1
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
2
|
Hornok S, Szekeres S, Horváth G, Takács N, Bekő K, Kontschán J, Gyuranecz M, Tóth B, Sándor AD, Juhász A, Beck R, Farkas R. Diversity of tick species and associated pathogens on peri-urban wild boars – first report of the zoonotic Babesia cf. crassa from Hungary. Ticks Tick Borne Dis 2022; 13:101936. [DOI: 10.1016/j.ttbdis.2022.101936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
3
|
Lesiczka PM, Modry D, Sprong H, Fonville M, Pikula J, Piacek V, Heger T, Hrazdilova K. Detection of Anaplasma phagocytophilum in European brown hares (Lepus europaeus) using three different methods. Zoonoses Public Health 2021; 68:917-925. [PMID: 34379883 DOI: 10.1111/zph.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
European brown hare (Lepus europaeus Pallas 1778) is a broadly distributed lagomorph species in Europe, recognized as a host for Ixodes ricinus and reservoir of a wide range of pathogens with zoonotic potential. Even though Lepus europaeus represents an important game animal in Central Europe, the data available on Anaplasma phagocytophilum in this lagomorph are scarce. In this study, three populations of brown hare from distinct localities in the Czech Republic were analysed for the presence of Anaplasma phagocytophilum DNA. We used standard qPCR, targeting the msp2 gene and adapted the same assay also for digital droplet PCR. Out of 91 samples, these two methods identified 9 and 12 as positive, respectively. For taxonomic analysis, we amplified the groEL gene from five of six samples that were found positive by both methods. In phylogenetic analyses, this haplotype belongs to ecotype 1, and to the subclade with isolates from cervids and I. ricinus. Our findings underline the importance of correct result interpretation and positivity cut-off set-up for different detection methods of A. phagocytophilum. This bacterium is characterized by a high intraspecific variability and highly sensitive detection itself, is not enough. Detailed molecular typing is necessary to define the zoonotic potential of different strains and their natural reservoirs.
Collapse
Affiliation(s)
- Paulina Maria Lesiczka
- Department of Pathology and Parasitology, University of Veterinary Sciences Brno, Brno, Czech Republic.,CEITEC-Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - David Modry
- Department of Pathology and Parasitology, University of Veterinary Sciences Brno, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Veterinary Sciences/CINeZ, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Manoj Fonville
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jiri Pikula
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Tomas Heger
- Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Kristyna Hrazdilova
- CEITEC-Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czech Republic.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Plzeň, Czech Republic
| |
Collapse
|
4
|
Díaz-Cao JM, Adaszek Ł, Dzięgiel B, Paniagua J, Caballero-Gómez J, Winiarczyk S, Winiarczyk D, Cano-Terriza D, García-Bocanegra I. Prevalence of selected tick-borne pathogens in wild ungulates and ticks in southern Spain. Transbound Emerg Dis 2021; 69:1084-1094. [PMID: 33686775 DOI: 10.1111/tbed.14065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/06/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022]
Abstract
A survey study was carried out to assess the occurrence of selected tick-borne pathogens (TBP) in wild ungulates in Mediterranean ecosystems in southern Spain. Spleen samples were collected from 1,132 wild ungulates, including 578 red deer, 269 wild boar, 135 mouflon, 121 fallow deer and 29 roe deer, between 2009 and 2015. Eighty-nine ticks collected from TBP-positive animals were also analysed. Samples were tested by PCR and sequenced whenever possible. TBP DNA was detected in 127 of 863 wild ruminants (14.7%; 95% CI: 12.4-17.3) including the following: Anaplasma phagocytophilum (9.2%), Babesia divergens (2.9%), Theileria sp. OT3 (1.7%), Borrelia afzelii (0.7%) and Theileria capreoli (0.2%), but no positive samples were detected in wild boar (0/269). All the strains from mouflon were identified as Theileria sp. OT3, while B. divergens and T. capreoli were mainly found in red deer. Co-infection with A. phagocytophilum and B. divergens, and A. phagocytophilum and Theileria spp. was detected in red deer and mouflon, respectively. The risk factor analysis showed that the prevalences of A. phagocytophilum and piroplasms were species-related. Eighty-nine tick specimens collected from ungulates found to be infected with the selected TBP were identified as Hyalomma lusitanicum (95.5%) and Ixodes ricinus (4.5%). Thirty ticks were positive for Anaplasma/Ehrlichia spp. (33.7%), 25 for Babesia/Theileria (28.1%) and two for B. burgdorferi s.l. (2.3%). Eleven specimens showed co-infections with Anaplasma/Ehrlichia and Babesia/Theileria (10.1%) or Anaplasma/Ehrlichia and B. burgdorferi s.l. (2.3%). The estimated prevalences obtained in the present study suggest the possible contribution of wild ruminants to the maintenance of some selected TBP in Mediterranean ecosystems in southern Spain, while the role of wild boar in the epidemiology of these pathogens seems to be limited in this region.
Collapse
Affiliation(s)
- José Manuel Díaz-Cao
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Łukasz Adaszek
- Department of Epizootiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Beata Dzięgiel
- Department of Epizootiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Jorge Paniagua
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Javier Caballero-Gómez
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain.,Infectious Diseases Unit, Clinical Virology and Zoonoses research group, Reina Sofia University Hospital, Maimonides Biomedical Research Insitute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Stanislaw Winiarczyk
- Department of Epizootiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Dagmara Winiarczyk
- Department of Epizootiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - David Cano-Terriza
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Ignacio García-Bocanegra
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| |
Collapse
|
5
|
Avian Influenza A Virus Infects Swine Airway Epithelial Cells without Prior Adaptation. Viruses 2020; 12:v12060589. [PMID: 32481674 PMCID: PMC7374723 DOI: 10.3390/v12060589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023] Open
Abstract
Pigs play an important role in the interspecies transmission of influenza A viruses (IAV). The porcine airway epithelium contains binding sites for both swine/human IAV (α2,6-linked sialic acids) and avian IAV (α2,3-linked sialic acids) and therefore is suited for adaptation of viruses from other species as suggested by the “mixing vessel theory”. Here, we applied well-differentiated swine airway epithelial cells to find out whether efficient infection by avian IAV requires prior adaption. Furthermore, we analyzed the influence of the sialic acid-binding activity and the virus-induced detrimental effects. Surprisingly, an avian IAV H1N1 strain circulating in European poultry and waterfowl shows increased and prolonged viral replication without inducing a strong innate immune response. This virus could infect the lower respiratory tract in our precision cut-lung slice model. Pretreating the cells with poly (I:C) and/or JAK/STAT pathway inhibitors revealed that the interferon-stimulated innate immune response influences the replication of avian IAV in swine airway epitheliums but not that of swine IAV. Further studies indicated that in the infection by IAVs, the binding affinity of sialic acid is not the sole factor affecting the virus infectivity for swine or human airway epithelial cells, whereas it may be crucial in well-differentiated ferret tracheal epithelial cells. Taken together, our results suggest that the role of pigs being the vessel of interspecies transmission should be reconsidered, and the potential of avian H1N1 viruses to infect mammals needs to be characterized in more detail.
Collapse
|
6
|
The role of different species of wild ungulates and Ixodes ricinus ticks in the circulation of genetic variants of Anaplasma phagocytophilum in a forest biotope in north-western Poland. Ticks Tick Borne Dis 2020; 11:101465. [PMID: 32723651 DOI: 10.1016/j.ttbdis.2020.101465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/31/2023]
Abstract
The aim of this study was to reveal genetic variants of Anaplasma phagocytophilum strains occurring in different species of wild ungulates and in Ixodes ricinus ticks to check the role of the examined species in the circulation of the revealed variants in nature. The aim was also to determine if the detected variants of A. phagocytophilum are specific for particular game species as well as to examine their identity with other strains, including pathogenic ones. Sequences of the amplified groEL heat shock operon and msp2 gene fragments of A. phagocytophilum were obtained from samples collected between 2005 and 2007 from 14 roe deer (Capreolus capreolus), 13 red deer (Cervus elaphus), 1 fallow deer (Dama dama) and 4 wild boar (Sus scrofa) as well as 13 engorged and 11 questing I. ricinus ticks occurring in the area of Puszcza Wkrzańska Forest in north-western Poland. Analysis of the sequences showed the presence of five and four gene variants of groEL and msp2, respectively. The variants showed high identity with sequences derived from strains pathogenic to humans and/or domestic and companion animals. Cervids seem to play a more important role in the circulation of the detected variants in nature than wild boar. Some of the detected variants are not shared by roe and red deer. The results obtained on the basis of groEL and msp2 sequences are discrepant. Analysis of the groEL operon sequence provides more information on A. phagocytophilum strains than the msp2 gene sequence.
Collapse
|
7
|
Tominello TR, Oliveira ERA, Hussain SS, Elfert A, Wells J, Golden B, Ismail N. Emerging Roles of Autophagy and Inflammasome in Ehrlichiosis. Front Immunol 2019; 10:1011. [PMID: 31134081 PMCID: PMC6517498 DOI: 10.3389/fimmu.2019.01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Human monocytic ehrlichiosis (HME) is a potentially life-threatening tick-borne rickettsial disease (TBRD) caused by the obligate intracellular Gram-negative bacteria, Ehrlichia. Fatal HME presents with acute ailments of sepsis and toxic shock-like symptoms that can evolve to multi-organ failure and death. Early clinical and laboratory diagnosis of HME are problematic due to non-specific flu-like symptoms and limitations in the current diagnostic testing. Several studies in murine models showed that cell-mediated immunity acts as a “double-edged sword” in fatal ehrlichiosis. Protective components are mainly formed by CD4 Th1 and NKT cells, in contrast to deleterious effects originated from neutrophils and TNF-α-producing CD8 T cells. Recent research has highlighted the central role of the inflammasome and autophagy as part of innate immune responses also leading to protective or pathogenic scenarios. Recognition of pathogen-associated molecular patterns (PAMPS) or damage-associated molecular patterns (DAMPS) triggers the assembly of the inflammasome complex that leads to multiple outcomes. Recognition of PAMPs or DAMPs by such complexes can result in activation of caspase-1 and -11, secretion of the pro-inflammatory cytokines IL-1β and IL-18 culminating into dysregulated inflammation, and inflammatory cell death known as pyroptosis. The precise functions of inflammasomes and autophagy remain unexplored in infections with obligate intracellular rickettsial pathogens, such as Ehrlichia. In this review, we discuss the intracellular innate immune surveillance in ehrlichiosis involving the regulation of inflammasome and autophagy, and how this response influences the innate and adaptive immune responses against Ehrlichia. Understanding such mechanisms would pave the way in research for novel diagnostic, preventative and therapeutic approaches against Ehrlichia and other rickettsial diseases.
Collapse
Affiliation(s)
- Tyler R Tominello
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edson R A Oliveira
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Shah S Hussain
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Amr Elfert
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jakob Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon Golden
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
López V, Alberdi P, Fuente JDL. Common Strategies, Different Mechanisms to Infect the Host: Anaplasma and Mycobacterium. Tuberculosis (Edinb) 2018. [DOI: 10.5772/intechopen.71535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Kazimírová M, Hamšíková Z, Špitalská E, Minichová L, Mahríková L, Caban R, Sprong H, Fonville M, Schnittger L, Kocianová E. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasit Vectors 2018; 11:495. [PMID: 30176908 PMCID: PMC6122462 DOI: 10.1186/s13071-018-3068-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Free-living ungulates are hosts of ixodid ticks and reservoirs of tick-borne microorganisms in central Europe and many regions around the world. Tissue samples and engorged ticks were obtained from roe deer, red deer, fallow deer, mouflon, and wild boar hunted in deciduous forests of south-western Slovakia. DNA isolated from these samples was screened for the presence of tick-borne microorganisms by PCR-based methods. RESULTS Ticks were found to infest all examined ungulate species. The principal infesting tick was Ixodes ricinus, identified on 90.4% of wildlife, and included all developmental stages. Larvae and nymphs of Haemaphysalis concinna were feeding on 9.6% of wildlife. Two specimens of Dermacentor reticulatus were also identified. Ungulates were positive for A. phagocytophilum and Theileria spp. Anaplasma phagocytophilum was found to infect 96.1% of cervids, 88.9% of mouflon, and 28.2% of wild boar, whereas Theileria spp. was detected only in cervids (94.6%). Importantly, a high rate of cervids (89%) showed mixed infections with both these microorganisms. In addition to A. phagocytophilum and Theileria spp., Rickettsia helvetica, R. monacensis, unidentified Rickettsia sp., Coxiella burnetii, "Candidatus Neoehrlichia mikurensis", Borrelia burgdorferi (s.l.) and Babesia venatorum were identified in engorged I. ricinus. Furthermore, A. phagocytophilum, Babesia spp. and Theileria spp. were detected in engorged H. concinna. Analysis of 16S rRNA and groEL gene sequences revealed the presence of five and two A. phagocytophilum variants, respectively, among which sequences identified in wild boar showed identity to the sequence of the causative agent of human granulocytic anaplasmosis (HGA). Phylogenetic analysis of Theileria 18S rRNA gene sequences amplified from cervids and engorged I. ricinus ticks segregated jointly with sequences of T. capreoli isolates into a moderately supported monophyletic clade. CONCLUSIONS The findings indicate that free-living ungulates are reservoirs for A. phagocytophilum and Theileria spp. and engorged ixodid ticks attached to ungulates are good sentinels for the presence of agents of public and veterinary concern. Further analyses of the A. phagocytophilum genetic variants and Theileria species and their associations with vector ticks and free-living ungulates are required.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Eva Špitalská
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Lenka Minichová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | | | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, 9 Antonie van Leeuwenhoeklaan, P.O. Box 1, Bilthoven, The Netherlands
| | - Manoj Fonville
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, 9 Antonie van Leeuwenhoeklaan, P.O. Box 1, Bilthoven, The Netherlands
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Prov. de Buenos Aires Argentina
- CONICET, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Elena Kocianová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
10
|
Battilani M, De Arcangeli S, Balboni A, Dondi F. Genetic diversity and molecular epidemiology of Anaplasma. INFECTION GENETICS AND EVOLUTION 2017; 49:195-211. [PMID: 28122249 DOI: 10.1016/j.meegid.2017.01.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/25/2022]
Abstract
Anaplasma are obligate intracellular bacteria of cells of haematopoietic origin and are aetiological agents of tick-borne diseases of both veterinary and medical interest common in both tropical and temperate regions. The recent disclosure of their zoonotic potential has greatly increased interest in the study of these bacteria, leading to the recent reorganisation of Rickettsia taxonomy and to the possible discovery of new species belonging to the genus Anaplasma. This review is particularly focused on the common and unique characteristics of Anaplasma marginale and Anaplasma phagocytophilum, with an emphasis on genetic diversity and evolution, and the main distinguishing features of the diseases caused by the different Anaplasma spp. are described as well.
Collapse
Affiliation(s)
- Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy.
| | - Stefano De Arcangeli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano Emilia, Bo, Italy
| |
Collapse
|
11
|
Dugat T, Zanella G, Véran L, Lesage C, Girault G, Durand B, Lagrée AC, Boulouis HJ, Haddad N. Multiple-locus variable-number tandem repeat analysis potentially reveals the existence of two groups of Anaplasma phagocytophilum circulating in cattle in France with different wild reservoirs. Parasit Vectors 2016; 9:596. [PMID: 27876073 PMCID: PMC5120488 DOI: 10.1186/s13071-016-1888-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/14/2016] [Indexed: 12/18/2022] Open
Abstract
Background Anaplasma phagocytophilum is the causative agent of tick-borne fever, a disease with high economic impact for domestic ruminants in Europe. Epidemiological cycles of this species are complex, and involve different ecotypes circulating in various host species. To date, these epidemiological cycles are poorly understood, especially in Europe, as European reservoir hosts (i.e. vertebrate hosts enabling long-term maintenance of the bacterium in the ecosystem), of the bacterium have not yet been clearly identified. In this study, our objective was to explore the presence, the prevalence, and the genetic diversity of A. phagocytophilum in wild animals, in order to better understand their implications as reservoir hosts of this pathogen. Methods The spleens of 101 wild animals were collected from central France and tested for the presence of A. phagocytophilum DNA by msp2 qPCR. Positive samples were then typed by multi-locus variable-number tandem repeat (VNTR) analysis (MLVA), and compared to 179 previously typed A. phagocytophilum samples. Results Anaplasma phagocytophilum DNA was detected in 82/101 (81.2%) animals including 48/49 red deer (98%), 20/21 roe deer (95.2%), 13/29 wild boars (44.8%), and 1/1 red fox. MLVA enabled the discrimination of two A. phagocytophilum groups: group A contained the majority of A. phagocytophilum from red deer and two thirds of those from cattle, while group B included a human strain and variants from diverse animal species, i.e. sheep, dogs, a horse, the majority of variants from roe deer, and the remaining variants from cattle and red deer. Conclusions Our results suggest that red deer and roe deer are promising A. phagocytophilum reservoir host candidates. Moreover, we also showed that A. phagocytophilum potentially circulates in at least two epidemiological cycles in French cattle. The first cycle may involve red deer as reservoir hosts and cattle as accidental hosts for Group A strains, whereas the second cycle could involve roe deer as reservoir hosts and at least domestic ruminants, dogs, horses, and humans as accidental hosts for Group B strains. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1888-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thibaud Dugat
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Laboratoire de Santé Animale, UMR BIPAR, Université Paris-Est, Maisons-Alfort, France
| | - Gina Zanella
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Laboratoire de Santé Animale, Unité d'Epidémiologie, Université Paris-Est, Maisons-Alfort, France
| | - Luc Véran
- Fédération des chasseurs du Loiret, Orléans, France
| | | | - Guillaume Girault
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Laboratoire de Santé Animale, Unité des Zoonoses Bactériennes, Université Paris-Est, Maisons-Alfort, France
| | - Benoît Durand
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, Laboratoire de Santé Animale, Unité d'Epidémiologie, Université Paris-Est, Maisons-Alfort, France
| | - Anne-Claire Lagrée
- Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Université Paris-Est, Maisons-Alfort, France
| | - Henri-Jean Boulouis
- Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Université Paris-Est, Maisons-Alfort, France
| | - Nadia Haddad
- Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Université Paris-Est, Maisons-Alfort, France.
| |
Collapse
|
12
|
Anaplasma phagocytophilum Manipulates Host Cell Apoptosis by Different Mechanisms to Establish Infection. Vet Sci 2016; 3:vetsci3030015. [PMID: 29056724 PMCID: PMC5606577 DOI: 10.3390/vetsci3030015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/24/2022] Open
Abstract
Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human and animal granulocytic anaplasmosis and tick-borne fever of ruminants. This obligate intracellular bacterium evolved to use common strategies to establish infection in both vertebrate hosts and tick vectors. Herein, we discuss the different strategies used by the pathogen to modulate cell apoptosis and establish infection in host cells. In vertebrate neutrophils and human promyelocytic cells HL-60, both pro-apoptotic and anti-apoptotic factors have been reported. Tissue-specific differences in tick response to infection and differential regulation of apoptosis pathways have been observed in adult female midguts and salivary glands in response to infection with A. phagocytophilum. In tick midguts, pathogen inhibits apoptosis through the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, while in salivary glands, the intrinsic apoptosis pathways is inhibited but tick cells respond with the activation of the extrinsic apoptosis pathway. In Ixodes scapularis ISE6 cells, bacterial infection down-regulates mitochondrial porin and manipulates protein processing in the endoplasmic reticulum and cell glucose metabolism to inhibit apoptosis and facilitate infection, whereas in IRE/CTVM20 tick cells, inhibition of apoptosis appears to be regulated by lower caspase levels. These results suggest that A. phagocytophilum uses different mechanisms to inhibit apoptosis for infection of both vertebrate and invertebrate hosts.
Collapse
|
13
|
Mora J, Schlemmer A, Wittig I, Richter F, Putyrski M, Frank AC, Han Y, Jung M, Ernst A, Weigert A, Brüne B. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. J Mol Cell Biol 2016; 8:426-438. [DOI: 10.1093/jmcb/mjw006] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 09/03/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
|
14
|
de la Fuente J, Estrada-Peña A, Cabezas-Cruz A, Kocan KM. Anaplasma phagocytophilum Uses Common Strategies for Infection of Ticks and Vertebrate Hosts. Trends Microbiol 2015; 24:173-180. [PMID: 26718986 DOI: 10.1016/j.tim.2015.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022]
Abstract
The tick-borne rickettsial pathogen Anaplasma phagocytophilum develops within membrane-bound inclusions in the host cell cytoplasm. This pathogen has evolved with its tick and vertebrate hosts through dynamic processes involving genetic traits of the pathogen and hosts that collectively mediate pathogen infection, development, persistence, and survival. Herein, we challenge the evidence of tick-host-pathogen coevolution by hypothesizing that A. phagocytophilum utilizes common molecular mechanisms for infection in both vertebrate and tick cells, including remodeling of the cytoskeleton, inhibition of cell apoptosis, and manipulation of the immune response. The discovery of these common mechanisms provides evidence that a control strategy could be developed targeted at both vertebrate and tick hosts for more complete control of A. phagocytophilum and its associated diseases.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, IREC, Ronda de Toledo s/n, Ciudad Real, 13005, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | - Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 - CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, 59019 Lille, France
| | - Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
15
|
Anaplasmataceae in wild ungulates and carnivores in northern Spain. Ticks Tick Borne Dis 2015; 7:264-9. [PMID: 26596894 DOI: 10.1016/j.ttbdis.2015.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/14/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022]
Abstract
Wild vertebrates are essential hosts for tick-borne diseases but data on the prevalence and diversity of Anaplasma spp. in wildlife are scarce. In this study, we used real-time PCR to investigate the distribution of Anaplasma species in spleen samples collected from 625 wild animals (137 cervids, 227 wild boar, and 261 carnivores) in two regions in northern Spain. A first generic real-time PCR assay was used to screen for the presence of Anaplasma spp. followed by a second species-specific multiplex real-time PCR or partial sequencing of the 16S rRNA gene for species identification. Anaplasma phagocytophilum was highly prevalent in cervids (64.2%), but it was absent from wild boar and carnivores. Interestingly, Anaplasma marginale and Anaplasma ovis were not detected in cervids, but Anaplasma centrale was identified in 1 roe deer and 1 red deer, A. bovis in 4 roe deer, and a novel Ehrlichia sp. in one badger. These findings were highly associated with the tick burden identified in the different hosts. Thus, Ixodes ricinus, the recognized vector of A. phagocytophilum in Europe, was the main tick species parasitizing cervids (93.5%, 1674/1791), whereas Dermacentor reticulatus was the most abundant in wild boar (76.1%, 35/46) and Ixodes hexagonus in carnivores (58.4%, 265/454). More investigations are needed to assess the impact of the different Anaplasma species in wildlife and the risk of transmission to domestic animals.
Collapse
|
16
|
Liu S, Chen S, Li M, Zhang B, Shen P, Liu P, Zheng D, Chen Y, Jiang J. Autophagy activation attenuates angiotensin II-induced cardiac fibrosis. Arch Biochem Biophys 2015; 590:37-47. [PMID: 26562437 DOI: 10.1016/j.abb.2015.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/10/2015] [Accepted: 11/02/2015] [Indexed: 01/21/2023]
Abstract
Autophagy has been involved in numerous diseases processes. However, little is known about the role of autophagy in cardiac fibrosis. Thus, whether or not angiotensin II (Ang II)-induced autophagy has a regulatory function on cardiac fibrosis was detected in vitro and in vivo. In rat cardiac fibroblasts (CFs) stimulated with Ang II, activated autophagy was observed using transmission electron microscopic analysis (TEM), immunofluorescence and Western blot. In Ang II-infused mice, increased co-localization of LC3 puncta with vimentin was observed. In rat CFs, co-treated with rapamycin (Rapa), an autophagy inducer, Ang II-induced the upregulation of type I collagen (Col-I), fibronectin (FN) was decreased. Conversely, inhibition of autophagy by chloroquine (CQ), an autophagy inhibitor, or knockdown of ATG5, a key component of the autophagy pathway by specific siRNA, aggravated Ang II-mediated the accumulation of Col-I and FN. Furthermore, in C57 BL/6 mice with Ang II infusion, intraperitoneal administration of Rapa ameliorated Ang II-induced cardiac fibrosis and cardiac dysfunction, while CQ treatment not only exacerbated Ang II-mediated cardiac fibrosis and cardiac dysfunction, but also impaired cardiac function. These findings suggest that autophagy may exert a protective role to attenuate excess extracellular matrix (ECM) accumulation in the heart.
Collapse
Affiliation(s)
- Shenglan Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Shaorui Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Min Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Boyu Zhang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peiye Shen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; National and Local Joint Engineering Laboratory of Druggabilitiy Assessment and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Dandan Zheng
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yijie Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jianmin Jiang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
17
|
Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis. PLoS One 2015; 10:e0137237. [PMID: 26340562 PMCID: PMC4560377 DOI: 10.1371/journal.pone.0137237] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022] Open
Abstract
Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10–15% and 65–71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface proteins during A. phagocytophilum infection in ticks. Characterization of Anaplasma proteome contributes information on host-pathogen interactions and provides targets for development of novel control strategies for pathogen infection and transmission.
Collapse
|
18
|
Dugat T, Lagrée AC, Maillard R, Boulouis HJ, Haddad N. Opening the black box of Anaplasma phagocytophilum diversity: current situation and future perspectives. Front Cell Infect Microbiol 2015; 5:61. [PMID: 26322277 PMCID: PMC4536383 DOI: 10.3389/fcimb.2015.00061] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/31/2015] [Indexed: 01/28/2023] Open
Abstract
Anaplasma phagocytophilum is a zoonotic obligate intracellular bacterium known to be transmitted by ticks belonging to the Ixodes persulcatus complex. This bacterium can infect several mammalian species, and is known to cause diseases with variable symptoms in many domestic animals. Specifically, it is the causative agent of tick-borne fever (TBF), a disease of important economic impact in European domestic ruminants, and human granulocytic anaplasmosis (HGA), an emerging zoonotic disease in Asia, USA and Europe. A. phagocytophilum epidemiological cycles are complex and involve different ecotypes, vectors, and mammalian host species. Moreover, the epidemiology of A. phagocytophilum infection differs greatly between Europe and the USA. These different epidemiological contexts are associated with considerable variations in bacterial strains. Until recently, few A. phagocytophilum molecular typing tools were available, generating difficulties in completely elucidating the epidemiological cycles of this bacterium. Over the last few years, many A. phagocytophilum typing techniques have been developed, permitting in-depth epidemiological exploration. Here, we review the current knowledge and future perspectives regarding A. phagocytophilum epidemiology and phylogeny, and then focus on the molecular typing tools available for studying A. phagocytophilum genetic diversity.
Collapse
Affiliation(s)
- Thibaud Dugat
- Laboratoire de Santé Animale, UMR Biologie Moléculaire et Immunologie Parasitaires, Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail, Université Paris-Est Paris, France
| | - Anne-Claire Lagrée
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France
| | - Renaud Maillard
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France ; Unité Pathologie des Ruminants, Ecole Nationale Vétérinaire de Toulouse Toulouse, France
| | - Henri-Jean Boulouis
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France
| | - Nadia Haddad
- UMR Biologie Moléculaire et Immunologie Parasitaires, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Paris, France
| |
Collapse
|
19
|
Svitálková Z, Haruštiaková D, Mahríková L, Berthová L, Slovák M, Kocianová E, Kazimírová M. Anaplasma phagocytophilum prevalence in ticks and rodents in an urban and natural habitat in South-Western Slovakia. Parasit Vectors 2015; 8:276. [PMID: 25980768 PMCID: PMC4435654 DOI: 10.1186/s13071-015-0880-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background Ixodes ricinus is the principal vector of Anaplasma phagocytophilum, the ethiological agent of granulocytic anaplasmosis in Europe. Anaplasmosis is an emerging zoonotic disease with a natural enzootic cycle. The reservoir competence of rodents is unclear. Monitoring of A. phagocytophilum prevalence in I. ricinus and rodents in various habitat types of Slovakia may contribute to the knowledge about the epidemiology of anaplasmosis in Central Europe. Methods Over 4400 questing ixodid ticks, 1000 rodent-attached ticks and tissue samples of 606 rodents were screened for A. phagocytophilum DNA by real-time PCR targeting the msp2 gene. Ticks and rodents were captured along six transects in an urban/suburban and natural habitat in south-western Slovakia during 2011–2014. Estimates of wildlife (roe deer, red deer, fallow deer, mouflon, wild boar) densities in the study area were taken from hunter’s yearly reports. Spatial and temporal differences in A. phagocytophilum prevalence in questing I. ricinus and relationships with relative abundance of ticks and wildlife were analysed. Results Overall prevalence of A. phagocytophilum in questing I. ricinus was significantly higher in the urban/suburban habitat (7.2 %; 95 % CI: 6.1–8.3 %) compared to the natural habitat (3.1 %; 95 % CI: 2.5–3.9 %) (χ2 = 37.451; P < 0.001). Significant local differences in prevalence of infected questing ticks were found among transects within each habitat as well as among years and between seasons. The trapped rodents belonged to six species. Apodemus flavicollis and Myodes glareolus prevailed in both habitats, Microtus arvalis was present only in the natural habitat. I. ricinus comprised 96.3 % of the rodent-attached ticks, the rest were Haemaphysalis concinna, Ixodes trianguliceps and Dermacentor reticulatus. Only 0.5 % of rodent skin and 0.6 % of rodent-attached ticks (only I. ricinus) were infected with A. phagocytophilum. Prevalence of A. phagocytophilum in questing I. ricinus did not correlate significantly with relative abundance of ticks or with abundance of wildlife in the area. Conclusion The study confirms that urban I. ricinus populations are infected with A. phagocytophilum at a higher rate than in a natural habitat of south-western Slovakia and suggests that rodents are not the main reservoirs of the bacterium in the investigated area.
Collapse
Affiliation(s)
- Zuzana Svitálková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| | - Danka Haruštiaková
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic.
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| | - Lenka Berthová
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| | - Mirko Slovák
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| | - Elena Kocianová
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| |
Collapse
|
20
|
Schroyen M, Tuggle CK. Current transcriptomics in pig immunity research. Mamm Genome 2014; 26:1-20. [PMID: 25398484 PMCID: PMC7087981 DOI: 10.1007/s00335-014-9549-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/21/2014] [Indexed: 01/05/2023]
Abstract
Swine performance in the face of disease challenge is becoming progressively more important. To improve the pig’s robustness and resilience against pathogens through selection, a better understanding of the genetic and epigenetic factors in the immune response is required. This review highlights results from the most recent transcriptome research, and the meta-analyses performed, in the context of pig immunity. A technological overview is given including wholegenome microarrays, immune-specific arrays, small-scale high-throughput expression methods, high-density tiling arrays, and next generation sequencing (NGS). Although whole genome microarray techniques will remain complementary to NGS for some time in domestic species, research will transition to sequencing-based methods due to cost-effectiveness and the extra information that such methods provide. Furthermore, upcoming high-throughput epigenomic studies, which will add greatly to our knowledge concerning the impact of epigenetic modifications on pig immune response, are listed in this review. With emphasis on the insights obtained from transcriptomic analyses for porcine immunity, we also discuss the experimental design in pig immunity research and the value of the newly published porcine genome assembly in using the pig as a model for human immune response. We conclude by discussing the importance of establishing community standards to maximize the possibility of integrative computational analyses, such as was clearly beneficial for the human ENCODE project.
Collapse
Affiliation(s)
- Martine Schroyen
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA,
| | | |
Collapse
|
21
|
Pruneau L, Moumène A, Meyer DF, Marcelino I, Lefrançois T, Vachiéry N. Understanding Anaplasmataceae pathogenesis using "Omics" approaches. Front Cell Infect Microbiol 2014; 4:86. [PMID: 25072029 PMCID: PMC4078744 DOI: 10.3389/fcimb.2014.00086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 06/10/2014] [Indexed: 11/13/2022] Open
Abstract
This paper examines how "Omics" approaches improve our understanding of Anaplasmataceae pathogenesis, through a global and integrative strategy to identify genes and proteins involved in biochemical pathways key for pathogen-host-vector interactions. The Anaplasmataceae family comprises obligate intracellular bacteria mainly transmitted by arthropods. These bacteria are responsible for major human and animal endemic and emerging infectious diseases with important economic and public health impacts. In order to improve disease control strategies, it is essential to better understand their pathogenesis. Our work focused on four Anaplasmataceae, which cause important animal, human and zoonotic diseases: Anaplasma marginale, A. phagocytophilum, Ehrlichia chaffeensis, and E. ruminantium. Wolbachia spp. an endosymbiont of arthropods was also included in this review as a model of a non-pathogenic Anaplasmataceae. A gap analysis on "Omics" approaches on Anaplasmataceae was performed, which highlighted a lack of studies on the genes and proteins involved in the infection of hosts and vectors. Furthermore, most of the studies have been done on the pathogen itself, mainly on infectious free-living forms and rarely on intracellular forms. In order to perform a transcriptomic analysis of the intracellular stage of development, researchers developed methods to enrich bacterial transcripts from infected cells. These methods are described in this paper. Bacterial genes encoding outer membrane proteins, post-translational modifications, eukaryotic repeated motif proteins, proteins involved in osmotic and oxidative stress and hypothetical proteins have been identified to play a key role in Anaplasmataceae pathogenesis. Further investigations on the function of these outer membrane proteins and hypothetical proteins will be essential to confirm their role in the pathogenesis. Our work underlines the need for further studies in this domain and on host and vector responses to infection.
Collapse
Affiliation(s)
- Ludovic Pruneau
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France ; Université des Antilles et de la Guyane Pointe-à-Pitre, France
| | - Amal Moumène
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France ; Université des Antilles et de la Guyane Pointe-à-Pitre, France
| | - Damien F Meyer
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France
| | - Isabel Marcelino
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France ; IBET Apartado, Oeiras, Portugal ; ITQB-UNL, Estação Agronómica Nacional Oeiras, Lisboa, Portugal
| | - Thierry Lefrançois
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France
| | - Nathalie Vachiéry
- CIRAD, BIOS, UMR CMAEE Petit-Bourg, France ; INRA, BIOS, UMR CMAEE Montpellier, France
| |
Collapse
|
22
|
Silaghi C, Pfister K, Overzier E. Molecular investigation for bacterial and protozoan tick-borne pathogens in wild boars (Sus scrofa) from southern Germany. Vector Borne Zoonotic Dis 2014; 14:371-3. [PMID: 24745766 DOI: 10.1089/vbz.2013.1495] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wild boars (Sus scrofa) have been suggested to be involved in the enzootic cycle of the tick-borne pathogen Anaplasma phagocytophilum. This observation raises the question whether they serve as reservoir hosts for A. phagocytophilum and potentially for other tick-borne pathogens of public health relevance. The aim of this study was to investigate wild boars and their ticks from a forest site in southern Germany for the presence of A. phagocytophilum, Candidatus Neoehrlichia mikurensis, Rickettsia spp., Borrelia burgdorferi sensu lato (s.l.), Borrelia spp. of the relapsing fever group, and Babesia spp. Therefore, 24 wild boars collected from October, 2010, to February, 2013, were investigated by molecular methods. DNA of A. phagocytophilum was detected in three out of 24 (12.5%) wild boars and in four out of 16 (25%) ticks. DNA of none of the other pathogens was found in any wild boar, but Rickettsia spp., B. burgdorferi s.l., and Cand. N. mikurensis were found in one of the investigated ticks each. Sequences of the partial 16S rRNA gene of A. phagocytophilum from one spleen and two ticks showed 100% similarity to GenBank entries from human anaplasmosis cases (accession nos. U02521 and AY886761). The sequence from the third tick was 100% similar to sequences obtained from Ixodes ricinus and roe deer from the same study area previously. Detecting a potentially human pathogenic A. phagocytophilum variant in wild boar confirms previous findings and is of public health interest. To our knowledge, this is the first report of A. phagocytophilum in wild boars in Germany. Whether wild boars support the enzootic cycle of A. phagocytophilum variants involved in human disease requires further attention in future systematic studies.
Collapse
Affiliation(s)
- Cornelia Silaghi
- Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München , Munich, Germany
| | | | | |
Collapse
|
23
|
Nahayo A, Bardiau M, Volpe R, Pirson J, Paternostre J, Fett T, Linden A. Molecular evidence of Anaplasma phagocytophilum in wild boar (Sus scrofa) in Belgium. BMC Vet Res 2014; 10:80. [PMID: 24694049 PMCID: PMC3976503 DOI: 10.1186/1746-6148-10-80] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is a tick-borne pathogen of veterinary and human importance. Both ticks as vectors and vertebrates as reservoir hosts are essential for the cycle maintenance of this bacterium. Currently, the whole range of animal species reservoirs for A. phagocytophilum in natural environment is still unknown. Therefore, the aim of this study was to estimate the prevalence of infection with A. phagocytophilum in the wild boar population in southern Belgium. RESULTS In the frame of a targeted surveillance program, 513 wild boars were sampled during the hunting season 2011. A nested 16S rRNA PCR was used to screen the presence of A. phagocytophilum DNA in spleen of boars. Within 513 samples, 5 (0,97%) were tested PCR positive and identification was confirmed by sequencing. CONCLUSIONS This study gives the first insight of presence of A. phagocytophilum in wild boars in southern Belgium.
Collapse
Affiliation(s)
- Adrien Nahayo
- Surveillance Network of Wildlife Diseases, Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Marjorie Bardiau
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Rosario Volpe
- Surveillance Network of Wildlife Diseases, Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Jessica Pirson
- Surveillance Network of Wildlife Diseases, Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Julien Paternostre
- Surveillance Network of Wildlife Diseases, Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Thomas Fett
- Surveillance Network of Wildlife Diseases, Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Annick Linden
- Surveillance Network of Wildlife Diseases, Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| |
Collapse
|
24
|
Xu H, Zhu X, Hu Y, Li Z, Zhang X, Nie Q, Nolan LK, Lamont SJ. DNA methylome in spleen of avian pathogenic Escherichia coli-challenged broilers and integration with mRNA expression. Sci Rep 2014; 4:4299. [PMID: 24599154 PMCID: PMC3944351 DOI: 10.1038/srep04299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/18/2014] [Indexed: 02/07/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) are responsible for heavy economic losses in poultry industry. Here we investigate DNA methylome of spleen and identify functional DNA methylation changes related to host response to APEC among groups of non-challenged chickens (NC), challenged with mild (MD) and severe pathology (SV). DNA methylation was enriched in the gene bodies and repeats. Promoter and CGIs are hypomethylated. Integration analysis revealed 22, 87, and 9 genes exhibiting inversely changed DNA methylation and gene expression in NC vs. MD, NC vs. SV, and MD vs. SV, respectively. IL8, IL2RB, and IL1RAPL1 were included. Gene network analysis suggested that besides inflammatory response, other networks and pathways such as organismal injury and abnormalities, cell signaling and molecular transport, are probably related to host response to APEC infection. Moreover, methylation changes in cell cycle processes might contribute to the lesion phenotype differences between MD and SV.
Collapse
Affiliation(s)
- Haiping Xu
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xuenong Zhu
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Yongsheng Hu
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Zhenhui Li
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xiquan Zhang
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qinghua Nie
- 1] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China [2] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | | | | |
Collapse
|
25
|
|
26
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
27
|
Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect Immun 2013; 81:2415-25. [PMID: 23630955 DOI: 10.1128/iai.00194-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Anaplasma phagocytophilum causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects gene expression in both the vertebrate host and the tick vector, Ixodes scapularis. Here, we identified new genes, including spectrin alpha chain or alpha-fodrin (CG8) and voltage-dependent anion-selective channel or mitochondrial porin (T2), that are involved in A. phagocytophilum infection/multiplication and the tick cell response to infection. The pathogen downregulated the expression of CG8 in tick salivary glands and T2 in both the gut and salivary glands to inhibit apoptosis as a mechanism to subvert host cell defenses and increase infection. In the gut, the tick response to infection through CG8 upregulation was used by the pathogen to increase infection due to the cytoskeleton rearrangement that is required for pathogen infection. These results increase our understanding of the role of tick genes during A. phagocytophilum infection and multiplication and demonstrate that the pathogen uses similar strategies to establish infection in both vertebrate and invertebrate hosts.
Collapse
|
28
|
de la Fuente J, Gortazar C. Wild Boars as Hosts of Human-Pathogenic Anaplasma phagocytophilum Variants. Emerg Infect Dis 2013; 18:2094-5. [PMID: 23171572 PMCID: PMC3557900 DOI: 10.3201/eid1812.120778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Prevalence of Anaplasma phagocytophilum infection in European wild boar (Sus scrofa) populations from Transylvania, Romania. Epidemiol Infect 2013; 142:246-50. [PMID: 23611429 DOI: 10.1017/s0950268813000812] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Between 2007-2008 and 2010-2012, 870 organ samples were collected from wild boars in 16 Transylvanian counties. Anaplasma phagocytophilum DNA was identified using a nested PCR protocol that amplifies a fragment of the 16S rRNA gene. Prevalence was compared between sampling periods and counties using Fisher's exact test. In total, 39 (4·48%) samples tested positive, with significantly higher values recorded in the second period, caused by an increased infection rate in boars from Sibiu county. Positive cases tended to concentrate in the central part of the country. During the second sampling period, A. phagocytophilum was detected in two additional counties, suggesting a spatial spreading of the pathogen. The results confirm that Transylvanian wild boars are naturally infected with A. phagocytophilum, thus raising awareness concerning a potential zoonotic cycle. This is the first study to evaluate spatial and temporal variations of A. phagocytophilum distribution in wild boar populations from Transylvania.
Collapse
|