1
|
Xiao Z, Liu X, Wang Y, Jiang S, Feng Y. Comprehensive analysis of single-cell and bulk RNA sequencing reveals postoperative progression markers for non-muscle invasive bladder cancer and predicts responses to immunotherapy. Discov Oncol 2024; 15:649. [PMID: 39532830 PMCID: PMC11557814 DOI: 10.1007/s12672-024-01548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Non-muscle-invasive bladder cancer (NMIBC) is renowned for its high recurrence, invasiveness, and poor prognosis. Consequently, developing new biomarkers for risk assessment and investigating innovative therapeutic targets postoperative in NMIBC patients are crucial to aid in treatment planning. APPROACHES Differential gene expression analysis was performed using multiple Gene Expression Omnibus (GEO) datasets to identify differentially expressed genes (DEGs) between NMIBC and normal tissue, as well as between NMIBC and muscle-invasive bladder cancer (MIBC). Functional enrichment analysis was conducted based on the DEGs identified. Subsequently, prognosis-related genes were selected using Kaplan-Meier (KM) analysis and Cox regression analysis. The Boruta algorithm was utilized to further screen for core DEGs related to postoperative progression in NMIBC based on the aforementioned prognosis-related genes. Single-cell and clinical correlation studies were performed to verify their expression across various stages of bladder cancer. To investigate the link between core genes and the immune microenvironment, single-sample gene set enrichment analysis (ssGSEA) was utilized, and Receiver Operating Characteristic (ROC) and KM analyses were performed to confirm predictive power for immune therapy outcomes. Machine learning (ML) models were constructed using the DepMap dataset to predict the efficacy of core gene inhibitors in treating bladder cancers. The prognostic performance of the core genes was evaluated using ROC curve analysis. An online prediction tool was developed based on the core genes to provide prognostic predictions. Finally, RT-qPCR, CCK-8, and Transwell assays were used to verify the pro-tumor effects of the GINS2 in bladder cancer. RESULTS A total of 70 DEGs were identified, among which 11 prognostic genes were obtained through KM analysis, and an additional 8 prognostic genes were obtained through COX analysis. The Boruta algorithm selected AURKB, GINS2, and UHRF1 as the three core DEGs. Single-cell and clinical variable correlation analyses indicated that the core genes promoted the progression of bladder cancer. The analysis of immune infiltration revealed a strong positive association between the core genes and both activated CD4 T cells and Type 2 helper T cells. Two random forest (RF) models were constructed to effectively predict the treatment effect of bladder cancer after targeted inhibition of AURKB and GINS2. In addition, an online nomogram tool was developed to effectively predict the risk of postoperative progression in NMIBC patients undergoing TURBT. Finally, RT-qPCR, CCK8, and Transwell assays showed that GINS2 promoted the growth and progression of bladder cancer. CONCLUSION AURKB, GINS2, and UHRF1 have the potential to enhance postoperative management of NMIBC patients undergoing transurethral resection of bladder tumor (TURBT) and can predict immunotherapy response, establishing them as promising therapeutic targets.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Department of Urology, The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Xin Liu
- Department of Urology, The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Yuan Wang
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Sicong Jiang
- Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
| | - Yan Feng
- Department of Urology, The Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
2
|
Ashraf W, Ahmad T, Reynoird N, Hamiche A, Mély Y, Bronner C, Mousli M. Natural and Synthetic Anticancer Epidrugs Targeting the Epigenetic Integrator UHRF1. Molecules 2023; 28:5997. [PMID: 37630248 PMCID: PMC10459542 DOI: 10.3390/molecules28165997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and its incidence and mortality are increasing each year. Improved therapeutic strategies against cancer have progressed, but remain insufficient to invert this trend. Along with several other risk factors, abnormal genetic and epigenetic regulations play a critical role in the initiation of cellular transformation, as well as tumorigenesis. The epigenetic regulator UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is a multidomain protein with oncogenic abilities overexpressed in most cancers. Through the coordination of its multiple domains and other epigenetic key players, UHRF1 regulates DNA methylation and histone modifications. This well-coordinated dialogue leads to the silencing of tumor-suppressor genes (TSGs) and facilitates tumor cells' resistance toward anticancer drugs, ultimately promoting apoptosis escape and uncontrolled proliferation. Several studies have shown that the downregulation of UHRF1 with natural compounds in tumor cells induces the reactivation of various TSGs, inhibits cell growth, and promotes apoptosis. In this review, we discuss the underlying mechanisms and the potential of various natural and synthetic compounds that can inhibit/minimize UHRF1's oncogenic activities and/or its expression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tanveer Ahmad
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Nicolas Reynoird
- Institut Pour L’avancée des Biosciences, Centre de Recherche UGA, INSERM U1209, CNRS 5309, Université Grenoble Alpes, 38058 Grenoble, France; (T.A.); (N.R.)
| | - Ali Hamiche
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| | - Christian Bronner
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Equipe Labellisée Ligue Contre le Cancer, 67401 Illkirch, France;
| | - Marc Mousli
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France;
| |
Collapse
|
3
|
Mouawad R, Neamati N. Inhibition of Protein Disulfide Isomerase (PDIA1) Leads to Proteasome-Mediated Degradation of Ubiquitin-like PHD and RING Finger Domain-Containing Protein 1 (UHRF1) and Increased Sensitivity of Glioblastoma Cells to Topoisomerase II Inhibitors. ACS Pharmacol Transl Sci 2022; 6:100-114. [PMID: 36654750 PMCID: PMC9841782 DOI: 10.1021/acsptsci.2c00186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, and the prognosis remains poor with current available treatments. PDIA1 is considered a promising therapeutic target in GBM. In this study, we demonstrate that targeting PDIA1 results in increased GBM cell death by topoisomerase II (Top-II) inhibitors resulting in proteasome-mediated degradation of the oncogenic protein UHRF1. Combination of the PDIA1 inhibitor, bepristat-2a, produces strong synergy with doxorubicin, etoposide, and mitoxantrone in GBM and other cancer cell lines. Our bioinformatics analysis of multiple datasets revealed downregulation of UHRF1, upon PDIA1 inhibition. In addition, PDIA1 inhibition results in proteasome-mediated degradation of UHRF1 protein. Interestingly, treatment of GBM cells with bepristat-2a results in increased apoptosis and resistance to ferroptosis. Our findings emphasize the importance of PDIA1 as a therapeutic target in GBM and present a promising new therapeutic approach using Top-II inhibitors for GBM treatment.
Collapse
|
4
|
Kuzmina NS. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
UNOKI M, SASAKI H. The UHRF protein family in epigenetics, development, and carcinogenesis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:401-415. [PMID: 36216533 PMCID: PMC9614205 DOI: 10.2183/pjab.98.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 05/31/2023]
Abstract
The UHRF protein family consists of multidomain regulatory proteins that sense modification status of DNA and/or proteins and catalyze the ubiquitylation of target proteins. Through their functional domains, they interact with other molecules and serve as a hub for regulatory networks of several important biological processes, including maintenance of DNA methylation and DNA damage repair. The UHRF family is conserved in vertebrates and plants but is missing from fungi and many nonvertebrate animals. Mammals commonly have UHRF1 and UHRF2, but, despite their high structural similarity, the two paralogues appear to have distinct functions. Furthermore, UHRF1 and UHRF2 show different expression patterns and different outcomes in gene knockout experiments. In this review, we summarize the current knowledge on the molecular function of the UHRF family in various biological pathways and discuss their roles in epigenetics, development, gametogenesis, and carcinogenesis, with a focus on the mammalian UHRF proteins.
Collapse
Affiliation(s)
- Motoko UNOKI
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki SASAKI
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Mancini M, Magnani E, Macchi F, Bonapace IM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 2021; 49:6053-6068. [PMID: 33939809 PMCID: PMC8216287 DOI: 10.1093/nar/gkab293] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
During S phase, the cooperation between the macromolecular complexes regulating DNA synthesis, epigenetic information maintenance and DNA repair is advantageous for cells, as they can rapidly detect DNA damage and initiate the DNA damage response (DDR). UHRF1 is a fundamental epigenetic regulator; its ability to coordinate DNA methylation and histone code is unique across proteomes of different species. Recently, UHRF1’s role in DNA damage repair has been explored and recognized to be as important as its role in maintaining the epigenome. UHRF1 is a sensor for interstrand crosslinks and a determinant for the switch towards homologous recombination in the repair of double-strand breaks; its loss results in enhanced sensitivity to DNA damage. These functions are finely regulated by specific post-translational modifications and are mediated by the SRA domain, which binds to damaged DNA, and the RING domain. Here, we review recent studies on the role of UHRF1 in DDR focusing on how it recognizes DNA damage and cooperates with other proteins in its repair. We then discuss how UHRF1’s epigenetic abilities in reading and writing histone modifications, or its interactions with ncRNAs, could interlace with its role in DDR.
Collapse
Affiliation(s)
- Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| | - Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA 21052, Italy
| |
Collapse
|
7
|
Sandy Z, da Costa IC, Schmidt CK. More than Meets the ISG15: Emerging Roles in the DNA Damage Response and Beyond. Biomolecules 2020; 10:E1557. [PMID: 33203188 PMCID: PMC7698331 DOI: 10.3390/biom10111557] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.
Collapse
Affiliation(s)
| | | | - Christine K. Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK; (Z.S.); (I.C.d.C.)
| |
Collapse
|
8
|
Schneider M, Trummer C, Stengl A, Zhang P, Szwagierczak A, Cardoso MC, Leonhardt H, Bauer C, Antes I. Systematic analysis of the binding behaviour of UHRF1 towards different methyl- and carboxylcytosine modification patterns at CpG dyads. PLoS One 2020; 15:e0229144. [PMID: 32084194 PMCID: PMC7034832 DOI: 10.1371/journal.pone.0229144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/30/2020] [Indexed: 01/24/2023] Open
Abstract
The multi-domain protein UHRF1 is essential for DNA methylation maintenance and binds DNA via a base-flipping mechanism with a preference for hemi-methylated CpG sites. We investigated its binding to hemi- and symmetrically modified DNA containing either 5-methylcytosine (mC), 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), or 5-carboxylcytosine (caC). Our experimental results indicate that UHRF1 binds symmetrically carboxylated and hybrid methylated/carboxylated CpG dyads in addition to its previously reported substrates. Complementary molecular dynamics simulations provide a possible mechanistic explanation of how the protein could differentiate between modification patterns. First, we observe different local binding modes in the nucleotide binding pocket as well as the protein's NKR finger. Second, both DNA modification sites are coupled through key residues within the NKR finger, suggesting a communication pathway affecting protein-DNA binding for carboxylcytosine modifications. Our results suggest a possible additional function of the hemi-methylation reader UHRF1 through binding of carboxylated CpG sites. This opens the possibility of new biological roles of UHRF1 beyond DNA methylation maintenance and of oxidised methylcytosine derivates in epigenetic regulation.
Collapse
Affiliation(s)
- Markus Schneider
- Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Carina Trummer
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Andreas Stengl
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Peng Zhang
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Cell Biology and Epigenetics at the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Aleksandra Szwagierczak
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics at the Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heinrich Leonhardt
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Christina Bauer
- Center for Integrated Protein Science Munich at the Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Iris Antes
- Center for Integrated Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
9
|
Zhu W, Du J, Chen Q, Zhang Z, Wu B, Xu J, Li T, Bi Y, Shi H, Li R. Association of UHRF1 gene polymorphisms with oligospermia in Chinese males. J Assist Reprod Genet 2019; 36:2563-2573. [PMID: 31802345 DOI: 10.1007/s10815-019-01614-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND UHRF1 plays an important role in maintaining DNA methylation patterns during spermatogenesis. This study was performed to evaluate the association between UHRF1 gene variations and infertility in males with oligozoospermia in a Chinese population. METHODS In this case-control study of 735 Chinese men, single-nucleotide polymorphism (SNP) genotypes and alleles in the UHRF1 gene were assessed by direct sequencing. The effects of the mutations on UHRF1 transcription were investigated using a dual-luciferase reporter gene assay. RESULTS We identified 24 SNPs, including nine SNPs in the promoter region, three in the 5' untranslated region, five in introns, and seven in exons. Interestingly, the genotype frequencies of SNP rs2656927 (P = 0.014) and rs8103849 (P < 0.001) significantly differed between men with oligozoospermia in case group 1 and normozoospermic men. Moreover, four variants (three were novel) were detected only in the patient group, with two in introns and the others in the promoter region. The results of the luciferase assay showed that the -1615C>T-C and -1562A>G-A alleles increased luciferase activity compared with the -1615C>T-T and -1562A>G-G alleles. CONCLUSIONS We detected two SNPs in the UHRF1 gene showing a significant difference between the case and control groups. Two screened SNPs affected UHRF1 promoter activity, improving the understanding of the pathophysiology of oligozoospermia.
Collapse
Affiliation(s)
- Weiqiang Zhu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China.,NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Jing Du
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Qing Chen
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, China
| | - Zhaofeng Zhang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Bin Wu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Jianhua Xu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Tianqi Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Yuan Bi
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China
| | - Huijuan Shi
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.
| | - Runsheng Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Pharmacy School, Fudan University, 2140 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
10
|
Hahm JY, Kim JY, Park JW, Kang JY, Kim KB, Kim SR, Cho H, Seo SB. Methylation of UHRF1 by SET7 is essential for DNA double-strand break repair. Nucleic Acids Res 2019; 47:184-196. [PMID: 30357346 PMCID: PMC6326791 DOI: 10.1093/nar/gky975] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a key epigenetic regulator of DNA methylation maintenance and heterochromatin formation. The roles of UHRF1 in DNA damage repair also have been emphasized in recent years. However, the regulatory mechanism of UHRF1 remains elusive. In this study, we showed that UHRF1 is methylated by SET7 and demethylation is catalyzed by LSD1. In addition, methylation of UHRF1 is induced in response to DNA damage and its phosphorylation in S phase is a prerequisite for interaction with SET7. Furthermore, UHRF1 methylation catalyzes the conjugation of polyubiquitin chains to PCNA and promotes homologous recombination for DNA repair. SET7-mediated UHRF1 methylation is also shown to be essential for cell viability against DNA damage. Our data revealed the regulatory mechanism underlying the UHRF1 methylation status by SET7 and LSD1 in double-strand break repair pathway.
Collapse
Affiliation(s)
- Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Se-Ryeon Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hana Cho
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
11
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
12
|
UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb. Cell Death Dis 2019; 10:347. [PMID: 31024001 PMCID: PMC6484032 DOI: 10.1038/s41419-019-1575-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called “embryonic programmed cell death” and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.
Collapse
|
13
|
Ferrandi A, Castani F, Pitaro M, Tagliaferri S, de la Tour CB, Alduina R, Sommer S, Fasano M, Barbieri P, Mancini M, Bonapace IM. Deinococcus radiodurans' SRA-HNH domain containing protein Shp (Dr1533) is involved in faithful genome inheritance maintenance following DNA damage. Biochim Biophys Acta Gen Subj 2018; 1863:118-129. [PMID: 30308220 DOI: 10.1016/j.bbagen.2018.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Deinococcus radiodurans R1 (DR) survives conditions of extreme desiccation, irradiation and exposure to genotoxic chemicals, due to efficient DNA breaks repair, also through Mn2+ protection of DNA repair enzymes. METHODS Possible annotated domains of the DR1533 locus protein (Shp) were searched by bioinformatic analysis. The gene was cloned and expressed as fusion protein. Band-shift assays of Shp or the SRA and HNH domains were performed on oligonucleotides, genomic DNA from E. coli and DR. shp knock-out mutant was generated by homologous recombination with a kanamycin resistance cassette. RESULTS DR1533 contains an N-terminal SRA domain and a C-terminal HNH motif (SRA-HNH Protein, Shp). Through its SRA domain, Shp binds double-strand oligonucleotides containing 5mC and 5hmC, but also unmethylated and mismatched cytosines in presence of Mn2+. Shp also binds to Escherichia coli dcm+ genomic DNA, and to cytosine unmethylated DR and E. coli dcm- genomic DNAs, but only in presence of Mn2+. Under these binding conditions, Shp displays DNAse activity through its HNH domain. Shp KO enhanced >100 fold the number of spontaneous mutants, whilst the treatment with DNA double strand break inducing agents enhanced up to 3-log the number of survivors. CONCLUSIONS The SRA-HNH containing protein Shp binds to and cuts 5mC DNA, and unmethylated DNA in a Mn2+ dependent manner, and might be involved in faithful genome inheritance maintenance following DNA damage. GENERAL SIGNIFICANCE Our results provide evidence for a potential role of DR Shp protein for genome integrity maintenance, following DNA double strand breaks induced by genotoxic agents.
Collapse
Affiliation(s)
- Alex Ferrandi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Federica Castani
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Mauro Pitaro
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Sara Tagliaferri
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Claire Bouthier de la Tour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, France and Institut de Génétique et Microbiologie - Université Paris-Sud, Paris, France
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo, Italy
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, France and Institut de Génétique et Microbiologie - Université Paris-Sud, Paris, France
| | - Mauro Fasano
- Department of Sciences and High technology, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Paola Barbieri
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy
| | - Monica Mancini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy.
| | - Ian Marc Bonapace
- Department of Biotechnology and Life Sciences, University of Insubria, Via Manara 7, Busto Arsizio, VA, Italy.
| |
Collapse
|
14
|
UHRF1 depletion sensitizes retinoblastoma cells to chemotherapeutic drugs via downregulation of XRCC4. Cell Death Dis 2018; 9:164. [PMID: 29415984 PMCID: PMC5833858 DOI: 10.1038/s41419-017-0203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
UHRF1 (ubiquitin-like with PHD and ring finger domains 1) is highly expressed in various human cancers including retinoblastoma, and associated with tumor-promoting effects such as inhibition of apoptosis and high proliferation. However, the molecular mechanisms underlying tumor-promoting functions of UHRF1 in retinoblastoma still remain elusive. Here, we show that stable knockdown of UHRF1 renders retinoblastoma cells sensitized to conventional chemotherapeutic drugs such as etoposide and camptothecin, resulting in enhanced DNA damage and apoptotic cell death. We found that UHRF1-depleted retinoblastoma cells can recognize DNA damages normally but have markedly low expression of XRCC4 (X-ray repair cross complementing 4) among the components of nonhomologous end-joining (NHEJ) repair complex. Conversely, overexpression of UHRF1 increased the XRCC4 expression and stable knockdown of XRCC4 sensitized retinoblastoma cells to etoposide treatment, suggesting that XRCC4 is a key mediator for the drug sensitivity upon UHRF1 depletion in retinoblastoma cells. Consistent with the findings, chromatin association of DNA ligase IV in response to acute DNA damage was found to be significantly reduced in UHRF1-depleted retinoblastoma cells and functional complementation for XRCC4 in UHRF1-depleted cells attenuated the drug sensitivity, demonstrating that XRCC4 downregulation in UHRF1-depleted cells impaired DNA repair and consequently induced robust apoptosis upon genotoxic drug treatment. In human primary retinoblastoma, high expression of UHRF1 and XRCC4 could be detected, and elevated XRCC4 expression correlated with reduced apoptosis markers, implying that UHRF1-mediated XRCC4 upregulation under pathophysiological conditions triggered by RB1 gene inactivation may confer protection against endogenous DNA damages that arise during retinoblastoma development. Taken together, these results present a new mechanistic insight into how UHRF1 mediates its tumor-promoting functions in retinoblastoma, and also provide a basis for UHRF1 targeting to improve the efficacy of current chemotherapy for retinoblastoma treatment.
Collapse
|
15
|
Gao L, Tan XF, Zhang S, Wu T, Zhang ZM, Ai HW, Song J. An Intramolecular Interaction of UHRF1 Reveals Dual Control for Its Histone Association. Structure 2018; 26:304-311.e3. [PMID: 29395786 DOI: 10.1016/j.str.2017.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/17/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022]
Abstract
UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) is one of the essential components of mammalian DNA methylation machinery. Chromatin association of UHRF1 is controlled via an interplay between its intramolecular interaction and dual recognition of histone H3 trimethylated at lysine 9 (H3K9me3) and hemimethylated DNA. Here, we report the crystal structure of the N-terminal tandem Tudor domain (TTD) of UHRF1 in complex with the C-terminal polybasic region (PBR). Structural analysis reveals that PBR binding leads to displacement of the TTD-plant homeodomain (PHD) linker, as well as blockage of the H3K9me3-engaging cage, both of which contribute to a chromatin-occluded UHRF1 conformation. Disruption of the TTD-PBR interaction, which is facilitated by the binding of UHRF1 to hemimethylated DNA or regulatory protein USP7, shifts the UHRF1 conformation toward an open state, allowing for efficient H3K9me3 binding. Together, this study provides structural basis for the allosteric regulation of UHRF1.
Collapse
Affiliation(s)
- Linfeng Gao
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Xiao-Feng Tan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Shen Zhang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Tianchen Wu
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Zhi-Min Zhang
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Hui-Wang Ai
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA; Department of Chemistry, University of California, Riverside, CA 92521, USA; Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Jikui Song
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA; Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
16
|
Saidi S, Popov Z, Janevska V, Panov S. Overexpression of UHRF1 gene correlates with the major clinicopathological parameters in urinary bladder cancer. Int Braz J Urol 2017; 43:224-229. [PMID: 28128913 PMCID: PMC5433360 DOI: 10.1590/s1677-5538.ibju.2016.0126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 11/19/2016] [Accepted: 11/19/2016] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Recently, expression of the UHRF1 gene was found to be up-regulated in numerous neoplasms, including the urinary bladder transitional cell carcinoma (TCC). OBJECTIVE The aim of our study was to determine if the expression levels of UHRF1 gene correlates with the major pathological characteristics of the tumor and patients' clinical outcome. MATERIALS AND METHODS In our study, we have analyzed the tissue samples derived from group of 70 patients with histologically confirmed TCC of the urinary bladder, while normal urinary bladder mucosa obtained from 40 patients with nonmalignant diseases was used as a negative control group. Expression of UHRF1 gene in each patient sample was determined using reverse transcriptase-polymerase chain reaction. RESULTS UHRF1 gene expression was found to be app. 2.5 times higher in samples from patients with TCC in comparison with normal epithelium derived from control group patients. Analysis show that gene expression correlates with the malignancy of the tumor. A highly significant differences were found between the expression values of samples from low and high grade TCC, as well as between the high grade and control group. UHRF1 expression was higher in patients with non-muscle invasive disease than in those with muscle invasive disease. CONCLUSIONS The result of this study indicates that UHRF1 gene expression levels correlates with the major pathological characteristics of TCC samples and with the clinical outcome of those patients. Determination of UHRF1 gene expression could have a potential to be used as a sensitive molecular marker in patients with urinary bladder cancer.
Collapse
Affiliation(s)
- Skender Saidi
- University Clinic of Urology in Skopje, Republic of Macedonia
| | - Zivko Popov
- University Clinic of Urology in Skopje, Republic of Macedonia
| | - Vesna Janevska
- Institute of Pathology, Medical Faculty, Ss. Cyril and Methodius University, Republic of Macedonia
| | - Sasho Panov
- Molecular Biology and Genetics Department, Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, Republic of Macedonia
| |
Collapse
|
17
|
Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. Mutat Res 2016; 787:43-53. [PMID: 26963372 DOI: 10.1016/j.mrfmmm.2016.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 01/04/2023]
Abstract
DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation-proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ((56)Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or (56)Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with (56)Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and expression of repetitive elements may serve as early biomarkers of exposure to space radiation.
Collapse
|
18
|
Tauber M, Fischle W. Conserved linker regions and their regulation determine multiple chromatin-binding modes of UHRF1. Nucleus 2016; 6:123-32. [PMID: 25891992 PMCID: PMC4615792 DOI: 10.1080/19491034.2015.1026022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin-like with PHD and RING Finger domains 1 (UHRF1) is an important nuclear protein that is mutated and aberrantly expressed in many tumors. The protein integrates different chromatin modifications and is essential for their maintenance throughout the cell cycle. Separate chromatin-binding modules of UHRF1 have been studied on a functional and structural level. The unmodified N-terminus of histone H3 is recognized by a PHD domain, while a TTD domain specifically interacts with histone H3 Lysine 9 trimethylation. A SRA region binds hemimethylatd DNA. Emerging evidence indicates that the modules of UHRF1 do not act independently of each other but establish complex modes of interaction with patterns of chromatin modifications. This multivalent readout is regulated by allosteric binding of phosphatidylinositol 5-phosphate to a region outside the PHD, TTD and SRA domains as well as by phosphorylation of one of the linker regions connecting these modules. Here, we summarize the current knowledge on UHRF1 chromatin interaction and introduce a novel model of conformational transitions of the protein that are directed by the flexible and highly charged linker regions. We propose that these are essential in setting up defined structural states of the protein where different domains or combinations thereof are available for binding chromatin modifications or are prevented from doing so. Lastly, we suggest that controlled tuning of intramolecular linker interactions by ligands and posttranslational modifications establishes a rational framework for comprehending UHRF1 regulation and putatively the working mode of other chromatin factors in different physiological contexts.
Collapse
Affiliation(s)
- Maria Tauber
- a Laboratory of Chromatin Biochemistry ; Max Planck Institute for Biophysical Chemistry ; Göttingen , Germany
| | | |
Collapse
|
19
|
Zhang H, Liu H, Chen Y, Yang X, Wang P, Liu T, Deng M, Qin B, Correia C, Lee S, Kim J, Sparks M, Nair AA, Evans DL, Kalari KR, Zhang P, Wang L, You Z, Kaufmann SH, Lou Z, Pei H. A cell cycle-dependent BRCA1-UHRF1 cascade regulates DNA double-strand break repair pathway choice. Nat Commun 2016; 7:10201. [PMID: 26727879 PMCID: PMC4728409 DOI: 10.1038/ncomms10201] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/13/2015] [Indexed: 01/07/2023] Open
Abstract
BRCA1 is an important mediator of the DNA damage response, which promotes homologous recombination (HR) and antagonizes 53BP1-dependent non-homologous end joining in S/G2 phase. But how this is achieved remains unclear. Here, we report that the E3 ubiquitin ligase UHRF1 (Ubiquitin-like, with PHD and RING finger domains 1) directly participates in the interplay between BRCA1 and 53BP1. Mechanistically, UHRF1 is recruited to DNA double-strand breaks (DSBs) by BRCA1 in S phase, which requires the BRCT domain of BRCA1 and phosphorylated Ser674 of UHRF1. Subsequently, UHRF1 mediates K63-linked polyubiquitination of RIF1, and results in its dissociation from 53BP1 and DSBs thereby facilitating HR initiation. Thus, UHRF1 is a key regulator of DSB repair choice, which is separate from its role in heterochromatin formation and epigenetic regulator. BRCA1 is a key regulator of DNA double-strand break repair, functioning to promote homologous recombination and repress non-homologous end-joining. Here the authors show that the ubiquitin ligase UHRF1 is recruited to breaks by BRCA1, where it targets RIF1 and thereby facilitates recombination.
Collapse
Affiliation(s)
- Haoxing Zhang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hailong Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yali Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xu Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Panfei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tongzheng Liu
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Bo Qin
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Cristina Correia
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Seungbaek Lee
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Jungjin Kim
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Melanie Sparks
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri 63130, USA
| | - Asha A Nair
- BSI-Genetics &Bioinformatics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Debra L Evans
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishna R Kalari
- BSI-Genetics &Bioinformatics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Liewei Wang
- Molecular Pharmacology and Experimental therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri 63130, USA
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenkun Lou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China.,Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA.,Molecular Pharmacology and Experimental therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Huadong Pei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
20
|
Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, Cao L. DNA methylation, its mediators and genome integrity. Int J Biol Sci 2015; 11:604-17. [PMID: 25892967 PMCID: PMC4400391 DOI: 10.7150/ijbs.11218] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 12/18/2022] Open
Abstract
DNA methylation regulates many cellular processes, including embryonic development, transcription, chromatin structure, X-chromosome inactivation, genomic imprinting and chromosome stability. DNA methyltransferases establish and maintain the presence of 5-methylcytosine (5mC), and ten-eleven translocation cytosine dioxygenases (TETs) oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), which can be removed by base excision repair (BER) proteins. Multiple forms of DNA methylation are recognised by methyl-CpG binding proteins (MeCPs), which play vital roles in chromatin-based transcriptional regulation, DNA repair and replication. Accordingly, defects in DNA methylation and its mediators may cause silencing of tumour suppressor genes and misregulation of multiple cell cycles, DNA repair and chromosome stability genes, and hence contribute to genome instability in various human diseases, including cancer. Thus, understanding functional genetic mutations and aberrant expression of these DNA methylation mediators is critical to deciphering the crosstalk between concurrent genetic and epigenetic alterations in specific cancer types and to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Huan Meng
- 1. Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China; ; 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Ying Cao
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Jinzhong Qin
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Xiaoyu Song
- 1. Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| | - Qing Zhang
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Yun Shi
- 2. MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Liu Cao
- 1. Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| |
Collapse
|
21
|
Jacob V, Chernyavskaya Y, Chen X, Tan PS, Kent B, Hoshida Y, Sadler KC. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos. Development 2015; 142:510-21. [PMID: 25564650 DOI: 10.1242/dev.115980] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis.
Collapse
Affiliation(s)
- Vinitha Jacob
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Yelena Chernyavskaya
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Xintong Chen
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Poh Seng Tan
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Health System, Singapore
| | - Brandon Kent
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Yujin Hoshida
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Kirsten C Sadler
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| |
Collapse
|
22
|
Miousse IR, Shao L, Chang J, Feng W, Wang Y, Allen AR, Turner J, Stewart B, Raber J, Zhou D, Koturbash I. Exposure to low-dose (56)Fe-ion radiation induces long-term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells. Radiat Res 2014; 182:92-101. [PMID: 24960414 DOI: 10.1667/rr13580.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is an increasing need to better understand the long-term health effects of high-linear energy transfer (LET) radiation due to exposure during space missions, as well as its increasing use in clinical treatments. Previous studies have indicated that exposure to (56)Fe heavy ions increases the incidence of acute myeloid leukemia (AML) in mice but the underlying molecular mechanisms remain elusive. Epigenetic alterations play a role in radiation-induced genomic instability and the initiation and progression of AML. In this study, we assessed the effects of low-dose (56)Fe-ion irradiation on epigenetic alterations in bone marrow mononuclear cells (BM-MNCs) and hematopoietic progenitor and stem cells (HPSCs). Exposure to (56)Fe ions (600 MeV, 0.1, 0.2 and 0.4 Gy) resulted in significant epigenetic alterations involving methylation of DNA, the DNA methylation machinery and expression of repetitive elements. Four weeks after irradiation, these changes were primarily confined to HPSCs and were exhibited as dose-dependent hypermethylation of LINE1 and SINE B1 repetitive elements [4.2-fold increase in LINE1 (P < 0.001) and 7.6-fold increase in SINE B1 (P < 0.01) after exposure to 0.4 Gy; n = 5]. Epigenetic alterations were persistent and detectable for at least 22 weeks after exposure, when significant loss of global DNA hypomethylation (1.9-fold, P < 0.05), decreased expression of Dnmt1 (1.9-fold, P < 0.01), and increased expression of LINE1 and SINE B1 repetitive elements (2.8-fold, P < 0.001 for LINE1 and 1.9-fold, P < 0.05 for SINE B1; n = 5) were observed after exposure to 0.4 Gy. In contrast, exposure to (56)Fe ions did not result in accumulation of increased production of reactive oxygen species (ROS) and DNA damage, exhibited as DNA strand breaks. Furthermore, no significant alterations in cellular senescence and apoptosis were detected in HPSCs after exposure to (56)Fe-ion radiation. These findings suggest that epigenetic reprogramming is possibly involved in the development of radiation-induced genomic instability and thus, may have a causative role in the development of AML.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Wei Feng
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Yingying Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Neurological Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer Turner
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon
| | - Blair Stewart
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon
| | - Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon.,Department of Neurology, ONPRC, Oregon Health and Science University, Portland, Oregon.,Department of Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
23
|
De Vos M, El Ramy R, Quénet D, Wolf P, Spada F, Magroun N, Babbio F, Schreiber V, Leonhardt H, Bonapace IM, Dantzer F. Poly(ADP-ribose) polymerase 1 (PARP1) associates with E3 ubiquitin-protein ligase UHRF1 and modulates UHRF1 biological functions. J Biol Chem 2014; 289:16223-38. [PMID: 24782312 DOI: 10.1074/jbc.m113.527424] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1, also known as ARTD1) is an abundant nuclear enzyme that plays important roles in DNA repair, gene transcription, and differentiation through the modulation of chromatin structure and function. In this work we identify a physical and functional poly(ADP-ribose)-mediated interaction of PARP1 with the E3 ubiquitin ligase UHRF1 (also known as NP95, ICBP90) that influences two UHRF1-regulated cellular processes. On the one hand, we uncovered a cooperative interplay between PARP1 and UHRF1 in the accumulation of the heterochromatin repressive mark H4K20me3. The absence of PARP1 led to reduced accumulation of H4K20me3 onto pericentric heterochromatin that coincided with abnormally enhanced transcription. The loss of H4K20me3 was rescued by the additional depletion of UHRF1. In contrast, although PARP1 also seemed to facilitate the association of UHRF1 with DNMT1, its absence did not impair the loading of DNMT1 onto heterochromatin or the methylation of pericentric regions, possibly owing to a compensating interaction of DNMT1 with PCNA. On the other hand, we showed that PARP1 controls the UHRF1-mediated ubiquitination of DNMT1 to timely regulate its abundance during S and G2 phase. Together, this report identifies PARP1 as a novel modulator of two UHRF1-regulated heterochromatin-associated events: the accumulation of H4K20me3 and the clearance of DNMT1.
Collapse
Affiliation(s)
- Mike De Vos
- From the Poly(ADP-ribosyl)ation and Genome Integrity Group, Equipe Labellisée Ligue Nationale Contre le Cancer, Laboratoire d'Excellence Medalis, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Boulevard Sebastien Brant, BP10413, 67412 Illkirch, France
| | - Rosy El Ramy
- From the Poly(ADP-ribosyl)ation and Genome Integrity Group, Equipe Labellisée Ligue Nationale Contre le Cancer, Laboratoire d'Excellence Medalis, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Boulevard Sebastien Brant, BP10413, 67412 Illkirch, France
| | - Delphine Quénet
- From the Poly(ADP-ribosyl)ation and Genome Integrity Group, Equipe Labellisée Ligue Nationale Contre le Cancer, Laboratoire d'Excellence Medalis, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Boulevard Sebastien Brant, BP10413, 67412 Illkirch, France
| | - Patricia Wolf
- the Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany, and
| | - Fabio Spada
- the Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany, and
| | - Najat Magroun
- From the Poly(ADP-ribosyl)ation and Genome Integrity Group, Equipe Labellisée Ligue Nationale Contre le Cancer, Laboratoire d'Excellence Medalis, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Boulevard Sebastien Brant, BP10413, 67412 Illkirch, France
| | - Federica Babbio
- the Department of Structural and Functional Biology, University of Insubria, Via Alberto da Giussano 12, 21052 Busto Arsizio, Italy
| | - Valérie Schreiber
- From the Poly(ADP-ribosyl)ation and Genome Integrity Group, Equipe Labellisée Ligue Nationale Contre le Cancer, Laboratoire d'Excellence Medalis, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Boulevard Sebastien Brant, BP10413, 67412 Illkirch, France
| | - Heinrich Leonhardt
- the Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany, and
| | - Ian Marc Bonapace
- the Department of Structural and Functional Biology, University of Insubria, Via Alberto da Giussano 12, 21052 Busto Arsizio, Italy
| | - Françoise Dantzer
- From the Poly(ADP-ribosyl)ation and Genome Integrity Group, Equipe Labellisée Ligue Nationale Contre le Cancer, Laboratoire d'Excellence Medalis, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, UMR7242, Centre Nationale de la Recherche Scientifique/Université de Strasbourg, Boulevard Sebastien Brant, BP10413, 67412 Illkirch, France,
| |
Collapse
|
24
|
Luo T, Cui S, Bian C, Yu X. Uhrf2 is important for DNA damage response in vascular smooth muscle cells. Biochem Biophys Res Commun 2013; 441:65-70. [PMID: 24134842 DOI: 10.1016/j.bbrc.2013.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022]
Abstract
Emerging evidence shows that Uhrf1 plays an important role in DNA damage response for maintaining genomic stability. Interestingly, Uhrf1 has a paralog Uhrf2 in mammals. Uhrf1 and Uhrf2 share similar domain architectures. However, the role of Uhrf2 in DNA damage response has not been studied yet. During the analysis of the expression level of Uhrf2 in different tissues, we found that Uhrf2 is highly expressed in aorta and aortic vascular smooth muscle cells. Thus, we studied the role of Uhrf2 in DNA damage response in aortic vascular smooth muscle cells. Using laser microirradiation, we found that like Uhrf1, Uhrf2 was recruited to the sites of DNA damage. We dissected the functional domains of Uhrf2 and found that the TTD, PHD and SRA domains are important for the relocation of Uhrf2 to the sites of DNA damage. Moreover, depletion of Uhrf2 suppressed DNA damage-induced H2AX phosphorylation and DNA damage repair. Taken together, our results demonstrate the function of Uhrf2 in DNA damage response.
Collapse
Affiliation(s)
- Tao Luo
- Vascular Surgery Department of Xuan Wu Hospital, Institute of Vascular Surgery, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
25
|
Taylor EM, Bonsu NM, Price RJ, Lindsay HD. Depletion of Uhrf1 inhibits chromosomal DNA replication in Xenopus egg extracts. Nucleic Acids Res 2013; 41:7725-37. [PMID: 23788677 PMCID: PMC3763540 DOI: 10.1093/nar/gkt549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 05/22/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022] Open
Abstract
UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) has a well-established role in epigenetic regulation through the recognition of various histone marks and interaction with chromatin-modifying proteins. However, its function in regulating cell cycle progression remains poorly understood and has been largely attributed to a role in transcriptional regulation. In this study we have used Xenopus laevis egg extracts to analyse Uhrf1 function in DNA replication in the absence of transcriptional influences. We demonstrate that removal of Uhrf1 inhibits chromosomal replication in this system. We further show that this requirement for Uhrf1, or an associated factor, occurs at an early stage of DNA replication and that the consequences of Uhrf1 depletion are not solely due to its role in loading Dnmt1 onto newly replicated DNA. We describe the pattern of Uhrf1 chromatin association before the initiation of DNA replication and show that this reflects functional requirements both before and after origin licensing. Our data demonstrate that the removal of Xenopus Uhrf1 influences the chromatin association of key replication proteins and reveal Uhrf1 as an important new factor required for metazoan DNA replication.
Collapse
Affiliation(s)
- Elaine M. Taylor
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Nicola M. Bonsu
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - R. Jordan Price
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Howard D. Lindsay
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK and Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| |
Collapse
|
26
|
Krifa M, Alhosin M, Muller CD, Gies JP, Chekir-Ghedira L, Ghedira K, Mély Y, Bronner C, Mousli M. Limoniastrum guyonianum aqueous gall extract induces apoptosis in human cervical cancer cells involving p16 INK4A re-expression related to UHRF1 and DNMT1 down-regulation. J Exp Clin Cancer Res 2013; 32:30. [PMID: 23688286 PMCID: PMC3695779 DOI: 10.1186/1756-9966-32-30] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/17/2013] [Indexed: 12/23/2022] Open
Abstract
Several reports have described the potential effects of natural compounds as anti-cancer agents in vitro as well as in vivo. The aim of this study was to evaluate the anti-cancer effect of Limoniastrum guyonianum aqueous gall extract (G extract) and luteolin in the human cervical cancer HeLa cell line, and, if so, to clarify the underlying mechanism. Our results show that G extract and luteolin inhibited cell proliferation and induced G2/M cell cycle arrest in a concentration and time-dependent manner. Both natural products induced programmed cell death as confirmed by the presence of hypodiploid G0/G1 cells. These effects are associated with an up-regulation of the expression of the tumor suppressor gene p16INK4A and a down-regulation of the expression of the anti-apoptotic actor UHRF1 and its main partner DNMT1. Moreover, G extract- and luteolin-induced UHRF1 and DNMT1 down-regulation is accompanied with a global DNA hypomethylation in HeLa cell line. Altogether our results show that G extract mediates its growth inhibitory effects on human cervical cancer HeLa cell line likely via the activation of a p16INK4A-dependent cell cycle checkpoint signalling pathway orchestrated by UHRF1 and DNMT1 down-regulation.
Collapse
Affiliation(s)
- Mounira Krifa
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, CS 60024, Illkirch, Cedex F-67401, France
- Unité de Pharmacognosie/Biologie Moléculaire 99/UR/07-03. Faculté de Pharmacie de Monastir, Rue Avicenne 5000, Monastir, Tunisie
| | - Mahmoud Alhosin
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, CS 60024, Illkirch, Cedex F-67401, France
| | - Christian D Muller
- UMR CNRS 7200, Laboratoire d’Innovation Thérapeutique, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Jean-Pierre Gies
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, CS 60024, Illkirch, Cedex F-67401, France
| | - Leila Chekir-Ghedira
- Unité de Pharmacognosie/Biologie Moléculaire 99/UR/07-03. Faculté de Pharmacie de Monastir, Rue Avicenne 5000, Monastir, Tunisie
| | - Kamel Ghedira
- Unité de Pharmacognosie/Biologie Moléculaire 99/UR/07-03. Faculté de Pharmacie de Monastir, Rue Avicenne 5000, Monastir, Tunisie
| | - Yves Mély
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, CS 60024, Illkirch, Cedex F-67401, France
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM, Parc d’innovation, 1 rue Laurent Fries, Illkirch, Cedex 67404, France
| | - Marc Mousli
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, CS 60024, Illkirch, Cedex F-67401, France
| |
Collapse
|
27
|
Abstract
UHRF1 (ubiquitin-like, with PHD and RING finger domains 1) is a critical epigenetic player involved in the maintenance of DNA methylation patterns during DNA replication. Dysregulation of the UHRF1 level is implicated in cancer onset, metastasis, and tumor recurrence. Previous studies demonstrated that UHRF1 can be stabilized through USP7-mediated deubiquitylation, but the mechanism through which UHRF1 is ubiquitylated is still unknown. Here we show that proteasomal degradation of UHRF1 is mediated by the SCF(β-TrCP) E3 ligase. Through bioinformatic and mutagenesis studies, we identified a functional DSG degron in the UHRF1 N terminus that is necessary for UHRF1 stability regulation. We further show that UHRF1 physically interacts with β-TrCP1 in a manner dependent on phosphorylation of serine 108 (S108(UHRF1)) within the DSG degron. Furthermore, we demonstrate that S108(UHRF1) phosphorylation is catalyzed by casein kinase 1 delta (CK1δ) and is important for the recognition of UHRF1 by SCF(β-TrCP). Importantly, we demonstrate that UHRF1 degradation is accelerated in response to DNA damage, coincident with enhanced S108(UHRF1) phosphorylation. Taken together, our data identify SCF(β-TrCP) as a bona fide UHRF1 E3 ligase important for regulating UHRF1 steady-state levels both under normal conditions and in response to DNA damage.
Collapse
|
28
|
Gene therapy with RNAi targeting UHRF1 driven by tumor-specific promoter inhibits tumor growth and enhances the sensitivity of chemotherapeutic drug in breast cancer in vitro and in vivo. Cancer Chemother Pharmacol 2011; 69:1079-87. [DOI: 10.1007/s00280-011-1801-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
29
|
Abstract
The methyl-CpG binding proteins (MBPs) interpret the methylation of DNA and its components. The number of MBPs in the human body currently stands at 15, which are split into 3 branches, a reflection of the intricate mechanisms of gene regulation. Each branch utilizes a different mechanism for interacting with methylated DNA or its components. These interactions function to direct gene expression and maintain or alter DNA architecture. It is these functions that are commonly exploited in human disease. For this review, we will focus on each protein and any roles it may have in initiating, promoting, progressing, or inhibiting cancer. This will highlight common threads in the roles of these proteins, which will allow us to speculate on potentially productive directions for future research.
Collapse
Affiliation(s)
- Lee Parry
- School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|