1
|
Maclean MA, Rogers PS, Muradov JH, Pickett GE, Friedman A, Weeks A, Greene R, Volders D. Contrast-Induced Encephalopathy and the Blood-Brain Barrier. Can J Neurol Sci 2025; 52:85-94. [PMID: 38453685 DOI: 10.1017/cjn.2024.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
BACKGROUND Contrast-induced encephalopathy (CIE) is an adverse event associated with diagnostic and therapeutic endovascular procedures. Decades of animal and human research support a mechanistic role for pathological blood-brain barrier dysfunction (BBBd). Here, we describe an institutional case series and review the literature supporting a mechanistic role for BBBd in CIE. METHODS A literature review was conducted by searching MEDLINE, Web of Science, Embase, CINAHL and Cochrane databases from inception to January 31, 2022. We searched our institutional neurovascular database for cases of CIE following endovascular treatment of cerebrovascular disease during a 6-month period. Informed consent was obtained in all cases. RESULTS Review of the literature revealed risk factors for BBBd and CIE, including microvascular disease, pathological neuroinflammation, severe procedural hypertension, iodinated contrast load and altered cerebral blood flow dynamics. In our institutional series, 6 of 52 (11.5%) of patients undergoing therapeutic neuroendovascular procedures developed CIE during the study period. Four patients were treated for ischemic stroke and two patients for recurrent cerebral aneurysms. Mechanical stenting or thrombectomy were utilized in all cases. CONCLUSION In this institutional case series and literature review of animal and human data, we identified numerous shared risk factors for CIE and BBBd, including microvascular disease, increased procedure length, large contrast volumes, severe intraoperative hypertension and use of mechanical devices that may induce iatrogenic endothelial injury.
Collapse
Affiliation(s)
- Mark A Maclean
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Patrick S Rogers
- Department of Diagnostic Radiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jamil H Muradov
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gwynedd E Pickett
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Adrienne Weeks
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Ryan Greene
- Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - David Volders
- Department of Diagnostic Radiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Cafri N, Mirloo S, Zarhin D, Kamintsky L, Serlin Y, Alhadeed L, Goldberg I, Maclean MA, Whatley B, Urman I, Doherty CP, Greene C, Behan C, Brennan D, Campbell M, Bowen C, Ben‐Arie G, Shelef I, Wandschneider B, Koepp M, Friedman A, Benninger F. Imaging blood-brain barrier dysfunction in drug-resistant epilepsy: A multi-center feasibility study. Epilepsia 2025; 66:195-206. [PMID: 39503526 PMCID: PMC11742632 DOI: 10.1111/epi.18145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE Blood-brain barrier dysfunction (BBBD) has been linked to various neurological disorders, including epilepsy. This study aims to utilize dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to identify and compare brain regions with BBBD in patients with epilepsy (PWE) and healthy individuals. METHODS We scanned 50 drug-resistant epilepsy (DRE) patients and 58 control participants from four global specialized epilepsy centers using DCE-MRI. The presence and extent of BBBD were analyzed and compared between PWE and healthy controls. RESULTS Both greater brain volume and higher number of brain regions with BBBD were significantly present in PWE compared to healthy controls (p < 10-7). No differences in total brain volume with BBBD were observed in patients diagnosed with either focal seizures or generalized epilepsy, despite variations in the affected regions. Overall brain volume with BBBD did not differ in PWE with MRI-visible lesions compared with non-lesional cases. BBBD was observed in brain regions suspected to be related to the onset of seizures in 82% of patients (n = 39) and was typically identified in, adjacent to, and/or in the same hemisphere as the suspected epileptogenic lesion (n = 10). SIGNIFICANCE These findings are consistent with pre-clinical studies that highlight the role of BBBD in the development of DRE and identify microvascular stabilization as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Nir Cafri
- Department of Physiology, Professor Vladimir Zelman Inter‐Disciplinary Center of Brain SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Department of Cell Biology, Cognitive and Brain Sciences, Professor Vladimir Zelman Inter‐Disciplinary Center of Brain SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Department of NeurologyRabin Medical Center, Beilinson Hospital and Tel‐Aviv UniversityPetah TikvaIsrael
| | - Sheida Mirloo
- Department of Medical NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Daniel Zarhin
- Department of NeurologyRabin Medical Center, Beilinson Hospital and Tel‐Aviv UniversityPetah TikvaIsrael
| | - Lyna Kamintsky
- Department of Medical NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Yonatan Serlin
- Department of Medical NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
- Neurophysiology of Epilepsy UnitNational Institute of Neurological Disorders and Stroke, NIHBethesdaMarylandUSA
| | - Laith Alhadeed
- Department of Medical NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Ilan Goldberg
- Department of NeurologyRabin Medical Center, Beilinson Hospital and Tel‐Aviv UniversityPetah TikvaIsrael
| | - Mark A. Maclean
- Division of NeurosurgeryDalhousie UniversityHalifaxNova ScotiaCanada
| | - Ben Whatley
- Division of NeurologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Ilia Urman
- Department of NeurologyRabin Medical Center, Beilinson Hospital and Tel‐Aviv UniversityPetah TikvaIsrael
| | - Colin P. Doherty
- Academic Unit of Neurology, School of MedicineTrinity CollegeDublinIreland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in IrelandUniversity of Medicine and Health SciencesDublinIreland
| | - Chris Greene
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in IrelandUniversity of Medicine and Health SciencesDublinIreland
- Smurfit Institute of GeneticsTrinity College DublinDublinIreland
| | - Claire Behan
- Academic Unit of Neurology, School of MedicineTrinity CollegeDublinIreland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in IrelandUniversity of Medicine and Health SciencesDublinIreland
| | - Declan Brennan
- Academic Unit of Neurology, School of MedicineTrinity CollegeDublinIreland
| | - Matthew Campbell
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in IrelandUniversity of Medicine and Health SciencesDublinIreland
- Smurfit Institute of GeneticsTrinity College DublinDublinIreland
| | - Chris Bowen
- Department of Diagnostic RadiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Gal Ben‐Arie
- Department of Medical ImagingSoroka Medical CenterBeer ShevaIsrael
| | - Ilan Shelef
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
| | - Britta Wandschneider
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- UCL‐Epilepsy Society MRI UnitChalfont Centre for EpilepsyChalfont St PeterUK
| | - Matthias Koepp
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- UCL‐Epilepsy Society MRI UnitChalfont Centre for EpilepsyChalfont St PeterUK
| | - Alon Friedman
- Department of Physiology, Professor Vladimir Zelman Inter‐Disciplinary Center of Brain SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Department of Cell Biology, Cognitive and Brain Sciences, Professor Vladimir Zelman Inter‐Disciplinary Center of Brain SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Department of Medical NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Felix Benninger
- Department of NeurologyRabin Medical Center, Beilinson Hospital and Tel‐Aviv UniversityPetah TikvaIsrael
| |
Collapse
|
3
|
Perrino S, Vazana U, Prager O, Schori L, Ben-Arie G, Minarik A, Chen YM, Haçariz O, Hashimoto M, Roth Y, Pell GS, Friedman A, Brodt P. Transcranial Magnetic Stimulation Enhances the Therapeutic Effect of IGF-Trap in Intracerebral Glioma Models. Pharmaceuticals (Basel) 2024; 17:1607. [PMID: 39770449 PMCID: PMC11677529 DOI: 10.3390/ph17121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Glioblastoma multiforme is an aggressive malignancy with a dismal 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier (BBB). We have previously shown that high-amplitude repetitive transcranial magnetic stimulation (rTMS) in rats allowed the delivery across the BBB of an IGF signaling inhibitor-IGF-Trap. The objective of this study was to assess the therapeutic effect of IGF-Trap when delivered in conjunction with rTMS on the intracerebral growth of glioma. Results: We found that systemic administration of IGF-Trap without rTMS had a minimal effect on the growth of orthotopically injected glioma cells in rats and mice, compared to control animals injected with vehicle only or treated with sham rTMS. In rats treated with a combination of rTMS and IGF-Trap, we observed a growth retardation of C6 tumors for up to 14 days post-tumor cell injection, although tumors eventually progressed. In mice, tumors were detectable in all control groups by 14-17 days post-injection of glioma GL261 cells and progressed rapidly thereafter. In mice treated with rTMS prior to IGF-Trap administration, tumor growth was inhibited or delayed, although the tumors also eventually progressed. Conclusion: The results showed that rTMS could increase the anti-tumor effect of IGF-Trap during the early phases of tumor growth. Further optimization of the rTMS protocol is required to improve survival outcomes.
Collapse
Affiliation(s)
- Stephanie Perrino
- The Research Institute, The McGill University Health Center, Montreal, QC H4A 3J1, Canada; (S.P.)
| | - Udi Vazana
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 1 Ben-Gurion Blvd., Beer-Sheva 8410501, Israel; (U.V.); (O.P.); (A.F.)
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 1 Ben-Gurion Blvd., Beer-Sheva 8410501, Israel; (U.V.); (O.P.); (A.F.)
| | - Lior Schori
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 1 Ben-Gurion Blvd., Beer-Sheva 8410501, Israel; (U.V.); (O.P.); (A.F.)
| | - Gal Ben-Arie
- Faculty of Health Sciences, Ben-Gurion University of the Negev, 1 Ben-Gurion Blvd., Beer-Sheva 8410501, Israel
- Department of Radiology, Soroka Medical Center, Beer-Sheva 8410501, Israel
| | - Anna Minarik
- Department of Medical Neuroscience and the Brain Repair Centre, Faculty of Medicine, Dalhousie University, 5850 College St., Halifax, NS B3H 4R2, Canada
| | - Yinhsuan Michely Chen
- The Research Institute, The McGill University Health Center, Montreal, QC H4A 3J1, Canada; (S.P.)
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Orçun Haçariz
- The Research Institute, The McGill University Health Center, Montreal, QC H4A 3J1, Canada; (S.P.)
- Department of Surgery, Division of Experimental Surgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Masakazu Hashimoto
- The Research Institute, The McGill University Health Center, Montreal, QC H4A 3J1, Canada; (S.P.)
| | - Yiftach Roth
- Brainsway Ltd., 19 Hartom St., Jerusalem 9777518, Israel; (Y.R.); (G.S.P.)
| | - Gabriel S. Pell
- Brainsway Ltd., 19 Hartom St., Jerusalem 9777518, Israel; (Y.R.); (G.S.P.)
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 1 Ben-Gurion Blvd., Beer-Sheva 8410501, Israel; (U.V.); (O.P.); (A.F.)
- Department of Medical Neuroscience and the Brain Repair Centre, Faculty of Medicine, Dalhousie University, 5850 College St., Halifax, NS B3H 4R2, Canada
| | - Pnina Brodt
- The Research Institute, The McGill University Health Center, Montreal, QC H4A 3J1, Canada; (S.P.)
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Surgery, Division of Experimental Surgery, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
4
|
Leterrier S, Goutal S, Hugon G, Goislard M, Saba W, Hosten B, Specklin S, Winkeler A, Tournier N. Imaging quantitative changes in blood-brain barrier permeability using [ 18F]2-fluoro-2-deoxy-sorbitol ([ 18F]FDS) PET in relation to glial cell recruitment in a mouse model of endotoxemia. J Cereb Blood Flow Metab 2024; 44:1117-1127. [PMID: 38441006 PMCID: PMC11179610 DOI: 10.1177/0271678x241236755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/06/2024]
Abstract
The quantitative relationship between the disruption of the blood-brain barrier (BBB) and the recruitment of glial cells was explored in a mouse model of endotoxemia. [18F]2-Fluoro-2-deoxy-sorbitol ([18F]FDS) PET imaging was used as a paracellular marker for quantitative monitoring of BBB permeability after i.v injection of increasing doses of lipopolysaccharide (LPS) or vehicle (saline, n = 5). The brain distribution of [18F]FDS (VT, mL.cm-3) was estimated using kinetic modeling. LPS dose-dependently increased the brain VT of [18F]FDS after injection of LPS 4 mg/kg (5.2 ± 2.4-fold, n = 4, p < 0.01) or 5 mg/kg (9.0 ± 9.1-fold, n = 4, p < 0.01) but not 3 mg/kg (p > 0.05, n = 7). In 12 individuals belonging to the different groups, changes in BBB permeability were compared with expression of markers of astrocyte (GFAP) and microglial cell (CD11b) using ex vivo immunohistochemistry. Increased expression of CD11b and GFAP expression was observed in mice injected with 3 mg/kg of LPS, which did not increase with higher LPS doses. Quantitative [18F]FDS PET imaging can capture different levels of BBB permeability in vivo. A biphasic effect was observed with the lowest dose of LPS that triggered neuroinflammation without disruptive changes in BBB permeability, and higher LPS doses that increased BBB permeability without additional recruitment of glial cells.
Collapse
Affiliation(s)
- Sarah Leterrier
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Sébastien Goutal
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Gaëlle Hugon
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Maud Goislard
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Wadad Saba
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Benoit Hosten
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Simon Specklin
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Alexandra Winkeler
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Inserm, CNRS, Orsay, France
| |
Collapse
|
5
|
Reiter JT, Schulte F, Bauer T, David B, Endler C, Isaak A, Schuch F, Bitzer F, Witt JA, Hattingen E, Deichmann R, Attenberger U, Becker AJ, Helmstaedter C, Radbruch A, Surges R, Friedman A, Rüber T. Evidence for interictal blood-brain barrier dysfunction in people with epilepsy. Epilepsia 2024; 65:1462-1474. [PMID: 38436479 DOI: 10.1111/epi.17929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.
Collapse
Affiliation(s)
- Johannes T Reiter
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Freya Schulte
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Tobias Bauer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Bastian David
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Christoph Endler
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Fabiane Schuch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Felix Bitzer
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | | | - Elke Hattingen
- Institute of Neuroradiology, University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | | | | | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Departments of Cognitive and Brain Sciences, Physiology, and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Theodor Rüber
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
6
|
Hosten B, Goutal S, Leterrier S, Corvo C, Breuil L, Barret O, Specklin S, Truillet C, Tournier N. Brain delivery enabled by transient blood-brain barrier disruption induced by regadenoson: a PET imaging study. Expert Opin Drug Deliv 2024; 21:797-807. [PMID: 38881261 DOI: 10.1080/17425247.2024.2369765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Regadenoson, an agonist of adenosine A2 receptors, enables transient blood-brain barrier (BBB) disruption. The relevance of regadenoson as a pharmacological strategy for brain delivery was investigated using in vivo PET imaging in rats. RESEARCH DESIGN AND METHODS Kinetic modeling of brain PET data was performed to estimate the impact of regadenoson (0.05 mg.kg-1, i.v.) on BBB permeation compared with control rats (n = 4-6 per group). Three radiolabeled compounds of different sizes, which do not cross the intact BBB, were tested. RESULTS Regadenoson significantly increased the BBB penetration (+116 ± 13%, p < 0.001) of [18F]2-deoxy-2-fluoro-D-sorbitol ([18F]FDS, MW = 183 Da), a small-molecule marker of BBB permeability. The magnitude of the effect was different across brain regions, with a maximum increase in the striatum. Recovery of BBB integrity was observed 30 min after regadenoson injection. Regadenoson also increased the brain penetration (+72 ± 45%, p < 0.05) of a radiolabeled nanoparticle [89Zr]AGuIX (MW = 9 kDa). However, the brain kinetics of a monoclonal antibody ([89Zr]mAb, MW = 150 kDa) remained unchanged (p > 0.05). CONCLUSIONS PET imaging showed the features and limitations of BBB disruption induced by regadenoson in terms of extent, regional distribution, and reversibility. Nevertheless, regadenoson enables the brain delivery of small molecules or nanoparticles in rats.
Collapse
Affiliation(s)
- Benoit Hosten
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
- INSERM UMR1144, Université Paris Cité, Paris, France
| | - Sébastien Goutal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Sarah Leterrier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Cassandre Corvo
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Louise Breuil
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
- INSERM UMR1144, Université Paris Cité, Paris, France
| | - Olivier Barret
- CEA, CNRS, Université Paris-Saclay, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-Aux-Roses, France
| | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Charles Truillet
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, Orsay, France
| |
Collapse
|
7
|
Kalyani P, Lippa SM, Werner JK, Amyot F, Moore CB, Kenney K, Diaz-Arrastia R. Phosphodiesterase-5 (PDE-5) Inhibitors as Therapy for Cerebrovascular Dysfunction in Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1629-1640. [PMID: 37697134 PMCID: PMC10684467 DOI: 10.1007/s13311-023-01430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Multiple phase III randomized controlled trials (RCTs) for pharmacologic interventions in traumatic brain injury (TBI) have failed despite promising results in experimental models. The heterogeneity of TBI, in terms of pathomechanisms and impacted brain structures, likely contributes to these failures. Biomarkers have been recommended to identify patients with relevant pathology (predictive biomarkers) and confirm target engagement and monitor therapy response (pharmacodynamic biomarkers). Our group focuses on traumatic cerebrovascular injury as an understudied endophenotype of TBI and is validating a predictive and pharmacodynamic imaging biomarker (cerebrovascular reactivity; CVR) in moderate-severe TBI. We aim to extend these studies to milder forms of TBI to determine the optimal dose of sildenafil for maximal improvement in CVR. We will conduct a phase II dose-finding study involving 160 chronic TBI patients (mostly mild) using three doses of sildenafil, a phosphodiesterase-5 (PDE-5) inhibitor. The study measures baseline CVR and evaluates the effect of escalating sildenafil doses on CVR improvement. A 4-week trial of thrice daily sildenafil will assess safety, tolerability, and clinical efficacy. This dual-site 4-year study, funded by the Department of Defense and registered in ClinicalTrials.gov (NCT05782244), plans to launch in June 2023. Biomarker-informed RCTs are essential for developing effective TBI interventions, relying on an understanding of underlying pathomechanisms. Traumatic microvascular injury (TMVI) is an attractive mechanism which can be targeted by vaso-active drugs such as PDE-5 inhibitors. CVR is a potential predictive and pharmacodynamic biomarker for targeted interventions aimed at TMVI. (Trial registration: NCT05782244, ClinicalTrials.gov ).
Collapse
Affiliation(s)
- Priyanka Kalyani
- Department of Neurology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| | - Sara M Lippa
- Walter Reed National Military Medical Center, The National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, USA
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - J Kent Werner
- Walter Reed National Military Medical Center, The National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, USA
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Franck Amyot
- Walter Reed National Military Medical Center, The National Intrepid Center of Excellence, Palmer Rd S, Bethesda, MD, 20814, USA
| | - Carol B Moore
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Kimbra Kenney
- Department of Neuroscience, Uniformed Services University Health Sciences, 4301, Jones Bridge Rd, Bethesda, MD, 20814, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Hanael E, Baruch S, Chai O, Lishitsky L, Blum T, Rapoport K, Ruggeri M, Aizenberg Z, Peery D, Meyerhoff N, Volk HA, De Decker S, Tipold A, Baumgaertner W, Friedman A, Shamir M. Quantitative analysis of magnetic resonance images for characterization of blood-brain barrier dysfunction in dogs with brain tumors. J Vet Intern Med 2023; 37:606-617. [PMID: 36847997 DOI: 10.1111/jvim.16654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) permeability can be assessed quantitatively using advanced imaging analysis. HYPOTHESIS/OBJECTIVES Quantification and characterization of blood-brain barrier dysfunction (BBBD) patterns in dogs with brain tumors can provide useful information about tumor biology and assist in distinguishing between gliomas and meningiomas. ANIMALS Seventy-eight hospitalized dogs with brain tumors and 12 control dogs without brain tumors. METHODS In a 2-arm study, images from a prospective dynamic contrast-enhanced (DCE; n = 15) and a retrospective archived magnetic resonance imaging study (n = 63) were analyzed by DCE and subtraction enhancement analysis (SEA) to quantify BBB permeability in affected dogs relative to control dogs (n = 6 in each arm). For the SEA method, 2 ranges of postcontrast intensity differences, that is, high (HR) and low (LR), were evaluated as possible representations of 2 classes of BBB leakage. BBB score was calculated for each dog and was associated with clinical characteristics and tumor location and class. Permeability maps were generated, using the slope values (DCE) or intensity difference (SEA) of each voxel, and analyzed. RESULTS Distinctive patterns and distributions of BBBD were identified for intra- and extra-axial tumors. At a cutoff of 0.1, LR/HR BBB score ratio yielded a sensitivity of 80% and specificity of 100% in differentiating gliomas from meningiomas. CONCLUSIONS AND CLINICAL IMPORTANCE Blood-brain barrier dysfunction quantification using advanced imaging analyses has the potential to be used for assessment of brain tumor characteristics and behavior and, particularly, to help differentiating gliomas from meningiomas.
Collapse
Affiliation(s)
- Erez Hanael
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Shelly Baruch
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Orit Chai
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Liron Lishitsky
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Tal Blum
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Kira Rapoport
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Marco Ruggeri
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Zahi Aizenberg
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Dana Peery
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| | - Nina Meyerhoff
- School of Veterinary Medicine Hannover, Small Animal Medicine and Surgery, Hannover, Germany
| | - Holger Andreas Volk
- School of Veterinary Medicine Hannover, Small Animal Medicine and Surgery, Hannover, Germany
| | - Steven De Decker
- Department of Clinical Sciences, Royal Veterinary College, University of London, Hertfordshire, UK
| | - Andrea Tipold
- School of Veterinary Medicine Hannover, Small Animal Medicine and Surgery, Hannover, Germany
| | - Wolfgang Baumgaertner
- School of Veterinary Medicine Hannover, Small Animal Medicine and Surgery, Hannover, Germany
| | - Alon Friedman
- Faculty of Medicine, Department of Medical Neuroscience Halifax, Dalhousie University, Nova Scotia, Canada.,Departments of Physiology and Cell Biology, Brain, and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Merav Shamir
- The Koret School of Veterinary Medicine, Neurology and Neurosurgery, Hebrew University of Jerusalem, Reehovot, Israel
| |
Collapse
|
9
|
Extra-Virgin Olive Oil Enhances the Blood-Brain Barrier Function in Mild Cognitive Impairment: A Randomized Controlled Trial. Nutrients 2022; 14:nu14235102. [PMID: 36501136 PMCID: PMC9736478 DOI: 10.3390/nu14235102] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mild cognitive impairment (MCI) and early Alzheimer's disease (AD) are characterized by blood-brain barrier (BBB) breakdown leading to abnormal BBB permeability ahead of brain atrophy or dementia. Previous findings in AD mouse models have reported the beneficial effect of extra-virgin olive oil (EVOO) against AD, which improved BBB and memory functions and reduced brain amyloid-β (Aβ) and related pathology. This work aimed to translate these preclinical findings to humans in individuals with MCI. We examined the effect of daily consumption of refined olive oil (ROO) and EVOO for 6 months in MCI subjects on BBB permeability (assessed by contrast-enhanced MRI), and brain function (assessed using functional-MRI) as the primary outcomes. Cognitive function and AD blood biomarkers were also assessed as the secondary outcomes. Twenty-six participants with MCI were randomized with 25 participants completed the study. EVOO significantly improved clinical dementia rating (CDR) and behavioral scores. EVOO also reduced BBB permeability and enhanced functional connectivity. While ROO consumption did not alter BBB permeability or brain connectivity, it improved CDR scores and increased functional brain activation to a memory task in cortical regions involved in perception and cognition. Moreover, EVOO and ROO significantly reduced blood Aβ42/Aβ40 and p-tau/t-tau ratios, suggesting that both altered the processing and clearance of Aβ. In conclusion, EVOO and ROO improved CDR and behavioral scores; only EVOO enhanced brain connectivity and reduced BBB permeability, suggesting EVOO biophenols contributed to such an effect. This proof-of-concept study justifies further clinical trials to assess olive oil's protective effects against AD and its potential role in preventing MCI conversion to AD and related dementias.
Collapse
|
10
|
Ware JB, Sinha S, Morrison J, Walter AE, Gugger JJ, Schneider ALC, Dabrowski C, Zamore H, Wesley L, Magdamo B, Petrov D, Kim JJ, Diaz-Arrastia R, Sandsmark DK. Dynamic contrast enhanced MRI for characterization of blood-brain-barrier dysfunction after traumatic brain injury. Neuroimage Clin 2022; 36:103236. [PMID: 36274377 PMCID: PMC9668646 DOI: 10.1016/j.nicl.2022.103236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND PURPOSE Dysfunction of the blood-brain-barrier (BBB) is a recognized pathological consequence of traumatic brain injury (TBI) which may play an important role in chronic TBI pathophysiology. We hypothesized that BBB disruption can be detected with dynamic contrast-enhanced (DCE) MRI not only in association with focal traumatic lesions but also in normal-appearing brain tissue of TBI patients, reflecting microscopic microvascular injury. We further hypothesized that BBB integrity would improve but not completely normalize months after TBI. MATERIALS AND METHODS DCE MRI was performed in 40 adult patients a median of 23 days after hospitalized TBI and in 21 healthy controls. DCE data was analyzed using Patlak and linear models, and derived metrics of BBB leakage including the volume transfer constant (Ktrans) and the normalized permeability index (NPI) were compared between groups. BBB metrics were compared with focal lesion distribution as well as with contemporaneous measures of symptomatology and cognitive function in TBI patients. Finally, BBB metrics were examined longitudinally among 18 TBI patients who returned for a second MRI a median of 204 days postinjury. RESULTS TBI patients exhibited higher mean Ktrans (p = 0.0028) and proportion of suprathreshold NPI voxels (p = 0.001) relative to controls. Tissue-based analysis confirmed greatest TBI-related BBB disruption in association with focal lesions, however elevated Ktrans was also observed in perilesional (p = 0.011) and nonlesional (p = 0.044) regions. BBB disruption showed inverse correlation with quality of life (rho = -0.51, corrected p = 0.016). Among the subset of TBI patients who underwent a second MRI several months after the initial evaluation, metrics of BBB disruption did not differ significantly at the group level, though variable longitudinal changes were observed at the individual subject level. CONCLUSIONS This pilot investigation suggests that TBI-related BBB disruption is detectable in the early post-injury period in association with focal and diffuse brain injury.
Collapse
Affiliation(s)
- Jeffrey B Ware
- Division of Neuroradiology, Department of Radiology, Hospital of University of Pennsylvania, Perelman School of Medicine of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Saurabh Sinha
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Justin Morrison
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Alexa E Walter
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - James J Gugger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Andrea L C Schneider
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Cian Dabrowski
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Hannah Zamore
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Leroy Wesley
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Brigid Magdamo
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Junghoon J Kim
- Department of Molecular, Cellular, and Biomedical Sciences, CUNY School of Medicine at The City College of New York, Townsend Harris Hall, 160 Convent Avenue, New York, NY 10031, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Danielle K Sandsmark
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Canjels LPW, Jansen JFA, Alers RJ, Ghossein‐Doha C, van den Kerkhof M, Schiffer VMMM, Mulder E, Gerretsen SC, Aldenkamp AP, Hurks PPM, van de Ven V, Spaanderman MEA, Backes WH. Blood-brain barrier leakage years after pre-eclampsia: dynamic contrast-enhanced 7-Tesla MRI study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:541-548. [PMID: 35502137 PMCID: PMC9826493 DOI: 10.1002/uog.24930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Pre-eclampsia is a hypertensive complication of pregnancy that is associated with an increased risk of long-term cardiovascular and cerebrovascular disorders. Although the underlying mechanism of persistent susceptibility to cerebral complications after pre-eclampsia remains largely unclear, impaired blood-brain barrier (BBB) integrity has been suggested to precede several cerebrovascular diseases. In this study, we aimed to investigate the integrity of the BBB years after pre-eclampsia. METHODS This was an observational study of premenopausal formerly pre-eclamptic women and controls with a history of normotensive pregnancy who underwent cerebral magnetic resonance imaging (MRI) at ultra-high field (7 Tesla) to assess the integrity of the BBB. Permeability of the BBB was determined by assessing leakage rate and fractional leakage volume of the contrast agent gadobutrol using dynamic contrast-enhanced MRI. BBB leakage measures were determined for the whole brain and lobar white and gray matter. Multivariable analyses were performed, and odds ratios were calculated to compare women with and those without a history of pre-eclampsia, adjusting for potential confounding effects of age, hypertension status at MRI and Fazekas score. RESULTS Twenty-two formerly pre-eclamptic women (mean age, 37.8 ± 5.4 years) and 13 control women with a history of normotensive pregnancy (mean age, 40.8 ± 5.5 years) were included in the study. The time since the index pregnancy was 6.6 ± 3.2 years in the pre-eclamptic group and 9.0 ± 3.7 years in controls. The leakage rate and fractional leakage volume were significantly higher in formerly pre-eclamptic women than in controls in the global white (P = 0.001) and gray (P = 0.02) matter. Regionally, the frontal (P = 0.04) and parietal (P = 0.009) cortical gray matter, and the frontal (P = 0.001), temporal (P < 0.05) and occipital (P = 0.007) white matter showed higher leakage rates in formerly pre-eclamptic women. The odds of a high leakage rate after pre-eclampsia were generally higher in white-matter regions than in gray-matter regions. CONCLUSION This observational study demonstrates global impairment of the BBB years after a pre-eclamptic pregnancy, which could be an early marker of long-term cerebrovascular disorders. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- L. P. W. Canjels
- Department of Radiology & Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- MHeNs, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - J. F. A. Jansen
- Department of Radiology & Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- MHeNs, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - R. J. Alers
- Department of Gynaecology and ObstetricsMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
- GROW, School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - C. Ghossein‐Doha
- GROW, School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
- CARIM, School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
- Department of CardiologyMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
| | - M. van den Kerkhof
- Department of Radiology & Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- MHeNs, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - V. M. M. M. Schiffer
- Department of Gynaecology and ObstetricsMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
- GROW, School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - E. Mulder
- Department of Gynaecology and ObstetricsMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
- GROW, School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - S. C. Gerretsen
- Department of Radiology & Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - A. P. Aldenkamp
- MHeNs, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center (MUMC+)Heeze and MaastrichtThe Netherlands
- Department of NeurologyMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
| | - P. P. M. Hurks
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - V. van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - M. E. A. Spaanderman
- Department of Gynaecology and ObstetricsMaastricht University Medical Center (MUMC+)MaastrichtThe Netherlands
- GROW, School for Oncology and Developmental BiologyMaastricht UniversityMaastrichtThe Netherlands
| | - W. H. Backes
- Department of Radiology & Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- MHeNs, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- CARIM, School for Cardiovascular DiseasesMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
12
|
van Vliet EA, Immonen R, Prager O, Friedman A, Bankstahl JP, Wright DK, O'Brien TJ, Potschka H, Gröhn O, Harris NG. A companion to the preclinical common data elements and case report forms for in vivo rodent neuroimaging: A report of the TASK3-WG3 Neuroimaging Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35962745 DOI: 10.1002/epi4.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. In this article, we discuss CDEs for neuroimaging data that are collected in rodent models of epilepsy, with a focus on adult rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the methodologies for several imaging modalities and the parameters that can be collected.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Riikka Immonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Terence J O'Brien
- The Royal Melbourne Hospital, The University of Melbourne, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Olli Gröhn
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Neil G Harris
- Department of Neurosurgery UCLA, UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
13
|
Hanael E, Baruch S, Chai O, Nir Z, Rapoport K, Ruggeri M, Eizenberg I, Peery D, Friedman A, Shamir MH. Detection of blood‐brain barrier dysfunction using advanced imaging methods to predict seizures in dogs with meningoencephalitis of unknown origin. J Vet Intern Med 2022; 36:702-712. [PMID: 35285550 PMCID: PMC8965229 DOI: 10.1111/jvim.16396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/01/2022] Open
Abstract
Background The blood‐brain barrier (BBB), which separates the intravascular and neuropil compartments, characterizes the vascular bed of the brain and is essential for its proper function. Recent advances in imaging techniques have driven the development of methods for quantitative assessment of BBB permeability. Hypothesis/Objectives Permeability of the BBB can be assessed quantitatively in dogs with meningoencephalitis of unknown origin (MUO) and its status is associated with the occurrence of seizures. Animals Forty dogs with MUO and 12 dogs without MUO. Methods Retrospective, prospective cohort study. Both dynamic contrast enhancement (DCE) and subtraction enhancement analysis (SEA) methods were used to evaluate of BBB permeability in affected (DCE, n = 8; SEA, n = 32) and control dogs (DCE, n = 6; SEA, n = 6). Association between BBB dysfunction (BBBD) score and clinical characteristics was examined. In brain regions where BBBD was identified by DCE or SEA magnetic resonance imaging (MRI) analysis, immunofluorescent staining for albumin, glial fibrillary acidic protein, ionized calcium binding adaptor molecule, and phosphorylated mothers against decapentaplegic homolog 2 were performed to detect albumin extravasation, reactive astrocytes, activated microglia, and transforming growth factor beta signaling, respectively. Results Dogs with BBBD had significantly higher seizure prevalence (72% vs 19%; P = .01) when compared to MUO dogs with no BBBD. The addition of SEA to routine MRI evaluation increased the identification rate of brain pathology in dogs with MUO from 50% to 72%. Conclusions and Clinical Importance Imaging‐based assessment of BBB integrity has the potential to predict risk of seizures in dogs with MUO.
Collapse
Affiliation(s)
- Erez Hanael
- Hebrew University Koret School of Veterinary Medicine‐Veterinary Teaching Hospital Rehovot Israel
| | - Shelly Baruch
- Hebrew University Koret School of Veterinary Medicine‐Veterinary Teaching Hospital Rehovot Israel
| | - Orit Chai
- Hebrew University Koret School of Veterinary Medicine‐Veterinary Teaching Hospital Rehovot Israel
| | - Zohar Nir
- Hebrew University Koret School of Veterinary Medicine‐Veterinary Teaching Hospital Rehovot Israel
| | - Kira Rapoport
- Hebrew University Koret School of Veterinary Medicine‐Veterinary Teaching Hospital Rehovot Israel
| | - Marco Ruggeri
- Hebrew University Koret School of Veterinary Medicine‐Veterinary Teaching Hospital Rehovot Israel
| | - Itzhak Eizenberg
- Hebrew University Koret School of Veterinary Medicine‐Veterinary Teaching Hospital Rehovot Israel
| | - Dana Peery
- Hebrew University Koret School of Veterinary Medicine‐Veterinary Teaching Hospital Rehovot Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain, and Cognitive Sciences, Zlotowski Center for Neuroscience Ben‐Gurion University of the Negev Beer Sheva Israel
- Department of Medical Neuroscience, Faculty of Medicine Dalhousie University Halifax NS Canada
| | - Merav H. Shamir
- Hebrew University Koret School of Veterinary Medicine‐Veterinary Teaching Hospital Rehovot Israel
| |
Collapse
|
14
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
15
|
Augustine R, Aqel AH, Kalva SN, Joshy KS, Nayeem A, Hasan A. Bioengineered microfluidic blood-brain barrier models in oncology research. Transl Oncol 2021; 14:101087. [PMID: 33865030 PMCID: PMC8066424 DOI: 10.1016/j.tranon.2021.101087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Metastasis is the major reason for most brain tumors with up to a 50% chance of occurrence in patients with other types of malignancies. Brain metastasis occurs if cancer cells succeed to cross the 'blood-brain barrier' (BBB). Moreover, changes in the structure and function of BBB can lead to the onset and progression of diseases including neurological disorders and brain-metastases. Generating BBB models with structural and functional features of intact BBB is highly important to better understand the molecular mechanism of such ailments and finding novel therapeutic agents targeting them. Hence, researchers are developing novel in vitro BBB platforms that can recapitulate the structural and functional characteristics of BBB. Brain endothelial cells-based in vitro BBB models have thus been developed to investigate the mechanism of brain metastasis through BBB and facilitate the testing of brain targeted anticancer drugs. Bioengineered constructs integrated with microfluidic platforms are vital tools for recapitulating the features of BBB in vitro closely as possible. In this review, we outline the fundamentals of BBB biology, recent developments in the microfluidic BBB platforms, and provide a concise discussion of diverse types of bioengineered BBB models with an emphasis on the application of them in brain metastasis and cancer research in general. We also provide insights into the challenges and prospects of the current bioengineered microfluidic platforms in cancer research.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar.
| | - Ahmad H Aqel
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar
| | - Sumama Nuthana Kalva
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar
| | - K S Joshy
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar
| | - Ajisha Nayeem
- Department of Biotechnology, St. Mary's College, Thrissur 680020, Kerala, India
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713 Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713 Doha, Qatar.
| |
Collapse
|
16
|
Semyachkina-Glushkovskaya O, Mamedova A, Vinnik V, Klimova M, Saranceva E, Ageev V, Yu T, Zhu D, Penzel T, Kurths J. Brain Mechanisms of COVID-19-Sleep Disorders. Int J Mol Sci 2021; 22:6917. [PMID: 34203143 PMCID: PMC8268116 DOI: 10.3390/ijms22136917] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
2020 and 2021 have been unprecedented years due to the rapid spread of the modified severe acute respiratory syndrome coronavirus around the world. The coronavirus disease 2019 (COVID-19) causes atypical infiltrated pneumonia with many neurological symptoms, and major sleep changes. The exposure of people to stress, such as social confinement and changes in daily routines, is accompanied by various sleep disturbances, known as 'coronasomnia' phenomenon. Sleep disorders induce neuroinflammation, which promotes the blood-brain barrier (BBB) disruption and entry of antigens and inflammatory factors into the brain. Here, we review findings and trends in sleep research in 2020-2021, demonstrating how COVID-19 and sleep disorders can induce BBB leakage via neuroinflammation, which might contribute to the 'coronasomnia' phenomenon. The new studies suggest that the control of sleep hygiene and quality should be incorporated into the rehabilitation of COVID-19 patients. We also discuss perspective strategies for the prevention of COVID-19-related BBB disorders. We demonstrate that sleep might be a novel biomarker of BBB leakage, and the analysis of sleep EEG patterns can be a breakthrough non-invasive technology for diagnosis of the COVID-19-caused BBB disruption.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Atrakhanskaya Str. 83, 410012 Saratov, Russia; (A.M.); (V.V.); (M.K.); (E.S.); (V.A.)
| | - Aysel Mamedova
- Department of Biology, Saratov State University, Atrakhanskaya Str. 83, 410012 Saratov, Russia; (A.M.); (V.V.); (M.K.); (E.S.); (V.A.)
| | - Valeria Vinnik
- Department of Biology, Saratov State University, Atrakhanskaya Str. 83, 410012 Saratov, Russia; (A.M.); (V.V.); (M.K.); (E.S.); (V.A.)
| | - Maria Klimova
- Department of Biology, Saratov State University, Atrakhanskaya Str. 83, 410012 Saratov, Russia; (A.M.); (V.V.); (M.K.); (E.S.); (V.A.)
| | - Elena Saranceva
- Department of Biology, Saratov State University, Atrakhanskaya Str. 83, 410012 Saratov, Russia; (A.M.); (V.V.); (M.K.); (E.S.); (V.A.)
| | - Vasily Ageev
- Department of Biology, Saratov State University, Atrakhanskaya Str. 83, 410012 Saratov, Russia; (A.M.); (V.V.); (M.K.); (E.S.); (V.A.)
| | - Tingting Yu
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; (T.Y.); (D.Z.)
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Zhu
- Wuhan National Laboratory for Optoelectronics, Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; (T.Y.); (D.Z.)
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Thomas Penzel
- Department of Biology, Saratov State University, Atrakhanskaya Str. 83, 410012 Saratov, Russia; (A.M.); (V.V.); (M.K.); (E.S.); (V.A.)
- Sleep Medicine Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Kurths
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Atrakhanskaya Str. 83, 410012 Saratov, Russia; (A.M.); (V.V.); (M.K.); (E.S.); (V.A.)
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
17
|
Neurovascular-modulation: A review of primary vascular responses to transcranial electrical stimulation as a mechanism of action. Brain Stimul 2021; 14:837-847. [PMID: 33962079 DOI: 10.1016/j.brs.2021.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The ubiquitous vascular response to transcranial electrical stimulation (tES) has been attributed to the secondary effect of neuronal activity forming the classic neurovascular coupling. However, the current density delivered transcranially concentrates in: A) the cerebrospinal fluid of subarachnoid space where cerebral vasculature resides after reaching the dural and pial surfaces and B) across the blood-brain-barrier after reaching the brain parenchyma. Therefore, it is anticipated that tES has a primary vascular influence. OBJECTIVES Focused review of studies that demonstrated the direct vascular response to electrical stimulation and studies demonstrating evidence for tES-induced vascular effect in coupled neurovascular systems. RESULTS tES induces both primary and secondary vascular phenomena originating from four cellular elements; the first two mediating a primary vascular phenomenon mainly in the form of an immediate vasodilatory response and the latter two leading to secondary vascular effects and as parts of classic neurovascular coupling: 1) The perivascular nerves of more superficially located dural and pial arteries and medium-sized arterioles with multilayered smooth muscle cells; and 2) The endothelial lining of all vessels including microvasculature of blood-brain barrier; 3) Astrocytes; and 4) Neurons of neurovascular units. CONCLUSION A primary vascular effect of tES is highly suggested based on various preclinical and clinical studies. We explain how the nature of vascular response can depend on vessel anatomy (size) and physiology and be controlled by stimulation waveform. Further studies are warranted to investigate the mechanisms underlying the vascular response and its contribution to neural activity in both healthy brain and pathological conditions - recognizing many brain diseases are associated with alteration of cerebral hemodynamics and decoupling of neurovascular units.
Collapse
|
18
|
Amoo M, Henry J, Pender N, Brennan P, Campbell M, Javadpour M. Blood-brain barrier permeability imaging as a predictor for delayed cerebral ischaemia following subarachnoid haemorrhage. A narrative review. Acta Neurochir (Wien) 2021; 163:1457-1467. [PMID: 33404877 DOI: 10.1007/s00701-020-04670-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid haemorrhage is associated with significant morbidity and mortality due to the myriad of complications contributing to early brain injury and delayed cerebral ischaemia. There is increasing interest in the exploration of the association between blood-brain barrier integrity and risks of delayed cerebral ischaemia and poor outcomes. Despite recent advances in cerebral imaging, radiographic imaging of blood-brain barrier disruption, as a biomarker for outcome prediction, has not been adopted in clinical practice. METHODS We performed a narrative review by searching for articles describing molecular changes or radiological identification of changes in BBB permeability following subarachnoid haemorrhage (SAH) on MEDLINE. Preclinical studies were analysed if reported structural changes and clinical studies were included if they investigated for radiological markers of BBB disruption and its correlation with delayed cerebral ischaemia. RESULTS There is ample preclinical evidence to suggest that there are structural changes in BBB permeability following SAH. The available clinical literature has demonstrated correlations between permeability imaging and outcomes following aneurysmal subarachnoid haemorrhage (aSAH). CONCLUSION Radiological biomarkers offer a potential non-invasive prognostication tool and may also allow early identifications of patients who may be at risk of DCI.
Collapse
|
19
|
Amoo M, O'Halloran PJ, Henry J, Husien MB, Brennan P, Campbell M, Caird J, Curley GF. Permeability of the Blood-Brain Barrier after Traumatic Brain Injury; Radiological Considerations. J Neurotrauma 2021; 39:20-34. [PMID: 33632026 DOI: 10.1089/neu.2020.7545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability, especially in young persons, and constitutes a major socioeconomic burden worldwide. It is regarded as the leading cause of mortality and morbidity in previously healthy young persons. Most of the mechanisms underpinning the development of secondary brain injury are consequences of disruption of the complex relationship between the cells and proteins constituting the neurovascular unit or a direct result of loss of integrity of the tight junctions (TJ) in the blood-brain barrier (BBB). A number of changes have been described in the BBB after TBI, including loss of TJ proteins, pericyte loss and migration, and altered expressions of water channel proteins at astrocyte end-feet processes. There is a growing research interest in identifying optimal biological and radiological biomarkers of severity of BBB dysfunction and its effects on outcomes after TBI. This review explores the microscopic changes occurring at the neurovascular unit, after TBI, and current radiological adjuncts for its evaluation in pre-clinical and clinical practice.
Collapse
Affiliation(s)
- Michael Amoo
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland.,Beacon Academy, Beacon Hospital, Sandyford, Dublin, Ireland
| | - Philip J O'Halloran
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurosurgery, Royal London Hospital, Whitechapel, London, United Kingdom
| | - Jack Henry
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Mohammed Ben Husien
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | | | - John Caird
- National Centre for Neurosurgery, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Gerard F Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
20
|
Veksler R, Vazana U, Serlin Y, Prager O, Ofer J, Shemen N, Fisher AM, Minaeva O, Hua N, Saar-Ashkenazy R, Benou I, Riklin-Raviv T, Parker E, Mumby G, Kamintsky L, Beyea S, Bowen CV, Shelef I, O'Keeffe E, Campbell M, Kaufer D, Goldstein LE, Friedman A. Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players. Brain 2021; 143:1826-1842. [PMID: 32464655 PMCID: PMC7297017 DOI: 10.1093/brain/awaa140] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Repetitive mild traumatic brain injury in American football players has garnered increasing public attention following reports of chronic traumatic encephalopathy, a progressive tauopathy. While the mechanisms underlying repetitive mild traumatic brain injury-induced neurodegeneration are unknown and antemortem diagnostic tests are not available, neuropathology studies suggest a pathogenic role for microvascular injury, specifically blood–brain barrier dysfunction. Thus, our main objective was to demonstrate the effectiveness of a modified dynamic contrast-enhanced MRI approach we have developed to detect impairments in brain microvascular function. To this end, we scanned 42 adult male amateur American football players and a control group comprising 27 athletes practicing a non-contact sport and 26 non-athletes. MRI scans were also performed in 51 patients with brain pathologies involving the blood–brain barrier, namely malignant brain tumours, ischaemic stroke and haemorrhagic traumatic contusion. Based on data from prolonged scans, we generated maps that visualized the permeability value for each brain voxel. Our permeability maps revealed an increase in slow blood-to-brain transport in a subset of amateur American football players, but not in sex- and age-matched controls. The increase in permeability was region specific (white matter, midbrain peduncles, red nucleus, temporal cortex) and correlated with changes in white matter, which were confirmed by diffusion tensor imaging. Additionally, increased permeability persisted for months, as seen in players who were scanned both on- and off-season. Examination of patients with brain pathologies revealed that slow tracer accumulation characterizes areas surrounding the core of injury, which frequently shows fast blood-to-brain transport. Next, we verified our method in two rodent models: rats and mice subjected to repeated mild closed-head impact injury, and rats with vascular injury inflicted by photothrombosis. In both models, slow blood-to-brain transport was observed, which correlated with neuropathological changes. Lastly, computational simulations and direct imaging of the transport of Evans blue-albumin complex in brains of rats subjected to recurrent seizures or focal cerebrovascular injury suggest that increased cellular transport underlies the observed slow blood-to-brain transport. Taken together, our findings suggest dynamic contrast-enhanced-MRI can be used to diagnose specific microvascular pathology after traumatic brain injury and other brain pathologies.
Collapse
Affiliation(s)
- Ronel Veksler
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Udi Vazana
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonatan Serlin
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Neurology Residency Training Program, McGill University, Montreal, QC, Canada
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Ofer
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nofar Shemen
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andrew M Fisher
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Olga Minaeva
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Ning Hua
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Rotem Saar-Ashkenazy
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Psychology and the School of Social-work, Ashkelon Academic College, Israel
| | - Itay Benou
- Department of Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tammy Riklin-Raviv
- Department of Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ellen Parker
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Griffin Mumby
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Steven Beyea
- Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre and QEII Health Sciences Center, Dalhousie University, Halifax, NS, Canada
| | - Chris V Bowen
- Biomedical Translational Imaging Centre (BIOTIC), IWK Health Centre and QEII Health Sciences Center, Dalhousie University, Halifax, NS, Canada
| | - Ilan Shelef
- Department of Medical Imaging, Soroka University Medical Center, Beer-Sheva, Israel
| | - Eoin O'Keeffe
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Daniela Kaufer
- Department of Integrative Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Lee E Goldstein
- Molecular Aging and Development Laboratory, Boston University School of Medicine, College of Engineering, Alzheimer's Disease and CTE Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| |
Collapse
|
21
|
van den Kerkhof M, Voorter PHM, Canjels LPW, de Jong JJA, van Oostenbrugge RJ, Kroon AA, Jansen JFA, Backes WH. Time-efficient measurement of subtle blood-brain barrier leakage using a T 1 mapping MRI protocol at 7 T. Magn Reson Med 2020; 85:2761-2770. [PMID: 33349996 PMCID: PMC7898690 DOI: 10.1002/mrm.28629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022]
Abstract
Purpose Blood–brain barrier (BBB) disruption is commonly measured with DCE‐MRI using continuous dynamic scanning. For precise measurement of subtle BBB leakage, a long acquisition time (>20 minutes) is required. As extravasation of the contrast agent is slow, discrete sampling at strategic time points might be beneficial, and gains scan time for additional sequences. Here, we aimed to explore the feasibility of a sparsely sampled MRI protocol at 7 T. Methods The scan protocol consisted of a precontrast quantitative T1 measurement, using an MP2RAGE sequence, and after contrast agent injection, a fast‐sampling dynamic gradient‐echo perfusion scan and two postcontrast quantitative T1 measurements were applied. Simulations were conducted to determine the optimal postcontrast sampling time points for measuring subtle BBB leakage. The graphical Patlak approach was used to quantify the leakage rate (Ki) and blood plasma volume (vp) of normal‐appearing white and gray matter. Results The simulations showed that two postcontrast T1 maps are sufficient to detect subtle leakage, and most sensitive when the last T1 map is acquired late, approximately 30 minutes, after contrast agent administration. The in vivo measurements found Ki and vp values in agreement with other studies, and significantly higher values in gray matter compared with white matter (both p = .04). Conclusion The sparsely sampled protocol was demonstrated to be sensitive to quantify subtle BBB leakage, despite using only three T1 maps. Due to the time‐efficiency of this method, it will become more feasible to incorporate BBB leakage measurements in clinical research MRI protocols.
Collapse
Affiliation(s)
- Marieke van den Kerkhof
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Paulien H M Voorter
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Lisanne P W Canjels
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Joost J A de Jong
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Robert J van Oostenbrugge
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Abraham A Kroon
- Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
22
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
23
|
TMS-Induced Controlled BBB Opening: Preclinical Characterization and Implications for Treatment of Brain Cancer. Pharmaceutics 2020; 12:pharmaceutics12100946. [PMID: 33027965 PMCID: PMC7650663 DOI: 10.3390/pharmaceutics12100946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Proper neuronal function requires strict maintenance of the brain's extracellular environment. Therefore, passage of molecules between the circulation and brain neuropil is tightly regulated by the blood-brain barrier (BBB). While the BBB is vital for normal brain function, it also restricts the passage of drugs, potentially effective in treating brain diseases, into the brain. Despite previous attempts, there is still an unmet need to develop novel approaches that will allow safe opening of the BBB for drug delivery. We have recently shown in experimental rodents and in a pilot human trial that low-frequency, high-amplitude repetitive transcranial magnetic stimulation (rTMS) allows the delivery of peripherally injected fluorescent and Gd-based tracers into the brain. The goals of this study were to characterize the duration and safety level of rTMS-induced BBB opening and test its capacity to enhance the delivery of the antitumor growth agent, insulin-like growth factor trap, across the BBB. We employed direct vascular and magnetic resonance imaging, as well as electrocorticography recordings, to assess the impact of rTMS on brain vascular permeability and electrical activity, respectively. Our findings indicate that rTMS induces a transient and safe BBB opening with a potential to facilitate drug delivery into the brain.
Collapse
|
24
|
Milikovsky DZ, Ofer J, Senatorov VV, Friedman AR, Prager O, Sheintuch L, Elazari N, Veksler R, Zelig D, Weissberg I, Bar-Klein G, Swissa E, Hanael E, Ben-Arie G, Schefenbauer O, Kamintsky L, Saar-Ashkenazy R, Shelef I, Shamir MH, Goldberg I, Glik A, Benninger F, Kaufer D, Friedman A. Paroxysmal slow cortical activity in Alzheimer's disease and epilepsy is associated with blood-brain barrier dysfunction. Sci Transl Med 2020; 11:11/521/eaaw8954. [PMID: 31801888 DOI: 10.1126/scitranslmed.aaw8954] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/13/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
Abstract
A growing body of evidence shows that epileptic activity is frequent but often undiagnosed in patients with Alzheimer's disease (AD) and has major therapeutic implications. Here, we analyzed electroencephalogram (EEG) data from patients with AD and found an EEG signature of transient slowing of the cortical network that we termed paroxysmal slow wave events (PSWEs). The occurrence per minute of the PSWEs was correlated with level of cognitive impairment. Interictal (between seizures) PSWEs were also found in patients with epilepsy, localized to cortical regions displaying blood-brain barrier (BBB) dysfunction, and in three rodent models with BBB pathology: aged mice, young 5x familial AD model, and status epilepticus-induced epilepsy in young rats. To investigate the potential causative role of BBB dysfunction in network modifications underlying PSWEs, we infused the serum protein albumin directly into the cerebral ventricles of naïve young rats. Infusion of albumin, but not artificial cerebrospinal fluid control, resulted in high incidence of PSWEs. Our results identify PSWEs as an EEG manifestation of nonconvulsive seizures in patients with AD and suggest BBB pathology as an underlying mechanism and as a promising therapeutic target.
Collapse
Affiliation(s)
- Dan Z Milikovsky
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jonathan Ofer
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aaron R Friedman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Liron Sheintuch
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Netta Elazari
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ronel Veksler
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Daniel Zelig
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Itai Weissberg
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Guy Bar-Klein
- Howard Hughes Medical Institute and the Institute of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Evyatar Swissa
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Erez Hanael
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Gal Ben-Arie
- Department of Medical Imaging, Soroka University Medical Center, Beer-Sheva 84105, Israel
| | - Osnat Schefenbauer
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Rotem Saar-Ashkenazy
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Faculty of Social Work, Ashkelon Academic College, Ashkelon 78211, Israel
| | - Ilan Shelef
- Department of Medical Imaging, Soroka University Medical Center, Beer-Sheva 84105, Israel
| | - Merav H Shamir
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Ilan Goldberg
- Department of Neurology, Wolfson Medical Center, Holon 58100, Israel
| | - Amir Glik
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 49100, Israel.,Cognitive Neurology Clinic, Rabin Medical Center, Beilinson Hospital, Petach Tikva 49100, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Felix Benninger
- Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 49100, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. .,Department of Medical Neuroscience, Dalhousie University, Halifax, NS B3H4R2, Canada
| |
Collapse
|
25
|
MacLean MA, Kamintsky L, Leck ED, Friedman A. The potential role of microvascular pathology in the neurological manifestations of coronavirus infection. Fluids Barriers CNS 2020; 17:55. [PMID: 32912226 PMCID: PMC7481544 DOI: 10.1186/s12987-020-00216-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023] Open
Abstract
Human coronaviruses are highly pathogenic viruses that pose a serious threat to human health. Examples include the severe acute respiratory syndrome outbreak of 2003 (SARS-CoV-1), the Middle East Respiratory Syndrome (MERS-CoV) outbreak of 2012, and the current SARS-CoV-2 (COVID-19) pandemic. Herein, we review the neurological manifestations of coronaviruses and discuss the potential pathogenic role of blood-brain barrier dysfunction. We present the hypothesis that pre-existing vascular damage (due to aging, cardiovascular disease, diabetes, hypertension or other conditions) facilitates infiltration of the virus into the central nervous system (CNS), increasing neuro-inflammation and the likelihood of neurological symptoms. We also discuss the role of a neuroinflammatory cytokine profile in both blood-brain barrier dysfunction and macrovascular disease (e.g. ischemic stroke and thromboembolism). Future studies are needed to better understand the involvement of the microvasculature in coronavirus neuropathology, and to test the diagnostic potential of minimally-invasive screening tools (e.g. serum biomarkers, fluorescein retinal angiography and dynamic-contrast MRI).
Collapse
Affiliation(s)
- M. A. MacLean
- Division of Neurosurgery, Dalhousie University, Queen Elizabeth II Health Sciences Centre (Halifax Infirmary), 1796 Summer Street, Halifax, NS B3H 3A7 Canada
| | - L. Kamintsky
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Room 12 H, 12th Floor, Sir Charles Tupper Building, 5850 College Street, PO Box 15000, Halifax, NS Canada
| | - E. D. Leck
- Division of Neurosurgery, Dalhousie University, Queen Elizabeth II Health Sciences Centre (Halifax Infirmary), 1796 Summer Street, Halifax, NS B3H 3A7 Canada
| | - A. Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Room 12 H, 12th Floor, Sir Charles Tupper Building, 5850 College Street, PO Box 15000, Halifax, NS Canada
| |
Collapse
|
26
|
Ware JB, Sandsmark DK, Diaz-Arrastia R. Unravelling the mechanisms of blood-brain barrier dysfunction in repetitive mild head injury. Brain 2020; 143:1625-1628. [PMID: 32543693 PMCID: PMC7296838 DOI: 10.1093/brain/awaa166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This scientific commentary refers to ‘Slow blood-to-brain transport underlies enduring barrier dysfunction in American football players’, by Veksler et al. (doi:10.1093/brain/awaa140).
Collapse
Affiliation(s)
- Jeffrey B Ware
- University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | | | | |
Collapse
|
27
|
Bhaskar S, Sharma D, Walker AH, McDonald M, Huasen B, Haridas A, Mahata MK, Jabbour P. Acute Neurological Care in the COVID-19 Era: The Pandemic Health System REsilience PROGRAM ( REPROGRAM) Consortium Pathway. Front Neurol 2020; 11:579. [PMID: 32574252 PMCID: PMC7273748 DOI: 10.3389/fneur.2020.00579] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
The management of acute neurological conditions, particularly acute ischemic stroke, in the context of Coronavirus disease 2019 (COVID-19), is of importance, considering the risk of infection to the healthcare workers and patients and emerging evidence of the neuroinvasive potential of the virus. There are variations in expert guidelines further complicating the picture for clinicians in acute settings. In this light, there is a compelling need for further formulation of recommendations that compile these variations seen in the numerous guidelines present. Health system protocols for managing ongoing acute neurological care and intervention need consideration of safety and well-being of the frontline healthcare workers and the patients. We examine existing pathways and their efficacy to mitigate viral exposure to the healthcare workers and patients and synthesize a systemic approach to manage patients with acute neurological conditions in the COVID-19 scenario. Early experiences with a COVID-19 positive stroke patient treated with endovascular thrombectomy is presented to highlight the urgent need for adequate personal protective equipment (PPE) during acute neuro-interventional procedures.
Collapse
Affiliation(s)
- Sonu Bhaskar
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Acute Care Sub-committee, Sydney, NSW, Australia
- Department of Neurology, Liverpool Hospital, Liverpool, NSW, Australia
- Neurovascular Imaging Laboratory & NSW Brain Clot Bank, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- The University of New South Wales Sydney, UNSW Medicine, Sydney, NSW, Australia
| | - Divyansh Sharma
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Acute Care Sub-committee, Sydney, NSW, Australia
- The University of New South Wales Sydney, UNSW Medicine, Sydney, NSW, Australia
| | - Antony H. Walker
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Acute Care Sub-committee, Sydney, NSW, Australia
- Lancashire Cardiac Centre, Blackpool Victoria Hospital, NHS, Lancashire, United Kingdom
| | - Mark McDonald
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Acute Care Sub-committee, Sydney, NSW, Australia
- Department of Neurology, University of Virginia, Charlottesville, VA, United States
| | - Bella Huasen
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Acute Care Sub-committee, Sydney, NSW, Australia
- Department of Interventional Neuroradiology, Lancashire University Teaching Hospitals, Preston, United Kingdom
| | - Abilash Haridas
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Acute Care Sub-committee, Sydney, NSW, Australia
- Pediatric Neurosurgery, Cerebrovascular and Skull Base Neurosurgery, St Joseph's Hospital, Tampa, FL, United States
| | - Manoj Kumar Mahata
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Acute Care Sub-committee, Sydney, NSW, Australia
- Department of Stroke and Neurointervention, Woodlands Multispeciality Hospital Limited, Kolkata, India
| | - Pascal Jabbour
- Pandemic Health System REsilience PROGRAM (REPROGRAM) Consortium, REPROGRAM Acute Care Sub-committee, Sydney, NSW, Australia
- Division of Neurovascular Surgery and Endovascular Neurosurgery, Thomas Jefferson University and Jefferson Hospital for Neuroscience, Philadelphia, PA, United States
| |
Collapse
|
28
|
Cash A, Theus MH. Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21093344. [PMID: 32397302 PMCID: PMC7246537 DOI: 10.3390/ijms21093344] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injuries (TBIs) account for the majority of injury-related deaths in the United States with roughly two million TBIs occurring annually. Due to the spectrum of severity and heterogeneity in TBIs, investigation into the secondary injury is necessary in order to formulate an effective treatment. A mechanical consequence of trauma involves dysregulation of the blood–brain barrier (BBB) which contributes to secondary injury and exposure of peripheral components to the brain parenchyma. Recent studies have shed light on the mechanisms of BBB breakdown in TBI including novel intracellular signaling and cell–cell interactions within the BBB niche. The current review provides an overview of the BBB, novel detection methods for disruption, and the cellular and molecular mechanisms implicated in regulating its stability following TBI.
Collapse
Affiliation(s)
- Alison Cash
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
| | - Michelle H. Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA;
- The Center for Regenerative Medicine, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: 1-540-231-0909; Fax: 1-540-231-7425
| |
Collapse
|
29
|
Hanael E, Veksler R, Friedman A, Bar-Klein G, Senatorov VV, Kaufer D, Konstantin L, Elkin M, Chai O, Peery D, Shamir MH. Blood-brain barrier dysfunction in canine epileptic seizures detected by dynamic contrast-enhanced magnetic resonance imaging. Epilepsia 2020; 60:1005-1016. [PMID: 31032909 DOI: 10.1111/epi.14739] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Dogs with spontaneous or acquired epilepsy exhibit resemblance in etiology and disease course to humans, potentially offering a translational model of the human disease. Blood-brain barrier dysfunction (BBBD) has been shown to partake in epileptogenesis in experimental models of epilepsy. To test the hypothesis that BBBD can be detected in dogs with naturally occurring seizures, we developed a linear dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) analysis algorithm that was validated in clinical cases of seizing dogs and experimental epileptic rats. METHODS Forty-six dogs with naturally occurring seizures of different etiologies and 12 induced epilepsy rats were imaged using DCE-MRI. Six healthy dogs and 12 naive rats served as control. DCE-MRI was analyzed by linear-dynamic method. BBBD scores were calculated in whole brain and in specific brain regions. Immunofluorescence analysis for transforming growth factor beta (TGF-β) pathway proteins was performed on the piriform cortex of epileptic dogs. RESULTS We found BBBD in 37% of dogs with seizures. A significantly higher cerebrospinal fluid to serum albumin ratio was found in dogs with BBBD relative to dogs with intact blood-brain barrier (BBB). A significant difference was found between epileptic and control rats when BBBD scores were calculated for the piriform cortex at 48 hours and 1 month after status epilepticus. Mean BBBD score of the piriform lobe in idiopathic epilepsy (IE) dogs was significantly higher compared to control. Immunohistochemistry results suggested active TGF-β signaling and neuroinflammation in the piriform cortex of dogs with IE, showing increased levels of serum albumin colocalized with glial acidic fibrillary protein and pSMAD2 in an area where BBBD had been detected by linear DCE-MRI. SIGNIFICANCE Detection of BBBD in dogs with naturally occurring epilepsy provides the ground for future studies for evaluation of novel treatment targeting the disrupted BBB. The involvement of the piriform lobe seen using our linear DCE-MRI protocol and algorithm emphasizes the possibility of using dogs as a translational model for the human disease.
Collapse
Affiliation(s)
- Erez Hanael
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| | - Ronel Veksler
- Departments of Physiology and Cell Biology, Brain, and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain, and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Medical Neuroscience and Brain Repair Center, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Guy Bar-Klein
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California.,Department of Integrative Biology, University of California, Berkeley, Berkeley, California
| | - Lilach Konstantin
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| | - Maria Elkin
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| | - Orit Chai
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| | - Dana Peery
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| | - Merav H Shamir
- Hebrew University Koret School of Veterinary Medicine-Veterinary Teaching Hospital, Rehovot, Israel
| |
Collapse
|
30
|
Senatorov VV, Friedman AR, Milikovsky DZ, Ofer J, Saar-Ashkenazy R, Charbash A, Jahan N, Chin G, Mihaly E, Lin JM, Ramsay HJ, Moghbel A, Preininger MK, Eddings CR, Harrison HV, Patel R, Shen Y, Ghanim H, Sheng H, Veksler R, Sudmant PH, Becker A, Hart B, Rogawski MA, Dillin A, Friedman A, Kaufer D. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction. Sci Transl Med 2019; 11:eaaw8283. [PMID: 31801886 DOI: 10.1126/scitranslmed.aaw8283] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/15/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022]
Abstract
Aging involves a decline in neural function that contributes to cognitive impairment and disease. However, the mechanisms underlying the transition from a young-and-healthy to aged-and-dysfunctional brain are not well understood. Here, we report breakdown of the vascular blood-brain barrier (BBB) in aging humans and rodents, which begins as early as middle age and progresses to the end of the life span. Gain-of-function and loss-of-function manipulations show that this BBB dysfunction triggers hyperactivation of transforming growth factor-β (TGFβ) signaling in astrocytes, which is necessary and sufficient to cause neural dysfunction and age-related pathology in rodents. Specifically, infusion of the serum protein albumin into the young rodent brain (mimicking BBB leakiness) induced astrocytic TGFβ signaling and an aged brain phenotype including aberrant electrocorticographic activity, vulnerability to seizures, and cognitive impairment. Furthermore, conditional genetic knockdown of astrocytic TGFβ receptors or pharmacological inhibition of TGFβ signaling reversed these symptomatic outcomes in aged mice. Last, we found that this same signaling pathway is activated in aging human subjects with BBB dysfunction. Our study identifies dysfunction in the neurovascular unit as one of the earliest triggers of neurological aging and demonstrates that the aging brain may retain considerable latent capacity, which can be revitalized by therapeutic inhibition of TGFβ signaling.
Collapse
Affiliation(s)
- Vladimir V Senatorov
- Helen Wills Neuroscience Institute and Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aaron R Friedman
- Helen Wills Neuroscience Institute and Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dan Z Milikovsky
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jonathan Ofer
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Rotem Saar-Ashkenazy
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adiel Charbash
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Naznin Jahan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gregory Chin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eszter Mihaly
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jessica M Lin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Harrison J Ramsay
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ariana Moghbel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marcela K Preininger
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chelsy R Eddings
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Helen V Harrison
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rishi Patel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yizhuo Shen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hana Ghanim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Huanjie Sheng
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ronel Veksler
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Albert Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Barry Hart
- Innovation Pathways, Palo Alto, CA 94301, USA
| | - Michael A Rogawski
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Andrew Dillin
- Glenn Center for Aging Research, Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, NS B3H4R2, Canada
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute and Berkeley Stem Cell Center, University of California, Berkeley, Berkeley, CA 94720, USA.
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G1M1, Canada
| |
Collapse
|
31
|
Amyot F, Kenney K, Spessert E, Moore C, Haber M, Silverman E, Gandjbakhche A, Diaz-Arrastia R. Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS. Neuroimage Clin 2019; 25:102086. [PMID: 31790877 PMCID: PMC6909332 DOI: 10.1016/j.nicl.2019.102086] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 11/26/2022]
Abstract
Traumatic cerebral vascular injury (TCVI) is a frequent, but under-recognized, endophenotype of traumatic brain injury (TBI). It likely contributes to functional deficits after TBI and TBI-related chronic disability, and represents an attractive target for targeted therapeutic interventions. The aim of this prospective study is to assess microvascular injury/dysfunction in chronic TBI by measuring cerebral vascular reactivity (CVR) by 2 methods, functional magnetic resonance imaging (fMRI) and functional Near InfraRed Spectroscopy (fNIRS) imaging, as each has attractive features relevant to clinical utility. 42 subjects (27 chronic TBI, 15 age- and gender-matched non-TBI volunteers) were enrolled and underwent outpatient CVR testing by 2 methods, MRI-BOLD and fNIRS, each with hypercapnia challenge, a neuropsychological testing battery, and symptom survey questionnaires. Chronic TBI subjects showed a significant reduction in global CVR compared to HC (p < 0.0001). Mean CVR measures by fMRI were 0.225 ± 0.014 and 0.183 ± 0.026 %BOLD/mmHg for non-TBI and TBI subjects respectively and 12.3 ± 1.8 and 9.2 ± 1.7 mM/mmHg by fNIRS for non-TBI versus TBI subjects respectively. Global CVR measured by fNIRS imaging correlates with results by MRI-BOLD (R = 0.5). Focal CVR deficits seen on CVR maps by fMRI are also observed in the same areas by fNIRS in the frontal regions. Global CVR is significantly lower in chronic TBI patients and is reliably measured by both fMRI and fNIRS, the former with better spatial and the latter with better temporal resolution. Both methods show promise as non-invasive measures of CVR function and microvascular integrity after TBI.
Collapse
Affiliation(s)
- Franck Amyot
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Emily Spessert
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Margalit Haber
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Erika Silverman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Amir Gandjbakhche
- Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia
| |
Collapse
|
32
|
Kamintsky L, Cairns KA, Veksler R, Bowen C, Beyea SD, Friedman A, Calkin C. Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression. Neuroimage Clin 2019; 26:102049. [PMID: 31718955 PMCID: PMC7229352 DOI: 10.1016/j.nicl.2019.102049] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022]
Abstract
Bipolar disorder affects approximately 2% of the population and is typically characterized by recurrent episodes of mania and depression. While some patients achieve remission using mood-stabilizing treatments, a significant proportion of patients show progressive changes in symptomatology over time. Bipolar progression is diverse in nature and may include a treatment-resistant increase in the frequency and severity of episodes, worse psychiatric and functional outcomes, and a greater risk of suicide. The mechanisms underlying bipolar disorder progression remain poorly understood and there are currently no biomarkers for identifying patients at risk. The objective of this study was to explore the potential of blood-brain barrier (BBB) imaging as such a biomarker, by acquiring the first imaging data of BBB leakage in bipolar patients, and evaluating the potential association between BBB dysfunction and bipolar symptoms. To this end, a cohort of 36 bipolar patients was recruited through the Mood Disorders Clinic (Nova Scotia Health Authority, Canada). All patients, along with 14 control subjects (matched for sex, age and metabolic status), underwent contrast-enhanced dynamic MRI scanning for quantitative assessment of BBB leakage as well as clinical and psychiatric evaluations. Outlier analysis has identified a group of 10 subjects with significantly higher percentages of brain volume with BBB leakage (labeled the "extensive BBB leakage" group). This group consisted exclusively of bipolar patients, while the "normal BBB leakage" group included the entire control cohort and the remaining 26 bipolar subjects. Among the bipolar cohort, patients with extensive BBB leakage were found to have more severe depression and anxiety, and a more chronic course of illness. Furthermore, all bipolar patients within this group were also found to have co-morbid insulin resistance, suggesting that insulin resistance may increase the risk of BBB dysfunction in bipolar patients. Our findings demonstrate a clear link between BBB leakage and greater psychiatric morbidity in bipolar patients and highlight the potential of BBB imaging as a mechanism-based biomarker for bipolar disorder progression.
Collapse
Affiliation(s)
- Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Kathleen A Cairns
- Nova Scotia Health Authority, Mood Disorders Clinic, 5909 Veterans Memorial Lane, Halifax, NS, B3H 2E2, Canada
| | - Ronel Veksler
- Department of Physiology and Cell Biology, Medicine, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chris Bowen
- Biomedical Translational Imaging Centre (BIOTIC), QEII Health Sciences Centre, and Department of Diagnostic Radiology, Dalhousie University, 1796 Summer Street, Halifax, NS, B3H 3A7, Canada
| | - Steven D Beyea
- Biomedical Translational Imaging Centre (BIOTIC), QEII Health Sciences Centre, and Department of Diagnostic Radiology, Dalhousie University, 1796 Summer Street, Halifax, NS, B3H 3A7, Canada
| | - Alon Friedman
- Department of Medical Neuroscience, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada; Department of Physiology and Cell Biology, Medicine, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Cynthia Calkin
- Departments of Psychiatry and Medical Neuroscience, Dalhousie University, Mood Disorders Clinic, 5909 Veterans Memorial Lane, Halifax, NS, B3H 2E2, Canada
| |
Collapse
|
33
|
Lublinsky S, Major S, Kola V, Horst V, Santos E, Platz J, Sakowitz O, Scheel M, Dohmen C, Graf R, Vatter H, Wolf S, Vajkoczy P, Shelef I, Woitzik J, Martus P, Dreier JP, Friedman A. Early blood-brain barrier dysfunction predicts neurological outcome following aneurysmal subarachnoid hemorrhage. EBioMedicine 2019; 43:460-472. [PMID: 31162113 PMCID: PMC6558266 DOI: 10.1016/j.ebiom.2019.04.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Disease progression and delayed neurological complications are common after aneurysmal subarachnoid hemorrhage (aSAH). We explored the potential of quantitative blood-brain barrier (BBB) imaging to predict disease progression and neurological outcome. METHODS Data were collected as part of the Co-Operative Studies of Brain Injury Depolarizations (COSBID). We analyzed retrospectively, blinded and semi-automatically magnetic resonance images from 124 aSAH patients scanned at 4 time points (24-48 h, 6-8 days, 12-15 days and 6-12 months) after the initial hemorrhage. Volume of brain with apparent pathology and/or BBB dysfunction (BBBD), subarachnoid space and lateral ventricles were measured. Neurological status on admission was assessed using the World Federation of Neurosurgical Societies and Rosen-Macdonald scores. Outcome at ≥6 months was assessed using the extended Glasgow outcome scale and disease course (progressive or non-progressive based on imaging-detected loss of normal brain tissue in consecutive scans). Logistic regression was used to define biomarkers that best predict outcomes. Receiver operating characteristic analysis was performed to assess accuracy of outcome prediction models. FINDINGS In the present cohort, 63% of patients had progressive and 37% non-progressive disease course. Progressive course was associated with worse outcome at ≥6 months (sensitivity of 98% and specificity of 97%). Brain volume with BBBD was significantly larger in patients with progressive course already 24-48 h after admission (2.23 (1.23-3.17) folds, median with 95%CI), and persisted at all time points. The highest probability of a BBB-disrupted voxel to become pathological was found at a distance of ≤1 cm from the brain with apparent pathology (0·284 (0·122-0·594), p < 0·001, median with 95%CI). A multivariate logistic regression model revealed power for BBBD in combination with RMS at 24-48 h in predicting outcome (ROC area under the curve = 0·829, p < 0·001). INTERPRETATION We suggest that early identification of BBBD may serve as a key predictive biomarker for neurological outcome in aSAH. FUND: Dr. Dreier was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (DFG DR 323/5-1 and DFG DR 323/10-1), the Bundesministerium für Bildung und Forschung (BMBF) Center for Stroke Research Berlin 01 EO 0801 and FP7 no 602150 CENTER-TBI. Dr. Friedman was supported by grants from Israel Science Foundation and Canada Institute for Health Research (CIHR). Dr. Friedman was supported by grants from European Union's Seventh Framework Program (FP7/2007-2013; grant #602102).
Collapse
Affiliation(s)
- Svetlana Lublinsky
- Departments of Brain & Cognitive Sciences, Physiology & Cell Biology, Faculty of Health Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Germany
| | - Johannes Platz
- Department of Neurosurgery, Goethe-University, Frankfurt, Germany
| | - Oliver Sakowitz
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Germany; Neurosurgery Center Ludwigsburg-Heilbronn, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Rudolf Graf
- Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital and University of Bonn, Bonn, Germany
| | - Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ilan Shelef
- Departments of Brain & Cognitive Sciences, Physiology & Cell Biology, Faculty of Health Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Diagnostic Imaging, Soroka University Medical Center, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Alon Friedman
- Departments of Brain & Cognitive Sciences, Physiology & Cell Biology, Faculty of Health Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
34
|
Elhaik Goldman S, Goez D, Last D, Naor S, Liraz Zaltsman S, Sharvit-Ginon I, Atrakchi-Baranes D, Shemesh C, Twitto-Greenberg R, Tsach S, Lotan R, Leikin-Frenkel A, Shish A, Mardor Y, Schnaider Beeri M, Cooper I. High-fat diet protects the blood-brain barrier in an Alzheimer's disease mouse model. Aging Cell 2018; 17:e12818. [PMID: 30079520 PMCID: PMC6156545 DOI: 10.1111/acel.12818] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/12/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of Alzheimer's disease (AD). There is evidence for impaired blood-brain barrier (BBB) in both diseases, but its role in the interplay between them is not clear. Here, we investigated the effects of high-fat diet (HFD), a model for T2D, on the Tg2576 mouse model of AD, in regard to BBB function. We showed that HFD mice had higher weight, more insulin resistance, and higher serum HDL cholesterol levels, primarily in Tg2576 mice, which also had higher brain lipids content. In terms of behavior, Tg2576 HFD mice were less active and more anxious, but had better learning in the Morris Water Maze compared to Tg2576 on regular diet. HFD had no effect on the level of amyloid beta 1-42 in the cortex of Tg2576 mice, but increased the transcription level of insulin receptor in the hippocampus. Tg2576 mice on regular diet demonstrated more BBB disruption at 8 and 12 months accompanied by larger lateral ventricles volume in contrast to Tg2576 HFD mice, whose BBB leakage and ventricular volume were similar to wild-type (WT) mice. Our results suggest that in AD, HFD may promote better cognitive function through improvements of BBB function and of brain atrophy but not of amyloid beta levels. Lipid metabolism in the CNS and peripheral tissues and brain insulin signaling may underlie this protection.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Gonda Brain Research Center; Bar Ilan University; Ramat-Gan Israel
| | - David Goez
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Sharone Naor
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Sigal Liraz Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Pharmacology Division, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy; Hebrew University of Jerusalem; Jerusalem Israel
| | - Inbal Sharvit-Ginon
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Department of Psychology; Bar Ilan University; Ramat-Gan Israel
| | - Dana Atrakchi-Baranes
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Rachel Twitto-Greenberg
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Shoval Tsach
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Roni Lotan
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
| | - Alicia Leikin-Frenkel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Aviv Shish
- The Bert W. Strassburger Lipid Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
| | - Yael Mardor
- The Advanced Technology Center, Sheba Medical Center; Tel-Hashomer; Ramat-Gan Israel
- Sackler Faculty of Medicine; Tel-Aviv University; Tel-Aviv Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- Department of Psychiatry; The Icahn School of Medicine at Mount Sinai; New York New York
- The Interdisciplinary Center; Herzliya Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center; Tel Hashomer; Ramat Gan Israel
- The Interdisciplinary Center; Herzliya Israel
| |
Collapse
|
35
|
Bar-Klein G, Lublinsky S, Kamintsky L, Noyman I, Veksler R, Dalipaj H, Senatorov VV, Swissa E, Rosenbach D, Elazary N, Milikovsky DZ, Milk N, Kassirer M, Rosman Y, Serlin Y, Eisenkraft A, Chassidim Y, Parmet Y, Kaufer D, Friedman A. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain 2017; 140:1692-1705. [PMID: 28444141 DOI: 10.1093/brain/awx073] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P < 0.0001) for epilepsy, while diffused pathology is associated with a lower risk. Early treatments with either isoflurane anaesthesia or losartan prevented early microvascular damage and late epilepsy. We suggest quantitative assessment of blood-brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy.
Collapse
Affiliation(s)
- Guy Bar-Klein
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Svetlana Lublinsky
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lyn Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Iris Noyman
- Pediatric Neurology and Epilepsy, Pediatric Division, Soroka Medical Center, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronel Veksler
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hotjensa Dalipaj
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Vladimir V Senatorov
- Department of Integrative Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Evyatar Swissa
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dror Rosenbach
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Netta Elazary
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Z Milikovsky
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadav Milk
- The Israel Defense Force Medical Corps, Tel Hashomer, Israel
| | | | - Yossi Rosman
- The Israel Defense Force Medical Corps, Tel Hashomer, Israel.,Sackler School of Medicine, Tel Aviv Uneversity, Tel Aviv, Israel
| | - Yonatan Serlin
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arik Eisenkraft
- The Israel Defense Force Medical Corps, Tel Hashomer, Israel.,NBC Protection Division, Ministry of Defense, Tel-Aviv, Israel.,The Institute for Research in Military Medicine, Hebrew University, Jerusalem, Israel
| | - Yoash Chassidim
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yisrael Parmet
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniela Kaufer
- Department of Integrative Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
36
|
Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery. J Neurosci 2017; 36:7727-39. [PMID: 27445149 DOI: 10.1523/jneurosci.0587-16.2016] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders.
Collapse
|
37
|
Li K, Zhu X, Zhao S, Jackson A. Blood-brain barrier permeability of normal-appearing white matter in patients with vestibular schwannoma: A new hybrid approach for analysis of T 1 -W DCE-MRI. J Magn Reson Imaging 2017; 46:79-93. [PMID: 28117925 PMCID: PMC5484377 DOI: 10.1002/jmri.25573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To develop and assess a "hybrid" method that combines a first-pass analytical approach and the Patlak plot (PP) to improve assessment of low blood-brain barrier permeability from dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) data. MATERIALS AND METHODS Seven patients with vestibular schwannoma were enrolled. T1 -W DCE imaging was acquired on a 1.5T scanner. Normal-appearing white matter (NAWM) was divided into four regions of interest (ROIs) based on the magnitude of changes in longitudinal relaxation rate (ΔR1) after gadolinium administration. Kinetic analysis of ROI-averaged contrast agent concentration curves was performed using both the conventional PP and the hybrid method. Computer simulated uptake curves that resemble those from NAWM were analyzed with both methods. Percent deviations (PD) of the "measured" values from the "true" values were calculated to evaluate accuracy and precision of the two methods. RESULTS The simulation showed that, at a noise level of 4% (a noise level similar to the in vivo data) and using a signal intensity (SI) averaging scheme, the new hybrid method achieved a PD of 0.9 ± 2.7% for vp , and a PD of -5.4 ± 5.9% for Ktrans . In comparison, the PP method obtained a PD of 3.6 ± 11.3% for vp , and -8.3 ± 12.8% for Ktrans . One-way analyses of variance (ANOVAs) showed significant variations from the four WM regions (P < 10-15 for ΔR1; P < 10-6 for Ktrans ; P < 10-4 for vp ). CONCLUSION Both computer simulation and in vivo studies demonstrate improved reliability in vp and Ktrans estimates with the hybrid method. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:79-93.
Collapse
Affiliation(s)
- Ka‐Loh Li
- Division of Informatics, Imaging and Data SciencesUniversity of ManchesterManchesterUK
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and ManchesterManchesterUK
| | - Xiaoping Zhu
- Division of Informatics, Imaging and Data SciencesUniversity of ManchesterManchesterUK
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and ManchesterManchesterUK
| | - Sha Zhao
- Division of Informatics, Imaging and Data SciencesUniversity of ManchesterManchesterUK
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and ManchesterManchesterUK
| | - Alan Jackson
- Division of Informatics, Imaging and Data SciencesUniversity of ManchesterManchesterUK
- CRUK and EPSRC Cancer Imaging Centre in Cambridge and ManchesterManchesterUK
| |
Collapse
|
38
|
Bar-Klein G, Klee R, Brandt C, Bankstahl M, Bascuñana P, Töllner K, Dalipaj H, Bankstahl JP, Friedman A, Löscher W. Isoflurane prevents acquired epilepsy in rat models of temporal lobe epilepsy. Ann Neurol 2017; 80:896-908. [PMID: 27761920 DOI: 10.1002/ana.24804] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/16/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Acquired epilepsy is a devastating long-term risk of various brain insults, including trauma, stroke, infections, and status epilepticus (SE). There is no preventive treatment for patients at risk. Attributable to the complex alterations involved in epileptogenesis, it is likely that multitargeted approaches are required for epilepsy prevention. We report novel preclinical findings with isoflurane, which exerts various nonanesthetic effects that may be relevant for antiepileptogenesis. METHODS The effects of isoflurane were investigated in two rat models of SE-induced epilepsy: intrahippocampal kainate and systemic administration of paraoxon. Isoflurane was either administered during (kainate) or after (paraoxon) induction of SE. Magnetic resonance imaging was used to assess blood-brain barrier (BBB) dysfunction. Positron emission tomography was used to visualize neuroinflammation. Long-term electrocorticographic recordings were used to monitor spontaneous recurrent seizures. Neuronal damage was assessed histologically. RESULTS In the absence of isoflurane, spontaneous recurrent seizures were common in the majority of rats in both models. When isoflurane was administered during kainate injection, duration and severity of SE were not affected, but only few rats developed spontaneous recurrent seizures. A similar antiepileptogenic effect was found when paraoxon-treated rats were exposed to isoflurane after SE. Moreover, in the latter model, isoflurane prevented BBB dysfunction and neurodegeneration, whereas isoflurane reduced neuroinflammation in the kainate model. INTERPRETATION Given that isoflurane is a widely used volatile anesthetic, and is used for inhalational long-term sedation in critically ill patients at risk to develop epilepsy, our findings hold a promising potential to be successfully translated into the clinic. Ann Neurol 2016;80:896-908.
Collapse
Affiliation(s)
- Guy Bar-Klein
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rebecca Klee
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hotjensa Dalipaj
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
39
|
Lee S, Lim W, Ryu HW, Jo D, Min JJ, Kim HS, Hyun H. ZW800-1 for Assessment of Blood-Brain Barrier Disruption in a Photothrombotic Stroke Model. Int J Med Sci 2017; 14:1430-1435. [PMID: 29200957 PMCID: PMC5707760 DOI: 10.7150/ijms.22294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Since it is known that serum albumin-bound dyes can cross the blood-brain barrier (BBB) after ischemia, Evans Blue dye is commonly used to assess BBB disruption because of its rapid binding to serum albumin. In addition, indocyanine green (ICG), a clinically available dye, binds to serum proteins that could also be used for assessment of BBB impairment. Unlike these near-infrared (NIR) dyes, zwitterionic NIR fluorophore (ZW800-1) shows no serum binding, ultralow non-specific tissue uptake, and rapid elimination from the body via renal filtration. In this study, we report the use of ZW800-1 as a NIR fluorescence imaging agent for detecting BBB disruption in rat stroke models. Methods: Three types of NIR fluorophores, Evans Blue, ICG, and ZW800-1, were administered intraperitoneally into rat photothrombotic stroke models by using 4% concentration of each NIR dye. The NIR fluorescence signals in the infarcted brain tissue and biodistribution were observed in real-time using the Mini-FLARE® imaging system up to 24 h post-injection. Results: ZW800-1 provided successful visualization of the ischemic injury site in the brain tissue, while the remaining injected dye was clearly excreted from the body within a certain period of time. Although Evans Blue and ICG provided mapping of the infarcted brain lesions, they exhibited high non-specific uptake in most of the tissues and organs and persisted in the body over 24 h post-injection. Conclusion: Our results suggest the promising application of ZW800-1 as a new strategy in BBB experiments and future therapeutic development.
Collapse
Affiliation(s)
- Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Wonbong Lim
- Department of Premedical Program, School of Medicine, Chosun University, Gwangju 61452, South Korea
| | - Hye-Won Ryu
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Danbi Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
40
|
van Vliet EA, Dedeurwaerdere S, Cole AJ, Friedman A, Koepp MJ, Potschka H, Immonen R, Pitkänen A, Federico P. WONOEP appraisal: Imaging biomarkers in epilepsy. Epilepsia 2016; 58:315-330. [PMID: 27883181 DOI: 10.1111/epi.13621] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 01/04/2023]
Abstract
Neuroimaging offers a wide range of opportunities to obtain information about neuronal activity, brain inflammation, blood-brain barrier alterations, and various molecular alterations during epileptogenesis or for the prediction of pharmacoresponsiveness as well as postoperative outcome. Imaging biomarkers were examined during the XIII Workshop on Neurobiology of Epilepsy (XIII WONOEP) organized in 2015 by the Neurobiology Commission of the International League Against Epilepsy (ILAE). Here we present an extended summary of the discussed issues and provide an overview of the current state of knowledge regarding the biomarker potential of different neuroimaging approaches for epilepsy.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Andrew J Cole
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilian-University, Munich, Germany
| | - Riikka Immonen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Paolo Federico
- Departments of Clinical Neurosciences and Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Bain AR, Nybo L, Ainslie PN. Cerebral Vascular Control and Metabolism in Heat Stress. Compr Physiol 2016; 5:1345-80. [PMID: 26140721 DOI: 10.1002/cphy.c140066] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides an in-depth update on the impact of heat stress on cerebrovascular functioning. The regulation of cerebral temperature, blood flow, and metabolism are discussed. We further provide an overview of vascular permeability, the neurocognitive changes, and the key clinical implications and pathologies known to confound cerebral functioning during hyperthermia. A reduction in cerebral blood flow (CBF), derived primarily from a respiratory-induced alkalosis, underscores the cerebrovascular changes to hyperthermia. Arterial pressures may also become compromised because of reduced peripheral resistance secondary to skin vasodilatation. Therefore, when hyperthermia is combined with conditions that increase cardiovascular strain, for example, orthostasis or dehydration, the inability to preserve cerebral perfusion pressure further reduces CBF. A reduced cerebral perfusion pressure is in turn the primary mechanism for impaired tolerance to orthostatic challenges. Any reduction in CBF attenuates the brain's convective heat loss, while the hyperthermic-induced increase in metabolic rate increases the cerebral heat gain. This paradoxical uncoupling of CBF to metabolism increases brain temperature, and potentiates a condition whereby cerebral oxygenation may be compromised. With levels of experimentally viable passive hyperthermia (up to 39.5-40.0 °C core temperature), the associated reduction in CBF (∼ 30%) and increase in cerebral metabolic demand (∼ 10%) is likely compensated by increases in cerebral oxygen extraction. However, severe increases in whole-body and brain temperature may increase blood-brain barrier permeability, potentially leading to cerebral vasogenic edema. The cerebrovascular challenges associated with hyperthermia are of paramount importance for populations with compromised thermoregulatory control--for example, spinal cord injury, elderly, and those with preexisting cardiovascular diseases.
Collapse
Affiliation(s)
- Anthony R Bain
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| | - Lars Nybo
- Department of Nutrition, Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan Campus, Kelowna, Canada
| |
Collapse
|
42
|
Barnes SR, Ng TSC, Montagne A, Law M, Zlokovic BV, Jacobs RE. Optimal acquisition and modeling parameters for accurate assessment of low Ktrans blood-brain barrier permeability using dynamic contrast-enhanced MRI. Magn Reson Med 2015; 75:1967-77. [PMID: 26077645 DOI: 10.1002/mrm.25793] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/30/2015] [Accepted: 04/30/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE To determine optimal parameters for acquisition and processing of dynamic contrast-enhanced MRI (DCE-MRI) to detect small changes in near normal low blood-brain barrier (BBB) permeability. METHODS Using a contrast-to-noise ratio metric (K-CNR) for Ktrans precision and accuracy, the effects of kinetic model selection, scan duration, temporal resolution, signal drift, and length of baseline on the estimation of low permeability values was evaluated with simulations. RESULTS The Patlak model was shown to give the highest K-CNR at low Ktrans . The Ktrans transition point, above which other models yielded superior results, was highly dependent on scan duration and tissue extravascular extracellular volume fraction (ve ). The highest K-CNR for low Ktrans was obtained when Patlak model analysis was combined with long scan times (10-30 min), modest temporal resolution (<60 s/image), and long baseline scans (1-4 min). Signal drift as low as 3% was shown to affect the accuracy of Ktrans estimation with Patlak analysis. CONCLUSION DCE acquisition and modeling parameters are interdependent and should be optimized together for the tissue being imaged. Appropriately optimized protocols can detect even the subtlest changes in BBB integrity and may be used to probe the earliest changes in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Samuel R Barnes
- Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Thomas S C Ng
- Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.,Department of Medicine, University of California, Irvine Medical Center, Orange, California, USA
| | - Axel Montagne
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Meng Law
- Division of Neuroradiology, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Russell E Jacobs
- Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
43
|
Barnes SR, Ng TSC, Santa-Maria N, Montagne A, Zlokovic BV, Jacobs RE. ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies. BMC Med Imaging 2015; 15:19. [PMID: 26076957 PMCID: PMC4466867 DOI: 10.1186/s12880-015-0062-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising technique to characterize pathology and evaluate treatment response. However, analysis of DCE-MRI data is complex and benefits from concurrent analysis of multiple kinetic models and parameters. Few software tools are currently available that specifically focuses on DCE-MRI analysis with multiple kinetic models. Here, we developed ROCKETSHIP, an open-source, flexible and modular software for DCE-MRI analysis. ROCKETSHIP incorporates analyses with multiple kinetic models, including data-driven nested model analysis. RESULTS ROCKETSHIP was implemented using the MATLAB programming language. Robustness of the software to provide reliable fits using multiple kinetic models is demonstrated using simulated data. Simulations also demonstrate the utility of the data-driven nested model analysis. Applicability of ROCKETSHIP for both preclinical and clinical studies is shown using DCE-MRI studies of the human brain and a murine tumor model. CONCLUSION A DCE-MRI software suite was implemented and tested using simulations. Its applicability to both preclinical and clinical datasets is shown. ROCKETSHIP was designed to be easily accessible for the beginner, but flexible enough for changes or additions to be made by the advanced user as well. The availability of a flexible analysis tool will aid future studies using DCE-MRI. A public release of ROCKETSHIP is available at https://github.com/petmri/ROCKETSHIP .
Collapse
Affiliation(s)
- Samuel R Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Thomas S C Ng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA. .,Department of Medicine, University of California, Irvine Medical Center, Orange, CA, USA.
| | - Naomi Santa-Maria
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Axel Montagne
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Russell E Jacobs
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
44
|
van Vliet E, Aronica E, Gorter J. Blood–brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol 2015; 38:26-34. [DOI: 10.1016/j.semcdb.2014.10.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023]
|
45
|
Fu F, Li B, Dai M, Hu SJ, Li X, Xu CH, Wang B, Yang B, Tang MX, Dong XZ, Fei Z, Shi XT. Use of electrical impedance tomography to monitor regional cerebral edema during clinical dehydration treatment. PLoS One 2014; 9:e113202. [PMID: 25474474 PMCID: PMC4256286 DOI: 10.1371/journal.pone.0113202] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 10/24/2014] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Variations of conductive fluid content in brain tissue (e.g. cerebral edema) change tissue impedance and can potentially be measured by Electrical Impedance Tomography (EIT), an emerging medical imaging technique. The objective of this work is to establish the feasibility of using EIT as an imaging tool for monitoring brain fluid content. DESIGN a prospective study. SETTING In this study EIT was used, for the first time, to monitor variations in cerebral fluid content in a clinical model with patients undergoing clinical dehydration treatment. The EIT system was developed in house and its imaging sensitivity and spatial resolution were evaluated on a saline-filled tank. PATIENTS 23 patients with brain edema. INTERVENTIONS The patients were continuously imaged by EIT for two hours after initiation of dehydration treatment using 0.5 g/kg intravenous infusion of mannitol for 20 minutes. MEASUREMENT AND MAIN RESULTS Overall impedance across the brain increased significantly before and after mannitol dehydration treatment (p = 0.0027). Of the all 23 patients, 14 showed high-level impedance increase and maintained this around 4 hours after the dehydration treatment whereas the other 9 also showed great impedance gain during the treatment but it gradually decreased after the treatment. Further analysis of the regions of interest in the EIT images revealed that diseased regions, identified on corresponding CT images, showed significantly less impedance changes than normal regions during the monitoring period, indicating variations in different patients' responses to such treatment. CONCLUSIONS EIT shows potential promise as an imaging tool for real-time and non-invasive monitoring of brain edema patients.
Collapse
Affiliation(s)
- Feng Fu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Bing Li
- Neurosurgical Unit of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng Dai
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Shi-Jie Hu
- Neurosurgical Unit of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Neurosurgical Unit of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Can-Hua Xu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Bing Wang
- Neurosurgical Unit of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bin Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Xiu-Zhen Dong
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
- * E-mail: (XZD); (ZF); (XTS)
| | - Zhou Fei
- Neurosurgical Unit of Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail: (XZD); (ZF); (XTS)
| | - Xue-Tao Shi
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
- * E-mail: (XZD); (ZF); (XTS)
| |
Collapse
|
46
|
Chassidim Y, Vazana U, Prager O, Veksler R, Bar-Klein G, Schoknecht K, Fassler M, Lublinsky S, Shelef I. Analyzing the blood-brain barrier: the benefits of medical imaging in research and clinical practice. Semin Cell Dev Biol 2014; 38:43-52. [PMID: 25455024 DOI: 10.1016/j.semcdb.2014.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 01/03/2023]
Abstract
A dysfunctional BBB is a common feature in a variety of brain disorders, a fact stressing the need for diagnostic tools designed to assess brain vessels' permeability in space and time. Biological research has benefited over the years various means to analyze BBB integrity. The use of biomarkers for improper BBB functionality is abundant. Systemic administration of BBB impermeable tracers can both visualize brain regions characterized by BBB impairment, as well as lead to its quantification. Additionally, locating molecular, physiological content in regions from which it is restricted under normal BBB functionality undoubtedly indicates brain pathology-related BBB disruption. However, in-depth research into the BBB's phenotype demands higher analytical complexity than functional vs. pathological BBB; criteria which biomarker based BBB permeability analyses do not meet. The involvement of accurate and engineering sciences in recent brain research, has led to improvements in the field, in the form of more accurate, sensitive imaging-based methods. Improvements in the spatiotemporal resolution of many imaging modalities and in image processing techniques, make up for the inadequacies of biomarker based analyses. In pre-clinical research, imaging approaches involving invasive procedures, enable microscopic evaluation of BBB integrity, and benefit high levels of sensitivity and accuracy. However, invasive techniques may alter normal physiological function, thus generating a modality-based impact on vessel's permeability, which needs to be corrected for. Non-invasive approaches do not affect proper functionality of the inspected system, but lack in spatiotemporal resolution. Nevertheless, the benefit of medical imaging, even in pre-clinical phases, outweighs its disadvantages. The innovations in pre-clinical imaging and the development of novel processing techniques, have led to their implementation in clinical use as well. Specialized analyses of vessels' permeability add valuable information to standard anatomical inspections which do not take the latter into consideration.
Collapse
Affiliation(s)
- Yoash Chassidim
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Udi Vazana
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofer Prager
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronel Veksler
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Guy Bar-Klein
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Karl Schoknecht
- Department of Neurophysiology, Charite University of Medicine, Berlin, Germany
| | - Michael Fassler
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Svetlana Lublinsky
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Medical Imaging Institute, Soroka Medical Center, Beer-Sheva, Israel
| |
Collapse
|
47
|
Veksler R, Shelef I, Friedman A. Blood-brain barrier imaging in human neuropathologies. Arch Med Res 2014; 45:646-52. [PMID: 25453223 DOI: 10.1016/j.arcmed.2014.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/20/2014] [Indexed: 01/22/2023]
Abstract
The blood-brain barrier (BBB) is essential for normal function of the brain, and its role in many brain pathologies has been the focus of numerous studies during the last decades. Dysfunction of the BBB is not only being shown in numerous brain diseases, but animal studies have indicated that it plays a direct key role in the genesis of neurovascular dysfunction and associated neurodegeneration. As such evidence accumulates, the need for robust and clinically applicable methods for minimally invasive assessment of BBB integrity is becoming urgent. This review provides an introduction to BBB imaging methods in the clinical scenario. First, imaging modalities are reviewed, with a focus on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). We then proceed to review image analysis methods, including quantitative and semi-quantitative methods. The advantages and limitations of each approach are discussed, and future directions and questions are highlighted.
Collapse
Affiliation(s)
- Ronel Veksler
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilan Shelef
- Department of Medical Imaging, Soroka University Medical Center and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada.
| |
Collapse
|
48
|
Schoknecht K, Prager O, Vazana U, Kamintsky L, Harhausen D, Zille M, Figge L, Chassidim Y, Schellenberger E, Kovács R, Heinemann U, Friedman A. Monitoring stroke progression: in vivo imaging of cortical perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model. J Cereb Blood Flow Metab 2014; 34:1791-801. [PMID: 25160672 PMCID: PMC4269756 DOI: 10.1038/jcbfm.2014.147] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 11/09/2022]
Abstract
Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood-brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood-brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex.
Collapse
Affiliation(s)
- Karl Schoknecht
- Institute for Neurophysiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Udi Vazana
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lyn Kamintsky
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Denise Harhausen
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Marietta Zille
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Lena Figge
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Yoash Chassidim
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyk Schellenberger
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Richard Kovács
- Institute for Neurophysiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Uwe Heinemann
- Institute for Neurophysiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Alon Friedman
- 1] Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel [2] Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| |
Collapse
|
49
|
Friedman A, Bar-Klein G, Serlin Y, Parmet Y, Heinemann U, Kaufer D. Should losartan be administered following brain injury? Expert Rev Neurother 2014; 14:1365-75. [PMID: 25346269 DOI: 10.1586/14737175.2014.972945] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain injury is a major health concern and associated with delayed neurological complications, including post-injury epilepsy, cognitive and emotional disabilities. Currently, there is no strategy to prevent post-injury delayed complications. We recently showed that dysfunction of the blood-brain barrier, often reported in brain injuries, can lead to epilepsy and neurodegeneration via activation of inflammatory TGF-β signaling in astrocytes. We further showed that the FDA approved angiotensin II type 1 receptor antagonist, losartan, blocks brain TGF-β signaling and prevents epilepsy in the albumin or blood-brain barrier breakdown models of epileptogenesis. Here we discuss the potential of losartan as an anti-epileptogenic and a neuroprotective drug, the rationale of its use following brain injury and the challenges of designing clinical trials. We highlight the urgent need to develop reliable biomarkers for epileptogenesis (and other complications) after brain injury as a pre-requisite to challenge neuroprotective therapies.
Collapse
Affiliation(s)
- Alon Friedman
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, PO Box 15000, 5850 College Street, Halifax Nova Scotia B3H 4R2, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Amhaoul H, Staelens S, Dedeurwaerdere S. Imaging brain inflammation in epilepsy. Neuroscience 2014; 279:238-52. [DOI: 10.1016/j.neuroscience.2014.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 01/15/2023]
|