1
|
Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y, Li X. The role of histone post-translational modifications in cancer and cancer immunity: functions, mechanisms and therapeutic implications. Front Immunol 2024; 15:1495221. [PMID: 39620228 PMCID: PMC11604627 DOI: 10.3389/fimmu.2024.1495221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Histones play crucial roles in both promoting and repressing gene expression, primarily regulated through post-translational modifications (PTMs) at specific amino acid residues. Histone PTMs, including methylation, acetylation, ubiquitination, phosphorylation, lactylation, butyrylation, and propionylation, act as important epigenetic markers. These modifications influence not only chromatin compaction but also gene expression. Their importance extends to the treatment and prevention of various human diseases, particularly cancer, due to their involvement in key cellular processes. Abnormal histone modifications and the enzymes responsible for these alterations often serve as critical drivers in tumor cell proliferation, invasion, apoptosis, and stemness. This review introduces key histone PTMs and the enzymes responsible for these modifications, examining their impact on tumorigenesis and cancer progression. Furthermore, it explores therapeutic strategies targeting histone PTMs and offers recommendations for identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Lu Qiao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Qin
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xuejing Zhao
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xueren Li
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| |
Collapse
|
2
|
Xiong J, Chen P, He L, Chai X, Zhang Y, Sun S. Functional mechanism of hypoxia-like conditions mediating resistance to ferroptosis in cervical cancer cells by regulating KDM4A SUMOylation and the SLC7A11/GPX4 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:4207-4220. [PMID: 38727079 DOI: 10.1002/tox.24304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/24/2024] [Accepted: 04/22/2024] [Indexed: 07/14/2024]
Abstract
The discovery of ferroptosis has unveiled new perspectives for cervical cancer (CC) management. We elucidated the functional mechanism of hypoxia-like conditions in CC cell ferroptosis resistance. CC cells were subjected to normoxia or hypoxia-like conditions, followed by erastin treatment to induce ferroptosis. The assessment of cell viability/ferroptosis resistance was performed by MTT assay/Fe2+, MDA, and glutathione measurement by colorimetry. KDM4A/SUMO1/Ubc9/SENP1 protein levels were determined by Western blot. Interaction and binding sites between KDM4A and SUMO1 were analyzed and predicted by immunofluorescence/co-immunoprecipitation and GPS-SUMO 1.0 software, with the target relationship verified by mutation experiment. SLC7A11/GPX4/H3K9me3 protein levels, and H3K9me3 level in the SLC7A11 gene promoter region were determined by RT-qPCR and Western blot/chromatin immunoprecipitation. H3H9me3/SLC7A11/GPX4 level alterations, and ferroptosis resistance after KDM4A silencing or KDM4A K471 mutation were assessed. Hypoxia-like conditions increased CC cell ferroptosis resistance and KDM4A, SUMO1, and Ubc9 protein levels, while it decreased SENP1 protein level. KDM4A and SUMO1 were co-localized in the nucleus, and hypoxia-like conditions promoted their interaction. Specifically, the K471 locus of KDM4A was the main locus for SUMO1ylation. Hypoxia-like conditions up-regulated SLC7A11 and GPX4 expression levels and decreased H3K9me3 protein level and H3K9me3 abundance in the SLC7A11 promoter region. KDM4A silencing or K471 locus mutation resulted in weakened interaction between KDM4A and SUMO1, elevated H3K9me3 levels, decreased SLC7A11 expression, ultimately, a reduced CC cell ferroptosis resistance. CoCl2-stimulated hypoxia-like conditions enhanced SUMO1 modification of KDM4A at the K471 locus specifically, repressed H3K9me3 levels, and up-regulated SLC7A11/GPX4 to enhance CC cell ferroptosis resistance.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Puxiang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ling He
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoshan Chai
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yongjing Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shujuan Sun
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
4
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
5
|
Varghese B, Del Gaudio N, Cobellis G, Altucci L, Nebbioso A. KDM4 Involvement in Breast Cancer and Possible Therapeutic Approaches. Front Oncol 2021; 11:750315. [PMID: 34778065 PMCID: PMC8581295 DOI: 10.3389/fonc.2021.750315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women, although recent scientific and technological achievements have led to significant improvements in progression-free disease and overall survival of patients. Genetic mutations and epigenetic modifications play a critical role in deregulating gene expression, leading to uncontrolled cell proliferation and cancer progression. Aberrant histone modifications are one of the most frequent epigenetic mechanisms occurring in cancer. In particular, methylation and demethylation of specific lysine residues alter gene accessibility via histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The KDM family includes more than 30 members, grouped into six subfamilies and two classes based on their sequency homology and catalytic mechanisms, respectively. Specifically, the KDM4 gene family comprises six members, KDM4A-F, which are associated with oncogene activation, tumor suppressor silencing, alteration of hormone receptor downstream signaling, and chromosomal instability. Blocking the activity of KDM4 enzymes renders them "druggable" targets with therapeutic effects. Several KDM4 inhibitors have already been identified as anticancer drugs in vitro in BC cells. However, no KDM4 inhibitors have as yet entered clinical trials due to a number of issues, including structural similarities between KDM4 members and conservation of the active domain, which makes the discovery of selective inhibitors challenging. Here, we summarize our current knowledge of the molecular functions of KDM4 members in BC, describe currently available KDM4 inhibitors, and discuss their potential use in BC therapy.
Collapse
Affiliation(s)
- Benluvankar Varghese
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
6
|
Piletz JE, Mao Y, Roy D, Qizilbash B, Nkamssi E, Weir E, Graham J, Emmanuel M, Iqbal S, Brue K, Sengupta B. Transepithelial Anti-Neuroblastoma Response to Kale among Four Vegetable Juices Using In Vitro Model Co-Culture System. Nutrients 2021; 13:nu13020488. [PMID: 33540724 PMCID: PMC7913023 DOI: 10.3390/nu13020488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
Juicing vegetables is thought to be an anticancer treatment. Support exists for a rank order of anticancer greens (kale > dandelion > lettuce > spinach) based on degrees of bioavailability of different phytochemicals, also offset by some noxious molecules (i.e., calcium-oxalate). We developed a new in vitro transepithelial anti-neuroblastoma model system. The juices were diluted as predicted once in the small intestine. They were applied to apical Caco-2Bbe1 cells atop dividing SH-SY5Y neuroblastoma cells, and changes in transepithelial electrical resistance (TEER) and cell growth were considered with juice spectroscopies. Studied first in monoculture, kale and dandelion were the most cytostatic juices on SH-SY5Ys, lettuce showed no effect, and high (4.2%) spinach was cytotoxic. In co-culture, high (4.2%) kale was quickest (three days) to inhibit neuroblastoma growth. By five days, dandelion and kale were equally robust. Lettuce showed small anti-proliferative effects at five days and spinach remained cytotoxic. Spinach’s cytotoxicity corresponded with major infrared bands indicative of oxalate. Kale juice uniquely induced reactive oxygen species and S-phase cell cycle arrest in SH-SY5Y. The superiority of kale and dandelion was also apparent on the epithelium, because raising TEER levels is considered healthy. Kale’s unique features corresponded with a major fluorescent peak that co-eluted with kaempferol during high performance liquid chromatography. Because the anticancer rank order was upheld, the model appears validated for screening anticancer juices.
Collapse
Affiliation(s)
- John E. Piletz
- Department of Biology, Mississippi College, Clinton, MS 39058, USA; (Y.M.); (E.N.); (S.I.); (K.B.)
- Correspondence: (J.E.P.); (B.S.); Tel.: +1-(601)-925-7818 (J.E.P.); +1-(936)-468-2485 (B.S.)
| | - Yuhan Mao
- Department of Biology, Mississippi College, Clinton, MS 39058, USA; (Y.M.); (E.N.); (S.I.); (K.B.)
| | - Debarshi Roy
- Department of Biology, Alcorn State University, Lorman, MS 39096, USA;
| | - Bilal Qizilbash
- Qizilbash Labs, 345 Woodstone Road, Suite K6, Clinton, MS 39056, USA;
| | - Eurielle Nkamssi
- Department of Biology, Mississippi College, Clinton, MS 39058, USA; (Y.M.); (E.N.); (S.I.); (K.B.)
| | - Enleyona Weir
- Department of Chemistry, Tougaloo College, 500 West County Line Road, Tougaloo, MS 39174, USA; (E.W.); (J.G.); (M.E.)
| | - Jessica Graham
- Department of Chemistry, Tougaloo College, 500 West County Line Road, Tougaloo, MS 39174, USA; (E.W.); (J.G.); (M.E.)
| | - Mary Emmanuel
- Department of Chemistry, Tougaloo College, 500 West County Line Road, Tougaloo, MS 39174, USA; (E.W.); (J.G.); (M.E.)
| | - Suwaira Iqbal
- Department of Biology, Mississippi College, Clinton, MS 39058, USA; (Y.M.); (E.N.); (S.I.); (K.B.)
| | - Kellie Brue
- Department of Biology, Mississippi College, Clinton, MS 39058, USA; (Y.M.); (E.N.); (S.I.); (K.B.)
| | - Bidisha Sengupta
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX 75962, USA
- Correspondence: (J.E.P.); (B.S.); Tel.: +1-(601)-925-7818 (J.E.P.); +1-(936)-468-2485 (B.S.)
| |
Collapse
|
7
|
Cui S, Lei Z, Guan T, Fan L, Li Y, Geng X, Fu D, Jiang H, Xu S. Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy. Cancer Sci 2020; 111:1567-1581. [PMID: 32133742 PMCID: PMC7226285 DOI: 10.1111/cas.14375] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023] Open
Abstract
The histone demethylase lysine-specific demethylase 4A (KDM4A) is reported to be overexpressed and plays a vital in multiple cancers through controlling gene expression by epigenetic regulation of H3K9 or H3K36 methylation marks. However, the biological role and mechanism of KDM4A in prostate cancer (PC) remain unclear. Herein, we reported KDM4A expression was upregulation in phosphatase and tensin homolog knockout mouse prostate tissue. Depletion of KDM4A in PC cells inhibited their proliferation and survival in vivo and vitro. Further studies reveal that USP1 is a deubiquitinase that regulates KDM4A K48-linked deubiquitin and stability. Interestingly, we found c-Myc was a key downstream effector of the USP1-KDM4A/androgen receptor axis in driving PC cell proliferation. Notably, upregulation of KDM4A expression with high USP1 expression was observed in most prostate tumors and inhibition of USP1 promotes PC cells response to therapeutic agent enzalutamide. Our studies propose USP1 could be an anticancer therapeutic target in PC.
Collapse
Affiliation(s)
- Shu‐Zhong Cui
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Zi‐Ying Lei
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Tian‐Pei Guan
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Ling‐Ling Fan
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - You‐Qiang Li
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Xin‐Yan Geng
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - De‐Xue Fu
- Department of SurgeryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Hao‐Wu Jiang
- Department of AnesthesiologyCenter for the Study of ItchWashington University School of MedicineSt. LouisMOUSA
| | - Song‐Hui Xu
- Department of Abdominal SurgeryAffiliated Cancer Hospital and Institute of Guangzhou Medical UniversityGuangzhouChina
- Department of BiochemistryMarlene and Stewart Greenebaum Cancer CenterUniversity of Maryland School of MedicineBaltimoreMDUSA
| |
Collapse
|
8
|
Hou Y, Liu W, Yi X, Yang Y, Su D, Huang W, Yu H, Teng X, Yang Y, Feng W, Zhang T, Gao J, Zhang K, Qiu R, Wang Y. PHF20L1 as a H3K27me2 reader coordinates with transcriptional repressors to promote breast tumorigenesis. SCIENCE ADVANCES 2020; 6:eaaz0356. [PMID: 32494608 PMCID: PMC7159910 DOI: 10.1126/sciadv.aaz0356] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/22/2020] [Indexed: 05/12/2023]
Abstract
TUDOR domain-containing proteins (TDRDs) are chiefly responsible for recognizing methyl-lysine/arginine residue. However, how TDRD dysregulation contributes to breast tumorigenesis is poorly understood. Here, we report that TUDOR domain-containing PHF20L1 as a H3K27me2 reader exerts transcriptional repression by recruiting polycomb repressive complex 2 (PRC2) and Mi-2/nucleosome remodeling and deacetylase (NuRD) complex, linking PRC2-mediated methylation and NuRD-mediated deacetylation of H3K27. Furthermore, PHF20L1 was found to serve as a potential MYC and hypoxia-driven oncogene, promoting glycolysis, proliferation, and metastasis of breast cancer cells by directly inhibiting tumor suppressors such as HIC1, KISS1, and BRCA1. PHF20L1 expression was also strongly correlated with higher histologic grades of breast cancer and markedly up-regulated in several cancers. Meanwhile, Phf20l1 deletion not only induces growth retardation and mammary ductal outgrowth delay but also inhibits tumorigenesis in vivo. Our data indicate that PHF20L1 promotes tumorigenesis, supporting the pursuit of PHF20L1 as a target for cancer therapy.
Collapse
Affiliation(s)
- Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dongxue Su
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hefen Yu
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xu Teng
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ying Yang
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Feng
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Tao Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Advanced Innovation Center for Human Brain Protection, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Corresponding author.
| |
Collapse
|
9
|
Li M, Cheng J, Ma Y, Guo H, Shu H, Huang H, Kuang Y, Yang T. The histone demethylase JMJD2A promotes glioma cell growth via targeting Akt-mTOR signaling. Cancer Cell Int 2020; 20:101. [PMID: 32256210 PMCID: PMC7106579 DOI: 10.1186/s12935-020-01177-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/17/2020] [Indexed: 02/02/2023] Open
Abstract
Background A number of JmjC domain-containing histone demethylases have been identified and biochemically characterized in mammalian models and humans. JMJD2A is a transcriptional co-factor and enzyme that catalyzes the demethylation of histone H3 lysine 9 and 36 (H3K9 and H3K36). Here in this study, we reported the role of JMJD2A in human glioma. Methods Quantitative real-time PCR and western blot were performed to analyzed JMJD2A expression in glioma. Log-rank was performed to plot the survival curve. JMJD2A was knocked or overexpressed with lentivirus. Cell proliferation and colony formation were performed to assess the effects of JMJD2A on glioma cell growth. Xenograft experiment was performed the evaluate the growth rate of glioma cells in vivo. The signaling pathway was analyzed with western blot and mTOR was inhibited with rapamycin. Results Quantitative real-time PCR and western blot experiments revealed higher expression of JMJD2A and lower levels of H3K9me3/H3K36me3 in glioma tissues than that in normal brain tissues. We showed that knockdown of JMJD2A expression attenuated the growth and colony formation in three lines of glioma cells (U251, T98G, and U87MG), whereas JMJD2A overexpression resulted in opposing effects. Furthermore, we performed in vivo xenograft experiments and our data demonstrated that JMJD2A knockdown reduced the growth of glioma T98G cells in vivo. Further mechanism study implicated that JMJD2A activated the Akt-mTOR pathway and promoted protein synthesis in glioma cells via promoting phosphoinositide-dependent kinase-1 (PDK1) expression. The activation of the Akt-mTOR pathway was also validated in human glioma tissues. Finally, we showed that inhibition of mTOR with rapamycin blocked the effects of JMJD2A on protein synthesis, cell proliferation and colony formation of glioma cells. Conclusions These findings demonstrated that JMJD2A regulated glioma growth and implicated that JMJD2A might be a promising target for intervention.
Collapse
Affiliation(s)
- Min Li
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Jingmin Cheng
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Yuan Ma
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Heng Guo
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Haifeng Shu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Haidong Huang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Yongqin Kuang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| | - Tao Yang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, No. 270, Rongdu Avenue, Jinniu District, Chengdu, China
| |
Collapse
|
10
|
Li Y, Wang Y, Xie Z, Hu H. JMJD2A facilitates growth and inhibits apoptosis of cervical cancer cells by downregulating tumor suppressor miR‑491‑5p. Mol Med Rep 2019; 19:2489-2496. [PMID: 30720092 PMCID: PMC6423651 DOI: 10.3892/mmr.2019.9916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2018] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer remains the second most common malignancy for women worldwide. Jumonji domain containing 2A (JMJD2A), a member of the JmjC domain-containing family of JMJD2 proteins, is capable of regulating cancer-associated genes, including genes involved in the cell cycle, proliferation, apoptosis, invasion and metastasis. However, its role in human cervical cancer has yet to be elucidated. microRNA (miR)-491-5p, a mature form of miR-491, has been shown to function as a tumor suppressor gene in vitro by inducing apoptosis and inhibiting proliferation and invasion in various types of cancer. However, the underlying mechanism remains to be elucidated. In the present study it was observed that JMJD2A expression was significantly upregulated in human cervical cancer cell lines and cervical epithelial carcinoma tissues. A high JMJD2A level predicted poor overall and disease-free survival rate and may serve as an independent prognostic factor for adverse outcome. JMJD2A increased cervical cancer cell and colony numbers in vitro, increased the tumor weight in a mouse xenograft model, and decreased the apoptotic rate by downregulating the pro-apoptotic proteins Bax, p21 and active caspase-3, and upregulating the anti-apoptotic protein Bcl-2. Transfection experiments indicated that the role of JMJD2A in cervical cancer was mediated, at least in part, by the repression of miR-491-5p. In summary, JMJD2A was identified as an oncogenic protein in human cervical cancer that significantly affected cell and colony numbers, tumor weight and apoptosis via the downregulation of miR-491-5p, which acts as a tumor suppressor in cervical cancer. Therefore, JMJD2A may serve as a prognostic factor and potential target for intervention in cervical cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ya'ning Wang
- Department of Gynecology and Obstetrics, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| | - Zhen Xie
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, P.R. China
| | - Hongyi Hu
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
11
|
Garcia J, Lizcano F. Kdm4c is Recruited to Mitotic Chromosomes and Is Relevant for Chromosomal Stability, Cell Migration and Invasion of Triple Negative Breast Cancer Cells. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418773075. [PMID: 30083054 PMCID: PMC6073829 DOI: 10.1177/1178223418773075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/04/2018] [Indexed: 01/23/2023]
Abstract
Members of the jumonji-containing lysine demethylase protein family have been associated with cancer development, although their specific roles in the evolution of tumor cells remain unknown. This work examines the effects of lysine demethylase 4C (KDM4C) knockdown on the behavior of a triple-negative breast cancer cell line. KDM4C expression was knocked-down by siRNA and analyzed by Western blot and immunofluorescence. HCC38 cell proliferation was examined by MTT assay, while breast cancer cells’ migration and invasion were tested in Transwell format by chemotaxis. Immunofluorescence assays showed that KDM4C, which is a key protein for modulating histone demethylation and chromosome stability through the distribution of genetic information, is located at the chromosomes during mitosis. Proliferation assays demonstrated that KDM4C is important for cell survival, while Transwell migration and invasion assays indicated that this protein is relevant for cancer progression. These data indicate that KDM4C is relevant for breast cancer progression and highlight its importance as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeison Garcia
- Doctorate in Biociences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| | - Fernando Lizcano
- Doctorate in Biociences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
12
|
Lin H, Li Q, Li Q, Zhu J, Gu K, Jiang X, Hu Q, Feng F, Qu W, Chen Y, Sun H. Small molecule KDM4s inhibitors as anti-cancer agents. J Enzyme Inhib Med Chem 2018; 33:777-793. [PMID: 29651880 PMCID: PMC6010108 DOI: 10.1080/14756366.2018.1455676] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Histone demethylation is a vital process in epigenetic regulation of gene expression. A number of histone demethylases are present to control the methylated states of histone. Among these enzymes, KDM4s are one subfamily of JmjC KDMs and play important roles in both normal and cancer cells. The discovery of KDM4s inhibitors is a potential therapeutic strategy against different diseases including cancer. Here, we summarize the development of KDM4s inhibitors and some related pharmaceutical information to provide an update of recent progress in KDM4s inhibitors.
Collapse
Affiliation(s)
- Hongzhi Lin
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qihang Li
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qi Li
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Jie Zhu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Kai Gu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Xueyang Jiang
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Qianqian Hu
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Feng Feng
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Wei Qu
- b Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| | - Yao Chen
- c School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , China
| | - Haopeng Sun
- a Department of Medicinal Chemistry , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
13
|
Levin M, Stark M, Assaraf YG. The JmjN domain as a dimerization interface and a targeted inhibitor of KDM4 demethylase activity. Oncotarget 2018; 9:16861-16882. [PMID: 29682190 PMCID: PMC5908291 DOI: 10.18632/oncotarget.24717] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Histone methylation is regulated to shape the epigenome by modulating DNA compaction, thus playing central roles in fundamental chromatin-based processes including transcriptional regulation, DNA repair and cell proliferation. Histone methylation is erased by demethylases including the well-established KDM4 subfamily members, however, little is known about their dimerization capacity and its impact on their demethylase activity. Using the powerful bimolecular fluorescence complementation technique, we herein show the in situ formation of human KDM4A and KDM4C homodimers and heterodimers in nuclei of live transfectant cells and evaluate their H3K9me3 demethylation activity. Using size exclusion HPLC as well as Western blot analysis, we show that endogenous KDM4C undergoes dimerization under physiological conditions. Importantly, we identify the JmjN domain as the KDM4C dimerization interface and pin-point specific charged residues therein to be essential for this dimerization. We further demonstrate that KDM4A/C dimerization is absolutely required for their demethylase activity which was abolished by the expression of free JmjN peptides. In contrast, KDM4B does not dimerize and functions as a monomer, and hence was not affected by free JmjN expression. KDM4 proteins are overexpressed in numerous malignancies and their pharmacological inhibition or depletion in cancer cells was shown to impair tumor cell proliferation, invasion and metastasis. Thus, the KDM4 dimer-interactome emerging from the present study bears potential implications for cancer therapeutics via selective inhibition of KDM4A/C demethylase activity using JmjN-based peptidomimetics.
Collapse
Affiliation(s)
- May Levin
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
14
|
Wang LY, Hung CL, Chen YR, Yang JC, Wang J, Campbell M, Izumiya Y, Chen HW, Wang WC, Ann DK, Kung HJ. KDM4A Coactivates E2F1 to Regulate the PDK-Dependent Metabolic Switch between Mitochondrial Oxidation and Glycolysis. Cell Rep 2017; 16:3016-3027. [PMID: 27626669 DOI: 10.1016/j.celrep.2016.08.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/23/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
The histone lysine demethylase KDM4A/JMJD2A has been implicated in prostate carcinogenesis through its role in transcriptional regulation. Here, we describe KDM4A as a E2F1 coactivator and demonstrate a functional role for the E2F1-KDM4A complex in the control of tumor metabolism. KDM4A associates with E2F1 on target gene promoters and enhances E2F1 chromatin binding and transcriptional activity, thereby modulating the transcriptional profile essential for cancer cell proliferation and survival. The pyruvate dehydrogenase kinases (PDKs) PDK1 and PDK3 are direct targets of KDM4A and E2F1 and modulate the switch between glycolytic metabolism and mitochondrial oxidation. Downregulation of KDM4A leads to elevated activity of pyruvate dehydrogenase and mitochondrial oxidation, resulting in excessive accumulation of reactive oxygen species. The altered metabolic phenotypes can be partially rescued by ectopic expression of PDK1 and PDK3, indicating a KDM4A-dependent tumor metabolic regulation via PDK. Our results suggest that KDM4A is a key regulator of tumor metabolism and a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Chiu-Lien Hung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yun-Ru Chen
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA 91010, USA
| | - Joy C Yang
- Department of Urology, University of California, Davis, Sacramento, CA 95817, USA
| | - Junjian Wang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Mel Campbell
- Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA
| | - Yoshihiro Izumiya
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA; Department of Dermatology, University of California, Davis, Sacramento, CA 95817, USA
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Wen-Ching Wang
- Department of Life Sciences, National Tsinghua University, Hsinchu 30013, Taiwan
| | - David K Ann
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA 91010, USA
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817, USA; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan.
| |
Collapse
|
15
|
Dobrynin G, McAllister TE, Leszczynska KB, Ramachandran S, Krieg AJ, Kawamura A, Hammond EM. KDM4A regulates HIF-1 levels through H3K9me3. Sci Rep 2017; 7:11094. [PMID: 28894274 PMCID: PMC5593970 DOI: 10.1038/s41598-017-11658-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 01/11/2023] Open
Abstract
Regions of hypoxia (low oxygen) occur in most solid tumours and cells in these areas are the most aggressive and therapy resistant. In response to decreased oxygen, extensive changes in gene expression mediated by Hypoxia-Inducible Factors (HIFs) contribute significantly to the aggressive hypoxic tumour phenotype. In addition to HIFs, multiple histone demethylases are altered in their expression and activity, providing a secondary mechanism to extend the hypoxic signalling response. In this study, we demonstrate that the levels of HIF-1α are directly controlled by the repressive chromatin mark, H3K9me3. In conditions where the histone demethylase KDM4A is depleted or inactive, H3K9me3 accumulates at the HIF-1α locus, leading to a decrease in HIF-1α mRNA and a reduction in HIF-1α stabilisation. Loss of KDM4A in hypoxic conditions leads to a decreased HIF-1α mediated transcriptional response and correlates with a reduction in the characteristics associated with tumour aggressiveness, including invasion, migration, and oxygen consumption. The contribution of KDM4A to the regulation of HIF-1α is most robust in conditions of mild hypoxia. This suggests that KDM4A can enhance the function of HIF-1α by increasing the total available protein to counteract any residual activity of prolyl hydroxylases.
Collapse
Affiliation(s)
- Grzegorz Dobrynin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Tom E McAllister
- Department of Chemistry, Chemistry Research Laboratory, The University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Katarzyna B Leszczynska
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Shaliny Ramachandran
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK
| | - Adam J Krieg
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| | - Akane Kawamura
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre of Human Genetics, Roosevelt Drive, The University of Oxford, Oxford, OX3 7BN, UK
- Department of Chemistry, Chemistry Research Laboratory, The University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ester M Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
16
|
KDM4 Inhibition Targets Breast Cancer Stem–like Cells. Cancer Res 2017; 77:5900-5912. [DOI: 10.1158/0008-5472.can-17-1754] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/05/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022]
|
17
|
Su Y, Yu QH, Wang XY, Yu LP, Wang ZF, Cao YC, Li JD. JMJD2A promotes the Warburg effect and nasopharyngeal carcinoma progression by transactivating LDHA expression. BMC Cancer 2017; 17:477. [PMID: 28693517 PMCID: PMC5504777 DOI: 10.1186/s12885-017-3473-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/02/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Jumonji C domain 2A (JMJD2A), as a histone demethylases, plays a vital role in tumorigenesis and progression. But, its functions and underlying mechanisms of JMJD2A in nasopharyngeal carcinoma (NPC) metabolism are remained to be clarified. In this study, we investigated glycolysis regulation by JMJD2A in NPC and the possible mechanism. METHODS JMJD2A expression was detected by Western blotting and Reverse transcription quantitative real-time PCR analysis. Then, we knocked down and ectopically expressed JMJD2A to detect changes in glycolytic enzymes. We also evaluated the impacts of JMJD2A-lactate dehydrogenase A (LDHA) signaling on NPC cell proliferation, migration and invasion. ChIP assays were used to test whether JMJD2A bound to the LDHA promoter. Finally, IHC was used to verify JMJD2A and LDHA expression in NPC tissue samples and analyze their correlation between expression and clinical features. RESULTS JMJD2A was expressed at high levels in NPC tumor tissues and cell lines. Both JMJD2A and LDHA expression were positively correlated with the tumor stage, metastasis and clinical stage. Additionally, the level of JMJD2A was positively correlated with LDHA expression in NPC patients, and higher JMJD2A and LDHA expression predicted a worse prognosis. JMJD2A alteration did not influence most of glycolytic enzymes expression, with the exception of PFK-L, PGAM-1, LDHB and LDHA, and LDHA exhibited the greatest decrease in expression. JMJD2A silencing decreased LDHA expression and the intracellular ATP level and increased LDH activity, lactate production and glucose utilization, while JMJD2A overexpression produced the opposite results. Furthermore, JMJD2A could combine to LDHA promoter region and regulate LDHA expression at the level of transcription. Activated JMJD2A-LDHA signaling pathway promoted NPC cell proliferation, migration and invasion. CONCLUSIONS JMJD2A regulated aerobic glycolysis by regulating LDHA expression. Therefore, the novel JMJD2A-LDHA signaling pathway could contribute to the Warburg effects in NPC progression.
Collapse
Affiliation(s)
- Yi Su
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China.
| | - Qiu-Hong Yu
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Xiang-Yun Wang
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Li-Ping Yu
- Department of E.N.T., Kenli People's Hospital, Shandong, China
| | - Zong-Feng Wang
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Ying-Chun Cao
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| | - Jian-Dong Li
- Department of E.N.T., Dongying People's Hospital, Shandong, 257091, China
| |
Collapse
|
18
|
Yang X, Pei S, Wang H, Jin Y, Yu F, Zhou B, Zhang H, Zhang D, Lin D. Tiamulin inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of CD73. BMC Cancer 2017; 17:255. [PMID: 28399915 PMCID: PMC5387263 DOI: 10.1186/s12885-017-3250-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/31/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Metastasis is the leading cause of death in breast cancer patients. CD73, also known as ecto-5'-nucleotidase, plays a critical role in cancer development including metastasis. The existing researches indicate that overexpression of CD73 promotes growth and metastasis of breast cancer. Therefore, CD73 inhibitor can offer a promising treatment for breast cancer. Here, we determined whether tiamulin, which was found to inhibit CD73, was able to suppress breast cancer development and explored the related mechanisms. METHODS We firstly measured the effect of tiamulin hydrogen fumarate (THF) on CD73 using high performance liquid chromatography (HPLC). Then, we investigated cell proliferation, migration and invasion in MDA-MB-231 human breast cancer cell line and 4 T1 mouse breast cancer cell line treated with THF by migration assay, invasion assay and activity assay. Besides, we examined the effect of THF on syngeneic mammary tumors of mice by immunohistochemistry. RESULTS Our data demonstrated that THF inhibited CD73 by decreasing the activity instead of the expression of CD73. In vitro, THF inhibited the proliferation, migration and invasion of MDA-MB-231 and 4 T1 cells by suppressing CD73 activity. In vivo, animal experiments showed that THF treatment resulted in significant reduction in syngeneic tumor growth, microvascular density and lung metastasis rate. CONCLUSIONS Our results indicate that THF inhibits growth and metastasis of breast cancer by blocking the activity of CD73, which may offer a promising treatment for breast cancer therapy.
Collapse
Affiliation(s)
- Xu Yang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shimin Pei
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Fang Yu
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Bin Zhou
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Hong Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Influence of the KDM4A rs586339 polymorphism on overall survival in Asian non-small-cell lung cancer patients. Pharmacogenet Genomics 2017; 27:120-123. [DOI: 10.1097/fpc.0000000000000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Sankar A, Kooistra SM, Gonzalez JM, Ohlsson C, Poutanen M, Helin K. Maternal expression of the JMJD2A/KDM4A histone demethylase is critical for pre-implantation development. Development 2017; 144:3264-3277. [DOI: 10.1242/dev.155473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Abstract
Regulation of chromatin composition through post-translational modifications of histones contributes to transcriptional regulation and is essential for many cellular processes, including differentiation and development. JMJD2A/KDM4A is a lysine demethylase with specificity towards di- and tri-methylated lysine 9 and lysine 36 of histone H3 (H3K9me2/me3 and H3K36me2/me3). Here, we report that Kdm4a as a maternal factor plays a key role in embryo survival and is vital for female fertility. Kdm4a−/- female mice ovulate normally with comparable fertilization but poor implantation rates, and cannot support healthy transplanted embryos to term. This is due to a role for Kdm4a in uterine function, where its loss causes reduced expression of key genes involved in ion transport, nutrient supply and cytokine signalling, that impact embryo survival. In addition, a significant proportion of Kdm4a deficient oocytes displays a poor intrinsic ability to develop into blastocysts. These embryos cannot compete with healthy embryos for implantation in vivo, highlighting Kdm4a as a maternal effect gene. Thus, our study dissects an important dual role for maternal Kdm4a in determining faithful early embryonic development and the implantation process.
Collapse
Affiliation(s)
- Aditya Sankar
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Present Address: Centre for Chromosome Stability, Institute of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Susanne Marije Kooistra
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Denmark
- Present Address: Department of Neuroscience, University Medical Centre, Groningen, University of Groningen, Groningen, The Netherlands
| | - Javier Martin Gonzalez
- Core Facility for Transgenic Mice, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Claes Ohlsson
- Department of Physiology Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matti Poutanen
- Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology Turku Center for Disease Modeling (TCDM), Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kristian Helin
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Denmark
- The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
21
|
Garcia J, Lizcano F. KDM4C Activity Modulates Cell Proliferation and Chromosome Segregation in Triple-Negative Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2016; 10:169-175. [PMID: 27840577 PMCID: PMC5094578 DOI: 10.4137/bcbcr.s40182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/14/2016] [Accepted: 08/20/2016] [Indexed: 12/23/2022]
Abstract
The Jumonji-containing domain protein, KDM4C, is a histone demethylase associated with the development of several forms of human cancer. However, its specific function in the viability of tumoral lineages is yet to be determined. This work investigates the importance of KDM4C activity in cell proliferation and chromosome segregation of three triple-negative breast cancer cell lines using a specific demethylase inhibitor. Immunofluorescence assays show that KDM4C is recruited to mitotic chromosomes and that the modulation of its activity increases the number of mitotic segregation errors. However, 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cell proliferation assays demonstrate that the demethylase activity is required for cell viability. These results suggest that the histone demethylase activity of KDM4C is essential for breast cancer progression given its role in the maintenance of chromosomal stability and cell growth, thus highlighting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeison Garcia
- Doctorate in Biosciences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| | - Fernando Lizcano
- Doctorate in Biosciences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
22
|
Black JC, Whetstine JR. Tipping the lysine methylation balance in disease. Biopolymers 2016; 99:127-35. [PMID: 23175387 DOI: 10.1002/bip.22136] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/28/2022]
Abstract
Genomic instability is a major contributing factor to the development and onset of diseases such as cancer. Emerging evidence has demonstrated that maintaining the proper balance of histone lysine methylation is critical to preserve genomic integrity. Genome-wide association studies, gene sequencing, and genome-wide mapping approaches have helped identify mutations, copy number changes, and aberrant gene regulation of lysine methyltransferases (KMTs) and demethylases (KDMs) associated with cancer and cognitive disorders. Structural analysis of KMTs and KDMs has demonstrated the drugability of these enzymes and has led to the discovery of small molecule inhibitors. Use of these inhibitors has allowed better understanding of the biochemical properties of KMTs and KDMs and demonstrated potential for therapeutic use. This review will highlight the methyl modifications, KMTs and KDMs associated with cancer and neurological disorders and how KMT and KDM and the potential for treatment of these conditions with small molecule inhibitors.
Collapse
Affiliation(s)
- Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129
| | | |
Collapse
|
23
|
Wang D, Han S, Peng R, Jiao C, Wang X, Yang X, Yang R, Li X. Depletion of histone demethylase KDM5B inhibits cell proliferation of hepatocellular carcinoma by regulation of cell cycle checkpoint proteins p15 and p27. J Exp Clin Cancer Res 2016; 35:37. [PMID: 26911146 PMCID: PMC4766611 DOI: 10.1186/s13046-016-0311-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/19/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND KDM5B is a jmjc domain-containing histone demethylase which remove tri-, di-, and monomethyl groups from histone H3 lysine 4 (H3K4). KDM5B has been determined as an oncogene in many malignancies. However, its expression and role in hepatocellular carcinoma (HCC) remain unknown. METHODS We detected the expression of KDM5B in HCC tissues and cell lines. Cell proliferation was performed to reveal the role of KDM5B depletion on HCC cells both in vivo and in vitro. Flow cytometry was used to analyze the cell cycle and chip analysis was conducted to determine the direct target of KDM5B. RESULTS KDM5B is frequently up-regulated in HCC specimens compared with adjacent normal tissues and its expression level was significantly correlated with tumor size, TNM stage, and Edmondson grade. Moreover, Kaplan-Meier survival analysis showed that patients with high levels of KDM5B expression had a relatively poor prognosis. Knockdown of KDM5B notably inhibits HCC cell proliferation both in vivo and in vitro via arresting the cell cycle at G1/S phase partly through up-regulation of p15 and p27. Further molecular mechanism study indicates that silencing of KDM5B promotes p15 and p27 expression by increasing histone H3K4 trimethylation in their promoters. CONCLUSIONS KDM5B could be a potentially therapeutic target, which provides a rationale for the development of histone demethylase inhibitors as a strategy against HCC.
Collapse
Affiliation(s)
- Dong Wang
- Liver Transplantation Center, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Sheng Han
- Liver Transplantation Center, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Rui Peng
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Chenyu Jiao
- Liver Transplantation Center, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xing Wang
- Liver Transplantation Center, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xinxiang Yang
- Liver Transplantation Center, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Renjie Yang
- Liver Transplantation Center, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiangcheng Li
- Liver Transplantation Center, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
24
|
Rüger N, Roatsch M, Emmrich T, Franz H, Schüle R, Jung M, Link A. Tetrazolylhydrazides as Selective Fragment-Like Inhibitors of the JumonjiC-Domain-Containing Histone Demethylase KDM4A. ChemMedChem 2015; 10:1875-83. [DOI: 10.1002/cmdc.201500335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Nicole Rüger
- Institute of Pharmacy; Ernst-Moritz-Arndt-Universität Greifswald; Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Germany
| | - Martin Roatsch
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Albertstr. 25 79104 Freiburg Germany
| | - Thomas Emmrich
- Institute of Pharmacy; Ernst-Moritz-Arndt-Universität Greifswald; Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Germany
| | - Henriette Franz
- University of Freiburg Medical Center; Department of Urology, Women's Hospital and Center for Clinical Research; Breisacher Str. 66 79106 Freiburg Germany
| | - Roland Schüle
- University of Freiburg Medical Center; Department of Urology, Women's Hospital and Center for Clinical Research; Breisacher Str. 66 79106 Freiburg Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences; Albert-Ludwigs-Universität Freiburg; Albertstr. 25 79104 Freiburg Germany
| | - Andreas Link
- Institute of Pharmacy; Ernst-Moritz-Arndt-Universität Greifswald; Friedrich-Ludwig-Jahn-Str. 17 17487 Greifswald Germany
| |
Collapse
|
25
|
Liu K, Liu Y, Lau JL, Min J. Epigenetic targets and drug discovery Part 2: Histone demethylation and DNA methylation. Pharmacol Ther 2015; 151:121-40. [PMID: 25857453 DOI: 10.1016/j.pharmthera.2015.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Chromatin structure is dynamically modulated by various chromatin modifications, such as histone/DNA methylation and demethylation. We have reviewed histone methyltransferases and methyllysine binders in terms of small molecule screening and drug discovery in the first part of this review series. In this part, we will summarize recent progress in chemical probe and drug discovery of histone demethylases and DNA methyltransferases. Histone demethylation and DNA methylation have attracted a lot of attention regarding their biology and disease implications. Correspondingly, many small molecule compounds have been designed to modulate the activity of histone demethylases and DNA methyltransferases, and some of them have been developed into therapeutic drugs or put into clinical trials.
Collapse
Affiliation(s)
- Ke Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yanli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Johnathan L Lau
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, PR China; Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
26
|
Sainathan S, Paul S, Ramalingam S, Baranda J, Anant S, Dhar A. Histone Demethylases in Cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40495-015-0025-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Wang HL, Liu MM, Ma X, Fang L, Zhang ZF, Song TF, Gao JY, Kuang Y, Jiang J, Li L, Wang YY, Li PL. Expression and effects of JMJD2A histone demethylase in endometrial carcinoma. Asian Pac J Cancer Prev 2015; 15:3051-6. [PMID: 24815446 DOI: 10.7314/apjcp.2014.15.7.3051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous studies have demonstrated that JMJD2A is a potential oncogene and is overexpressed in human tumors. However, its role in the endometrial carcinoma remains largely unknown. In this study, we discovered that JMJD2A was overexpressed in endometrial carcinoma, using immunohistochemistry, quantitative real- time polymerase chain reaction, and western blotting. Downregulation of JMJD2A led to reduced endometrial carcinoma RL95-2 and ISK cell proliferation, invasion and metastasis as asessed with cell counting kit-8, cell migration and invasive assays. Collectively, our results support that JMJD2A is a promoter of endometrial carcinoma cell proliferation and survival, and is a potential novel drug target.
Collapse
Affiliation(s)
- Hong-Li Wang
- Department of Obstetrics and Gynaecology, Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China E-mail :
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guerra-Calderas L, González-Barrios R, Herrera LA, Cantú de León D, Soto-Reyes E. The role of the histone demethylase KDM4A in cancer. Cancer Genet 2014; 208:215-24. [PMID: 25633974 DOI: 10.1016/j.cancergen.2014.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
Histone posttranslational modifications are important components of epigenetic regulation. One extensively studied modification is the methylation of lysine residues. These modifications were thought to be irreversible. However, several proteins with histone lysine demethylase functions have been discovered and characterized. Among these proteins, KDM4A is the first histone lysine demethylase shown to demethylate trimethylated residues. This enzyme plays an important role in gene expression, cellular differentiation, and animal development. Recently, it has also been shown to be involved in cancer. In this review, we focus on describing the structure, mechanisms, and function of KDM4A. We primarily discuss the role of KDM4A in cancer development and the importance of KDM4A as a potential therapeutic target.
Collapse
Affiliation(s)
- Lissania Guerra-Calderas
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - David Cantú de León
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
29
|
Li LL, Xue AM, Li BX, Shen YW, Li YH, Luo CL, Zhang MC, Jiang JQ, Xu ZD, Xie JH, Zhao ZQ. JMJD2A contributes to breast cancer progression through transcriptional repression of the tumor suppressor ARHI. Breast Cancer Res 2014; 16:R56. [PMID: 24886710 PMCID: PMC4077733 DOI: 10.1186/bcr3667] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 05/22/2014] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Breast cancer is a worldwide health problem and the leading cause of cancer death among females. We previously identified Jumonji domain containing 2A (JMJD2A) as a critical mediator of breast cancer proliferation, migration and invasion. We now report that JMJD2A could promote breast cancer progression through transcriptional repression of the tumor suppressor aplasia Ras homolog member I (ARHI). METHODS Immunohistochemistry was performed to examine protein expressions in 155 cases of breast cancer and 30 non-neoplastic tissues. Spearman correlation analysis was used to analyze the correlation between JMJD2A expression and clinical parameters as well as several tumor regulators in 155 cases of breast cancer. Gene and protein expressions were monitored by quantitative polymerase chain reaction (qPCR) and Western blot. Results from knockdown of JMJD2A, overexpression of JMJD2A, Co-immunoprecipitation (Co-IP) assay, dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) elucidated molecular mechanisms of JMJD2A action in breast cancer progression. Furthermore, the effects of ARHI overexpression on JMJD2A-mediated tumor progression were investigated in vitro and in vivo. For in vitro experiments, cell proliferation, wound-healing, migration and invasion were monitored by cell counting, scratch and Boyden Chamber assays. For in vivo experiments, control cells and cells stably expressing JMJD2A alone or together with ARHI were inoculated into mammary fat pads of mice. Tumor volume, tumor weight and metastatic nodules were measured by caliper, electronic balance and nodule counting, respectively. RESULTS JMJD2A was highly expressed in human breast cancers and positively correlated with tumor progression. Knockdown of JMJD2A increased ARHI expression whereas overexpression of JMJD2A decreased ARHI expression at both protein and mRNA levels. Furthermore, E2Fs and histone deacetylases were involved in the transcriptional repression of ARHI expression by JMJD2A. And the aggressive behavior of JMJD2A in breast cancers could be reversed by re-expression of ARHI in vitro and in vivo. CONCLUSION We demonstrated a cancer-promoting effect of JMJD2A and defined a novel molecular pathway contributing to JMJD2A-mediated breast cancer progression.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Disease Progression
- E2F Transcription Factors/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- HEK293 Cells
- Histone Deacetylases/genetics
- Humans
- Jumonji Domain-Containing Histone Demethylases/biosynthesis
- Jumonji Domain-Containing Histone Demethylases/genetics
- MCF-7 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness/genetics
- Neoplasm Transplantation
- Promoter Regions, Genetic/genetics
- Protein Binding/genetics
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Small Interfering
- Transcription, Genetic/genetics
- Transplantation, Heterologous
- Wound Healing/genetics
- rho GTP-Binding Proteins/biosynthesis
- rho GTP-Binding Proteins/genetics
Collapse
Affiliation(s)
- Li-Liang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Ai-Min Xue
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Bei-Xu Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Yi-Wen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Yu-Hua Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Cheng-Liang Luo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Ming-Chang Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Jie-Qing Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Zu-De Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Jian-Hui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| | - Zi-Qin Zhao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Xuhui district, Shanghai 200032, P. R. China
| |
Collapse
|
30
|
Hu CE, Liu YC, Zhang HD, Huang GJ. JMJD2A predicts prognosis and regulates cell growth in human gastric cancer. Biochem Biophys Res Commun 2014; 449:1-7. [PMID: 24802408 DOI: 10.1016/j.bbrc.2014.04.126] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 02/09/2023]
Abstract
A number of JmjC domain-containing histone demethylases have been identified and biochemically characterized in mammalian. JMJD2A is a transcriptional cofactor and enzyme that catalyzes demethylation of histone H3 lysines 9 and 36. Here in this study, we aim to explore the role of JMJD2A in human gastric cancer. Quantitative real-time PCR, Western blot and immunohistochemistry analyses reveal higher expression of JMJD2A in clinical gastric cancer tissues than that in normal gastric mucosa. JMJD2A expression is associated with tumor stage and nodal status, and high level of JMJD2A predicts poor overall and disease-free survival. Univariate and multivariate survival analyses demonstrate that JMJD2A could serve as an independent prognostic factor. Furthermore, we show that inhibition the expression of JMJD2A attenuates the growth and transformation of three lines of gastric cancer cells. Mechanically, JMJD2A knockdown induces apoptosis of gastric cancer cells by up-regulating the expression of pro-apoptotic proteins and by down-regulating anti-apoptotic protein. Finally, we show that JMJD2A level is correlated with the level of the pro-apoptotic microRNA miR-34a in gastric cancer tissues and JMJD2A represses the expression of miR-34a by decreasing its promoter activity. Those findings demonstrate that JMJD2A regulates gastric cancer growth and serves as an independent prognostic factor, and implicate that JMJD2A may be a promising target for intervention.
Collapse
Affiliation(s)
- Cheng-En Hu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong-Chao Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui-Dong Zhang
- Department of General Surgery, Shanghai Children's Medical Center, Shanghai, China
| | - Guang-Jian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, Oppermann U. The roles of Jumonji-type oxygenases in human disease. Epigenomics 2014; 6:89-120. [PMID: 24579949 PMCID: PMC4233403 DOI: 10.2217/epi.13.79] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The iron- and 2-oxoglutarate-dependent oxygenases constitute a phylogenetically conserved class of enzymes that catalyze hydroxylation reactions in humans by acting on various types of substrates, including metabolic intermediates, amino acid residues in different proteins and various types of nucleic acids. The discovery of jumonji (Jmj), the founding member of a class of Jmj-type chromatin modifying enzymes and transcriptional regulators, has culminated in the discovery of several branches of histone lysine demethylases, with essential functions in regulating the epigenetic landscape of the chromatin environment. This work has now been considerably expanded into other aspects of epigenetic biology and includes the discovery of enzymatic steps required for methyl-cytosine demethylation as well as modification of RNA and ribosomal proteins. This overview aims to summarize the current knowledge on the human Jmj-type enzymes and their involvement in human pathological processes, including development, cancer, inflammation and metabolic diseases.
Collapse
Affiliation(s)
- Catrine Johansson
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Anthony Tumber
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - KaHing Che
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
| | - Peter Cain
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
| | - Radoslaw Nowak
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
- Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK
| | - Carina Gileadi
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
| | - Udo Oppermann
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Botnar Research Center, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, Oxford, OX3 7LD, UK
- Systems Approaches to Biomedical Sciences, Industrial Doctorate Center (SABS IDC) Oxford, UK
| |
Collapse
|
32
|
Abstract
Lysine methylation is one of the most prominent histone posttranslational modifications that regulate chromatin structure. Changes in histone lysine methylation status have been observed during cancer formation, which is thought to be a consequence of the dysregulation of histone lysine methyltransferases or the opposing demethylases. KDM4/JMJD2 proteins are demethylases that target histone H3 on lysines 9 and 36 and histone H1.4 on lysine 26. This protein family consists of three ~130-kDa proteins (KDM4A-C) and KDM4D/JMJD2D, which is half the size, lacks the double PHD and Tudor domains that are epigenome readers and present in the other KDM4 proteins, and has a different substrate specificity. Various studies have shown that KDM4A/JMJD2A, KDM4B/JMJD2B, and/or KDM4C/JMJD2C are overexpressed in breast, colorectal, lung, prostate, and other tumors and are required for efficient cancer cell growth. In part, this may be due to their ability to modulate transcription factors such as the androgen and estrogen receptor. Thus, KDM4 proteins present themselves as novel potential drug targets. Accordingly, multiple attempts are under way to develop KDM4 inhibitors, which could complement the existing arsenal of epigenetic drugs that are currently limited to DNA methyltransferases and histone deacetylases.
Collapse
Affiliation(s)
- William L Berry
- Department of Cell Biology and Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
33
|
Kogure M, Takawa M, Cho HS, Toyokawa G, Hayashi K, Tsunoda T, Kobayashi T, Daigo Y, Sugiyama M, Atomi Y, Nakamura Y, Hamamoto R. Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G(1)/S transition. Cancer Lett 2013; 336:76-84. [PMID: 23603248 DOI: 10.1016/j.canlet.2013.04.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 01/11/2023]
Abstract
Although a number of JmjC-containing histone demethylases have been identified and biochemically characterized, pathological roles of their dysfunction in human disease such as cancer have not been well elucidated. Here, we report the Jumonji domain containing 2A (JMJD2A) is integral to proliferation of cancer cells. Quantitative real-time PCR analysis revealed higher expression of JMJD2A in clinical bladder cancer tissues than in corresponding non-neoplastic tissues (P<0.0001). Immunohistochemical analysis also showed positive staining for JMJD2A in 288 out of 403 lung cancer cases, whereas no staining was observed in lung normal tissues. Suppression of JMJD2A expression in lung and bladder cancer cells overexpressing this gene, using specific siRNAs, inhibited incorporation of BrdU and resulted in significant suppression of cell growth. Furthermore, JMJD2A appears to directly transactivate the expression of some tumor associated proteins including ADAM12 through the regulation of histone H3K9 methylation. As expression levels of JMJD2A are low in normal tissues, it may be feasible to develop specific inhibitors targeting the enzyme as anti-tumor agents which should have a minimal risk of adverse reaction.
Collapse
Affiliation(s)
- Masaharu Kogure
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 2013. [PMID: 23200123 DOI: 10.1016/j.molcel.2012.11.006] [Citation(s) in RCA: 904] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone lysine methylation has emerged as a critical player in the regulation of gene expression, cell cycle, genome stability, and nuclear architecture. Over the past decade, a tremendous amount of progress has led to the characterization of methyl modifications and the lysine methyltransferases (KMTs) and lysine demethylases (KDMs) that regulate them. Here, we review the discovery and characterization of the KMTs and KDMs and the methyl modifications they regulate. We discuss the localization of the KMTs and KDMs as well as the distribution of lysine methylation throughout the genome. We highlight how these data have shaped our view of lysine methylation as a key determinant of complex chromatin states. Finally, we discuss the regulation of KMTs and KDMs by proteasomal degradation, posttranscriptional mechanisms, and metabolic status. We propose key questions for the field and highlight areas that we predict will yield exciting discoveries in the years to come.
Collapse
Affiliation(s)
- Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13(th) Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
35
|
Paolicchi E, Crea F, Farrar WL, Green JE, Danesi R. Histone lysine demethylases in breast cancer. Crit Rev Oncol Hematol 2012; 86:97-103. [PMID: 23266085 DOI: 10.1016/j.critrevonc.2012.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 01/01/2023] Open
Abstract
Histone lysine demethylases (KDMs) have been recently discovered in mammals and have been nicknamed "erasers" for their ability to remove methyl groups from histone substrates. In cancer cells, KDMs can activate or repress gene transcription, behaving as oncogenes or tumor suppressors depending upon the cellular context. In order to investigate the potential role of KDMs in Breast Cancer (BC), we queried the Oncomine database and determined that the expression of KDMs correlates with BC prognosis. High expression of KDM3B and KDM5A is associated with a better prognosis (no recurrence after mastectomy p=0.005 and response to docetaxel p=0.005); conversely, KDM6A is overexpressed in BC patients with an unfavorable prognosis (mortality at 1 year, p=8.65E-7). Our findings suggest that KDMs could be potential targets for BC therapy. Further, altering the interactions between KDMs and Polycomb Group genes (PcG) may provide novel avenues for therapy that specifically targets these genes in BC.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute/NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
36
|
Krishnan S, Trievel RC. Structural and functional analysis of JMJD2D reveals molecular basis for site-specific demethylation among JMJD2 demethylases. Structure 2012; 21:98-108. [PMID: 23219879 DOI: 10.1016/j.str.2012.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/19/2012] [Accepted: 10/31/2012] [Indexed: 11/24/2022]
Abstract
JMJD2 lysine demethylases (KDMs) participate in diverse genomic processes. Most JMJD2 homologs display dual selectivity toward H3K9me3 and H3K36me3, with the exception of JMJD2D, which is specific for H3K9me3. Here, we report the crystal structures of the JMJD2D⋅2-oxoglutarate⋅H3K9me3 ternary complex and JMJD2D apoenzyme. Utilizing structural alignments with JMJD2A, molecular docking, and kinetic analysis with an array of histone peptide substrates, we elucidate the specific signatures that permit efficient recognition of H3K9me3 by JMJD2A and JMJD2D, and the residues in JMJD2D that occlude H3K36me3 demethylation. Surprisingly, these results reveal that JMJD2A and JMJD2D exhibit subtle yet important differences in H3K9me3 recognition, despite the overall similarity in the substrate-binding conformation. Further, we show that H3T11 phosphorylation abrogates demethylation by JMJD2 KDMs. Together, these studies reveal the molecular basis for JMJD2 site specificity and provide a framework for structure-based design of selective inhibitors of JMJD2 KDMs implicated in disease.
Collapse
Affiliation(s)
- Swathi Krishnan
- Department of Biological Chemistry, 1150 West Medical Center Drive, 5301 Medical Science Research Building III, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, 1150 West Medical Center Drive, 5301 Medical Science Research Building III, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Young LC, Hendzel MJ. The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression. Biochem Cell Biol 2012; 91:369-77. [PMID: 24219278 DOI: 10.1139/bcb-2012-0054] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Jumonji D2 proteins (JMJD2/KDM4) function to demethylate di- and trimethylated (me2/3) histone 3 lysine 9 (H3K9me2/3) and H3K36me3. Knockout mouse models for Kdm4b and Kdm4d have not resulted in gross abnormalities, while mouse models for Kdm4a and Kdm4c have not been reported. However, the KDM4 subfamily of demethylases are overexpressed in several tumor types. Overexpression of KDM4 proteins alters transcription and chromatin remodeling, driving cellular proliferation, anchorage-independent growth, invasion, and migration. Increased proliferation occurs through KDM4-mediated modification of cell cycle timing, as well as through increased numbers of replication forks. Recent evidence also suggests that KDM4C overexpression contributes to the maintenance of a pluripotent state. Together these data suggest that overexpression of KDM4 proteins induces numerous oncogenic effects.
Collapse
Affiliation(s)
- Leah C Young
- Cross Cancer Institute and the Department of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | | |
Collapse
|
38
|
Mallette FA, Richard S. JMJD2A promotes cellular transformation by blocking cellular senescence through transcriptional repression of the tumor suppressor CHD5. Cell Rep 2012; 2:1233-43. [PMID: 23168260 DOI: 10.1016/j.celrep.2012.09.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/30/2012] [Accepted: 09/27/2012] [Indexed: 11/25/2022] Open
Abstract
Senescence is a cellular response preventing tumorigenesis. The Ras oncogene is frequently activated or mutated in human cancers, but Ras activation is insufficient to transform primary cells. In a search for cooperating oncogenes, we identify the lysine demethylase JMJD2A/KDM4A. We show that JMJD2A functions as a negative regulator of Ras-induced senescence and collaborates with oncogenic Ras to promote cellular transformation by negatively regulating the p53 pathway. We find CHD5, a known tumor suppressor regulating p53 activity, as a target of JMJD2A. The expression of JMJD2A inhibits Ras-mediated CHD5 induction leading to a reduced activity of the p53 pathway. In addition, we show that JMJD2A is overexpressed in mouse and human lung cancers. Depletion of JMJD2A in the human lung cancer cell line A549 bearing an activated K-Ras allele triggers senescence. We propose that JMJD2A is an oncogene that represents a target for Ras-expressing tumors.
Collapse
Affiliation(s)
- Frédérick A Mallette
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | | |
Collapse
|
39
|
Epigenetic control and cancer: the potential of histone demethylases as therapeutic targets. Pharmaceuticals (Basel) 2012; 5:963-90. [PMID: 24280700 PMCID: PMC3816642 DOI: 10.3390/ph5090963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/21/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
The development of cancer involves an immense number of factors at the molecular level. These factors are associated principally with alterations in the epigenetic mechanisms that regulate gene expression profiles. Studying the effects of chromatin structure alterations, which are caused by the addition/removal of functional groups to specific histone residues, are of great interest as a promising way to identify markers for cancer diagnosis, classify the disease and determine its prognosis, and these markers could be potential targets for the treatment of this disease in its different forms. This manuscript presents the current point of view regarding members of the recently described family of proteins that exhibit histone demethylase activity; histone demethylases are genetic regulators that play a fundamental role in both the activation and repression of genes and whose expression has been observed to increase in many types of cancer. Some fundamental aspects of their association with the development of cancer and their relevance as potential targets for the development of new therapeutic strategies at the epigenetic level are discussed in the following manuscript.
Collapse
|
40
|
Berry WL, Shin S, Lightfoot SA, Janknecht R. Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol 2012; 41:1701-6. [PMID: 22948256 DOI: 10.3892/ijo.2012.1618] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 07/06/2012] [Indexed: 11/05/2022] Open
Abstract
Estrogen receptor α (ERα) plays a pivotal role in the genesis of the majority of breast tumors. Consequently, endocrine therapy is now routinely utilized in the clinic for the treatment of ERα-positive breast cancer patients. However, how ERα activity becomes dysregulated in breast cancer cells remains to be elucidated. The aim of this study was to show that the histone demethylase JMJD2A, also known as KDM4A, is capable of forming a complex with ERα in vivo. Moreover, wild-type JMJD2A, but not a catalytically impaired mutant, was able to strongly coactivate ERα-mediated transcription. Consistently, the downregulation of JMJD2A in human T47D breast cancer cells led to a decreased expression of cyclin D1, a prominent ERα target gene and cell cycle regulator. The downregulation of JMJD2A induced a reduction in the growth of T47D cells. In addition, we found that JMJD2A is overexpressed in human breast tumors both at the mRNA and protein level. Taken together, these data indicate that the overexpression of JMJD2A may contribute to breast tumor formation by stimulating ERα activity and that JMJD2A may be a breast-relevant oncoprotein. As such, small molecule drugs targeting the catalytic center of JMJD2A might be useful in breast cancer adjuvant therapy.
Collapse
Affiliation(s)
- William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
41
|
Hoffmann I, Roatsch M, Schmitt ML, Carlino L, Pippel M, Sippl W, Jung M. The role of histone demethylases in cancer therapy. Mol Oncol 2012; 6:683-703. [PMID: 22902149 DOI: 10.1016/j.molonc.2012.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022] Open
Abstract
Reversible histone methylation has emerged in the last few years as an important mechanism of epigenetic regulation. Histone methyltransferases and demethylases have been identified as contributing factors in the development of several diseases, especially cancer. Therefore, they have been postulated to be new drug targets with high therapeutic potential. Here, we review histone demethylases with a special focus on their potential role in oncology drug discovery. We present an overview over the different classes of enzymes, their biochemistry, selected data on their role in physiology and already available inhibitors.
Collapse
Affiliation(s)
- Inga Hoffmann
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|