first present the phenotypic characterization of senescent human MSCs (hMSCs) and their possible consequent functional alterations. The accumulation of oxidative stress and dysregulation of key differentiation regulatory factors determine decreased differentiation potential of senescent hMSCs. Senescent hMSCs also show a marked impairment in their migratory and homing ability. Finally, many factors present in the secretome of senescent hMSCs are able to exacerbate the inflammatory response at a systemic level, decreasing the immune modulation activity of hMSCs and promoting either proliferation or migration of cancer cells. Considering the deleterious effects that these changes could evoke, it would appear of primary importance to monitor the occurrence of senescent phenotype in clinically expanded hMSCs and to evaluate possible ways to prevent in vitro MSC senescence. An updated critical presentation of the possible strategies for in vitro senescence monitoring and prevention constitutes the second part of this review. Understanding the mechanisms that drive toward hMSC growth arrest and evaluating how to counteract these for preserving a functional stem cell pool is of fundamental importance for the development of efficient cell-based therapeutic approaches.
Collapse
|
17
|
Wagner W, Frobel J, Goetzke R. Epigenetic quality check - how good are your mesenchymal stromal cells? Epigenomics 2016; 8:889-94. [PMID: 27366986 DOI: 10.2217/epi-2016-0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology & Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Joana Frobel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology & Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology & Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
18
|
|
19
|
Tateno H, Saito S, Hiemori K, Kiyoi K, Hasehira K, Toyoda M, Onuma Y, Ito Y, Akutsu H, Hirabayashi J. α2–6 sialylation is a marker of the differentiation potential of human mesenchymal stem cells. Glycobiology 2016; 26:1328-1337. [DOI: 10.1093/glycob/cww039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/05/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
|
20
|
Bhatia-Dey N, Kanherkar RR, Stair SE, Makarev EO, Csoka AB. Cellular Senescence as the Causal Nexus of Aging. Front Genet 2016; 7:13. [PMID: 26904101 PMCID: PMC4751276 DOI: 10.3389/fgene.2016.00013] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
In this paper we present cellular senescence as the ultimate driver of the aging process, as a "causal nexus" that bridges microscopic subcellular damage with the phenotypic, macroscopic effect of aging. It is important to understand how the various types of subcellular damage correlated with the aging process lead to the larger, visible effects of anatomical aging. While it has always been assumed that subcellular damage (cause) results in macroscopic aging (effect), the bridging link between the two has been hard to define. Here, we propose that this bridge, which we term the "causal nexus", is in fact cellular senescence. The subcellular damage itself does not directly cause the visible signs of aging, but rather, as the damage accumulates and reaches a critical mass, cells cease to proliferate and acquire the deleterious "senescence-associated secretory phenotype" (SASP) which then leads to the macroscopic consequences of tissue breakdown to create the physiologically aged phenotype. Thus senescence is a precondition for anatomical aging, and this explains why aging is a gradual process that remains largely invisible during most of its progression. The subcellular damage includes shortening of telomeres, damage to mitochondria, aneuploidy, and DNA double-strand breaks triggered by various genetic, epigenetic, and environmental factors. Damage pathways acting in isolation or in concert converge at the causal nexus of cellular senescence. In each species some types of damage can be more causative than in others and operate at a variable pace; for example, telomere erosion appears to be a primary cause in human cells, whereas activation of tumor suppressor genes is more causative in rodents. Such species-specific mechanisms indicate that despite different initial causes, most of aging is traced to a single convergent causal nexus: senescence. The exception is in some invertebrate species that escape senescence, and in non-dividing cells such as neurons, where senescence still occurs, but results in the SASP rather than loss of proliferation plus SASP. Aging currently remains an inevitable endpoint for most biological organisms, but the field of cellular senescence is primed for a renaissance and as our understanding of aging is refined, strategies capable of decelerating the aging process will emerge.
Collapse
Affiliation(s)
- Naina Bhatia-Dey
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | - Riya R Kanherkar
- Epigenetics Laboratory, Department of Anatomy, Howard University Washington, DC, USA
| | | | - Evgeny O Makarev
- Vision Genomics, LLCWashington, DC, USA; InSilico Medicine, Emerging Technology Center, Johns Hopkins UniversityBaltimore, MD, USA
| | - Antonei B Csoka
- Epigenetics Laboratory, Department of Anatomy, Howard UniversityWashington, DC, USA; InSilico Medicine, Emerging Technology Center, Johns Hopkins UniversityBaltimore, MD, USA
| |
Collapse
|
21
|
Bentivegna A, Roversi G, Riva G, Paoletta L, Redaelli S, Miloso M, Tredici G, Dalprà L. The Effect of Culture on Human Bone Marrow Mesenchymal Stem Cells: Focus on DNA Methylation Profiles. Stem Cells Int 2016; 2016:5656701. [PMID: 26880970 PMCID: PMC4736560 DOI: 10.1155/2016/5656701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022] Open
Abstract
Human bone marrow mesenchymal stem cells (hBM-MSCs) are the best characterized multipotent adult stem cells. Their self-renewal capacity, multilineage differentiation potential, and immunomodulatory properties have indicated that they can be used in many clinical therapies. In a previous work we studied the DNA methylation levels of hBM-MSC genomic DNA in order to delineate a kind of methylation signature specific for early and late passages of culture. In the present work we focused on the modification of the methylation profiles of the X chromosome and imprinted loci, as sites expected to be more stable than whole genome. We propose a model where cultured hBM-MSCs undergo random modifications at the methylation level of most CGIs, nevertheless reflecting the original methylation status. We also pointed out global genome-wide demethylation connected to the long-term culture and senescence. Modification at CGIs promoters of specific genes could be related to the decrease in adipogenic differentiation potential. In conclusion, we showed important changes in CGIs methylation due to long-term in vitro culture that may affect the differentiation potential of hBM-MSCs. Therefore it is necessary to optimize the experimental conditions for in vitro expansion in order to minimize these epigenetic changes and to standardize safer procedures.
Collapse
Affiliation(s)
- Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, 20052 Monza, Italy
- Neurology Unit, Milan Center for Neuroscience (Neuro-MI), University of Milano-Bicocca, 20052 Monza, Italy
| | - Gaia Roversi
- School of Medicine and Surgery, University of Milano-Bicocca, 20052 Monza, Italy
- Medical Genetics Laboratory, San Gerardo Hospital, 20052 Monza, Italy
| | - Gabriele Riva
- School of Medicine and Surgery, University of Milano-Bicocca, 20052 Monza, Italy
- Neurology Unit, Milan Center for Neuroscience (Neuro-MI), University of Milano-Bicocca, 20052 Monza, Italy
| | - Laura Paoletta
- School of Medicine and Surgery, University of Milano-Bicocca, 20052 Monza, Italy
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20052 Monza, Italy
- Neurology Unit, Milan Center for Neuroscience (Neuro-MI), University of Milano-Bicocca, 20052 Monza, Italy
| | - Mariarosaria Miloso
- School of Medicine and Surgery, University of Milano-Bicocca, 20052 Monza, Italy
| | - Giovanni Tredici
- School of Medicine and Surgery, University of Milano-Bicocca, 20052 Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, 20052 Monza, Italy
- Medical Genetics Laboratory, San Gerardo Hospital, 20052 Monza, Italy
| |
Collapse
|
22
|
Wagner W, Fernandez-Rebollo E, Frobel J. DNA-methylation changes in replicative senescence and aging: two sides of the same coin? Epigenomics 2016; 8:1-3. [DOI: 10.2217/epi.15.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Eduardo Fernandez-Rebollo
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Joana Frobel
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074 Aachen, Germany
| |
Collapse
|
23
|
High OCT4 and Low p16(INK4A) Expressions Determine In Vitro Lifespan of Mesenchymal Stem Cells. Stem Cells Int 2015; 2015:369828. [PMID: 26089914 PMCID: PMC4454755 DOI: 10.1155/2015/369828] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022] Open
Abstract
After long-term culture, mesenchymal stem cells alter their biological properties and enter into a state of replicative senescence. Although several classical biomarkers have been used for quantitative assessment of cellular senescence, no hallmark has been proven completely unique to the senescent state in cells. We used bone marrow-derived MSCs (BM-MSCs) from different healthy young donors and an in vitro model with well-defined senescence end points to identify a set of robust markers that could potentially predict the expansion capacity of MSCs preparations before reaching senescence. For each early passage BM-MSC sample (5th or 6th passages), the normalized protein expression levels of senescence-associated markers p16INK4A, p21WAF1, SOD2, and rpS6S240/244; the concentration of IL6 and IL8 in cell culture supernatants; and the normalized gene expression levels of pluripotency markers OCT4, NANOG, and SOX2 were correlated with final population doubling (PD) number. We revealed that the low expression of p16INK4A protein and a high OCT4 gene expression, rather than other evaluated markers, might be potential hallmarks and predictors of greater in vitro lifespan and growth potential, factors that can impact the successful therapeutic use of MSCs preparations.
Collapse
|
24
|
Hänzelmann S, Beier F, Gusmao EG, Koch CM, Hummel S, Charapitsa I, Joussen S, Benes V, Brümmendorf TH, Reid G, Costa IG, Wagner W. Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. Clin Epigenetics 2015; 7:19. [PMID: 25763115 PMCID: PMC4356053 DOI: 10.1186/s13148-015-0057-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/10/2015] [Indexed: 02/08/2023] Open
Abstract
Background Primary cells enter replicative senescence after a limited number of cell divisions. This process needs to be considered in cell culture experiments, and it is particularly important for regenerative medicine. Replicative senescence is associated with reproducible changes in DNA methylation (DNAm) at specific sites in the genome. The mechanism that drives senescence-associated DNAm changes remains unknown - it may involve stochastic DNAm drift due to imperfect maintenance of epigenetic marks or it is directly regulated at specific sites in the genome. Results In this study, we analyzed the reorganization of nuclear architecture and DNAm changes during long-term culture of human fibroblasts and mesenchymal stromal cells (MSCs). We demonstrate that telomeres shorten and shift towards the nuclear center at later passages. In addition, DNAm profiles, either analyzed by MethylCap-seq or by 450k IlluminaBeadChip technology, revealed consistent senescence-associated hypermethylation in regions associated with H3K27me3, H3K4me3, and H3K4me1 histone marks, whereas hypomethylation was associated with chromatin containing H3K9me3 and lamina-associated domains (LADs). DNA hypermethylation was significantly enriched in the vicinity of genes that are either up- or downregulated at later passages. Furthermore, specific transcription factor binding motifs (e.g. EGR1, TFAP2A, and ETS1) were significantly enriched in differentially methylated regions and in the promoters of differentially expressed genes. Conclusions Senescence-associated DNA hypermethylation occurs at specific sites in the genome and reflects functional changes in the course of replicative senescence. These results indicate that tightly regulated epigenetic modifications during long-term culture contribute to changes in nuclear organization and gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0057-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sonja Hänzelmann
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH University Medical School, Aachen, Germany ; Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - Eduardo G Gusmao
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH University Medical School, Aachen, Germany ; Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany
| | - Carmen M Koch
- Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany ; Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH University Medical School, Aachen, Germany
| | - Sebastian Hummel
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | | | - Sylvia Joussen
- Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany ; Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH University Medical School, Aachen, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
| | - George Reid
- Institute for Molecular Biology, Mainz, Germany
| | - Ivan G Costa
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH University Medical School, Aachen, Germany ; Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Biomedical Technology - Cell Biology, RWTH University Medical School, Aachen, Germany ; Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH University Medical School, Aachen, Germany
| |
Collapse
|