1
|
Brenna S, Glatzel M, Magnus T, Puig B, Galliciotti G. Neuroserpin and Extracellular Vesicles in Ischemic Stroke: Partners in Neuroprotection? Aging Dis 2024; 15:2191-2204. [PMID: 39191396 PMCID: PMC11346402 DOI: 10.14336/ad.2024.0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/05/2024] [Indexed: 08/29/2024] Open
Abstract
Ischemic stroke represents a significant global health challenge, often resulting in death or long-term disability, particularly among the elderly, where advancing age stands as the most unmodifiable risk factor. Arising from the blockage of a brain-feeding artery, the only therapies available to date aim at removing the blood clot to restore cerebral blood flow and rescue neuronal cells from death. The prevailing treatment approach involves thrombolysis by administration of recombinant tissue plasminogen activator (tPA), albeit with a critical time constraint. Timely intervention is imperative, given that delayed thrombolysis increases tPA leakage into the brain parenchyma, causing harmful effects. Strategies to preserve tPA's vascular benefits while shielding brain cells from its toxicity have been explored. Notably, administering neuroserpin (Ns), a brain-specific tPA inhibitor, represents one such approach. Following ischemic stroke, Ns levels rise and correlate with favorable post-stroke outcomes. Studies in rodent models of focal cerebral ischemia have demonstrated the beneficial effects of Ns administration. Ns treatment maintains blood-brain barrier (BBB) integrity, reducing stroke volume. Conversely, Ns-deficient animals exhibit larger stroke injury, increased BBB permeability and enhanced microglia activation. Furthermore, Ns administration extends the therapeutic window for tPA intervention, underscoring its potential in stroke management. Remarkably, our investigation reveals the presence of Ns within extracellular vesicles (EVs), small membrane-surrounded particles released by all cells and critical for intercellular communication. EVs influence disease outcome following stroke through cargo transfer between cells. Clarifying the role of EVs containing NS could open up urgently needed novel therapeutic approaches to improve post-ischemic stroke outcome.
Collapse
Affiliation(s)
- Santra Brenna
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Magnus
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Berta Puig
- Experimental Research in Stroke and Inflammation (ERSI) Group, Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Badaut J, Blochet C, Obenaus A, Hirt L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci 2024; 47:651-664. [PMID: 38972795 PMCID: PMC11324375 DOI: 10.1016/j.tins.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.
Collapse
Affiliation(s)
- Jérôme Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Walther J, Kirsch EM, Hellwig L, Schmerbeck SS, Holloway PM, Buchan AM, Mergenthaler P. Reinventing the Penumbra - the Emerging Clockwork of a Multi-modal Mechanistic Paradigm. Transl Stroke Res 2023; 14:643-666. [PMID: 36219377 PMCID: PMC10444697 DOI: 10.1007/s12975-022-01090-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
The concept of the ischemic penumbra was originally defined as the area around a necrotic stroke core and seen as the tissue at imminent risk of further damage. Today, the penumbra is generally considered as time-sensitive hypoperfused brain tissue with decreased oxygen and glucose availability, salvageable tissue as treated by intervention, and the potential target for neuroprotection in focal stroke. The original concept entailed electrical failure and potassium release but one short of neuronal cell death and was based on experimental stroke models, later confirmed in clinical imaging studies. However, even though the basic mechanisms have translated well, conferring brain protection, and improving neurological outcome after stroke based on the pathophysiological mechanisms in the penumbra has yet to be achieved. Recent findings shape the modern understanding of the penumbra revealing a plethora of molecular and cellular pathophysiological mechanisms. We now propose a new model of the penumbra, one which we hope will lay the foundation for future translational success. We focus on the availability of glucose, the brain's central source of energy, and bioenergetic failure as core pathophysiological concepts. We discuss the relation of mitochondrial function in different cell types to bioenergetics and apoptotic cell death mechanisms, autophagy, and neuroinflammation, to glucose metabolism in what is a dynamic ischemic penumbra.
Collapse
Affiliation(s)
- Jakob Walther
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elena Marie Kirsch
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lina Hellwig
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah S Schmerbeck
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul M Holloway
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | - Alastair M Buchan
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| | - Philipp Mergenthaler
- Charité - Universitätsmedizin Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Center for Stroke Research Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Charitéplatz 1, 10117, Berlin, Germany.
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
4
|
Chen S, Li J, Meng S, He T, Shi Z, Wang C, Wang Y, Cao H, Huang Y, Zhang Y, Gong Y, Gao Y. Microglia and macrophages in the neuro-glia-vascular unit: From identity to functions. Neurobiol Dis 2023; 179:106066. [PMID: 36889483 DOI: 10.1016/j.nbd.2023.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Although both are myeloid cells located surrounding cerebral vasculature, vessel-associated microglia (VAM) and perivascular macrophages (PVMs) can be distinguished by their distinct morphologies, signatures and microscopic location. As key component of neuro-glia-vascular unit (NGVU), they play prominent roles in neurovasculature development and pathological process of various central nervous system (CNS) diseases, including phagocytosis, angiogenesis, vessel damage/protection and blood flow regulation, therefore serving as potential targets for therapeutics of a broad array of CNS diseases. Herein, we will provide a comprehensive overview of heterogeneity of VAM/PVMs, highlight limitations of current understanding in this field, and discuss possible directions of future investigations.
Collapse
Affiliation(s)
- Shuning Chen
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shan Meng
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tingyu He
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chenran Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yana Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Cao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Zhang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ye Gong
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Yanqin Gao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Fan Y, Lv X, Chen Z, Peng Y, Zhang M. m6A methylation: Critical roles in aging and neurological diseases. Front Mol Neurosci 2023; 16:1102147. [PMID: 36896007 PMCID: PMC9990872 DOI: 10.3389/fnmol.2023.1102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells, which participates in the functional regulation of various biological processes. It regulates the expression of targeted genes by affecting RNA translocation, alternative splicing, maturation, stability, and degradation. As recent evidence shows, of all organs, brain has the highest abundance of m6A methylation of RNAs, which indicates its regulating role in central nervous system (CNS) development and the remodeling of the cerebrovascular system. Recent studies have shown that altered m6A levels are crucial in the aging process and the onset and progression of age-related diseases. Considering that the incidence of cerebrovascular and degenerative neurologic diseases increase with aging, the importance of m6A in neurological manifestations cannot be ignored. In this manuscript, we focus on the role of m6A methylation in aging and neurological manifestations, hoping to provide a new direction for the molecular mechanism and novel therapeutic targets.
Collapse
Affiliation(s)
- Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyi Lv
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Var SR, Shetty AV, Grande AW, Low WC, Cheeran MC. Microglia and Macrophages in Neuroprotection, Neurogenesis, and Emerging Therapies for Stroke. Cells 2021; 10:3555. [PMID: 34944064 PMCID: PMC8700390 DOI: 10.3390/cells10123555] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022] Open
Abstract
Stroke remains the number one cause of morbidity in the United States. Within weeks to months after an ischemic event, there is a resolution of inflammation and evidence of neurogenesis; however, years following a stroke, there is evidence of chronic inflammation in the central nervous system, possibly by the persistence of an autoimmune response to brain antigens as a result of ischemia. The mechanisms underlying the involvement of macrophage and microglial activation after stroke are widely acknowledged as having a role in ischemic stroke pathology; thus, modulating inflammation and neurological recovery is a hopeful strategy for treating the long-term outcomes after ischemic injury. Current treatments fail to provide neuroprotective or neurorestorative benefits after stroke; therefore, to ameliorate brain injury-induced deficits, therapies must alter both the initial response to injury and the subsequent inflammatory process. This review will address differences in macrophage and microglia nomenclature and summarize recent work in elucidating the mechanisms of macrophage and microglial participation in antigen presentation, neuroprotection, angiogenesis, neurogenesis, synaptic remodeling, and immune modulating strategies for treating the long-term outcomes after ischemic injury.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (S.R.V.); (A.W.G.)
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Anala V. Shetty
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
- Department of Biological Sciences, University of Minnesota Medical School, Minneapolis, MN 55108, USA
| | - Andrew W. Grande
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (S.R.V.); (A.W.G.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (S.R.V.); (A.W.G.)
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Maxim C. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
7
|
Su Q, Yu XJ, Wang XM, Li HB, Li Y, Bai J, Qi J, Zhang N, Liu KL, Zhang Y, Zhu GQ, Kang YM. Bilateral Paraventricular Nucleus Upregulation of Extracellular Superoxide Dismutase Decreases Blood Pressure by Regulation of the NLRP3 and Neurotransmitters in Salt-Induced Hypertensive Rats. Front Pharmacol 2021; 12:756671. [PMID: 34899311 PMCID: PMC8656229 DOI: 10.3389/fphar.2021.756671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Aims: Long-term salt diet induces the oxidative stress in the paraventricular nucleus (PVN) and increases the blood pressure. Extracellular superoxide dismutase (Ec-SOD) is a unique antioxidant enzyme that exists in extracellular space and plays an essential role in scavenging excessive reactive oxygen species (ROS). However, the underlying mechanism of Ec-SOD in the PVN remains unclear. Methods: Sprague-Dawley rats (150-200 g) were fed either a high salt diet (8% NaCl, HS) or normal salt diet (0.9% NaCl, NS) for 6 weeks. Each group of rats was administered with bilateral PVN microinjection of AAV-Ec-SOD (Ec-SOD overexpression) or AAV-Ctrl for the next 6 weeks. Results: High salt intake not only increased mean arterial blood pressure (MAP) and the plasma noradrenaline (NE) but also elevated the NAD(P)H oxidase activity, the NAD(P)H oxidase components (NOX2 and NOX4) expression, and ROS production in the PVN. Meanwhile, the NOD-like receptor protein 3 (NLRP3)-dependent inflammatory proteins (ASC, pro-cas-1, IL-β, CXCR, CCL2) expression and the tyrosine hydroxylase (TH) expression in the PVN with high salt diet were higher, but the GSH level, Ec-SOD activity, GAD67 expression, and GABA level were lower than the NS group. Bilateral PVN microinjection of AAV-Ec-SOD decreased MAP and the plasma NE, reduced NAD(P)H oxidase activity, the NOX2 and NOX4 expression, and ROS production, attenuated NLRP3-dependent inflammatory expression and TH, but increased GSH level, Ec-SOD activity, GAD67 expression, and GABA level in the PVN compared with the high salt group. Conclusion: Excessive salt intake not only activates oxidative stress but also induces the NLRP3-depensent inflammation and breaks the balance between inhibitory and excitability neurotransmitters in the PVN. Ec-SOD, as an essential anti-oxidative enzyme, eliminates the ROS in the PVN and decreases the blood pressure, probably through inhibiting the NLRP3-dependent inflammation and improving the excitatory neurotransmitter release in the PVN in the salt-induced hypertension.
Collapse
Affiliation(s)
- Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Juan Bai
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Nianping Zhang
- Department of Clinical Medicine, Medical School of Shanxi Datong University, Datong, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| |
Collapse
|
8
|
Su Q, Yu XJ, Yang Q, Wang XM, Xia WJ, Li HB, Liu KL, Yi QY, Kang YM. Inhibition of Maternal c-Src Ameliorates the Male Offspring Hypertension by Suppressing Inflammation and Neurotransmitters in the Paraventricular Nucleus. Cardiovasc Toxicol 2021; 21:820-834. [PMID: 34269955 DOI: 10.1007/s12012-021-09672-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
Long-term maternal salt intake induces the hypertension in offspring. Numerous studies have also indicated that high-salt diet causes the inflammation and an imbalance in neurotransmitters in the paraventricular nucleus (PVN) which increases the blood pressure and sympathetic activity. This study aimed to explore whether maternal salt intake induces hypertension in their male offspring by increasing the inflammation and changing the neurotransmitters balance in the paraventricular nucleus of offspring. This study includes two parts: Part I to explore the effect of high-salt diet on pregnant rats and the changes in inflammation and neurotransmitters in their male offspring PVN; Part II to reveal the influence on their offspring of bilateral PVN infusion of c-Src inhibitor dasatinib (DAS) in pregnant rats fed a high-salt diet. Maternal high-salt diet intake during copulation, pregnancy, and lactation impacted the offspring mean arterial pressure (MAP) and elevated the offspring PVN levels of p-Src, proinflammatory cytokines, and excitatory neurotransmitters. Bilateral PVN infusion of a c-Src inhibitor combined with maternal high-salt diets decreased MAP in the offspring. The infusion was also shown to suppress the Src-induced MAPK/NF-κB signaling pathway (p38 MAPK, JNK, Erk1/2), which attenuates inflammatory reactions. Finally, bilateral PVN infusion of the Src inhibitor in pregnant rat with high-salt diets improved the levels of inhibitory neurotransmitters in offspring PVN, which restored the excitatory-inhibitory neurotransmitter balance in male offspring. High-salt diets increase sympathetic activity and blood pressure in adult offspring, probably by activating the c-Src/MAPKs/NF-κB signaling pathway-induced inflammation. Moreover, NF-κB disrupts the downstream excitatory-inhibitory neurotransmitter balance in the PVN of male offspring.
Collapse
Affiliation(s)
- Qing Su
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China.
| | - Qing Yang
- School of Sport and Health Sciences, Xi'an Physical Education University, Xi'an, 710068, China
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Qiu-Yue Yi
- Clinical Pharmacological Institution, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China.
| |
Collapse
|
9
|
Yu F, Huang T, Ran Y, Li D, Ye L, Tian G, Xi J, Liu Z. New Insights Into the Roles of Microglial Regulation in Brain Plasticity-Dependent Stroke Recovery. Front Cell Neurosci 2021; 15:727899. [PMID: 34421544 PMCID: PMC8374071 DOI: 10.3389/fncel.2021.727899] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
Stroke remains the leading cause of long-term disability worldwide with significant long-term sequelae. However, there is no highly effective treatment to enhance post-stroke recovery despite extensive efforts in exploring rehabilitative therapies. Neurorehabilitation is recognized as the cornerstone of functional restoration therapy in stroke, where treatments are focused on neuroplastic regulation to reverse neural structural disruption and improve neurofunctional networks. Post-stroke neuroplasticity changes begin within hours of symptom onset and reaches a plateau by 3 to 4 weeks within the global brain in animal studies. It plays a determining role in spontaneous stroke recovery. Microglia are immediately activated following cerebral ischemia, which has been found both proximal to the primary ischemic injury and at the remote brain regions which have functional connections to the primary injury area. Microglia exhibit different activation profiles based on the microenvironment and adaptively switch their phenotypes in a spatiotemporal manner in response to brain injuries. Microglial activation coincides with neuroplasticity after stroke, which provides the fundamental base for the microglia-mediated inflammatory responses involved in the entire neural network rewiring and brain repair. Microglial activation exerts important effects on spontaneous recovery after stroke, including structural and functional reestablishment of neurovascular networks, neurogenesis, axonal remodeling, and blood vessel regeneration. In this review, we focus on the crosstalk between microglial activation and endogenous neuroplasticity, with a special focus on the plastic alterations in the whole brain network and their implications for structural and functional restoration after stroke. We then summarize recent advances in the impacts of microglial phenotype polarization on brain plasticity, trying to discuss the potential efficacy of microglia-based extrinsic restorative interventions in promoting post-stroke recovery.
Collapse
Affiliation(s)
- Fang Yu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Anesthesiology, Westchester Medical Center, New York Medical College, Valhalla, NY, United States
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Da Li
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Guiqin Tian
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Mastorakos P, Mihelson N, Luby M, Burks SR, Johnson K, Hsia AW, Witko J, Frank JA, Latour L, McGavern DB. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat Neurosci 2021; 24:245-258. [PMID: 33462481 PMCID: PMC7854523 DOI: 10.1038/s41593-020-00773-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023]
Abstract
Cerebrovascular injuries can cause severe edema and inflammation that adversely affect human health. Here, we observed that recanalization after successful endovascular thrombectomy for acute large vessel occlusion was associated with cerebral edema and poor clinical outcomes in patients who experienced hemorrhagic transformation. To understand this process, we developed a cerebrovascular injury model using transcranial ultrasound that enabled spatiotemporal evaluation of resident and peripheral myeloid cells. We discovered that injurious and reparative responses diverged based on time and cellular origin. Resident microglia initially stabilized damaged vessels in a purinergic receptor-dependent manner, which was followed by an influx of myelomonocytic cells that caused severe edema. Prolonged blockade of myeloid cell recruitment with anti-adhesion molecule therapy prevented severe edema but also promoted neuronal destruction and fibrosis by interfering with vascular repair subsequently orchestrated by proinflammatory monocytes and proangiogenic repair-associated microglia (RAM). These data demonstrate how temporally distinct myeloid cell responses can contain, exacerbate and ultimately repair a cerebrovascular injury.
Collapse
Affiliation(s)
- Panagiotis Mastorakos
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Surgical Neurology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Mihelson
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Marie Luby
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Amie W Hsia
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- MedStar Washington Hospital Center Comprehensive Stroke Center, Washington, DC, USA
| | - Jaclyn Witko
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Latour
- Acute Cerebrovascular Diagnostics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology & Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Dual Functions of Microglia in Ischemic Stroke. Neurosci Bull 2019; 35:921-933. [PMID: 31062335 DOI: 10.1007/s12264-019-00388-3] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality worldwide. Resident microglia are the principal immune cells of the brain, and the first to respond to the pathophysiological changes induced by ischemic stroke. Traditionally, it has been thought that microglial activation is deleterious in ischemic stroke, and therapies to suppress it have been intensively explored. However, increasing evidence suggests that microglial activation is also critical for neurogenesis, angiogenesis, and synaptic remodeling, thereby promoting functional recovery after cerebral ischemia. Here, we comprehensively review the dual role of microglia during the different phases of ischemic stroke, and the possible mechanisms controlling the post-ischemic activity of microglia. In addition, we discuss the dynamic interactions between microglia and other cells, such as neurons, astrocytes, oligodendrocytes, and endothelial cells within the brain parenchyma and the neurovascular unit.
Collapse
|
12
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
13
|
Ishrat T, Soliman S, Eldahshan W, Pillai B, Ergul A, Fagan SC. Silencing VEGF-B Diminishes the Neuroprotective Effect of Candesartan Treatment After Experimental Focal Cerebral Ischemia. Neurochem Res 2018; 43:1869-1878. [PMID: 30088238 DOI: 10.1007/s11064-018-2604-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/23/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022]
Abstract
The pro-survival effect of VEGF-B has been documented in different in vivo and in vitro models. We have previously shown an enhanced VEGF-B expression in response to candesartan treatment after focal cerebral ischemia. In this study, we aimed to silence VEGF-B expression to assess its contribution to candesartan's benefit on stroke outcome. Silencing VEGF-B expression was achieved by bilateral intracerebroventricular injections of lentiviral particles containing short hairpin RNA (shRNA) against VEGF-B. Two weeks after lentiviral injections, rats were subjected to either 90 min or 3 h of middle cerebral artery occlusion (MCAO) and randomized to intravenous candesartan (1 mg/kg) or saline at reperfusion. Animals were sacrificed at 24 or 72 h and brains were collected and analyzed for hemoglobin (Hb) excess and infarct size, respectively. Functional outcome at 24, 48 and 72 h was assessed blindly. Candesartan treatment improved neurobehavioral and motor function, and decreased infarct size and Hb. While silencing VEGF-B expression diminished candesartan's neuroprotective effect, candesartan-mediated vascular protection was maintained even in the absence of VEGF-B suggesting that this growth factor is not the mediator of candesartan's vascular protective effects. However, VEGF-B is a mediator of neuroprotection achieved by candesartan and represents a potential drug target to improve stroke outcome. Further studies are needed to elucidate the underlying molecular mechanisms of VEGF-B in neuroprotection and recovery after ischemic stroke.
Collapse
Affiliation(s)
- Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 855 Monroe Ave, Rm 231-Wittenborg bldg., Memphis, TN, 38163, USA.
| | - Sahar Soliman
- Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Wael Eldahshan
- Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Bindu Pillai
- Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Department of Physiology, Augusta University, Augusta, GA, USA
| | - Susan C Fagan
- Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Department of Neurology, Augusta University, Augusta, GA, USA
| |
Collapse
|
14
|
Zhao X, Eyo UB, Murguan M, Wu LJ. Microglial interactions with the neurovascular system in physiology and pathology. Dev Neurobiol 2018; 78:604-617. [PMID: 29318762 PMCID: PMC5980686 DOI: 10.1002/dneu.22576] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/01/2018] [Accepted: 01/06/2018] [Indexed: 01/11/2023]
Abstract
Microglia as immune cells of the central nervous system (CNS) play significant roles not only in pathology but also in physiology, such as shaping of the CNS during development and its proper maintenance in maturity. Emerging research is showing a close association between microglia and the neurovasculature that is critical for brain energy supply. In this review, we summarize the current literature on microglial interaction with the vascular system in the normal and diseased brain. First, we highlight data that indicate interesting potential involvement of microglia in developmental angiogenesis. Then we discuss the evidence for microglial participation with the vasculature in neuropathologies from brain tumors to acute injuries such as ischemic stroke to chronic neurodegenerative conditions. We conclude by suggesting future areas of research to advance the field in light of current technical progress and outstanding questions. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 604-617, 2018.
Collapse
Affiliation(s)
- Xiaoliang Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Ukpong B. Eyo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Madhuvika Murguan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
15
|
Insights into the Mechanisms Involved in Protective Effects of VEGF-B in Dopaminergic Neurons. PARKINSONS DISEASE 2017; 2017:4263795. [PMID: 28473940 PMCID: PMC5394414 DOI: 10.1155/2017/4263795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor-B (VEGF-B), when initially discovered, was thought to be an angiogenic factor, due to its intimate sequence homology and receptor binding similarity to the prototype angiogenic factor, vascular endothelial growth factor-A (VEGF-A). Studies demonstrated that VEGF-B, unlike VEGF-A, did not play a significant role in angiogenesis or vascular permeability and has become an active area of interest because of its role as a survival factor in pathological processes in a multitude of systems, including the brain. By characterization of important downstream targets of VEGF-B that regulate different cellular processes in the nervous system and cardiovascular system, it may be possible to develop more effective clinical interventions in diseases such as Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), and ischemic heart disease, which all share mitochondrial dysfunction as part of the disease. Here we summarize what is currently known about the mechanism of action of VEGF-B in pathological processes. We explore its potential as a homeostatic protective factor that improves mitochondrial function in the setting of cardiovascular and neurological disease, with a specific focus on dopaminergic neurons in Parkinson's disease.
Collapse
|
16
|
Vascular Endothelial Growth Factor Isoform-B Stimulates Neurovascular Repair After Ischemic Stroke by Promoting the Function of Pericytes via Vascular Endothelial Growth Factor Receptor-1. Mol Neurobiol 2017; 55:3611-3626. [PMID: 28290152 DOI: 10.1007/s12035-017-0478-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
Ischemic stroke triggers endogenous angiogenic mechanisms, which correlates with longer survival in patients. As such, promoting angiogenesis appears to be a promising approach. Experimental studies investigated mostly the potent angiogenic factor vascular endothelial growth factor isoform-A (VEGF-A). However, VEGF-A increases the risk of destabilizing the brain microvasculature, thus hindering the translation of its usage in clinics. An attractive alternative VEGF isoform-B (VEGF-B) was recently reported to act as a survival factor rather than a potent angiogenic factor. In this study, we investigated the therapeutic potential of VEGF-B in ischemic stroke using different in vivo and in vitro approaches. We showed that the delayed intranasal administration of VEGF-B reduced neuronal damage and inflammation. Unexpectedly, VEGF-B stimulated the formation of stable brain microvasculature within the injured region by promoting the interaction between endothelial cells and pericytes. Our data indicate that the effects of VEGF-B were mediated via its specific receptor VEGF receptor-1 (VEGFR-1) that is predominately expressed in brain pericytes. Importantly, VEGF-B promoted the survival of pericytes, and not brain endothelial cells, by inducing expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and the main protein involved in energy homeostasis AMP-activated protein kinase α (AMPKα). Moreover, we showed that VEGF-B stimulated the pericytic release of factors stimulating a "reparative angiogenesis" that does not compromise microvasculature stability. Our study unraveled hitherto unknown role of VEGF-B/VEGFR-1 signaling in regulating the function of pericytes. Furthermore, our findings suggest that brain microvasculature stabilization via VEGF-B constitutes a safe therapeutic approach for ischemic stroke.
Collapse
|
17
|
Zhang B, Wang D, Ji TF, Shi L, Yu JL. Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model. Oncotarget 2017; 8:17347-17359. [PMID: 28060742 PMCID: PMC5370045 DOI: 10.18632/oncotarget.14468] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE This study aimed to explore the effects of lncRNA ANRIL on vascular endothelial growth factor (VEGF) and angiogenesis in diabetes mellitus (DM) combined with cerebral infarction (CI) through NF-κB signaling pathway. METHODS Adult male Wistar rats were randomly divided into control group and DM + CI group, and the DM + CI group were subdivided into Vector, shANRIL, PDTC, pcDNA-ANRIL, and pcDNA-ANRIL + PDTC groups. VEGF and FMS-like tyrosine kinase (FLT-1) expressions were measured by immunohistochemistry and endothelium dependent microvessel density (MVD) was detected by differentiation 31 (CD31) and para-amiuosalicylic acid (PAS) double staining. The qRT-PCR was applied to measure mRNA expressions of VEGF, FLT-1, Kinase insert domain protein receptor (FLK-1) and NF-κB, and Western blotting was conducted to detected expressions of VEGF, NF-κB and p-IκB/IκB. RESULTS Compared with the control group, protein expressions of VEGF, NF-κB, p-IκB/IκB, expression of ANRIL, and mRNA expressions of VEGF, FLT-1 and NF-κB were increased in the DM + CI group. Compared with the Vector group, protein expressions of VEGF, NF-κB, p-IκB/IκB, expression of ANRIL, mRNA expressions of VEGF, FLT-1 and NF-κB, and endothelium dependent MVD were increased in the pcDNA-ANRIL group, while decreased in the shANRIL group and PDTC group. Compared with the pcDNA-ANRIL group, protein expressions of VEGF, NF-κB, p-IκB/IκB, expression of ANRIL, mRNA expressions of VEGF, FLT-1 and NF-κB, and endothelium dependent MVD were decreased in the pcDNA-ANRIL + PDTC group. CONCLUSION Overexpressed lncRNA ANRIL upregulates VEGF and promotes angiogenesis by activating NF-κB signaling pathway in DM + CI rats. .
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Dan Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Tie-Feng Ji
- Department of Radiology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Lei Shi
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Jin-Lu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
18
|
Yao Y, Zheng XR, Zhang SS, Wang X, Yu XH, Tan JL, Yang YJ. Transplantation of vascular endothelial growth factor-modified neural stem/progenitor cells promotes the recovery of neurological function following hypoxic-ischemic brain damage. Neural Regen Res 2016; 11:1456-1463. [PMID: 27857750 PMCID: PMC5090849 DOI: 10.4103/1673-5374.191220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-ischemic brain damage. Vascular endothelial growth factor (VEGF) is a signaling protein that stimulates angiogenesis and improves neural regeneration. We hypothesized that transplantation of VEGF-transfected NSCs would alleviate hypoxic-ischemic brain damage in neonatal rats. We produced and transfected a recombinant lentiviral vector containing the VEGF165 gene into cultured NSCs. The transfected NSCs were transplanted into the left sensorimotor cortex of rats 3 days after hypoxic-ischemic brain damage. Compared with the NSCs group, VEGF mRNA and protein expression levels were increased in the transgene NSCs group, and learning and memory abilities were significantly improved at 30 days. Furthermore, histopathological changes were alleviated in these animals. Our findings indicate that transplantation of VEGF-transfected NSCs may facilitate the recovery of neurological function, and that its therapeutic effectiveness is better than that of unmodified NSCs.
Collapse
Affiliation(s)
- Yue Yao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiang-Rong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shan-Shan Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xia Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiao-He Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie-Lu Tan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu-Jia Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
19
|
Puspitasari V, Wahid S, Aliah A, Suhadi B, Kaelan C, As'ad S, Patellongi I, Purba JS, Wahjoepramono EJ. Serum vascular endothelial growth factor as a predictor of clinical outcomes in anterior circulation ischemic stroke. MEDICAL JOURNAL OF INDONESIA 2015. [DOI: 10.13181/mji.v24i2.1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Background: Inflammatory response in the acute phase of ischemic stroke will trigger the process of neuroplasticity and determine the clinical outcomes. Angiogenesis and neurogenesis are induced by expression of vascular endothelial growth factor (VEGF) in the acute phase of stroke. The purpose of this study was to determine the association between VEGF serum level in acute phase of stroke with the clinical outcomes.Methods: This longitudinal cohort study was conducted on 64 patients suffering from first-attack of anterior circulation blockage as evidenced by cephalic diffusion-weighted magnetic resonance imaging (DWI). VEGF serum level was measured at 72 hours and 7 days after stroke and the clinical outcomes were assessed on day 30 post-stroke using the National Institutes of Health Stroke Scale (NIHSS).Results: VEGF level at hour-72 and on day-7 were 5.84 ± 0.736 ng/mL and 5.797 ± 0.96 ng/mL, respectively (p > 0.05). High VEGF levels at hour-72 can be used to predict poor clinical outcome 30 days after stroke (OR = 6.5; 95% CI = 1.15-36.61; p = 0.034). Subjects who have increasing levels of VEGF on day-7 compared to hour-72 tend to have better clinical outcomes on day-30. (NIHSS score = 1.33 ± 1.22 vs 3 ± 3.78; p = 0.232).Conclusion: VEGF levels in the acute phase of ischemic stroke reflect the degree of brain damage, the dynamic of the increase in VEGF levels after a stroke was associated with better clinical outcomes.
Collapse
|
20
|
VEGF-B selectively regenerates injured peripheral neurons and restores sensory and trophic functions. Proc Natl Acad Sci U S A 2014; 111:17272-7. [PMID: 25404333 DOI: 10.1073/pnas.1407227111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VEGF-B primarily provides neuroprotection and improves survival in CNS-derived neurons. However, its actions on the peripheral nervous system have been less characterized. We examined whether VEGF-B mediates peripheral nerve repair. We found that VEGF-B induced extensive neurite growth and branching in trigeminal ganglia neurons in a manner that required selective activation of transmembrane receptors and was distinct from VEGF-A-induced neuronal growth. VEGF-B-induced neurite elongation required PI3K and Notch signaling. In vivo, VEGF-B is required for normal nerve regeneration: mice lacking VEGF-B showed impaired nerve repair with concomitant impaired trophic function. VEGF-B treatment increased nerve regeneration, sensation recovery, and trophic functions of injured corneal peripheral nerves in VEGF-B-deficient and wild-type animals, without affecting uninjured nerves. These selective effects of VEGF-B on injured nerves and its lack of angiogenic activity makes VEGF-B a suitable therapeutic target to treat nerve injury.
Collapse
|
21
|
Soliman S, Ishrat T, Pillai A, Somanath PR, Ergul A, El-Remessy AB, Fagan SC. Candesartan induces a prolonged proangiogenic effect and augments endothelium-mediated neuroprotection after oxygen and glucose deprivation: role of vascular endothelial growth factors A and B. J Pharmacol Exp Ther 2014; 349:444-57. [PMID: 24681872 PMCID: PMC4019323 DOI: 10.1124/jpet.113.212613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/27/2014] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is a key component of recovery after stroke. Angiotensin II receptor blocker (ARB) treatment improves neurobehavioral outcome and is associated with enhanced angiogenesis after stroke. The purpose of this study is to investigate the temporal pattern of the ARB proangiogenic effect in the ischemic brain and its association with vascular endothelial growth factors VEGF-A and VEGF-B. Wistar rats were exposed to 90-minute middle cerebral artery occlusion and treated with candesartan (1 mg/kg) at reperfusion. The proangiogenic potential of the cerebrospinal fluid was determined at 8, 24, 48, and 72 hours using an in vitro Matrigel tube formation assay. In addition, the expression of VEGF-A and VEGF-B was measured in brain homogenates using Western blotting at the same time points. A single candesartan dose induced a prolonged proangiogenic effect and a prolonged upregulation of VEGF-A and VEGF-B in vivo. In the ischemic hemisphere, candesartan treatment was associated with stabilization of hypoxia-inducible factor-1α and preservation of angiopoietin-1. The effect of ARB treatment on endothelial cells was studied in vitro. Our results identified brain endothelial cells as one target for the action of ARBs and a source of the upregulated VEGF-A and VEGF-B, which exerted an autocrine angiogenic response, in addition to a paracrine neuroprotective effect. Taken together, this study highlights the potential usefulness of augmenting the endogenous restorative capacity of the brain through the administration of ARBs.
Collapse
Affiliation(s)
- Sahar Soliman
- Program in Clinical and Experimental Therapeutics, University of Georgia, Augusta, Georgia (S.S., T.I., P.R.S., A.E., A.B.E., S.C.F.); Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia (S.S., T.I., P.R.S., A.E., A.B.E., S.C.F.); and Departments of Psychiatry (A.P.), Medicine (P.R.S.), Physiology (A.E.), Pharmacology and Toxicology (A.B.E.), and Neurology (S.C.F.), Georgia Regents University, Augusta, Georgia
| | | | | | | | | | | | | |
Collapse
|
22
|
Li W, Li P, Liu Z, Du Q, Steinmetz A, Wang N, Du H, Hu J. A Chinese medicine preparation induces neuroprotection by regulating paracrine signaling of brain microvascular endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:686-693. [PMID: 24280029 DOI: 10.1016/j.jep.2013.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tong Luo Jiu Nao injection (TLJN), a Chinese medicine preparation, was extracted from the Chinese herbs Panax notoginseng and Gardenia jasminoides. Its pharmacological effect on cerebral ischemia was observed in the study. We previously reported that paracrine signaling of brain microvascular endothelial cells (BMECs) had a direct impact on the survival of neurons in mimicked cerebral ischemia in vitro. The current study was designed to investigate whether paracrine signaling of BMECs could be regulated by drug to achieve neuroprotection. MATERIALS AND METHODS First, an in vitro model of cerebral ischemia in BMECs or neurons was established by oxygen-glucose-deprivation (OGD). TLJN was used as a medicine of intervention. Injured neurons were cultured in the conditioned media from normal and injured BMECs treated with TLJN. The changes in neurons, including the expression of N-methyl-D-aspartate receptor 1(NMDAR1), Ca(2+) concentration, cytochrome c release, the mitochondrial membrane potential, were determined by the immunofluorescence staining and molecular Probes. The content of Vascular endothelial growth factor (VEGF) and platelet activating factor (PAF) in various BMECs were also examined by Western blotting and Elisa. RESULTS The results showed the activity of injured neurons was significantly increased when they were grown in conditioned media of normal or injured BMECs treated with TLJN, compared with that of normal or injured BMECs. These changes include a decrease of Ca(2+) concentration, of NMDAR1 expression, and of cytochrome c release, also an increase of the mitochondrial membrane potential. Moreover, the VEGF expression was up-regulated and the PAF expression was down-regulated by TLJN in BMECs. CONCLUSION The results suggest that a neuroprotective effect of TLJN could be achieved by regulating paracrine signaling of BMECs, which could in part be explained by a TLJN-induced up-regulation of VEGF and a down-regulation of PAF in BMECs. Therefore, regulating the paracrine of BMECs could be the important target of the drug action on injured-neurons, which may be a novel path for therapeutic intervention in ischemic injury.
Collapse
Affiliation(s)
- Weihong Li
- School of Preclinical Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Chao Yang District, Beijing 100029, China.
| | - Pengtao Li
- Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, 5 Hai Yun Cang, Dongcheng District, Beijing 100700, China
| | - Ziwang Liu
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, 51 An Wai Xiao Guan, Chao Yang District, Beijing 100029, China
| | - Qinghong Du
- School of Preclinical Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Chao Yang District, Beijing 100029, China
| | - Andre Steinmetz
- Public Research Center for Health (CRP-Santé), 84 Val Fleuri, Luxembourg L-1526, Luxembourg
| | - Ning Wang
- Public Research Center for Health (CRP-Santé), 84 Val Fleuri, Luxembourg L-1526, Luxembourg
| | - Huan Du
- Department of Pathology, Tianjin University of Traditional Chinese Medicine, 88 Yu Quan Lu, Nan Kai District, Tianjin 300193, China
| | - Jinghong Hu
- School of Preclinical Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Chao Yang District, Beijing 100029, China
| |
Collapse
|