1
|
Setiawan J, Rizal DM, Sofyantoro F, Priyono DS, Septriani NI, Mafiroh WU, Kotani T, Matozaki T, Putri WA. Bibliometric analysis of organoids in regenerative medicine-related research worldwide over two decades (2002-2022). Regen Med 2024; 19:119-133. [PMID: 38449425 DOI: 10.2217/rme-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Aim: This study aimed to evaluate the trends in organoid culture research within the field of regenerative medicine from 2002 to 2022. Methods: The worldwide distribution of organoid research in regenerative medicine articles indexed in the Scopus database was analyzed. Result: A total of 840 documents were analyzed, averaging 42 publications annually. The USA (n = 296) led in publications, followed by China (n = 127), Japan (n = 91) and the UK (n = 75). Since 2011, research has surged, particularly in China, which emerged as a prominent center. Conclusion: The findings highlight significant growth in organoid research, promising future organ transplantation. Research trends integrate tissue engineering, gene modification and induced pluripotent stem cell technologies, reflecting a move toward personalized medicine.
Collapse
Affiliation(s)
- Jajar Setiawan
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dicky Moch Rizal
- Department of Physiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fajar Sofyantoro
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Sendi Priyono
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Indah Septriani
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wulan Usfi Mafiroh
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry & Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry & Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry & Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Wahyu Aristyaning Putri
- Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Tripathy S, Das SK. Strategies for organ preservation: Current prospective and challenges. Cell Biol Int 2023; 47:520-538. [PMID: 36626269 DOI: 10.1002/cbin.11984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023]
Abstract
In current therapeutic approaches, transplantation of organs provides the best available treatment for a myriad of end-stage organ failures. However, shortage of organ donors, lacunae in preservation methods, and lack of a suitable match are the major constraints in advocating this life-sustaining therapy. There has been continuous progress in the strategies for organ preservation since its inception. Current strategies for organ preservation are based on the University of Wisconsin (UW) solution using the machine perfusion technique, which allows successful preservation of intra-abdominal organs (kidney and liver) but not intra-thoracic organs (lungs and heart). However, novel concepts with a wide range of adapted preservation technologies that can increase the shelf life of retrieved organs are still under investigation. The therapeutic interventions of in vitro-cultured stem cells could provide novel strategies for replacement of nonfunctional cells of damaged organs with that of functional ones. This review describes existing strategies, highlights recent advances, discusses challenges and innovative approaches for effective organ preservation, and describes application of stem cells to restore the functional activity of damaged organs for future clinical practices.
Collapse
Affiliation(s)
- Seema Tripathy
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneshwar, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
3
|
Muacevic A, Adler JR, Ajmal M, Nawaz G. Organ Regeneration Through Stem Cells and Tissue Engineering. Cureus 2023; 15:e34336. [PMID: 36865965 PMCID: PMC9973391 DOI: 10.7759/cureus.34336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2023] [Indexed: 01/30/2023] Open
Abstract
Loss of organ and tissue due to injuries or diseases led to the development of regenerative therapies to decrease reliance on organ transplantations. It deals with employing the self-renewal ability of stem cells to differentiate into numerous lineages to assist in providing effective treatment for a range of various injuries and diseases. Regenerative engineering of organs or tissues represents an ever-expanding field that is aimed at developing biological replacements for dysfunctional organs or injured tissues. The critical issue, however, with the engineering of organs outside the human body is the insufficient availability of human cells, the absence of a suitable matrix with the same architecture and composition as the target tissue, and the maintenance of organ viability in the absence of the blood supply. The issue regarding the maintenance of the engineered organ viability can be solved using bioreactors consisting of mediums with defined chemical composition, i.e., nutrients, cofactors, and growth factors that can successively sustain the target cell's viability. Engineered extracellular matrices and stem cells to regenerate organs outside the human body are also being used. Clinically, various adult stem cell therapies are readily under practice. This review will focus on the regeneration of organs through various types of stem cells and tissue engineering techniques.
Collapse
|
4
|
Patarashvili L, Gvidiani S, Azmaipharashvili E, Tsomaia K, Sareli M, Kordzaia D, Chanukvadze I. Porta-caval fibrous connections - the lesser-known structure of intrahepatic connective-tissue framework: A unified view of liver extracellular matrix. World J Hepatol 2021; 13:1484-1493. [PMID: 34904025 PMCID: PMC8637665 DOI: 10.4254/wjh.v13.i11.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Knowledge about the connective-tissue framework of the liver is not systematized, the terminology is inconsistent and some perspectives on the construction of the hepatic matrix components are contradictory. In addition, until the last two decades of the 20th century, the connective-tissue sheaths of the portal tracts and the hepatic veins were considered to be independent from each other in the liver and that they do not make contact with each other. The results of the research carried out by Professor Shalva Toidze and his colleagues started in the 1970s in the Department of Operative Surgery and Topographic Anatomy at the Tbilisi State Medical Institute have changed this perception. In particular, Chanukvadze I showed that in some regions where they intersect with each other, the connective tissue sheaths of the large portal complexes and hepatic veins fuse. The areas of such fusion are called porta-caval fibrous connections (PCFCs). This opinion review aims to promote a systematic understanding of the hepatic connective-tissue skeleton and to demonstrate the hitherto underappreciated PCFC as a genuine structure with high biological and clinical significance. The components of the liver connective-tissue framework - the capsules, plates, sheaths, covers - are described, and their intercommunication is discussed. The analysis of the essence of the PCFC and a description of its various forms are provided. It is also mentioned that analogs of different forms of PCFC are found in different mammals.
Collapse
Affiliation(s)
- Leila Patarashvili
- Department of Clinical Anatomy and Operative Surgery, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
| | - Salome Gvidiani
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
| | - Elza Azmaipharashvili
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
| | - Keti Tsomaia
- Clinical Anatomy and Experimental Modeling, Institute of Morphology, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
| | - Marom Sareli
- Department of Surgical Oncology (Surgery C), Chaim Sheba Medical Center at HaShomer, Ramat Gan, Tel Aviv 52621, Israel
| | - Dimitri Kordzaia
- Department of Clinical Anatomy and Operative Surgery, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia.
| | - Ilia Chanukvadze
- Faculty of Medicine, Tbilisi State Medical University, Tbilsi 0177, Georgia
| |
Collapse
|
5
|
Zhu B, You S, Rong Y, Yu Q, Lv S, Song F, Liu H, Wang H, Zhao J, Li D, Liu W, Xin S. A novel stem cell therapy for hepatitis B virus-related acute-on-chronic liver failure. ACTA ACUST UNITED AC 2020; 53:e9728. [PMID: 33053116 PMCID: PMC7552894 DOI: 10.1590/1414-431x20209728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to propose a stem cell therapy for hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF) based on plasma exchange (PE) for peripheral blood stem cell (PBSC) collection and examine its safety and efficacy. Sixty patients (n=20 in each group) were randomized to PE (PE alone), granulocyte colony-stimulating factor (G-CSF) (PE after G-CSF treatment), and PBSC transplantation (PBSCT) (G-CSF, PE, PBSC collection and hepatic artery injection) groups. Patients were followed-up for 24 weeks. Liver function and adverse events were recorded. Survival analysis was performed. PBSCT improved blood ammonia levels at 1 week (P<0.05). The level of total bilirubin, international normalized ratio, and creatinine showed significant differences in the 4th week of treatment (P<0.05). The survival rates of the PE, G-CSF, and PBSCT groups were 50, 65, and 85% at 90 days (P=0.034). There was a significant difference in 90-day survival between the PE and PBSCT groups (P=0.021). The preliminary results suggested that PBSCT was safe, with a possibility of improved 90-day survival in patients with HBV-ACLF.
Collapse
Affiliation(s)
- Bing Zhu
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli You
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yihui Rong
- Department of Infection and Liver Diseases, Peking University International Hospital, Beijing, China
| | - Qiang Yu
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sa Lv
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fangjiao Song
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongling Liu
- Liver Transplantation Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huaming Wang
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongze Li
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wanshu Liu
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaojie Xin
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
García-Serradilla M, Risco C, Pacheco B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res 2019; 264:22-31. [PMID: 30794895 PMCID: PMC7114681 DOI: 10.1016/j.virusres.2019.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022]
Abstract
Emerging viruses are a major threat to human health. Recent outbreaks have emphasized the urgent need for new antiviral treatments. For several pathogenic viruses, considerable efforts have focused on vaccine development. However, during epidemics infected individuals need to be treated urgently. High-throughput screening of clinically tested compounds provides a rapid means to identify undiscovered, antiviral functions for well-characterized therapeutics. Repurposed drugs can bypass part of the early cost and time needed for validation and authorization. In this review we describe recent efforts to find broad spectrum antivirals through drug repurposing. We have chosen several candidates and propose strategies to understand their mechanism of action and to determine how resistance to antivirals develops in infected cells.
Collapse
Affiliation(s)
- Moisés García-Serradilla
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain.
| | - Beatriz Pacheco
- Cell Structure Laboratory, National Center for Biotechnology, National Research Council, CNB-CSIC, Darwin 3, UAM, campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
7
|
Hu S, Ogle BM, Cheng K. Body builder: from synthetic cells to engineered tissues. Curr Opin Cell Biol 2018; 54:37-42. [PMID: 29704858 PMCID: PMC6202268 DOI: 10.1016/j.ceb.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022]
Abstract
It is estimated that 18 Americans die every day waiting for an organ donation. And even if a patient receives the organ that s/he needs, there is still >10% chance that the new organ will not work. The field of tissue engineering and regenerative medicine aims to actively use a patient's own cells, plus biomaterials and factors, to grow specific tissues for replacement or to restore normal functions of that organ, which would eliminate the need for donors and the risk of alloimmune rejection. In this review, we summarized recent advances in fabricating synthetic cells, with a specific focus on their application to cardiac regenerative medicine and tissue engineering. At the end, we pointed to challenges and future directions for the field.
Collapse
Affiliation(s)
- Shiqi Hu
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, NC State University, Raleigh, NC 27607, USA; Joint Department of Biomedical Engineering and Comparative Medicine Institute, UNC-Chapel Hill & NC State University, Raleigh, NC 27607, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, Stem Cell Institute, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, NC State University, Raleigh, NC 27607, USA; Joint Department of Biomedical Engineering and Comparative Medicine Institute, UNC-Chapel Hill & NC State University, Raleigh, NC 27607, USA.
| |
Collapse
|
8
|
Farhat W, Hasan A, Lucia L, Becquart F, Ayoub A, Kobeissy F. Hydrogels for Advanced Stem Cell Therapies: A Biomimetic Materials Approach for Enhancing Natural Tissue Function. IEEE Rev Biomed Eng 2018; 12:333-351. [PMID: 29993840 DOI: 10.1109/rbme.2018.2824335] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stem-cell-based therapy is a promising approach for the treatment of a myriad of diseases and injuries. However, the low rate of cell survival and the uncontrolled differentiation of the injected stem cells currently remain key challenges in advancing stem cell therapeutics. Hydrogels are biomaterials that are potentially highly effective candidates for scaffold systems for stem cells and other molecular encapsulation approaches to target in vivo delivery. Hydrogel-based strategies can potentially address several current challenges in stem cell therapy. We present a concise overview of the recent advances in applications of hydrogels in stem cell therapies, with a focus particularly on the recent advances in the design and approaches for application of hydrogels in tissue engineering. The capability of hydrogels to either enhance the function of the transplanted stem cells by promoting their controlled differentiation or enhance the recruitment of endogenous adult stem cells to the injury site for repair is also reviewed. Finally, the importance of impacts and the desired relationship between the scaffold system and the encapsulated stem cells are discussed.
Collapse
|
9
|
The use of stem cells in aesthetic dermatology and plastic surgery procedures. A compact review of experimental and clinical applications. Postepy Dermatol Alergol 2017; 34:526-534. [PMID: 29422816 PMCID: PMC5799755 DOI: 10.5114/ada.2017.72456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022] Open
Abstract
The aim of this paper was to collect currently available data related to the use of stem cells in aesthetic dermatology and plastic surgery based on a systemic review of experimental and clinical applications. We found that the use of stem cells is very promising but the current state of art is still not effective. This situation is connected with not fully known mechanisms of cell interactions, possible risks and side effects. We think that there is a big need to create and conduct different studies which could resolve problems of stem cells use for implementation into aesthetic dermatology and plastic surgery.
Collapse
|
10
|
Zhang RR, Zheng YW, Taniguchi H. Generation of a Humanized Mouse Liver Using Human Hepatic Stem Cells. J Vis Exp 2016:54167. [PMID: 27684205 PMCID: PMC5091961 DOI: 10.3791/54167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A novel animal model involving chimeric mice with humanized livers established via human hepatocyte transplantation has been developed. These mice, in which the liver has been repopulated with functional human hepatocytes, could serve as a useful tool for investigating human hepatic cell biology, drug metabolism, and other preclinical applications. One of the key factors required for successful transplantation of human hepatocytes into mice is the elimination of the endogenous hepatocytes to prevent competition with the human cells and provide a suitable space and microenvironment for promoting human donor cell expansion and differentiation. To date, two major liver injury mouse models utilizing fumarylacetoacetate hydrolase (Fah) and uroplasminogen activator (uPA) mice have been established. However, Fah mice are used mainly with mature hepatocytes and the application of the uPA model is limited by decreased breeding. To overcome these limitations, Alb-toxin receptor mediated cell knockout (TRECK)/SCID mice were used for in vivo differentiation of immature human hepatocytes and humanized liver generation. Human hepatic stem cells (HpSCs) successfully repopulated the livers of Alb-TRECK/SCID mice that had developed lethal fulminant hepatic failure following diphtheria toxin (DT) treatment. This model of a humanized liver in Alb-TRECK/SCID mice will have functional applications in studies involving drug metabolism and drug-drug interactions and will promote other in vivo and in vitro studies.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University; Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba; Regenerative Medicine Research Center, Jiangsu University Hospital;
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University
| |
Collapse
|
11
|
|
12
|
Kim SE, Kim JW, Kim YJ, Kwon DN, Kim JH, Kang MJ. Generation of Fibroblasts Lacking the Sal-like 1 Gene by Using Transcription Activator-like Effector Nuclease-mediated Homologous Recombination. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:564-70. [PMID: 26949958 PMCID: PMC4782092 DOI: 10.5713/ajas.15.0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/07/2015] [Accepted: 08/07/2015] [Indexed: 11/27/2022]
Abstract
The Sal-like 1 gene (Sall1) is essential for kidney development, and mutations in this gene result in abnormalities in the kidneys. Mice lacking Sall1 show agenesis or severe dysgenesis of the kidneys. In a recent study, blastocyst complementation was used to develop mice and pigs with exogenic organs. In the present study, transcription activator-like effector nuclease (TALEN)-mediated homologous recombination was used to produce Sall1-knockout porcine fibroblasts for developing knockout pigs. The vector targeting the Sall1 locus included a 5.5-kb 5′ arm, 1.8-kb 3′ arm, and a neomycin resistance gene as a positive selection marker. The knockout vector and TALEN were introduced into porcine fibroblasts by electroporation. Antibiotic selection was performed over 11 days by using 300 μg/mL G418. DNA of cells from G418-resistant colonies was amplified using polymerase chain reaction (PCR) to confirm the presence of fragments corresponding to the 3′ and 5′ arms of Sall1. Further, mono- and bi-allelic knockout cells were isolated and analyzed using PCR–restriction fragment length polymorphism. The results of our study indicated that TALEN-mediated homologous recombination induced bi-allelic knockout of the endogenous gene.
Collapse
Affiliation(s)
- Se Eun Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Ji Woo Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Yeong Ji Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Man-Jong Kang
- Department of Animal Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
13
|
Arcolino FO, Zia S, Held K, Papadimitriou E, Theunis K, Bussolati B, Raaijmakers A, Allegaert K, Voet T, Deprest J, Vriens J, Toelen J, van den Heuvel L, Levtchenko E. Urine of Preterm Neonates as a Novel Source of Kidney Progenitor Cells. J Am Soc Nephrol 2016; 27:2762-70. [PMID: 26940093 DOI: 10.1681/asn.2015060664] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022] Open
Abstract
In humans, nephrogenesis is completed prenatally, with nephrons formed until 34 weeks of gestational age. We hypothesized that urine of preterm neonates born before the completion of nephrogenesis is a noninvasive source of highly potent stem/progenitor cells. To test this hypothesis, we collected freshly voided urine at day 1 after birth from neonates born at 31-36 weeks of gestational age and characterized isolated cells using a single-cell RT-PCR strategy for gene expression analysis and flow cytometry and immunofluorescence for protein expression analysis. Neonatal stem/progenitor cells expressed markers of nephron progenitors but also, stromal progenitors, with many single cells coexpressing these markers. Furthermore, these cells presented mesenchymal stem cell features and protected cocultured tubule cells from cisplatin-induced apoptosis. Podocytes differentiated from the neonatal stem/progenitor cells showed upregulation of podocyte-specific genes and proteins, albumin endocytosis, and calcium influx via podocyte-specific transient receptor potential cation channel, subfamily C, member 6. Differentiated proximal tubule cells showed upregulation of specific genes and significantly elevated p-glycoprotein activity. We conclude that urine of preterm neonates is a novel noninvasive source of kidney progenitors that are capable of differentiation into mature kidney cells and have high potential for regenerative kidney repair.
Collapse
Affiliation(s)
- Fanny Oliveira Arcolino
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Silvia Zia
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Katharina Held
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Elli Papadimitriou
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Koen Theunis
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Anke Raaijmakers
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Karel Allegaert
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Neonatal Intensive Care Unit, Universitaire Ziekenhuizen Leuven, Leuven, Belgium; and
| | - Thierry Voet
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Joris Vriens
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| | - Lambertus van den Heuvel
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Organ System Cluster, Group of Biomedical Sciences and Department of Pediatrics and
| |
Collapse
|
14
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
15
|
Stratmann HG. Stem Cells and Organ Transplantation: Resetting Our Biological Clocks. SCIENCE AND FICTION 2016. [PMCID: PMC7124065 DOI: 10.1007/978-3-319-16015-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human body has only a limited ability to repair itself. Illness, injury, and aging can overwhelm its built-in capability to replace dysfunctional, damaged, or destroyed tissues. We can at best only partly regenerate our organs and cannot grow back a whole limb.
Collapse
|
16
|
Vascularisation in regenerative therapeutics and surgery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:225-38. [DOI: 10.1016/j.msec.2015.05.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/13/2015] [Indexed: 01/20/2023]
|
17
|
Peloso A, Dhal A, Zambon JP, Li P, Orlando G, Atala A, Soker S. Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Res Ther 2015; 6:107. [PMID: 26028404 PMCID: PMC4450459 DOI: 10.1186/s13287-015-0089-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Irreversible end-stage organ failure represents one of the leading causes of death, and organ transplantation is currently the only curative solution. Donor organ shortage and adverse effects of immunosuppressive regimens are the major limiting factors for this definitive practice. Recent developments in bioengineering and regenerative medicine could provide a solid base for the future creation of implantable, bioengineered organs. Whole-organ detergent-perfusion protocols permit clinicians to gently remove all the cells and at the same time preserve the natural three-dimensional framework of the native organ. Several decellularized organs, including liver, kidney, and pancreas, have been created as a platform for further successful seeding. These scaffolds are composed of organ-specific extracellular matrix that contains growth factors important for cellular growth and function. Macro- and microvascular tree is entirely maintained and can be incorporated in the recipient's vascular system after the implant. This review will emphasize recent achievements in the whole-organ scaffolds and at the same time underline complications that the scientific community has to resolve before reaching a functional bioengineered organ.
Collapse
Affiliation(s)
- Andrea Peloso
- IRCCS Policlinico San Matteo, Department of General Surgery, University of Pavia, Viale Golgi 19, Pavia, 27100, Italy. .,Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| | - Abritee Dhal
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| | - Joao P Zambon
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| | - Peng Li
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA. .,Department of General Surgery Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA. .,Wake Forest School of Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27517, USA.
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA. .,Wake Forest School of Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27517, USA.
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Medical Centre Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
18
|
Zhang RR, Zheng YW, Li B, Tsuchida T, Ueno Y, Nie YZ, Taniguchi H. Human hepatic stem cells transplanted into a fulminant hepatic failure Alb-TRECK/SCID mouse model exhibit liver reconstitution and drug metabolism capabilities. Stem Cell Res Ther 2015; 6:49. [PMID: 25889844 PMCID: PMC4414454 DOI: 10.1186/s13287-015-0038-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 10/27/2014] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Chimeric mice with humanized livers were recently established by transplanting human hepatocytes. This mouse model that is repopulated with functional human hepatocytes could be a useful tool for investigating human hepatic cell biology and drug metabolism and for other preclinical applications. Successfully transplanting human hepatocytes into mice requires that recipient mice with liver failure do not reject these human cells and provide a suitable microenvironment (supportive niche) to promote human donor cell expansion and differentiation. To overcome the limitations of current mouse models, we used Alb-TRECK/SCID mice for in vivo human immature hepatocyte differentiation and humanized liver generation. METHODS 1.5 μg/kg diphtheria toxin was administrated into 8-week-old Alb-TRECK/SCID mice, and the degree of liver damage was assessed by serum aspartate aminotransferase activity levels. Forty-eight hours later, mice livers were sampled for histological analyses, and the human donor cells were then transplanted into mice livers on the same day. Chimeric rate and survival rate after cell transplantation was evaluated. Expressions of human hepatic-related genes were detected. A human albumin enzyme-linked immunosorbent assay was performed after 50 days of transplantation. On day 60 after transplantation, drug metabolism was examined in mice. RESULTS Both human primary fetal liver cells and hepatic stem cells were successfully repopulated in the livers of Alb-TRECK/SCID mice that developed lethal fulminant hepatic failure after administering diphtheria toxin; the repopulation rate in some mice was nearly 100%. Compared with human primary fetal liver cells, human hepatic stem cell transplantation rescued Alb-TRECK/SCID mice with lethal fulminant hepatic failure, and human hepatic stem cell-derived humanized livers secreted more human albumin into mouse sera and also functioned as a "human liver" that could metabolize the drugs ketoprofen and debrisoquine. CONCLUSION Our model of a humanized liver in Alb-TRECK/SCID mice may provide for functional applications such as drug metabolism, drug to drug interactions, and promote other in vivo and in vitro studies.
Collapse
Affiliation(s)
- Ran-Ran Zhang
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Yun-Wen Zheng
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
- Department of Advanced Gastroenterological Surgical Science and Technology, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | - Bin Li
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Tomonori Tsuchida
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Yasuharu Ueno
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Yun-Zhong Nie
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
- Advanced Medical Research Center, Yokohama City University, 3-9 Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
19
|
Amiri F, Jahanian-Najafabadi A, Roudkenar MH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability. Cell Stress Chaperones 2015; 20:237-51. [PMID: 25527070 PMCID: PMC4326383 DOI: 10.1007/s12192-014-0560-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are under intensive investigation for use in cell-based therapies because their differentiation abilities, immunomodulatory effects, and homing properties offer potential for significantly augmenting regenerative capacity of many tissues. Nevertheless, major impediments to their therapeutic application, such as low proliferation and survival rates remain as obstacles to broad clinical use of MSCs. Another major challenge to evolution of MSC-based therapies is functional degradation of these cells as a result of their exposure to oxidative stressors during isolation. Indeed, oxidative stress-mediated MSC depletion occurs due to inflammatory processes associated with chemotherapy, radiotherapy, and expression of pro-apoptotic factors, and the microenvironment of damaged tissue in patients receiving MSC therapy is typically therapeutic not favorable to their survival. For this reason, any strategies that enhance the viability and proliferative capacity of MSCs associated with their therapeutic use are of great value. Here, recent strategies used by various researchers to improve MSC allograft function are reviewed, with particular focus on in vitro conditioning of MSCs in preparation for clinical application. Preconditioning, genetic manipulation, and optimization of MSC culture conditions are some examples of the methodologies described in the present article, along with novel strategies such as treatment of MSCs with secretome and MSC-derived microvesicles. This topic material is likely to find value as a guide for both research and clinical use of MSC allografts and for improvement of the value that use of these cells brings to health care.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
20
|
Momtahan N, Sukavaneshvar S, Roeder BL, Cook AD. Strategies and processes to decellularize and recellularize hearts to generate functional organs and reduce the risk of thrombosis. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:115-32. [PMID: 25084164 DOI: 10.1089/ten.teb.2014.0192] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Heart failure is one of the leading causes of death in the United States. Current therapies, such as heart transplants and bioartificial hearts, are helpful, but not optimal. Decellularization of porcine whole hearts followed by recellularization with patient-specific human cells may provide the ultimate solution for patients with heart failure. Great progress has been made in the development of efficient processes for decellularization, and the design of automated bioreactors. Challenges remain in selecting and culturing cells, growing the cells on the decellularized scaffolds without contamination, characterizing the regenerated organs, and preventing thrombosis. Various strategies have been proposed to prevent thrombosis of blood-contacting devices, including reendothelization and the creation of nonfouling surfaces using surface modification technologies. This review discusses the progress and remaining challenges involved with recellularizing whole hearts, focusing on the prevention of thrombosis.
Collapse
Affiliation(s)
- Nima Momtahan
- 1 Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | | | | | | |
Collapse
|
21
|
Ahn SH, Henderson YC, Williams MD, Lai SY, Clayman GL. Detection of thyroid cancer stem cells in papillary thyroid carcinoma. J Clin Endocrinol Metab 2014; 99:536-44. [PMID: 24302752 PMCID: PMC3913805 DOI: 10.1210/jc.2013-2558] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Special populations of cells that can efficiently initiate tumor growth have been characterized, and this feature supports the cancer stem cell theory. These cancer stem cell populations have been identified with CD44 and POU5F1. Most cancer stem cells express high levels of CD44 and low levels of CD24. In thyroid lesions, cancer stem cells have been detected in anaplastic carcinoma. However, little is known about the presence of cancer stem cells in papillary thyroid carcinoma (PTC), especially in recurrent PTC. OBJECTIVE AND DESIGN PTC cells were labeled and sorted by flow cytometry to obtain two populations. Total RNA was prepared from cells with high CD44 and CD24 expressions (CD44+CD24+) and from cells with high CD44 and low CD24 expressions (CD44+CD24-). The expressions of the stem cell marker POU5F1 and several differentiated thyroid markers were measured via real-time PCR. RESULTS CD44+CD24- cells were present in all PTCs tested, and the percentage of these cells was higher in clinically aggressive recurrent PTC than in less aggressive primary PTCs. Higher expression of POU5F1 was found in CD44+CD24- cells compared with that of CD44+CD24+ cells. The expression of POU5F1 was higher in thyrospheroids grown in serum-free condition than in cells grown in the presence of serum from the same patient, and the tumor was initiated in mice using thyrospheroids. CONCLUSIONS The percentage of CD44+CD24- cells varied from tumor to tumor. Our findings suggest that cancer stem cells are present in PTC.
Collapse
Affiliation(s)
- Soon-Hyun Ahn
- Department of Otolaryngology-Head and Neck Surgery (S-H.A.), College of Medicine, Seoul National University Bundang Hospital, Kyunggi-do 463-707, South Korea; and Departments of Head and Neck Surgery (Y.C.H., S.Y.L., G.L.C.), Pathology (M.D.W.), Molecular and Cellular Oncology (S.Y.L.), and Cancer Biology (G.L.C.), The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | | | | | | | | |
Collapse
|