1
|
Panda S, Anandan A, Shafi KM, Naika MBN, Sowdhamini R, Vanishree G, Sarkar S, Travis AJ, Norton GJ, Price AH. Genome-wide association study reveals effect of nsSNPs on candidate genes in rice during iron deficiency. Funct Integr Genomics 2024; 24:198. [PMID: 39453460 DOI: 10.1007/s10142-024-01478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Resource-poor areas with moisture deficit lands following aerobic and direct seeded rice (DSR) methods of cultivation face severe problems of iron deficiency. In this study, Bengal and Assam Aus rice panel was phenotyped at the seedling stage using an iron-deprived hydroponic medium for various shoot and root traits. A novel iron deficiency scoring scale was used to classify the tolerance reaction and could range anywhere between 0 and 9, indicating the most tolerant and susceptible, respectively. The GWAS results identified four putative candidate genes; OsFLA for number of leaves and shoot length, OsBIDK1 for root traits; average diameter, volume, biomass, projected area, and surface area, OsHPL3 for chlorophyll index of the third leaf and AKR2B (XBOS252) was for Fe score, (which was earlier reported in relation to Xa21). The nsSNP (nsSNPs) variations in these gene sequences were used to group the panel and identify superior haplotypes and donors. BR16 was identified as a superior donor, with higher chlorophyll index and shoot length than RA23, also higher values for root traits like root average diameter, root volume, root projected area and root surface area followed by Shete Bhado. The impact of identified nsSNPs on protein structure and stability was investigated. The conserved domains detected in the mutated proteins of the superior haplotypes are very informative, highlighting that natural selection favors abiotic stress tolerant variants in resource poor areas. Thus, justifying our choice of Aus landraces for association mapping of Fe deficiency tolerant genes in rice.
Collapse
Affiliation(s)
- Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack, India
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar, India
- Department of Genetics and Plant Breeding, IAS, SOA(DU), Bhubaneswar, India
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack, India.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India.
| | - K Mohamed Shafi
- National Centre for Biological Sciences (TIFR), Bengaluru, India
| | - Mahantesha B N Naika
- Department of Biotechnology and Crop Improvement, KRCCH, Arabhavi, University of Horticultural Sciences, Bagalkot, Karnataka, India
| | - R Sowdhamini
- National Centre for Biological Sciences (TIFR), Bengaluru, India
- University of Horticultural Sciences, Bagalkot, Karnataka, India
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - G Vanishree
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Sutapa Sarkar
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack, India
| | - Anthony J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Gareth J Norton
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Adam H Price
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Rajkumar MS, Tembhare K, Garg R, Jain M. Genome-wide mapping of DNase I hypersensitive sites revealed differential chromatin accessibility and regulatory DNA elements under drought stress in rice cultivars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2063-2079. [PMID: 38859561 DOI: 10.1111/tpj.16864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024]
Abstract
Drought stress (DS) is one of the major constraints limiting yield in crop plants including rice. Gene regulation under DS is largely governed by accessibility of the transcription factors (TFs) to their cognate cis-regulatory elements (CREs). In this study, we used DNase I hypersensitive assays followed by sequencing to identify the accessible chromatin regions under DS in a drought-sensitive (IR64) and a drought-tolerant (N22) rice cultivar. Our results indicated that DNase I hypersensitive sites (DHSs) were highly enriched at transcription start sites (TSSs) and numerous DHSs were detected in the promoter regions. DHSs were concurrent with epigenetic marks and the genes harboring DHSs in their TSS and promoter regions were highly expressed. In addition, DS induced changes in DHSs (∆DHSs) in TSS and promoter regions were positively correlated with upregulation of several genes involved in drought/abiotic stress response, those encoding TFs and located within drought-associated quantitative trait loci, much preferentially in the drought-tolerant cultivar. The CREs representing the binding sites of TFs involved in DS response were detected within the ∆DHSs, suggesting differential accessibility of TFs to their cognate sites under DS in different rice cultivars, which may be further deployed for enhancing drought tolerance in rice.
Collapse
Affiliation(s)
- Mohan Singh Rajkumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kunal Tembhare
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
3
|
Jiao Y, Nigam D, Barry K, Daum C, Yoshinaga Y, Lipzen A, Khan A, Parasa SP, Wei S, Lu Z, Tello-Ruiz MK, Dhiman P, Burow G, Hayes C, Chen J, Brandizzi F, Mortimer J, Ware D, Xin Z. A large sequenced mutant library - valuable reverse genetic resource that covers 98% of sorghum genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1543-1557. [PMID: 38100514 DOI: 10.1111/tpj.16582] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Mutant populations are crucial for functional genomics and discovering novel traits for crop breeding. Sorghum, a drought and heat-tolerant C4 species, requires a vast, large-scale, annotated, and sequenced mutant resource to enhance crop improvement through functional genomics research. Here, we report a sorghum large-scale sequenced mutant population with 9.5 million ethyl methane sulfonate (EMS)-induced mutations that covered 98% of sorghum's annotated genes using inbred line BTx623. Remarkably, a total of 610 320 mutations within the promoter and enhancer regions of 18 000 and 11 790 genes, respectively, can be leveraged for novel research of cis-regulatory elements. A comparison of the distribution of mutations in the large-scale mutant library and sorghum association panel (SAP) provides insights into the influence of selection. EMS-induced mutations appeared to be random across different regions of the genome without significant enrichment in different sections of a gene, including the 5' UTR, gene body, and 3'-UTR. In contrast, there were low variation density in the coding and UTR regions in the SAP. Based on the Ka /Ks value, the mutant library (~1) experienced little selection, unlike the SAP (0.40), which has been strongly selected through breeding. All mutation data are publicly searchable through SorbMutDB (https://www.depts.ttu.edu/igcast/sorbmutdb.php) and SorghumBase (https://sorghumbase.org/). This current large-scale sequence-indexed sorghum mutant population is a crucial resource that enriched the sorghum gene pool with novel diversity and a highly valuable tool for the Poaceae family, that will advance plant biology research and crop breeding.
Collapse
Affiliation(s)
- Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Deepti Nigam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Chris Daum
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Yuko Yoshinaga
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Anna Lipzen
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Adil Khan
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sai-Praneeth Parasa
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | | | - Pallavi Dhiman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Gloria Burow
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Chad Hayes
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Jenny Mortimer
- Joint BioEnergy Institute, Emeryville, California, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California, 94720, USA
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Research Precinct, University of Adelaide, Glen Osmond, South Australia, 5064, Australia
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- USDA-ARS NAA Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, Ithaca, New York, 14853, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, Texas, 79424, USA
| |
Collapse
|
4
|
Zhang S, Ye H, Kong L, Li X, Chen Y, Wang S, Liu B. Multivariate Analysis Compares and Evaluates Heat Tolerance of Potato Germplasm. PLANTS (BASEL, SWITZERLAND) 2024; 13:142. [PMID: 38202450 PMCID: PMC10781149 DOI: 10.3390/plants13010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
High temperature is the most important environmental factor limiting potato (Solanum tuberosum L.) yield. The tuber yield has been used to evaluate the heat tolerance of some potato cultivars, but potato yield was closely correlated with the maturation period. Therefore, it is necessary to employ different parameters to comprehensively analyze and evaluate potato tolerance to heat stress. This study aimed to investigate physiologic changes during growth and development, and develop accurate heat tolerance evaluation methods of potato cultivars under heat stress. About 93 cultivars (including foreign elite lines, local landraces and cultivars) were screened using an in vitro tuber-inducing system (continuous darkness and 8% sucrose in the culture medium) under heat stress (30 °C) and normal (22 °C) conditions for 30 days. The tuber yield and number decreased significantly under heat stress compared to the control. A total of 42 cultivars were initially selected depending on tuber formation, after in vitro screening, further testing of selected cultivars was conducted in ex vitro conditions. The screened cultivars were further exposed to heat stress (35 °C/28 °C, day/night) for 60 days. Heat stress led to an increase in the plant height growth rate, fourth internode growth rate, and membrane damage, and due to heat-induced damage to chloroplasts, decrease in chlorophyll biosynthesis and photosynthetic efficiency. Three principal components were extracted by principal component analysis. Correlation and regression analysis showed that heat tolerance is positively correlated with the plant height growth rate, fourth internode growth rate, the content of chlorophyll b, photosynthetic rate, stomatal conductance, transpiration rate, tuber number, and tuber yield, and negatively correlated with the cell membrane injury level. The nine traits are accurate and representative indicators for evaluating potato tolerance to heat stress and could determine a relatively high mean forecast accuracy of 100.0% for the comprehensive evaluation value. Through cluster analysis and screening, cultivar FA, D73, and C132 had the highest heat comprehensive evaluation value, which could be further selected as heat-resistant varieties. This study provides insights into the different physiological mechanisms and accurate evaluation methods of potato cultivars under heat stress, which could be valuable for further research and breeding.
Collapse
Affiliation(s)
- Sujie Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Han Ye
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
| | - Lingshuang Kong
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiaoyu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yeqing Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shipeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Bailin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
| |
Collapse
|
5
|
TS A, Srivastava A, Tomar BS, Behera TK, Krishna H, Jain PK, Pandey R, Singh B, Gupta R, Mangal M. Genetic analysis of heat tolerance in hot pepper: insights from comprehensive phenotyping and QTL mapping. FRONTIERS IN PLANT SCIENCE 2023; 14:1232800. [PMID: 37692444 PMCID: PMC10491018 DOI: 10.3389/fpls.2023.1232800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
High temperatures present a formidable challenge to the cultivation of hot pepper, profoundly impacting not only vegetative growth but also leading to flower and fruit abscission, thereby causing a significant reduction in yield. To unravel the intricate genetic mechanisms governing heat tolerance in hot pepper, an F2 population was developed through the crossing of two distinct genotypes exhibiting contrasting heat tolerance characteristics: DLS-161-1 (heat tolerant) and DChBL-240 (heat susceptible). The F2 population, along with the parental lines, was subjected to comprehensive phenotyping encompassing diverse morphological, physiological, and biochemical heat-related traits under high temperature conditions (with maximum temperature ranging from 31 to 46.5°C and minimum temperature from 15.4 to 30.5°C). Leveraging the Illumina Nova Seq-6000 platform, Double digest restriction-site associated DNA sequencing (ddRAD-seq) was employed to generate 67.215 Gb data, with subsequent alignment of 218.93 million processed reads against the reference genome of Capsicum annuum. Subsequent variant calling and ordering resulted in 5806 polymorphic SNP markers grouped into 12 LGs. Further QTL analysis identified 64 QTLs with LOD values ranging from 2.517 to 11.170 and explained phenotypic variance ranging from 4.05 to 19.39%. Among them, 21 QTLs, explaining more than 10% phenotypic variance, were identified as major QTLs controlling 9 morphological, 3 physiological, and 2 biochemical traits. Interestingly, several QTLs governing distinct parameters were found to be colocalized, suggesting either a profound correlation between the QTLs regulating these traits or their significant genomic proximity. In addition to the QTLs, we also identified 368380 SSR loci within the identified QTL regions, dinucleotides being the most abundant type (211,381). These findings provide valuable insights into the genetics of heat tolerance in hot peppers. The identified QTLs and SSR markers offer opportunities to develop heat-tolerant varieties, ensuring better crop performance under high-temperature conditions.
Collapse
Affiliation(s)
- Aruna TS
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Arpita Srivastava
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Bhoopal Singh Tomar
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Tusar Kanti Behera
- Indian Council of Agricultural Research-Indian Institute of Vegetable Research (IIVR), Indian Council of Agricultural Research (ICAR), Varanasi, India
| | - Hari Krishna
- Division of Genetics, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Pradeep Kumar Jain
- National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Bhupinder Singh
- Division of Environment Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Ruchi Gupta
- Department of Computer Sciences, Jamia Milia Islamia, New Delhi, India
| | - Manisha Mangal
- Division of Vegetable Science, Indian Agricultural Research Institute, Indian Council of Agricultural Research (ICAR), New Delhi, India
| |
Collapse
|
6
|
Dwivedi AK, Singh V, Anwar K, Pareek A, Jain M. Integrated transcriptome, proteome and metabolome analyses revealed secondary metabolites and auxiliary carbohydrate metabolism augmenting drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107849. [PMID: 37393858 DOI: 10.1016/j.plaphy.2023.107849] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
Drought is one of the major consequences of climate change and a serious threat to rice production. Drought stress activates interactions among genes, proteins and metabolites at the molecular level. A comparative multi-omics analysis of drought-tolerant and drought-sensitive rice cultivars can decipher the molecular mechanisms involved in drought tolerance/response. Here, we characterized the global-level transcriptome, proteome, and metabolome profiles, and performed integrated analyses thereof in a drought-sensitive (IR64) and a drought-tolerant (Nagina 22) rice cultivar under control and drought-stress conditions. The transcriptional dynamics and its integration with proteome analysis revealed the role of transporters in regulation of drought stress. The proteome response illustrated the contribution of translational machinery to drought tolerance in N22. The metabolite profiling revealed that aromatic amino acids and soluble sugars contribute majorly to drought tolerance in rice. The integrated transcriptome, proteome and metabolome analysis performed using statistical and knowledge-based methods revealed the preference for auxiliary carbohydrate metabolism through glycolysis and pentose phosphate pathway contributed to drought tolerance in N22. In addition, L-phenylalanine and the genes/proteins responsible for its biosynthesis were also found to contribute to drought tolerance in N22. In conclusion, our study provided mechanistic insights into the drought response/adaptation mechanism and is expected to facilitate engineering of drought tolerance in rice.
Collapse
Affiliation(s)
- Anuj Kumar Dwivedi
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vikram Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Khalid Anwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Kumar R, Tripathi G, Goyal I, Sharma J, Tiwari R, Shimphrui R, Sarkar NK, Grover A. Insights into genomic variations in rice Hsp100 genes across diverse rice accessions. PLANTA 2023; 257:91. [PMID: 36995438 DOI: 10.1007/s00425-023-04123-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The Hsp101 gene is present across all sequenced rice genomes. However, as against Japonica rice, Hsp101 protein of most indica and aus rice contain insertion of glutamic acid at 907th position. The understanding of the heat stress response of rice plants is important for worldwide food security. We examined the presence/absence variations (PAVs) of heat shock proteins (Hsps)/heat shock transcription factor (Hsf) genes in cultivated rice accessions. While 53 Hsps/Hsfs genes showed variable extent of PAVs, 194 genes were the core genes present in all the rice accessions. ClpB1/Hsp101 gene, which is critically important for thermotolerance in plants, showed 100% distribution across the rice types. Within the ClpB1 gene sequence, 40 variation sites consisting of nucleotide polymorphisms (SNPs) and short insertion/deletions (InDels) were discerned. An InDel in ClpB1 leading to an in-frame insertion of 3 nucleotides (TCC) thereby an additional amino acid (glutamic acid) at 907th amino acid position was noted in most of the indica and aus as against japonica rice types. Three rice types namely Moroberekan (japonica), IR64 (indica) and N22 (aus) were further analyzed to address the question of ClpB1 genomic variations and its protein levels with the heat tolerance phenotype. The growth profiling analysis in the post heat stress (HS) period showed that N22 seedlings were most tolerant, IR64 moderately tolerant and Moroberekan highly sensitive. Importantly, the ClpB1 protein sequences of these three rice types showed distinct differences in terms of SNPs. As the ClpB1 protein levels accumulated post HS were generally higher in Moroberekan than N22 seedlings in our study, it is proposed that some additional gene loci in conjunction with ClpB1 regulate the overall rice heat stress response.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gayatri Tripathi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Isha Goyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Jaydeep Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Ruchi Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Rinchuila Shimphrui
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
8
|
Ren H, Bao J, Gao Z, Sun D, Zheng S, Bai J. How rice adapts to high temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1137923. [PMID: 37008476 PMCID: PMC10063981 DOI: 10.3389/fpls.2023.1137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
High-temperature stress affects crop yields worldwide. Identifying thermotolerant crop varieties and understanding the basis for this thermotolerance would have important implications for agriculture, especially in the face of climate change. Rice (Oryza sativa) varieties have evolved protective strategies to acclimate to high temperature, with different thermotolerance levels. In this review, we examine the morphological and molecular effects of heat on rice in different growth stages and plant organs, including roots, stems, leaves and flowers. We also explore the molecular and morphological differences among thermotolerant rice lines. In addition, some strategies are proposed to screen new rice varieties for thermotolerance, which will contribute to the improvement of rice for agricultural production in the future.
Collapse
Affiliation(s)
- Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingpei Bao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Wheat Research Center, Shijiazhuang, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
9
|
A Tomato EMS-Mutagenized Population Provides New Valuable Resources for Gene Discovery and Breeding of Developmental Traits. PLANTS 2022; 11:plants11192453. [PMID: 36235319 PMCID: PMC9571841 DOI: 10.3390/plants11192453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
Tomato (Solanum lycopersicum L.) is a major horticultural crop and a model species among eudicots, especially for traits related to reproductive development. Although considerable progress has been made since the tomato genome sequence project was completed, most of the genes identified remain predictions with an unknown or hypothetical function. This lack of functional characterization hampers the use of the huge amount of genomic information available to improve the quality and productivity of this crop. Reverse genetics strategies such as artificial mutagenesis and next-generation sequencing approaches build the perfect tandem for increasing knowledge on functional annotation of tomato genes. This work reports the phenotypic characterization of a tomato mutant collection generated from an EMS chemical mutagenesis program aimed to identify interesting agronomic mutants and novel gene functions. Tomato mutants were grouped into fourteen phenotypic classes, including vegetative and reproductive development traits, and the inheritance pattern of the identified mutations was studied. In addition, causal mutation of a selected mutant line was isolated through a mapping-by-sequencing approach as a proof of concept of this strategy’s successful implementation. Results support tomato mutagenesis as an essential tool for functional genomics in this fleshy-fruited model species and a highly valuable resource for future breeding programs of this crop species aimed at the development of more productive and resilient new varieties under challenging climatic and production scenarios.
Collapse
|
10
|
Stephen K, Beena R, Kiran AG, Shanija S, Saravanan R. Changes in physiological traits and expression of key genes involved in sugar signaling pathway in rice under high temperature stress. 3 Biotech 2022; 12:183. [PMID: 35875179 PMCID: PMC9300813 DOI: 10.1007/s13205-022-03242-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Efficient assimilate partitioning between the source and sink organs to achieve increased grain weight is coordinated by the sugar signaling mechanism. The expression of the genes involved in sugar signaling mainly hexokinases 2 (OsHXK2), Sucrose-nonfermentation1-related protein kinase1 (OsSnRK1), trehalose-6-phosphate synthase 1 (OsTPS1) and target of rapamycin (OsTOR) under high temperature stress was examined in tolerant (NL-44) and susceptible (Vandana) varieties of rice. The photosynthetic rate, stomatal conductance, water-use efficiency, photochemical efficiency (Fv/Fm), quantum yield (ϕPSII), pollen viability, spikelet fertility and 1000 grain weight were significantly higher in NL-44 compared to Vandana under stress. The difference in the gene expression levels in the vegetative and grain-filling phases as well as between the tolerant and susceptible varieties, revealed unique pathways of sugar signaling under heat stress. In the vegetative phase, the expression of OsTOR seems to be the difference between NL-44 and Vandana for their differed heat stress tolerance whereas, in the grain-filling phase, the difference between the varieties lay in the regulation of OsHXK2. The comparative changes in the expression levels between the genes under the varying conditions indicate the sugar status in the source and sink organs that are available for translocation or remobilization.
Collapse
Affiliation(s)
- K. Stephen
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - A. G. Kiran
- Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - S. Shanija
- Department of Plant Physiology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India
| | - R. Saravanan
- ICAR-CTCRI, Thiruvananthapuram, Kerala 695017 India
| |
Collapse
|
11
|
Da Costa MVJ, Ramegowda V, Ramakrishnan P, Nataraja KN, Sheshshayee MS. Comparative metabolite profiling of rice contrasts reveal combined drought and heat stress signatures in flag leaf and spikelets. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111262. [PMID: 35643604 DOI: 10.1016/j.plantsci.2022.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/04/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Under semi-irrigated ecosystem, rice is often exposed to a combination of drought and heat stress, especially at the reproductive stage, leading to substantial yield loss. Combined stress studies are very limited in rice partly due to the difficulty in creating heat stress on a larger scale. Here, 24 cultivars with specific stress adaptive traits were phenotyped for spikelet sterility under combined stress using the natural summer temperatures and open drought phenotyping facility, simulating the field conditions. LC-MS/MS based metabolite profiling was performed in flag leaves and spikelets of three cultivars contrasting for spikelet sterility and source (leaf weight) treated to drought, heat and combined stress. Constitutively regulated metabolites, metabolic signatures common to all stresses, cultivars and tissues, metabolites common to both the tissues across the stresses and cultivars and metabolites common to each cultivar across the tissues and stresses were identified. Under combined stress, metabolites differentially accumulated between cultivars contrasting for spikelet sterility but similar for source and cultivars contrasting for both spikelet sterility and source have been identified. These metabolites would serve as markers towards improving combined stress tolerance of rice.
Collapse
Affiliation(s)
| | - Venkategowda Ramegowda
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065 India.
| | - Padma Ramakrishnan
- Metabolomics Facility, Centre for Cellular and Molecular Platforms, GKVK, Bangalore 560065 India
| | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065 India
| | - M Sreeman Sheshshayee
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore 560065 India
| |
Collapse
|
12
|
Ferguson JN, Tidy AC, Murchie EH, Wilson ZA. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. PLANT, CELL & ENVIRONMENT 2021; 44:2066-2089. [PMID: 33538010 DOI: 10.1111/pce.14015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/20/2023]
Abstract
Impaired carbon metabolism and reproductive development constrain crop productivity during heat stress. Reproductive development is energy intensive, and its requirement for respiratory substrates rises as associated metabolism increases with temperature. Understanding how these processes are integrated and the extent to which they contribute to the maintenance of yield during and following periods of elevated temperatures is important for developing climate-resilient crops. Recent studies are beginning to demonstrate links between processes underlying carbon dynamics and reproduction during heat stress, consequently a summation of research that has been reported thus far and an evaluation of purported associations are needed to guide and stimulate future research. To this end, we review recent studies relating to source-sink dynamics, non-foliar photosynthesis and net carbon gain as pivotal in understanding how to improve reproductive development and crop productivity during heat stress. Rapid and precise phenotyping during narrow phenological windows will be important for understanding mechanisms underlying these processes, thus we discuss the development of relevant high-throughput phenotyping approaches that will allow for more informed decision-making regarding future crop improvement.
Collapse
Affiliation(s)
- John N Ferguson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Leicestershire, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alison C Tidy
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Zoe A Wilson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
13
|
Wu C, Cui K, Li Q, Li L, Wang W, Hu Q, Ding Y, Li G, Fahad S, Huang J, Nie L, Peng S. Estimating the yield stability of heat-tolerant rice genotypes under various heat conditions across reproductive stages: a 5-year case study. Sci Rep 2021; 11:13604. [PMID: 34193936 PMCID: PMC8245571 DOI: 10.1038/s41598-021-93079-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 06/11/2021] [Indexed: 01/28/2023] Open
Abstract
Heat events during the reproductive stages of rice plants induce great yield losses. Cultivating heat-tolerant varieties is a promising strategy for guaranteeing grain security under global warming scenarios. Most heat-tolerant rice genotypes were identified under heat during the flowering stage, but it is unclear whether these currently screened heat-tolerant rice genotypes maintain stable high grain yields when heat stress occurs during the other reproductive stages. In the present study, two notable heat-tolerant rice cultivars, Nagina22 and Shanyou63, and one typical heat-sensitive cultivar, Liangyoupeijiu, were evaluated for their yield response and yield stability under heat treatments during the panicle initiation, flowering, and grain filling stages during 2010-2014. Our results revealed that rice cultivars respond differently to heat stress during different reproductive stages. Nagina22 was the most tolerant to heat stress during the flowering and grain filling stages but was susceptible during panicle initiation; Shanyou63 was the most tolerant to heat stress during panicle initiation and grain filling and was moderately tolerant to heat stress during the flowering stages. Genotype and genotype-by-environment interaction biplot yield analysis revealed that Shanyou63 exhibited the highest stability in high grain yield, followed by Nagina22, and Liangyoupeijiu exhibited stable low grain yield when experiencing heat stress across the three reproductive stages. Our results indicate that the heat tolerance of different rice cultivars depends on the reproductive stage during which heat stress occurs, and the effects manifest as reductions in grain yields and seed setting rates. Future efforts to develop heat-tolerant varieties should strive to breed varieties that are comprehensively tolerant to heat stress during any reproductive stage to cope with the unpredictable occurrence of future heat events.
Collapse
Affiliation(s)
- Chao Wu
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- College of Agronomy, Nanjing Agricultural University, Key Laboratory of Crop Physiology, Ecology, and Production Management, Ministry of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Qian Li
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liuyong Li
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wencheng Wang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Qiuqian Hu
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, Key Laboratory of Crop Physiology, Ecology, and Production Management, Ministry of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Ganghua Li
- College of Agronomy, Nanjing Agricultural University, Key Laboratory of Crop Physiology, Ecology, and Production Management, Ministry of Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lixiao Nie
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
14
|
NH787 EMS mutant of rice variety Nagina22 exhibits higher phosphate use efficiency. Sci Rep 2021; 11:9156. [PMID: 33911118 PMCID: PMC8080636 DOI: 10.1038/s41598-021-88419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Rice (Oryza sativa L.), a major dietary source, is often cultivated in soils poor in available inorganic orthophosphate (Pi), which is a key nutrient for growth and development. Poor soils are amended by phosphorus (P) fertilizer, which is derived from the non-renewable rock phosphate reserves. Therefore, there is a need for developing rice varieties with high productivity under low P conditions. At the ICAR-IIRR, ethyl methanesulfonate (EMS) mutagenized rice genotype Nagina22 (N22) were screened for high grain yield in Pi-deprived soil, which led to the identification of ~ 10 gain-of-function mutants including NH787. Here, detailed comparative morphophysiological, biochemical, and molecular analyses of N22 and NH787 were carried out in hydroponics and potting soil under different Pi regimes. Under Pi-deprived condition, compared with N22, NH787 exhibited higher root and vegetative biomass, the number of tillers, and grain yield. The augmented agronomic traits of NH787 were corroborated with significantly higher photosynthetic rate, pollen fertility, stigma receptivity, and the activities of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Further, several genes involved in the maintenance of Pi homeostasis (GPH) were differentially regulated. The study thus revealed a wide-spectrum influence of the mutation in NH787 that contributed towards its higher Pi use efficiency (PUE).
Collapse
|
15
|
Chaudhary S, Devi P, Bhardwaj A, Jha UC, Sharma KD, Prasad PVV, Siddique KHM, Bindumadhava H, Kumar S, Nayyar H. Identification and Characterization of Contrasting Genotypes/Cultivars for Developing Heat Tolerance in Agricultural Crops: Current Status and Prospects. FRONTIERS IN PLANT SCIENCE 2020; 11:587264. [PMID: 33193540 PMCID: PMC7642017 DOI: 10.3389/fpls.2020.587264] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/14/2020] [Indexed: 05/19/2023]
Abstract
Rising global temperatures due to climate change are affecting crop performance in several regions of the world. High temperatures affect plants at various organizational levels, primarily accelerating phenology to limit biomass production and shortening reproductive phase to curtail flower and fruit numbers, thus resulting in severe yield losses. Besides, heat stress also disrupts normal growth, development, cellular metabolism, and gene expression, which alters shoot and root structures, branching patterns, leaf surface and orientation, and anatomical, structural, and functional aspects of leaves and flowers. The reproductive growth stage is crucial in plants' life cycle, and susceptible to high temperatures, as reproductive processes are negatively impacted thus reducing crop yield. Genetic variation exists among genotypes of various crops to resist impacts of heat stress. Several screening studies have successfully phenotyped large populations of various crops to distinguish heat-tolerant and heat-sensitive genotypes using various traits, related to shoots (including leaves), flowers, fruits (pods, spikes, spikelets), and seeds (or grains), which have led to direct release of heat-tolerant cultivars in some cases (such as chickpea). In the present review, we discuss examples of contrasting genotypes for heat tolerance in different crops, involving many traits related to thermotolerance in leaves (membrane thermostability, photosynthetic efficiency, chlorophyll content, chlorophyll fluorescence, stomatal activity), flowers (pollen viability, pollen germination, fertilization, ovule viability), roots (architecture), biomolecules (antioxidants, osmolytes, phytohormones, heat-shock proteins, other stress proteins), and "omics" (phenomics, transcriptomics, genomics) approaches. The traits linked to heat tolerance can be introgressed into high yielding but heat-sensitive genotypes of crops to enhance their thermotolerance. Involving these traits will be useful for screening contrasting genotypes and would pave the way for characterizing the underlying molecular mechanisms, which could be valuable for engineering plants with enhanced thermotolerance. Wherever possible, we discussed breeding and biotechnological approaches for using these traits to develop heat-tolerant genotypes of various food crops.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh (CSK HP) Agricultural University, Palampur, India
| | | | | | - H. Bindumadhava
- World Vegetable Center, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Raza Q, Riaz A, Bashir K, Sabar M. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. PLANT MOLECULAR BIOLOGY 2020; 104:97-112. [PMID: 32643113 DOI: 10.1007/s11103-020-01027-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
By integrating genetics and genomics data, reproductive tissues-specific and heat stress responsive 35 meta-QTLs and 45 candidate genes were identified, which could be exploited through marker-assisted breeding for fast-track development of heat-tolerant rice cultivars. Rice holds the key to future food security. In rice-growing areas, temperature has already reached an optimum level for growth, hence, any further increase due to global climate change could significantly reduce rice yield. Several mapping studies have identified a plethora of reproductive tissue-specific and heat stress associated inconsistent quantitative trait loci (QTL), which could be exploited for improvement of heat tolerance. In this study, we performed a meta-analysis on previously reported QTLs and identified 35 most consistent meta-QTLs (MQTLs) across diverse genetic backgrounds and environments. Genetic and physical intervals of nearly 66% MQTLs were narrower than 5 cM and 2 Mb respectively, indicating hotspot genomic regions for heat tolerance. Comparative analyses of MQTLs underlying genes with microarray and RNA-seq based transcriptomic data sets revealed a core set of 45 heat-responsive genes, among which 24 were reproductive tissue-specific and have not been studied in detail before. Remarkably, all these genes corresponded to various stress associated functions, ranging from abiotic stress sensing to regulating plant stress responses, and included heat-shock genes (OsBiP2, OsMed37_1), transcription factors (OsNAS3, OsTEF1, OsWRKY10, OsWRKY21), transmembrane transporters (OsAAP7A, OsAMT2;1), sugar metabolizing (OsSUS4, α-Gal III) and abiotic stress (OsRCI2-7, SRWD1) genes. Functional data evidences from Arabidopsis heat-shock genes also suggest that OsBIP2 may be associated with thermotolerance of pollen tubes under heat stress conditions. Furthermore, promoters of identified genes were enriched with heat, dehydration, pollen and sugar responsive cis-acting regulatory elements, proposing a common regulatory mechanism might exist in rice for mitigating reproductive stage heat stress. These findings strongly support our results and provide new candidate genes for fast-track development of heat-tolerant rice cultivars.
Collapse
Affiliation(s)
- Qasim Raza
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Lahore, Punjab, Pakistan.
| | - Awais Riaz
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Lahore, Punjab, Pakistan
| | - Khurram Bashir
- Plant Genomic Network Research Team, Center for Sustainable Resource Science, RIKEN, Yokohama Campus, Yokohama, Japan
| | - Muhammad Sabar
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku, Lahore, Punjab, Pakistan
| |
Collapse
|
17
|
Kumar A, Sandhu N, Venkateshwarlu C, Priyadarshi R, Yadav S, Majumder RR, Singh VK. Development of introgression lines in high yielding, semi-dwarf genetic backgrounds to enable improvement of modern rice varieties for tolerance to multiple abiotic stresses free from undesirable linkage drag. Sci Rep 2020; 10:13073. [PMID: 32753648 PMCID: PMC7403580 DOI: 10.1038/s41598-020-70132-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022] Open
Abstract
Occurrence of multiple abiotic stresses in a single crop season has become more frequent than before. Most of the traditional donors possessing tolerance to abiotic stresses are tall, low-yielding with poor grain quality. To facilitate efficient use of complex polygenic traits in rice molecular breeding research, we undertook development of introgression lines in background of high-yielding, semi-dwarf varieties with good grain quality. The study reports the development and evaluations of over 25,000 introgression lines in eleven elite rice genetic backgrounds for improvement of yield under multiple abiotic-stresses such as drought, flood, high/low temperature. The developed introgression lines within each genetic background are near isogenic/recombinant inbred lines to their recipient recurrent parent with 50 to 98% background recovery and additionally carry QTLs/genes for abiotic stresses. The multiple-stress tolerant pyramided breeding lines combining high yield under normal situation and good yield under moderate to severe reproductive-stage drought, semi-dwarf plant type with good grain quality traits have been developed. The introgression lines in dwarf backgrounds open new opportunity to improve other varieties without any linkage drag as well as facilitate cloning of QTLs, identification and functional characterization of candidate genes, mechanisms associated with targeted QTLs and the genetic networks underlying complex polygenic traits.
Collapse
Affiliation(s)
- Arvind Kumar
- International Rice Research Institute, Metro Manila, Philippines. .,IRRI South Asia Regional Centre (ISARC), Varanasi, Uttar Pradesh, India.
| | - Nitika Sandhu
- International Rice Research Institute, Metro Manila, Philippines.,Punjab Agricultural University, Ludhiana, India
| | - Challa Venkateshwarlu
- International Rice Research Institute, South Asia Hub, ICRISAT, Patancheru, Hyderabad, India
| | - Rahul Priyadarshi
- International Rice Research Institute, South Asia Hub, ICRISAT, Patancheru, Hyderabad, India.,International Rice Research Institute, Guwahati, Assam, India
| | - Shailesh Yadav
- International Rice Research Institute, Metro Manila, Philippines
| | | | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, ICRISAT, Patancheru, Hyderabad, India
| |
Collapse
|
18
|
Zafar SA, Hameed A, Ashraf M, Khan AS, Qamar ZU, Li X, Siddique KHM. Agronomic, physiological and molecular characterisation of rice mutants revealed the key role of reactive oxygen species and catalase in high-temperature stress tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:440-453. [PMID: 32209204 DOI: 10.1071/fp19246] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/09/2019] [Indexed: 05/20/2023]
Abstract
Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.
Collapse
Affiliation(s)
- Syed Adeel Zafar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan; and Nuclear Institute for Agriculture and Biology (NIAB), PO Box 128, Faisalabad, Pakistan; and National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology (NIAB), PO Box 128, Faisalabad, Pakistan; and Corresponding authors. ;
| | - Muhammad Ashraf
- Nuclear Institute for Agriculture and Biology (NIAB), PO Box 128, Faisalabad, Pakistan
| | - Abdus Salam Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Zia-Ul- Qamar
- Nuclear Institute for Agriculture and Biology (NIAB), PO Box 128, Faisalabad, Pakistan
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; and Corresponding authors. ;
| |
Collapse
|
19
|
Cao Z, Li Y, Tang H, Zeng B, Tang X, Long Q, Wu X, Cai Y, Yuan L, Wan J. Fine mapping of the qHTB1-1QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1161-1175. [PMID: 31989206 DOI: 10.1007/s00122-020-03539-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/07/2020] [Indexed: 05/27/2023]
Abstract
The qHTB1-1 QTL, controlling heat tolerance at the booting stage in rice, was fine mapped to a 47.1 kb region containing eight candidate genes. Two positional candidate genes showed significant changes in expression levels under heat stress. High-temperature stress at the booting stage has the potential to significantly limit rice production. An interspecific advanced backcrossed population between the Oryza sativa L. cultivar R53 and the wild Oryza rufipogon Griff accession HHT4 was used as the source material to develop a set of chromosome segment introgression lines to elucidate the genetic mechanism of the qHTB1-1 QTL in heat tolerance. A single-chromosome-segment introgression line, IL01-15, was used to develop secondary populations for the mapping of qHTB1-1 on chromosome 1 for heat tolerance at the booting stage. Using the BC5F2, BC5F3, and BC5F4 populations, we first confirmed qHTB1-1 and validated the phenotypic effect. The qHTB1-1 QTL explained 13.1%, 16.9%, and 17.8% of the phenotypic variance observed in the BC5F2, BC5F3, and BC5F4 generations, respectively. Using homozygous recombinants screened from larger BC6F2 and BC6F3 populations, qHTB1-1 was fine mapped within a 47.1 kb region between markers RM11633 and RM11642. Eight putative predicted genes were annotated in the region, and six genes were predicted to encode expressed proteins. The expression patterns of these six genes demonstrated that LOC_Os01g53160 and LOC_Os01g53220 were highly induced by heat stress in IL01-15 compared to R53. Sequence comparison of the gene-coding regions of LOC_Os01g53160 and LOC_Os01g53220 between R53 and IL01-15 revealed one synonymous and two nonsynonymous SNPs in exons, respectively. Our results provide a basis for identifying the genes underlying qHTB1-1 and indicate that markers linked to the qHTB1-1 locus can be used to improve the heat tolerance of rice at the booting stage by marker-assisted selection.
Collapse
Affiliation(s)
- Zhibin Cao
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yao Li
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
- Institute of Soil Fertilizer and Resource Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Huiwu Tang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
| | - Bohong Zeng
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiuying Tang
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qizhang Long
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiaofeng Wu
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yaohui Cai
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Linfeng Yuan
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Jianlin Wan
- Rice National Engineering Laboratory (Nanchang), Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
20
|
Zhu MD, Zhang M, Gao DJ, Zhou K, Tang SJ, Zhou B, Lv YM. Rice OsHSFA3 Gene Improves Drought Tolerance by Modulating Polyamine Biosynthesis Depending on Abscisic Acid and ROS Levels. Int J Mol Sci 2020; 21:ijms21051857. [PMID: 32182761 PMCID: PMC7084839 DOI: 10.3390/ijms21051857] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022] Open
Abstract
Drought is a serious problem, which causes heavy yield losses for rice. Heat-shock factors (HSFs) had been implicated in tolerance to drought and high temperature. However, there has not been much functional characterization and mechanism clarification in rice. Previously, we found an HSF gene, OsHSFA3, was highly related with drought tolerance after screening from 10,000 different samples. Herein, we cloned the OsHSFA3 from rice and overexpressed it in Arabidopsis thaliana to study its regulatory mechanism of drought tolerance. Phenotypic and physiological assays of the transgenic Arabidopsis lines showed that overexpression of OsHSFA3 confers drought tolerance by reducing water loss and reactive oxygen species (ROS) levels, whereas it increases abscisic acid (ABA) levels. However, enzymatic antioxidants such as activity levels of superoxide dismutase, peroxidase and catalase were not significantly different between wild type and transgenic lines. Instead, we observed a significant increase in polyamine content, which was correlated with increased AtADC1, AtADC2, SPDS1 and SPMS expression levels. In silico and in vivo analyses confirmed that OsHSFA3 is a nuclear-localized gene. In addition, OsHSFA3 can bind to the promoter of AtADC1 and OsADC via a yeast one-hybrid assay. Overall, this study reveals that OsHSFA3 improves drought tolerance in Arabidopsis not only by increasing ABA levels, but also by modulating polyamine levels to maintain ROS homeostasis, therefore it could be a strong candidate to develop drought-tolerant rice cultivars.
Collapse
Affiliation(s)
- Ming-Dong Zhu
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China; (M.-D.Z.); (D.-J.G.); (K.Z.); (S.-J.T.)
| | - Meng Zhang
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China;
| | - Du-Juan Gao
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China; (M.-D.Z.); (D.-J.G.); (K.Z.); (S.-J.T.)
| | - Kun Zhou
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China; (M.-D.Z.); (D.-J.G.); (K.Z.); (S.-J.T.)
| | - Shan-Jun Tang
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China; (M.-D.Z.); (D.-J.G.); (K.Z.); (S.-J.T.)
| | - Bin Zhou
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China; (M.-D.Z.); (D.-J.G.); (K.Z.); (S.-J.T.)
- Correspondence: (B.Z.); (Y.-M.L.)
| | - Yan-Mei Lv
- Hunan Rice Research Institute, Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture, Changsha 410125, China; (M.-D.Z.); (D.-J.G.); (K.Z.); (S.-J.T.)
- Correspondence: (B.Z.); (Y.-M.L.)
| |
Collapse
|
21
|
Wang Y, Yu Y, Huang M, Gao P, Chen H, Liu M, Chen Q, Yang Z, Sun Q. Transcriptomic and proteomic profiles of II YOU 838 ( Oryza sativa) provide insights into heat stress tolerance in hybrid rice. PeerJ 2020; 8:e8306. [PMID: 32117601 PMCID: PMC7039125 DOI: 10.7717/peerj.8306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023] Open
Abstract
Heat stress is an increasing threat to rice production worldwide. To investigate the mechanisms of heat tolerance in hybrid rice and their contributions to rice heterosis, we compared the transcriptome of the hybrid rice II YOU 838 (II8) with the transcriptomes of its parents Fu Hui 838 (F8) and II-32A (II3) after heat stress at 42 °C for 0 h, 24 h, 72 h and 120 h. We also performed a proteomic analysis in II8 after heat stress at 42 °C for 24 h. The transcriptome data revealed time-dependent gene expression patterns under the heat stress conditions, and the heat stress response of II8 was greatly different from those of its parents. Gene ontology analysis of the differentially expressed genes that were clustered using k-means clustering showed that most of the up-regulated genes were involved in responses to stimuli, cell communication, and metabolic and transcription factor activities, whereas the down-regulated genes were enriched in photosynthesis and signal transduction. Moreover, 35 unique differentially abundant proteins, including a basic helix-loop-helix transcription factor (bHLH96), calmodulin-binding transcription activator, heat shock protein (Hsp70), and chaperonin 60 (CPN60), were detected in the proteomic analysis of II8 under heat stress. The co-regulatory analysis revealed novel genes and pathways involved in heat tolerance, namely, ferredoxin-NADP reductase, peroxidases, mitogen-activated protein kinase kinase kinase, and heat shock factor (HSF)-Hsp network. Members of the Hsp and HSF families had over-dominant expression patterns in the hybrid compared with its parents, to help maintain the higher photosynthesis and antioxidant defense systems in the hybrid. Our study suggests that the complex HSF-Hsp regulatory network contribute to the heat tolerance of the hybrid rice.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Bio-resource and Bio-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Irradiation Preservation of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan, China
| | - Yang Yu
- Key Laboratory of Bio-resource and Bio-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Min Huang
- Key Laboratory of Irradiation Preservation of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan, China
| | - Peng Gao
- Key Laboratory of Irradiation Preservation of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan, China
| | - Hao Chen
- Key Laboratory of Irradiation Preservation of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan, China
| | - Mianxue Liu
- Key Laboratory of Irradiation Preservation of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan, China
| | - Qian Chen
- Key Laboratory of Irradiation Preservation of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, Sichuan, China
| | - Zhirong Yang
- Key Laboratory of Bio-resource and Bio-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Qun Sun
- Key Laboratory of Bio-resource and Bio-environment of the Ministry of Education, College of Life Science, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Khan S, Anwar S, Ashraf MY, Khaliq B, Sun M, Hussain S, Gao ZQ, Noor H, Alam S. Mechanisms and Adaptation Strategies to Improve Heat Tolerance in Rice. A Review. PLANTS (BASEL, SWITZERLAND) 2019; 8:E508. [PMID: 31731732 PMCID: PMC6918131 DOI: 10.3390/plants8110508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/05/2023]
Abstract
The incidence of short episodes of high temperature in the most productive rice growing region is a severe threat for sustainable rice production. Screening for heat tolerance and breeding to increase the heat tolerance of rice is major objective in the situation of recent climate change. Replacing sensitive genotypes with heat tolerant cultivars, modification in sowing time, and use of growth regulators are some of the adaptive strategies for the mitigation of yield reduction by climate change. Different strategies could be adopted to enhance the thermos-tolerance of rice by (1) the modification of agronomic practices i.e., adjusting sowing time or selecting early morning flowering cultivars; (2) induction of acclimation by using growth regulators and fertilizers; (3) selecting the genetically heat resistant cultivars by breeding; and, (4) developing genetic modification. Understanding the differences among the genotypes could be exploited for the identification of traits that are responsible for thermo-tolerance for breeding purpose. The selection of cultivars that flowers in early morning before the increase of temperature, and having larger anthers with long basal pore, higher basal dehiscence, and pollen viability could induce higher thermo-tolerance. Furthermore, the high expression of heat shock proteins could impart thermo-tolerance by protecting structural proteins and enzymes. Thus, these traits could be considered for breeding programs to develop resistant cultivars under a changing climate.
Collapse
Affiliation(s)
- Shahbaz Khan
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Sumera Anwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (M.Y.A.); (B.K.)
- China National Rice Research Institute, Hangzhou 311400, China;
| | - M. Yasin Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (M.Y.A.); (B.K.)
| | - Binish Khaliq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (M.Y.A.); (B.K.)
| | - Min Sun
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Sajid Hussain
- China National Rice Research Institute, Hangzhou 311400, China;
| | - Zhi-qiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Hafeez Noor
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| | - Sher Alam
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (S.K.); (M.S.); (H.N.); (S.A.)
| |
Collapse
|
23
|
Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. FRONTIERS IN PLANT SCIENCE 2019; 10:1326. [PMID: 31781133 PMCID: PMC6857675 DOI: 10.3389/fpls.2019.01326] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/24/2019] [Indexed: 05/28/2023]
Abstract
The high selection pressure applied in rice breeding since its domestication thousands of years ago has caused a narrowing in its genetic variability. Obtaining new rice cultivars therefore becomes a major challenge for breeders and developing strategies to increase the genetic variability has demanded the attention of several research groups. Understanding mutations and their applications have paved the way for advances in the elucidation of a genetic, physiological, and biochemical basis of rice traits. Creating variability through mutations has therefore grown to be among the most important tools to improve rice. The small genome size of rice has enabled a faster release of higher quality sequence drafts as compared to other crops. The move from structural to functional genomics is possible due to an array of mutant databases, highlighting mutagenesis as an important player in this progress. Furthermore, due to the synteny among the Poaceae, other grasses can also benefit from these findings. Successful gene modifications have been obtained by random and targeted mutations. Furthermore, following mutation induction pathways, techniques have been applied to identify mutations and the molecular control of DNA damage repair mechanisms in the rice genome. This review highlights findings in generating rice genome resources showing strategies applied for variability increasing, detection and genetic mechanisms of DNA damage repair.
Collapse
Affiliation(s)
| | | | | | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Rio Grande do Sul, Brazil
| |
Collapse
|
24
|
A Novel Stay-Green Mutant of Rice with Delayed Leaf Senescence and Better Harvest Index Confers Drought Tolerance. PLANTS 2019; 8:plants8100375. [PMID: 31561513 PMCID: PMC6843539 DOI: 10.3390/plants8100375] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Three Ethyl methansulphonate (EMS)-induced stay-green mutants (SGM-1, SGM-2 and SGM-3) and their wild-type (WT), were tested for their Stay-Green (SG) and drought tolerance nature as the relation between these two attributes is not yet established in rice. In the dark induced senescence assay, SGM-3 showed delayed senescence while SGM-1 and SGM-2 showed complete lack of senescence. Mutants showed stable transcript abundance over time, for 15 candidate genes (CGs) associated with senescence, compared to the WT. SGM-3 however showed moderately increasing transcript abundance over time for ATG6a, ATG4a, NYC1, NOL and NYC3. Only SGM-3 performed better than the WT for yield and harvest index under well irrigated as well as drought conditions, though all the mutants showed better performance for other agronomic traits under both the conditions and ascorbate peroxidase activity under drought. Thus, SG trait showed positive correlation with drought tolerance though only SGM-3 could convert this into higher harvest index. Sequence analysis of 80 senescence-associated genes including the 15 CGs showed non-synonymous mutations in four and six genes in SGM-1 and SGM-2 respectively, while no SNPs were found in SGM-3. Analysis of the earlier reported Quantitative Trait Loci (QTL) regions in SGM-3 revealed negligible variations from WT, suggesting it to be a novel SG mutant.
Collapse
|
25
|
Poli Y, Nallamothu V, Balakrishnan D, Ramesh P, Desiraju S, Mangrauthia SK, Voleti SR, Neelamraju S. Increased Catalase Activity and Maintenance of Photosystem II Distinguishes High-Yield Mutants From Low-Yield Mutants of Rice var. Nagina22 Under Low-Phosphorus Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1543. [PMID: 30510556 PMCID: PMC6252357 DOI: 10.3389/fpls.2018.01543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 10/02/2018] [Indexed: 05/28/2023]
Abstract
An upland rice variety, Nagina22 (N22) and its 137 ethyl methanesulfonate (EMS)-induced mutants, along with a sensitive variety, Jaya, was screened both in low phosphorus (P) field (Olsen P 1.8) and in normal field (Olsen P 24) during dry season. Based on the grain yield (YLD) of plants in normal field and plants in low P field, 27 gain of function (high-YLD represented as hy) and 9 loss of function (low-YLD represented as ly) mutants were selected and compared with N22 for physiological and genotyping studies. In low P field, hy mutants showed higher P concentration in roots, leaves, grains, and in the whole plant than in ly mutants at harvest. In low P conditions, F v/F m and qN were 24% higher in hy mutants than in ly mutants. In comparison with ly mutants, the superoxide dismutase (SOD) activity in the roots and leaves of hy mutants in low P fields was 9% and 41% higher at the vegetative stage, respectively, but 51% and 14% lower in the roots and leaves at the reproductive stage, respectively. However, in comparison with ly mutants, the catalase (CAT) activity in the roots and leaves of hy mutants in low P fields was 35% higher at the vegetative stage and 15% and 17% higher at the reproductive stage, respectively. Similarly, hy mutants in low P field showed 20% and 80% higher peroxidase (POD) activity in the roots and leaves at the vegetative stage, respectively, but showed 14% and 16% lower POD activity at the reproductive stage in the roots and leaves, respectively. Marker trait association analysis using 48 simple sequence repeat (SSR) markers and 10 Pup1 gene markers showed that RM3648 and RM451 in chromosome 4 were significantly associated with grain YLD, tiller number (TN), SOD, and POD activities in both the roots and leaves in low P conditions only. Similarly, RM3334 and RM6300 in chromosome 5 were associated with CAT activity in leaves in low P conditions. Notably, grain YLD was positively and significantly correlated with CAT activity in the roots and shoots, F v/F m and qN in low P conditions, and the shoots' P concentration and qN in normal conditions. Furthermore, CAT activity in shoots was positively and significantly correlated with TN in both low P and normal conditions. Thus, chromosomal regions and physiological traits that have a role in imparting tolerance to low P in the field were identified.
Collapse
Affiliation(s)
- Yugandhar Poli
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Genotype × Environment interactions of Nagina22 rice mutants for yield traits under low phosphorus, water limited and normal irrigated conditions. Sci Rep 2018; 8:15530. [PMID: 30341356 PMCID: PMC6195568 DOI: 10.1038/s41598-018-33812-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Multi environment testing helps identify stable genotypes especially for adverse abiotic stress situations. In the era of climate change and multiple abiotic stresses, it becomes important to analyze stability of rice lines under both irrigated and stress conditions. Mutants are an important genetic resource which can help in revealing the basis of natural variation. We analyzed 300 EMS induced mutants of aus rice cultivar Nagina22 (N22) for their G × E interaction and stability under low phosphorus (P), water limited and irrigated conditions. Environmental effect and interaction were more significant than genotypic contribution on grain yield (GY), productive tillers (TN) and plant height (PH) under these three environmental conditions in dry season, 2010. GY and TN were more affected by low P stress than by water limited condition, but PH was not significantly different under these two stresses. Mutants G17, G209, G29, G91, G63 and G32 were stable for GY in decreasing order of stability across the three environments but G254 and G50 were stable only in low P, G17 and G45 only in water limited and G295 and G289 only in normal irrigated condition. We then selected and evaluated 3 high yielding mutants, 3 low yielding mutants and N22 for their stability and adaptability to these 3 environments in both wet and dry seasons for six years (2010–2015). The most stable lines based on the combined analysis of 12 seasons were G125 (NH210) under normal condition, G17 (NH686), G176 (NH363) and G284 (NH162) in low P condition and G176 (NH363) under water limited condition. G176 was the best considering all 3 conditions. When screened for 15 Pup1 gene-specific markers, G176 showed alleles similar to N22. While two other low-P tolerant lines G17 and G65 showed N22 similar alleles only at k-1 and k-5 but a different allele or null allele at 13 other loci. These stable mutants are a valuable resource for varietal development and to discover genes for tolerance to multiple abiotic stresses.
Collapse
|
27
|
Yugandhar P, Sun Y, Liu L, Negi M, Nallamothu V, Sun S, Neelamraju S, Rai V, Jain A. Characterization of the loss-of-function mutant NH101 for yield under phosphate deficiency from EMS-induced mutants of rice variety Nagina22. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:1-13. [PMID: 29957570 DOI: 10.1016/j.plaphy.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 06/14/2018] [Indexed: 05/09/2023]
Abstract
In earlier studies at IIRR, Hyderabad, screening of ∼2000 EMS mutants of the rice variety Nagina22 (N22) resulted in the identification of 11 loss-of-function mutants with zero grain yield in Pi-deprived soil under field condition. Among these mutants, NH101 was selected for comparative analyses with N22 for various morphophysiological and/or molecular traits during growth in a hydroponic system (7 d) and in a pot soil (50% flowering) under different Pi regime. The total length of the seminal and adventitious roots, agronomic traits (panicle length and unfilled spikelet/panicle), activities of the antioxidant enzymes (SOD, POD, and APX), and the relative expression levels of the genes involved in the maintenance of Pi homeostasis (MPH) i.e., OsPHR2, SPX1/2 OsPT4, 6, and 8 showed significant increase in the Pi-deprived mutant compared with N22. Whereas, some of the traits showed significant reduction in NH101 than N22 such as number of tillers and filled spikelets/panicle, yield, contents of Pi and externally secreted APase, activity of CAT, and the relative expression levels of MPH genes i.e., OsmiR399a, OsPHO1;2, OsIPS1, OsPAP10a, OsPT2, 9, and 10. The study highlighted wide spectrum differential effects of the mutation in NH101 on various traits that play important roles governing the maintenance of Pi homeostasis. This mutant thus provides a rich repository of genetic material amenable for the identification of the genes that are pivotal for Pi use efficiency.
Collapse
Affiliation(s)
- Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Manisha Negi
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | | | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sarla Neelamraju
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
28
|
Nevame AYM, Emon RM, Malek MA, Hasan MM, Alam MA, Muharam FM, Aslani F, Rafii MY, Ismail MR. Relationship between High Temperature and Formation of Chalkiness and Their Effects on Quality of Rice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1653721. [PMID: 30065932 PMCID: PMC6051336 DOI: 10.1155/2018/1653721] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
Occurrence of chalkiness in rice is attributed to genetic and environmental factors, especially high temperature (HT). The HT induces heat stress, which in turn compromises many grain qualities, especially transparency. Chalkiness in rice is commonly studied together with other quality traits such as amylose content, gel consistency, and protein storage. In addition to the fundamental QTLs, some other QTLs have been identified which accelerate chalkiness occurrence under HT condition. In this review, some of the relatively stable chalkiness, amylose content, and gel consistency related QTLs have been presented well. Genetically, HT effect on chalkiness is explained by the location of certain chalkiness gene in the vicinity of high-temperature-responsive genes. With regard to stable QTL distribution and availability of potential material resources, there is still feasibility to find out novel stable QTLs related to chalkiness under HT condition. A better understanding of those achievements is essential to develop new rice varieties with a reduced chalky grain percentage. Therefore, we propose the pyramiding of relatively stable and nonallelic QTLs controlling low chalkiness endosperm into adaptable rice varieties as pragmatic approach to mitigate HT effect.
Collapse
Affiliation(s)
- A. Y. M. Nevame
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - R. M. Emon
- Bangladesh Institute of Nuclear Agriculture, BAU Campus, Mymensingh 2202, Bangladesh
| | - M. A. Malek
- Bangladesh Institute of Nuclear Agriculture, BAU Campus, Mymensingh 2202, Bangladesh
| | - M. M. Hasan
- Bangladesh Institute of Nuclear Agriculture, BAU Campus, Mymensingh 2202, Bangladesh
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Md. Amirul Alam
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia
| | - Farrah Melissa Muharam
- Laboratory of Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - Farzad Aslani
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - M. Y. Rafii
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | - M. R. Ismail
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Sevanthi AMV, Kandwal P, Kale PB, Prakash C, Ramkumar MK, Yadav N, Mahato AK, Sureshkumar V, Behera M, Deshmukh RK, Jeyaparakash P, Kar MK, Manonmani S, Muthurajan R, Gopala KS, Neelamraju S, Sheshshayee MS, Swain P, Singh AK, Singh NK, Mohapatra T, Sharma RP. Whole Genome Characterization of a Few EMS-Induced Mutants of Upland Rice Variety Nagina 22 Reveals a Staggeringly High Frequency of SNPs Which Show High Phenotypic Plasticity Towards the Wild-Type. FRONTIERS IN PLANT SCIENCE 2018; 9:1179. [PMID: 0 PMCID: PMC6132179 DOI: 10.3389/fpls.2018.01179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/24/2018] [Indexed: 05/07/2023]
Abstract
The Indian initiative, in creating mutant resources for the functional genomics in rice, has been instrumental in the development of 87,000 ethylmethanesulfonate (EMS)-induced mutants, of which 7,000 are in advanced generations. The mutants have been created in the background of Nagina 22, a popular drought- and heat-tolerant upland cultivar. As it is a pregreen revolution cultivar, as many as 573 dwarf mutants identified from this resource could be useful as an alternate source of dwarfing. A total of 541 mutants, including the macromutants and the trait-specific ones, obtained after appropriate screening, are being maintained in the mutant garden. Here, we report on the detailed characterizations of the 541 mutants based on the distinctness, uniformity, and stability (DUS) descriptors at two different locations. About 90% of the mutants were found to be similar to the wild type (WT) with high similarity index (>0.6) at both the locations. All 541 mutants were characterized for chlorophyll and epicuticular wax contents, while a subset of 84 mutants were characterized for their ionomes, namely, phosphorous, silicon, and chloride contents. Genotyping of these mutants with 54 genomewide simple sequence repeat (SSR) markers revealed 93% of the mutants to be either completely identical to WT or nearly identical with just one polymorphic locus. Whole genome resequencing (WGS) of four mutants, which have minimal differences in the SSR fingerprint pattern and DUS characters from the WT, revealed a staggeringly high number of single nucleotide polymorphisms (SNPs) on an average (16,453 per mutant) in the genic sequences. Of these, nearly 50% of the SNPs led to non-synonymous codons, while 30% resulted in synonymous codons. The number of insertions and deletions (InDels) varied from 898 to 2,595, with more than 80% of them being 1-2 bp long. Such a high number of SNPs could pose a serious challenge in identifying gene(s) governing the mutant phenotype by next generation sequencing-based mapping approaches such as Mutmap. From the WGS data of the WT and the mutants, we developed a genic resource of the WT with a novel analysis pipeline. The entire information about this resource along with the panicle architecture of the 493 mutants is made available in a mutant database EMSgardeN22 (http://14.139.229.201/EMSgardeN22).
Collapse
Affiliation(s)
- Amitha M. V. Sevanthi
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- *Correspondence: Amitha M. V. Sevanthi,
| | - Prashant Kandwal
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Prashant B. Kale
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Chandra Prakash
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - M. K. Ramkumar
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Neera Yadav
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ajay K. Mahato
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - V. Sureshkumar
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | | | | | - Meera K. Kar
- ICAR-National Rice Research Institute, Cuttack, India
| | - S. Manonmani
- Tamil Nadu Agricultural University, Coimbatore, India
| | | | - K. S. Gopala
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - P. Swain
- ICAR-National Rice Research Institute, Cuttack, India
| | - Ashok K. Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - N. K. Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - R. P. Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| |
Collapse
|
30
|
PS S, SV AM, Prakash C, MK R, Tiwari R, Mohapatra T, Singh NK. High Resolution Mapping of QTLs for Heat Tolerance in Rice Using a 5K SNP Array. RICE (NEW YORK, N.Y.) 2017; 10:28. [PMID: 28584974 PMCID: PMC5459777 DOI: 10.1186/s12284-017-0167-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 05/30/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Heat stress is one of the major abiotic threats to rice production, next to drought and salinity stress. Incidence of heat stress at reproductive phase of the crop results in abnormal pollination leading to floret sterility, low seed set and poor grain quality. Identification of QTLs and causal genes for heat stress tolerance at flowering will facilitate breeding for improved heat tolerance in rice. In the present study, we used 272 F8 recombinant inbred lines derived from a cross between Nagina22, a well-known heat tolerant Aus cultivar and IR64, a heat sensitive popular Indica rice variety to map the QTLs for heat tolerance. RESULTS To enable precise phenotyping for heat stress tolerance, we used a controlled phenotyping facility available at ICAR-Indian Institute of Wheat and Barley Research, Karnal, India. Based on 'days to 50% flowering' data of the RILs, we followed staggered sowing to synchronize flowering to impose heat stress at uniform stage. Using the Illumina infinium 5K SNP array for genotyping the parents and the RILs, and stress susceptibility and stress tolerance indices (SSI and STI) of percent spikelet sterility and yield per plant (g), we identified five QTLs on chromosomes 3, 5, 9 and 12. The identified QTLs explained phenotypic variation in the range of 6.27 to 21. 29%. Of these five QTLs, two high effect QTLs, one novel (qSTIPSS9.1) and one known (qSTIY5.1/qSSIY5.2), were mapped in less than 400 Kbp genomic regions, comprising of 65 and 54 genes, respectively. CONCLUSIONS The present study identified two major QTLs for heat tolerance in rice in narrow physical intervals, which can be employed for crop improvement by marker assisted selection (MAS) after development of suitable scorable markers for breeding of high yielding heat tolerant rice varieties. This is the first report of a major QTL for heat tolerance on chromosome 9 of rice. Further, a known QTL for heat tolerance on chromosome 5 was narrowed down from 23 Mb to 331 Kbp in this study.
Collapse
Affiliation(s)
- Shanmugavadivel PS
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Present address, Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024 India
| | - Amitha Mithra SV
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Chandra Prakash
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ramkumar MK
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132 001 India
| | - Trilochan Mohapatra
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001 India
| | | |
Collapse
|
31
|
Ps S, Sv AM, Prakash C, Mk R, Tiwari R, Mohapatra T, Singh NK. High Resolution Mapping of QTLs for Heat Tolerance in Rice Using a 5K SNP Array. RICE (NEW YORK, N.Y.) 2017. [PMID: 28584974 DOI: 10.1186/s12284-017-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Heat stress is one of the major abiotic threats to rice production, next to drought and salinity stress. Incidence of heat stress at reproductive phase of the crop results in abnormal pollination leading to floret sterility, low seed set and poor grain quality. Identification of QTLs and causal genes for heat stress tolerance at flowering will facilitate breeding for improved heat tolerance in rice. In the present study, we used 272 F8 recombinant inbred lines derived from a cross between Nagina22, a well-known heat tolerant Aus cultivar and IR64, a heat sensitive popular Indica rice variety to map the QTLs for heat tolerance. RESULTS To enable precise phenotyping for heat stress tolerance, we used a controlled phenotyping facility available at ICAR-Indian Institute of Wheat and Barley Research, Karnal, India. Based on 'days to 50% flowering' data of the RILs, we followed staggered sowing to synchronize flowering to impose heat stress at uniform stage. Using the Illumina infinium 5K SNP array for genotyping the parents and the RILs, and stress susceptibility and stress tolerance indices (SSI and STI) of percent spikelet sterility and yield per plant (g), we identified five QTLs on chromosomes 3, 5, 9 and 12. The identified QTLs explained phenotypic variation in the range of 6.27 to 21. 29%. Of these five QTLs, two high effect QTLs, one novel (qSTIPSS9.1) and one known (qSTIY5.1/qSSIY5.2), were mapped in less than 400 Kbp genomic regions, comprising of 65 and 54 genes, respectively. CONCLUSIONS The present study identified two major QTLs for heat tolerance in rice in narrow physical intervals, which can be employed for crop improvement by marker assisted selection (MAS) after development of suitable scorable markers for breeding of high yielding heat tolerant rice varieties. This is the first report of a major QTL for heat tolerance on chromosome 9 of rice. Further, a known QTL for heat tolerance on chromosome 5 was narrowed down from 23 Mb to 331 Kbp in this study.
Collapse
Affiliation(s)
- Shanmugavadivel Ps
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Present address, Division of Plant Biotechnology, ICAR-Indian Institute of Pulses Research, Kanpur, 208 024, India
| | - Amitha Mithra Sv
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Chandra Prakash
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ramkumar Mk
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132 001, India
| | - Trilochan Mohapatra
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001, India
| | | |
Collapse
|
32
|
Prasanth VV, Babu MS, Basava RK, Tripura Venkata VGN, Mangrauthia SK, Voleti SR, Neelamraju S. Trait and Marker Associations in Oryza nivara and O. rufipogon Derived Rice Lines under Two Different Heat Stress Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:1819. [PMID: 29123535 PMCID: PMC5662652 DOI: 10.3389/fpls.2017.01819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/06/2017] [Indexed: 05/07/2023]
Abstract
Wild species and derived introgression lines (ILs) are a good source of genes for improving complex traits such as heat tolerance. The effect of heat stress on 18 yield traits was studied in four treatments in two seasons, under field conditions by subjecting 37 ILs and recurrent parents Swarna and KMR3, N22 mutants, and wild type and 2 improved rice cultivars to heat stress using polycover house method in wet season and late sowing method in dry season. Normal grown unstressed plants were controls. Both correlation and path coefficient analysis showed that the major contributing traits for high yield per plant (YPP) under heat stress conditions were tiller number, secondary branches in panicle, filled grain number, and percent spikelet fertility. Three ILs, K-377-24, K-16-3, and S-148 which gave the highest YPP of 12.30-32.52 g under heat stress in both the seasons were considered the most heat tolerant. In contrast, K-363-12, S-75, and Vandana which gave the least YPP of 5.36-10.84 g were considered heat susceptible. These lines are a good genetic resource for basic and applied studies on heat tolerance in rice. Genotyping using 49 SSR markers and single marker analysis (SMA) revealed 613 significant marker- trait associations in all four treatments. Significantly, nine markers (RM243, RM517, RM225, RM518, RM525, RM195, RM282, RM489, and RM570) on chromosomes 1, 2, 3, 4, 6, and 8 showed association with six traits (flag leaf spad, flag leaf thickness, vegetative leaf temperature, plant height, panicle number, and tiller number) under heat stress conditions in both wet and dry seasons. Genes such as heat shock protein binding DnaJ, Hsp70, and temperature-induced lipocalin-2 OsTIL-2 close to these markers are candidates for expression studies and evaluation for use in marker assisted selection for heat tolerance.
Collapse
|
33
|
Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India. RICE (NEW YORK, N.Y.) 2016; 9:1. [PMID: 26743769 PMCID: PMC4705060 DOI: 10.1186/s12284-015-0073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
34
|
Ahmadikhah A, Marufinia A. Effect of reduced plant height on drought tolerance in rice. 3 Biotech 2016; 6:221. [PMID: 28330293 PMCID: PMC5061651 DOI: 10.1007/s13205-016-0542-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/03/2016] [Indexed: 11/07/2022] Open
Abstract
Drought stress due to water deficit is a major problem of rice cultivation as a most drought-sensitive crop plant. A rice mutant line (MT58) was developed after mutagenesis of cv. Neda by ethyl methane sulfonate (EMS) and selected for dwarfism (18 cm shorter than Neda). The extent of its molecular changes relative to parental cultivar was assessed by SSR and ISSR markers, and the response of the line along with parental cultivar and another mutant line (MTA) to mild and severe water deficit, was evaluated in a field experiment. A molecular assessment using 41 SSR markers showed that dwarf line MT58 had significant molecular difference with two other lines. ISSR assay also proved the considerable mutational effect of EMS on two mutant lines compared with the original wild line. Field experiments revealed that limited irrigation caused mild-to-severe decrease in all the studied traits, including chlorophyll contents. In mild water-stress mutant line, MT58 showed a low (3 %) yield loss as compared with cultivar Neda with a high (14 %) yield loss. Interestingly, in severe water-stress mutant line, MT58 showed a low (19 %) yield loss as compared with mutant line MTA and cv. Neda with high (33 and 31 %, respectively) yield loss. In severe stress, mutant MT58 had the highest values of panicle length, total kernels per panicle, fertile kernels, and chlorophyll contents, while cv. Neda had the highest values of plant height, tiller number, and plant yield, and reduction in chlorophyll content at drought stress condition was correlated with yield loss (0.64 and 0.697 for chl.a and chl.b, respectively). The results of this research obviously confirm that mutant line MT58 despite of its stunt figure shows a low yield loss due to drought stress and hence is a promising line for cultivation under drought condition.
Collapse
Affiliation(s)
- Asadollah Ahmadikhah
- Department of Biotechnology, Faculty of New Technologies, Shahid Beheshti University, Tehran, Iran.
| | - Amir Marufinia
- Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
35
|
Prasanth VV, Basava KR, Babu MS, V.G.N. VT, Devi SJSR, Mangrauthia SK, Voleti SR, Sarla N. Field level evaluation of rice introgression lines for heat tolerance and validation of markers linked to spikelet fertility. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:179-92. [PMID: 27436910 PMCID: PMC4938818 DOI: 10.1007/s12298-016-0350-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/13/2016] [Accepted: 03/28/2016] [Indexed: 05/14/2023]
Abstract
Rice lines derived from wild species and mutants can serve as a good resource for favorable alleles for heat tolerance. In all, 48 stable lines including 17 KMR3/O. rufipogon introgression lines (KMR3 ILs), 15 Swarna/O. nivara ILs (Swarna ILs) along with their parents, Nagina 22 (N22) and its 4 EMS induced mutants and 7 varieties were evaluated for heat tolerance under irrigated conditions under field in two seasons, wet season 2012 using poly cover house method and dry season 2013 using late sown method. Spikelet fertility (SF), yield per plant (YP) and heat susceptibility index (HSI) for these two traits were considered as criteria to assess heat tolerance compared to control. Four KMR3 ILs and eight Swarna ILs were identified as heat tolerant based on SF and YP and their HSIs in both wet and dry seasons. S-65 and S-70 showed low SF and high YP consistently in response to heat in both seasons. We provide evidence that SF alone may not be the best criterion to assess heat tolerance and including YP is important as lines with low SF but high YP and vice versa were identified under heat stress. Out of 49 SSR markers linked to spikelet fertility, 18 were validated for five traits. RM229 in wet season and RM430 and RM210 in dry season were significantly associated with both SF and its HSI under heat stress. RM430 was also significantly associated with both YP and its HSI in dry season. Thirty two candidate genes were identified close to nine markers associated with traits under heat stress.
Collapse
Affiliation(s)
- V. Vishnu Prasanth
- ICAR - Indian Institute of Rice Research (Directorate of Rice Research), Rajendranagar, Hyderabad, Telangana 500030 India
| | - Kumari Ramana Basava
- ICAR - Indian Institute of Rice Research (Directorate of Rice Research), Rajendranagar, Hyderabad, Telangana 500030 India
| | - M. Suchandranath Babu
- ICAR - Indian Institute of Rice Research (Directorate of Rice Research), Rajendranagar, Hyderabad, Telangana 500030 India
| | - Venkata Tripura V.G.N.
- ICAR - Indian Institute of Rice Research (Directorate of Rice Research), Rajendranagar, Hyderabad, Telangana 500030 India
| | - S. J. S. Rama Devi
- ICAR - Indian Institute of Rice Research (Directorate of Rice Research), Rajendranagar, Hyderabad, Telangana 500030 India
| | - S. K. Mangrauthia
- ICAR - Indian Institute of Rice Research (Directorate of Rice Research), Rajendranagar, Hyderabad, Telangana 500030 India
| | - S. R. Voleti
- ICAR - Indian Institute of Rice Research (Directorate of Rice Research), Rajendranagar, Hyderabad, Telangana 500030 India
| | - N. Sarla
- ICAR - Indian Institute of Rice Research (Directorate of Rice Research), Rajendranagar, Hyderabad, Telangana 500030 India
| |
Collapse
|
36
|
Lima JM, Nath M, Dokku P, Raman KV, Kulkarni KP, Vishwakarma C, Sahoo SP, Mohapatra UB, Mithra SVA, Chinnusamy V, Robin S, Sarla N, Seshashayee M, Singh K, Singh AK, Singh NK, Sharma RP, Mohapatra T. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AOB PLANTS 2015; 7:plv023. [PMID: 25818072 PMCID: PMC4482838 DOI: 10.1093/aobpla/plv023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 02/26/2015] [Indexed: 05/04/2023]
Abstract
Water stress is one of the most severe constraints to crop productivity. Plants display a variety of physiological and biochemical responses both at the cellular and whole organism level upon sensing water stress. Leaf rolling, stomatal closure, deeper root penetration, higher relative water content (RWC) and better osmotic adjustment are some of the mechanisms that plants employ to overcome water stress. In the current study, we report a mutant, enhanced water stress tolerant1 (ewst1) with enhanced water stress tolerance, identified from the ethyl methanesulfonate-induced mutant population of rice variety Nagina22 by field screening followed by withdrawal of irrigation in pots and hydroponics (PEG 6000). Though ewst1 was morphologically similar to the wild type (WT) for 35 of the 38 morphological descriptors (except chalky endosperm/expression of white core, decorticated grain colour and grain weight), it showed enhanced germination in polyethylene glycol-infused medium. It exhibited increase in maximum root length without any significant changes in its root weight, root volume and total root number on crown when compared with the WT under stress in PVC tube experiment. It also showed better performance for various physiological parameters such as RWC, cell membrane stability and chlorophyll concentration upon water stress in a pot experiment. Root anatomy and stomatal microscopic studies revealed changes in the number of xylem and phloem cells, size of central meta-xylem and number of closed stomata in ewst1. Comparative genome-wide transcriptome analysis identified genes related to exocytosis, secondary metabolites, tryptophan biosynthesis, protein phosphorylation and other signalling pathways to be playing a role in enhanced response to water stress in ewst1. The possible involvement of a candidate gene with respect to the observed morpho-physiological and transcriptional changes and its role in stress tolerance are discussed. The mutant identified and characterized in this study will be useful for further dissection of water stress tolerance in rice.
Collapse
Affiliation(s)
- John Milton Lima
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India Department of Botany, North Orissa University, Baripada, Odisha, India
| | - Manoj Nath
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - Prasad Dokku
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - K V Raman
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - K P Kulkarni
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - C Vishwakarma
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - S P Sahoo
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - U B Mohapatra
- Department of Botany, North Orissa University, Baripada, Odisha, India
| | - S V Amitha Mithra
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - V Chinnusamy
- Indian Agricultural Research Institute, New Delhi, India
| | - S Robin
- Tamil Nadu Agricultural University, Coimbatore, India
| | - N Sarla
- Directorate of Rice Research, Hyderabad, India
| | - M Seshashayee
- University of Agricultural Sciences, Bangalore, India
| | - K Singh
- Punjab Agricultural University, Ludhiana, India
| | - A K Singh
- Indian Agricultural Research Institute, New Delhi, India
| | - N K Singh
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - R P Sharma
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - T Mohapatra
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India Present address: Central Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|
37
|
Zhou S, Sun H, Zheng B, Li R, Zhang W. Cell cycle transcription factor E2F2 mediates non-stress temperature response of AtHSP70-4 in Arabidopsis. Biochem Biophys Res Commun 2014; 455:139-46. [DOI: 10.1016/j.bbrc.2014.10.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/24/2023]
|