1
|
Sharma V, Das R, Mehta DK, Sharma D, Aman S, Khan MU. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Mol Divers 2025; 29:711-737. [PMID: 38683488 DOI: 10.1007/s11030-024-10862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Prevalence of microbial infections and new rising pathogens are signified as causative agent for variety of serious and lethal health crisis in past years. Despite medical advances, bacterial and fungal infections continue to be a rising problem in the health care system. As more bacteria develop resistance to antibiotics used in therapy, and as more invasive microbial species develop resistance to conventional antimicrobial drugs. Relevant published publications from the last two decades, up to 2024, were systematically retrieved from the MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as quinolones, anti-infective, antibacterial, antimicrobial resistance and patents on quinolone derivatives. With an approach of considerable interest towards novel heterocyclic derivatives as novel anti-infective agents, researchers have explored these as essential tools in vistas of drug design and development. Among heterocycles, quinolones have been regarded extremely essential for the development of novel derivatives, even able to tackle the associated resistance issues. The quinolone scaffold with its bicyclic structure and specific functional groups such as the carbonyl and acidic groups, is indeed considered a valuable functionalities for further lead generation and optimization in drug discovery. Besides, the substitution at N-1, C-3 and C-7 positions also subjected to be having a significant role in anti-infective potential. In this article, we intend to highlight recent quinolone derivatives based on the SAR approach and anti-infective potential such as antibacterial, antifungal, antimalarial, antitubercular, antitrypanosomal and antiviral activities. Moreover, some recent patents granted on quinolone-containing derivatives as anti-infective agents have also been highlighted in tabular form. Due consideration of this, future research in this scaffold is expected to be useful for aspiring scientists to get pharmacologically significant leads.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| | - Diksha Sharma
- Swami Devidyal College of Pharmacy, Barwala, 134118, India
| | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - M U Khan
- Department of pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Al Qassim, Saudi Arabia
| |
Collapse
|
2
|
da Costa RA, Andrade IEPC, Pinto OHB, de Souza BBP, Fulgêncio DLA, Mendonça ML, Kurokawa AS, Ortega DB, Carvalho LS, Krüger RH, Ramada MHS, Barreto CC. A novel family of non-secreted tridecaptin lipopeptide produced by Paenibacillus elgii. Amino Acids 2022; 54:1477-1489. [PMID: 35864259 DOI: 10.1007/s00726-022-03187-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Bacteria from the genus Paenibacillus make a variety of antimicrobial compounds, including lipopeptides produced by a non-ribosomal synthesis mechanism (NRPS). In the present study, we show the genomic and phenotypical characterization of Paenibacillus elgii AC13 which makes three groups of small molecules: the antimicrobial pelgipeptins and two other families of peptides that have not been described in P. elgii. A family of lipopeptides with [M + H]+ 1664, 1678, 1702, and 1717 m/z was purified from the culture cell fraction. Partial characterization revealed that they are similar to tridecaptin from P. terrae. However, they present amino acid chain modifications in positions 3, 7, and 10. These new variants were named tridecaptin G1, G2, G3, and G4. Furthermore, a gene cluster was identified in P. elgii AC13 genome, revealing high similarity to the tridecaptin-NRPS gene cluster from P. terrae. Tridecaptin G1 and G2 showed in vitro antimicrobial activity against Escherichia coli, Klebsiella pneumonia (including a multidrug-resistant strain), Staphylococcus aureus, and Candida albicans. Tri G3 did not show antimicrobial activity against S. aureus and C. albicans at all tested concentrations. An intriguing feature of this family of lipopeptides is that it was only observed in the cell fraction of the P. elgii AC13 culture, which could be a result of the amino acid sequence modifications presented in these variants.
Collapse
Affiliation(s)
- Rosiane Andrade da Costa
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil
| | | | - Otávio Henrique Bezerra Pinto
- Laboratory of Enzymology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | | | - Débora Luíza Albano Fulgêncio
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil
| | - Marise Leite Mendonça
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil
| | - Adriane Silva Kurokawa
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil
| | - Daniel Barros Ortega
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil.,Graduate Program in Environmental Technology and Water Resources, University of Brasilia, Campus Universitário Darcy Ribeiro, SG-12, Brasília, Brazil
| | - Lucas Silva Carvalho
- Laboratory of Enzymology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Ricardo Henrique Krüger
- Laboratory of Enzymology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Marcelo Henrique Soller Ramada
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil.,Graduate Program in Gerontology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil
| | - Cristine Chaves Barreto
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, SGAN 916, Brasília, DF, 70790-160, Brazil.
| |
Collapse
|
3
|
Prevalence and Absolute Quantification of NDM-1: a β-Lactam Resistance Gene in Water Compartment of Lakes Surrounding Hyderabad, India. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2021. [DOI: 10.33736/jaspe.3104.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NDM-1(New Delhi Metallo-beta-lactamase-1) is considered an emerging environmental contaminant, which causes severe hazards for public health. The abuse of antimicrobials for public health and veterinary use could favor the proliferation of resistance in bacteria. In this study, screening and absolute quantification of the NDM-1 in 17 water samples collected from a different sampling location surrounding Hyderabad, India performed using a real-time quantitative polymerase chain reaction (qPCR). Absolute quantification achieved by running the isolated DNA (Deoxy-ribonucleic acid) samples from different water bodies in triplicate with the known standards of the NDM-1 and results reported as gene copy number/ng(nanogram) of template DNA. All collected samples had shown a positive signal for the NDM-1 during qPCR analysis. Among the tested samples, the highest gene copy number/ng of template DNA was observed in the Mir Alam tank (985.74). Further, based on pollution sources and observed data, a hierarchical clustering analysis was performed to categorize the different sampling locations and results presented in the form of a dendrogram.
Collapse
|
4
|
Hill MA, Lam AK, Reed P, Harney MC, Wilson BA, Moen EL, Wright SN, Pinho MG, Rice CV. BPEI-Induced Delocalization of PBP4 Potentiates β-Lactams against MRSA. Biochemistry 2019; 58:3813-3822. [PMID: 31429286 PMCID: PMC6941424 DOI: 10.1021/acs.biochem.9b00523] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
With its high morbidity rate and increasing resistance to treatment, methicillin-resistant Staphylococcus aureus (MRSA) is a grave concern in the medical field. In methicillin-susceptible strains, β-lactam antibiotics disable the penicillin binding proteins (PBPs) that cross-link the bacterial cell wall. However, methicillin-resistant strains have PBP2a and PBP4, which continue enzymatic activity in the presence of β-lactam antibiotics. The activity of PBP2a and PBP4 is linked to the presence of wall teichoic acid (WTA); thus, WTA has emerged as a target for antibiotic drug discovery. In this work, we disable WTA in situ using its anionic phosphodiester backbone to attract cationic branched polyethylenimine (BPEI). Data show that BPEI removes β-lactam resistance in common MRSA strains and clinical isolates. Fluorescence microscopy was used to investigate this mechanism of action. The results indicate that BPEI prevents the localization of PBP4 to the cell division septum, thereby changing the cellular morphology and inhibiting cell division. Although PBP4 is not required for septum formation, proper cell division and morphology require WTA; BPEI prevents this essential function. The combination of BPEI and β-lactams is bactericidal and synergistic. Because BPEI allows us to study the role of WTA in the cell wall without genetic mutation or altered translocation of biomolecules and/or their precursors, this approach can help revise existing paradigms regarding the role of WTA in prokaryotic biochemistry at every growth stage.
Collapse
Affiliation(s)
- Melissa A. Hill
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Anh K. Lam
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Patricia Reed
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biologica António Xavier, Universidade NOVA de Lisboa, Av. da Repùblica, 2780-157 Oeiras, Portugal
| | - Madeline C. Harney
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Beatrice A. Wilson
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Erika L. Moen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Summer N. Wright
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mariana G. Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biologica António Xavier, Universidade NOVA de Lisboa, Av. da Repùblica, 2780-157 Oeiras, Portugal
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
5
|
Abstract
Optimal antimicrobial therapy must take into account the key factors in antibiotic selection, that is, spectrum, tissue penetration, resistance potential, safety profile, and relative cost-effectiveness. The least expensive drug is usually accompanied by other concerns, such as high resistance potential, poor side effect profile, pharmacokinetic properties that limit penetration into target tissue (site of infection), and/or suboptimal activity against the presumed/known pathogen. It is false economy to preferentially select the least expensive antibiotics solely because of its acquisition cost. Therapeutic failure and hidden costs may make an apparently less expensive antibiotic most costly in the end.
Collapse
Affiliation(s)
- Cheston B Cunha
- Antibiotic Stewardship Program, Division of Infectious Disease, Rhode Island Hospital, 593 Eddy Street, Physicians Office Building, Suite #328, Providence, RI 02903, USA.
| |
Collapse
|
6
|
Assessment of linezolid prescriptions in three French hospitals. Eur J Clin Microbiol Infect Dis 2017; 36:1133-1141. [PMID: 28127641 DOI: 10.1007/s10096-017-2900-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
The use of linezolid to treat gram-positive cocci infections is increasing in France. Linezolid is approved in pneumonia and complicated skin and soft tissue infections. Overuse and misuse of linezolid can favor the emergence and spreading of linezolid-resistant strains. We aimed to assess the appropriateness of linezolid use in French hospitals. This is a multicenter, retrospective study conducted in three tertiary care hospitals. Appropriateness of linezolid indications and adequacy (composite score concerning dosage, route of administration and blood monitoring) were assessed. Over a three-month period, all prescriptions of linezolid were extracted and analyzed by two independent infectious disease experts. Among the 81 initial prescriptions that were evaluated, indication was appropriate in 48% of cases. Among those, 51% complied with international guidelines. Fifty-seven percent of the prescriptions were adequate regarding dosage, route of administration and blood monitoring. Overall, 23% of prescriptions combined both appropriateness and adequacy. The most frequent reasons for inappropriateness were the possibility of choosing narrower-spectrum antibiotics and the empirical use of linezolid in severe sepsis or septic shock. Initial treatment was the most frequently appropriate in bone and joint infection cases (p = 0.001). Our study shows that even if modalities of use were mostly correct, appropriateness of linezolid indications is low. Educational programs are mandatory to improve practices, as well as clinical studies to better assess the efficacy and safety of linezolid in clinical situations other than pneumonia or complicated skin and soft tissue infections.
Collapse
|
7
|
Foxley MA, Friedline AW, Jensen JM, Nimmo SL, Scull EM, King JB, Strange S, Xiao MT, Smith BE, Thomas Iii KJ, Glatzhofer DT, Cichewicz RH, Rice CV. Efficacy of ampicillin against methicillin-resistant Staphylococcus aureus restored through synergy with branched poly(ethylenimine). J Antibiot (Tokyo) 2016; 69:871-878. [PMID: 27189119 PMCID: PMC5115998 DOI: 10.1038/ja.2016.44] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 01/20/2023]
Abstract
Beta-lactam antibiotics kill Staphylococcus aureus bacteria by inhibiting the function of cell-wall penicillin binding proteins (PBPs) 1 and 3. However, β-lactams are ineffective against PBP2a, used by methicillin-resistant Staphylococcus aureus (MRSA) to perform essential cell wall crosslinking functions. PBP2a requires teichoic acid to properly locate and orient the enzyme, and thus MRSA is susceptible to antibiotics that prevent teichoic acid synthesis in the bacterial cytoplasm. As an alternative, we have used branched poly(ethylenimine), BPEI, to target teichoic acid in the bacterial cell wall. The result is restoration of MRSA susceptibility to the β-lactam antibiotic ampicillin with a MIC of 1 μg/mL, superior to that of vancomycin (MIC = 3.7 μg/mL). A checkerboard assay shows synergy of BPEI and ampicillin. Nuclear magnetic resonance (NMR) data show that BPEI alters the teichoic acid chemical environment. Laser scanning confocal microscopy (LSCM) images show BPEI residing on the bacterial cell wall where teichoic acids and PBPs are located.
Collapse
Affiliation(s)
- Melissa A Foxley
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Anthony W Friedline
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Jessica M Jensen
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Susan L Nimmo
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Erin M Scull
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Jarrod B King
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Stoffel Strange
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Min T Xiao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Benjamin E Smith
- Samuel Roberts Noble Microscopy Laboratory, University of Oklahoma, Norman, OK, USA
| | - Kieth J Thomas Iii
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Daniel T Glatzhofer
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Charles V Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
8
|
Comparative healthcare-associated costs of methicillin-resistant Staphylococcus aureus bacteraemia-infective endocarditis treated with either daptomycin or vancomycin. Int J Antimicrob Agents 2016; 47:357-61. [DOI: 10.1016/j.ijantimicag.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/22/2022]
|
9
|
Shahverdi AR, Mirzaie S, Rafii F, Kakavand M, Foroumadi A. Monoterpenes as nitrofurantoin resistance modulating agents: minimal structural requirements, molecular dynamics simulations, and the effect of piperitone on the emergence of nitrofurantoin resistance in Enterobacteriaceae. J Mol Model 2015; 21:198. [PMID: 26174760 DOI: 10.1007/s00894-015-2741-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023]
Abstract
The effects of different monoterpenes and 2-cyclohexen-1-one on the antibacterial activity of nitrofurantoin against resistant Enterobacter cloacae, were compared and the minimal structural component of monoterpene required for the highest level of resistance-modulating activity was determined. Subinhibitory concentrations of all compounds tested enhanced the antibacterial activity of nitrofurantoin against E. cloacae to different extents. The highest synergistic effect was observed for the monoterpenes, like piperitone, which contained a conjugated ketone and C=C bond in their carbon ring structure. Piperitone also suppressed the emergence of nitrofurantoin-resistant strains of Enterobacteriaceae that were mutagenized by ethyl methanesulfonate. The modes of interaction of carvone, piperitone, and an enzyme inhibitor, benzoate, with nitroreductase were investigated by molecular docking and molecular dynamic (MD) simulation for 20 ns. MD simulation supported greater stability of the benzoate and monoterpene-nitroreductase (NR) complexes than of free NR. The results of this investigation are promising for the synthesis of more effective lead compounds to enhance the antibacterial activity of nitro drugs against resistant Enterobacter strains.
Collapse
Affiliation(s)
- Ahmad R Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,
| | | | | | | | | |
Collapse
|
10
|
Sahuquillo-Arce JM, Hernández-Cabezas A, Yarad-Auad F, Ibáñez-Martínez E, Falomir-Salcedo P, Ruiz-Gaitán A. Carbapenemases: A worldwide threat to antimicrobial therapy. World J Pharmacol 2015; 4:75-95. [DOI: 10.5497/wjp.v4.i1.75] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Carbapenems are potent β-lactams with activity against extended-spectrum cephalosporinases and β-lactamases. These antibiotics, derived from thienamycn, a carbapenem produced by the environmental bacterium Streptomyces cattleya, were initially used as last-resort treatments for severe Gram-negative bacterial infections presenting resistance to most β-lactams but have become an empirical option in countries with high prevalence of Extended Spectrum β-lactamase-producing bacterial infections. Imipenem, the first commercially available carbapenem, was approved for clinical use in 1985. Since then, a wide variety of carbapenem-resistant bacteria has appeared, primarily Enterobacteriaceae such as Escherichia coli or Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa and Acinetobacter baumannii, presenting different resistance mechanisms. The most relevant mechanism is the production of carbapenem-hydrolyzing β-lactamases, also known as carbapenemases. These enzymes also inactivate all known β-lactams, and some of these enzymes can be acquired through horizontal gene transfer. Moreover, plasmids, transposons and integrons harboring these genes typically carry other resistance determinants, rendering the recipient bacteria resistant to almost all currently used antimicrobials, as is the case for K. pneumoniae carbapenemase - or New Delhi metallo-β-lactamases-type enzymes. The recent advent of these enzymes in the health landscape presents a serious challenge. First, the emergence of carbapenemases limits the currently available treatment options; second, these enzymes pose a risk to patients, as some studies have demonstrated high mortality associated with carbapenemase-producing bacterial infections; and third, these circumstances require an extra cost to sanitary systems, which are particularly cumbersome in developing countries. Therefore, emphasis should be placed on the early detection of these enzymes, the prevention of the spread of carbapenemase-producing bacteria and the development of new drugs resistant to carbapenemase hydrolysis.
Collapse
|
11
|
Balsalobre LC, Dropa M, Matté MH. An overview of antimicrobial resistance and its public health significance. Braz J Microbiol 2014; 45:1-5. [PMID: 24948906 PMCID: PMC4059282 DOI: 10.1590/s1517-83822014005000033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/01/2013] [Indexed: 11/22/2022] Open
Abstract
Multiple papers have been published regarding the bacterial resistance theme over the last years. A variety of information has reached general and scientific public, daily bringing up data on new resistant microorganisms, new drugs, outbreaks, epidemiological news, resistance gene dissemination, and the lack of information in a particular field has caught our attention: the public health department. Most of researchers, physicians and government employees interpret the public health field as a separate department, not linked to this antibiotic resistance era that we are living nowadays. In this paper we carefully tried to fill in the blanks between public health and the bacteria resistance issue, also considering historical, social, economical and biological problematic that come with this possible pre-antibiotic era.
Collapse
Affiliation(s)
| | - Milena Dropa
- Laboratório de Saúde Pública Faculdade de Saúde Pública Universidade de São Paulo São PauloSP Brazil
| | - Maria Helena Matté
- Laboratório de Saúde Pública Faculdade de Saúde Pública Universidade de São Paulo São PauloSP Brazil
| |
Collapse
|
12
|
Ribatski-Silva D, Bassi CL, Martin TOG, Alves-Junior E, Gomes LT, Fontes CJF. In vitro antimalarial activity of tigecycline against Plasmodium falciparum culture-adapted reference strains and clinical isolates from the Brazilian Amazon. Rev Soc Bras Med Trop 2014; 47:110-2. [PMID: 24553805 DOI: 10.1590/0037-8682-0013-2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/09/2013] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION We evaluated the in vitro antimalarial activity of tigecycline as an alternative drug for the treatment of severe malaria. METHODS A chloroquine-sensitive Plasmodium falciparum reference strain, a chloroquine-resistant reference strain, and three clinical isolates were tested for in vitro susceptibility to tigecycline. A histidine-rich protein in vitro assay was used to evaluate antimalarial activity. RESULTS The geometric-mean 50% effective concentration (EC50%) of tigecycline was 535.5 nM (confidence interval (CI): 344.3-726.8). No significant correlation was found between the EC50% of tigecycline and that of any other tested antimalarial drug. CONCLUSIONS Tigecycline may represent an alternative drug for the treatment of patients with severe malaria.
Collapse
Affiliation(s)
- Daniele Ribatski-Silva
- Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CuiabáMT, Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT
| | - Carmen Lucia Bassi
- Laboratório de Investigação, Faculdade de Medicina, Universidade Federal de Mato Grosso, CuiabáMT, Laboratório de Investigação, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT
| | - Thamires Oliveira Gasquez Martin
- Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CuiabáMT, Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT
| | - Eduardo Alves-Junior
- Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CuiabáMT, Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT
| | - Luciano Teixeira Gomes
- Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CuiabáMT, Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT
| | - Cor Jésus Fernandes Fontes
- Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, CuiabáMT, Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT
| |
Collapse
|
13
|
Ahmed V, Kumar M, Kumar J, Chauhan MB, Chauhan NS. Nanogold/Polyaniline/Penicillin G Nanoconjugates: A Novel Nanomedicine. INT J POLYM MATER PO 2013. [DOI: 10.1080/00914037.2013.769252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Dangel A, Ackermann N, Abdel-Hadi O, Maier R, Önder K, Francois P, Müller CW, Pané-Farré J, Engelmann S, Schrenzel J, Heesemann J, Lindermayr C. A de novo-designed antimicrobial peptide with activity against multiresistant Staphylococcus aureus acting on RsbW kinase. FASEB J 2013; 27:4476-88. [PMID: 23901070 DOI: 10.1096/fj.13-234575] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antimicrobial peptides are a promising complement to common antibiotics, development of resistance to which is a growing problem. Here we present a de novo-designed peptide, SP1-1 (RKKRLKLLKRLL-NH2), with antimicrobial activity against multiresistant Staphylococcus aureus (minimal inhibitory concentration: 6.25 μM). Elucidation of the mode of action of this peptide revealed a strong interaction with RsbW kinase (Kd: 6.01±2.73 nM), a serine kinase negatively regulating the activity of the transcription factor σB (SigB). SP1-1 binding and functional modulation of RsbW were shown in vitro by a combination of biochemical, molecular, and biophysical methods, which were further genetically evidenced in vivo by analysis of S. aureus ΔsigB deletion mutants. Intracellular localization of the peptide was demonstrated using nanometer-scaled secondary ion mass spectrometry. Moreover, microarray analysis revealed that transcription of numerous genes, involved in cell wall and amino acid metabolism, transport mechanisms, virulence, and pigmentation, is affected. Interestingly, several WalR binding motif containing genes are induced by SP1-1. In sum, the designed peptide SP1-1 seems to have multiple modes of action, including inhibition of a kinase, and therefore might contribute to the development of new antibacterial compounds, giving bacterial kinase inhibition a closer inspection.
Collapse
Affiliation(s)
- Alexandra Dangel
- 1Helmholtz Zentrum Munich, Landstrasse, München-Neuherberg, D-85764 Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Sotto A, Dupeyron A. Letter to the editor concerning: "Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized controlled trial of efficacy" by Albert HB et al. Eur Spine J (2013) 22:697-707. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:1704-5. [PMID: 23852437 DOI: 10.1007/s00586-013-2898-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
|
17
|
Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garelick H, Bürgmann H, Sørum H. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 2013; 4:96. [PMID: 23675371 PMCID: PMC3653125 DOI: 10.3389/fmicb.2013.00096] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/04/2013] [Indexed: 01/14/2023] Open
Abstract
The discovery and introduction of antimicrobial agents to clinical medicine was one of the greatest medical triumphs of the 20th century that revolutionized the treatment of bacterial infections. However, the gradual emergence of populations of antimicrobial-resistant pathogenic bacteria resulting from use, misuse, and abuse of antimicrobials has today become a major global health concern. Antimicrobial resistance (AMR) genes have been suggested to originate from environmental bacteria, as clinically relevant resistance genes have been detected on the chromosome of environmental bacteria. As only a few new antimicrobials have been developed in the last decade, the further evolution of resistance poses a serious threat to public health. Urgent measures are required not only to minimize the use of antimicrobials for prophylactic and therapeutic purposes but also to look for alternative strategies for the control of bacterial infections. This review examines the global picture of antimicrobial resistance, factors that favor its spread, strategies, and limitations for its control and the need for continuous training of all stake-holders i.e., medical, veterinary, public health, and other relevant professionals as well as human consumers, in the appropriate use of antimicrobial drugs.
Collapse
Affiliation(s)
- L Cantas
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ahmed V, Kumar J, Kumar M, Chauhan MB, Vij M, Ganguli M, Chauhan NS. Synthesis, characterization of penicillin G capped silver nanoconjugates to combat β-lactamase resistance in infectious microorganism. J Biotechnol 2013; 163:419-24. [PMID: 23305990 DOI: 10.1016/j.jbiotec.2012.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/04/2012] [Accepted: 12/06/2012] [Indexed: 11/29/2022]
Abstract
In the present study, a novel strategy was adopted to synthesize, β lactamase resistant penicillin G molecules by using the unique properties of silver nanoparticles. Ascorbic acid-stabilized spherical monodispersed silver nanoparticles were prepared by a simple chemical reaction. The formation processes of the silver nanoparticles were investigated by UV-vis spectroscopy and Atomic Force Microscopy (AFM). Free amine groups were introduced on the surface of native silver nanoparticles by coating a uniform layer of polyaniline and this was confirmed by FTIR spectroscopy and Scanning Electron Microscopy. Functionalized silver nanoparticles were then grafted to the C3 carboxyl group of the β lactam ring of penicillin G in the presence of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC) with a conjugation yield of 213 μg mg⁻¹. These novel silver penicillin G nanoconjugates showed a very good growth inhibition against both non-resistant Escherichia coli (gram negative) as well as toward β lactam resistant, E. coli (gram negative) and Staphylococcus aureus (gram positive).
Collapse
Affiliation(s)
- Vasim Ahmed
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | | | | | | | | | | | | |
Collapse
|
19
|
Yu J, Schneiders T. Tigecycline challenge triggers sRNA production in Salmonella enterica serovar Typhimurium. BMC Microbiol 2012; 12:195. [PMID: 22958399 PMCID: PMC3511261 DOI: 10.1186/1471-2180-12-195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/14/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteria employ complex transcriptional networks involving multiple genes in response to stress, which is not limited to gene and protein networks but now includes small RNAs (sRNAs). These regulatory RNA molecules are increasingly shown to be able to initiate regulatory cascades and modulate the expression of multiple genes that are involved in or required for survival under environmental challenge. Despite mounting evidence for the importance of sRNAs in stress response, their role upon antibiotic exposure remains unknown. In this study, we sought to determine firstly, whether differential expression of sRNAs occurs upon antibiotic exposure and secondly, whether these sRNAs could be attributed to microbial tolerance to antibiotics. RESULTS A small scale sRNA cloning strategy of Salmonella enterica serovar Typhimurium SL1344 challenged with half the minimal inhibitory concentration of tigecycline identified four sRNAs (sYJ5, sYJ20, sYJ75 and sYJ118) which were reproducibly upregulated in the presence of either tigecycline or tetracycline. The coding sequences of the four sRNAs were found to be conserved across a number of species. Genome analysis found that sYJ5 and sYJ118 mapped between the 16S and 23S rRNA encoding genes. sYJ20 (also known as SroA) is encoded upstream of the tbpAyabKyabJ operon and is classed as a riboswitch, whilst its role in antibiotic stress-response appears independent of its riboswitch function. sYJ75 is encoded between genes that are involved in enterobactin transport and metabolism. Additionally we find that the genetic deletion of sYJ20 rendered a reduced viability phenotype in the presence of tigecycline, which was recovered when complemented. The upregulation of some of these sRNAs were also observed when S. Typhimurium was challenged by ampicillin (sYJ5, 75 and 118); or when Klebsiella pneumoniae was challenged by tigecycline (sYJ20 and 118). CONCLUSIONS Small RNAs are overexpressed as a result of antibiotic exposure in S. Typhimurium where the same molecules are upregulated in a related species or after exposure to different antibiotics. sYJ20, a riboswitch, appears to possess a trans-regulatory sRNA role in antibiotic tolerance. These findings imply that the sRNA mediated response is a component of the bacterial response to antibiotic challenge.
Collapse
Affiliation(s)
- Jing Yu
- Centre for Infection and Immunity, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | |
Collapse
|
20
|
Goyal K, Gautam V, Ray P. Doripenem vs meropenem against Pseudomonas and Acinetobacter. Indian J Med Microbiol 2012; 30:350-1. [DOI: 10.4103/0255-0857.99502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Wilke MH, Grube RF, Bodmann KF. The use of a standardized PCT-algorithm reduces costs in intensive care in septic patients - a DRG-based simulation model. Eur J Med Res 2012; 16:543-8. [PMID: 22112361 PMCID: PMC3351898 DOI: 10.1186/2047-783x-16-12-543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION The management of bloodstream infections especially sepsis is a difficult task. An optimal antibiotic therapy (ABX) is paramount for success. Procalcitonin (PCT) is a well investigated biomarker that allows close monitoring of the infection and management of ABX. It has proven to be a cost-efficient diagnostic tool. In Diagnoses Related Groups (DRG) based reimbursement systems, hospitals get only a fixed amount of money for certain treatments. Thus it's very important to obtain an optimal balance of clinical treatment and resource consumption namely the length of stay in hospital and especially in the Intensive Care Unit (ICU). We investigated which economic effects an optimized PCT-based algorithm for antibiotic management could have. MATERIALS AND METHODS We collected inpatient episode data from 16 hospitals. These data contain administrative and clinical information such as length of stay, days in the ICU or diagnoses and procedures. From various RCTs and reviews there are different algorithms for the use of PCT to manage ABX published. Moreover RCTs and meta-analyses have proven possible savings in days of ABX (ABD) and length of stay in ICU (ICUD). As the meta-analyses use studies on different patient populations (pneumonia, sepsis, other bacterial infections), we undertook a short meta-analyses of 6 relevant studies investigating in sepsis or ventilator associated pneumonia (VAP). From this analyses we obtained savings in ABD and ICUD by calculating the weighted mean differences. Then we designed a new PCT-based algorithm using results from two very recent reviews. The algorithm contains evidence from several studies. From the patient data we calculated cost estimates using German National standard costing information for the German G-DRG system. We developed a simulation model where the possible savings and the extra costs for (in average) 8 PCT tests due to our algorithm were brought into equation. RESULTS We calculated ABD savings of 4 days and ICUD reductions of -1.8 days. Our algorithm contains recommendations for ABX onset (PCT ≥ 0.5 ng/ml), validation whether ABX is appropriate or not (Delta from day 2 to day 3 ≥ 30% indicates inappropriate ABX) and recommendations for discontinuing ABX (PCT ≤ 0.25 ng/ml). We received 278,264 episode datasets where we identified by computer-based selection 3,263 cases with sepsis. After excluding cases with length of stay (LOS) too short to achieve the intended savings, we ended with 1,312 cases with ICUD and 268 cases without ICUD. Average length of stay of ICU-patients was 27.7 ± 25.7 days and for Non-ICU patients 17.5 ± 14.6 days respectively. ICU patients had an average of 8.8 ± 8.7 ICUD. - After applying the simulation model on this population we calculated possible savings of Euro -1,163,000 for ICU-patients and Euro -36,512 for Non-ICU patients. DISCUSSION Our findings concerning the savings from the reduction of ABD are consistent with other publications. Savings ICUD had never been economically evaluated so far. Our algorithm is able to possibly set a new standard in PCT-based ABX. However the findings are based on data modelling. The algorithm will be implemented in 5-10 hospitals in 2012 and effects in clinical reality measured 6 months after implementation. CONCLUSION Managing sepsis with daily monitoring of PCT using our refined algorithm is suitable to save substantial costs in hospitals. Implementation in clinical routine settings will show how much of the calculated effect will be achieved in reality.
Collapse
Affiliation(s)
- M H Wilke
- Dr. Wilke GmbH Inspiring.health, Munich, Germany.
| | | | | |
Collapse
|
22
|
Gerber PA, Meller S, Eames T, Buhren BA, Schrumpf H, Hetzer S, Ehmann LM, Budach W, Bölke E, Matuschek C, Wollenberg A, Homey B. Management of EGFR-inhibitor associated rash: a retrospective study in 49 patients. Eur J Med Res 2012; 17:4. [PMID: 22472354 PMCID: PMC3351712 DOI: 10.1186/2047-783x-17-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/23/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In recent years inhibitors directed against the epidermal growth factor receptor (EGFR) have evolved as effective targeting cancer drugs. Characteristic papulopustular exanthemas, often described as acneiform rashes, are the most frequent adverse effect associated with this class of novel cancer drugs and develop in > 90% of patients. Notably, the rash may significantly compromise the patients' quality of life, thereby potentially leading to incompliance as well as dose reduction or even termination of the anti-EGFR therapy. Yet, an effective dermatologic management of cutaneous adverse effects can be achieved. Whereas various case reports, case series or expert opinions on the management of EGFR-inhibitor (EGFRI) induced rashes have been published, data on systematic management studies are sparse. METHODS Here, we present a retrospective, uncontrolled, comparative study in 49 patients on three established regimens for the management of EGFRI-associated rashes. RESULTS Strikingly, patients' rash severity improved significantly over three weeks of treatment with topical mometason furoate cream, topical prednicarbate cream plus nadifloxacin cream, as well as topical prednicarbate cream plus nadifloxacin cream plus systemic isotretinoin. CONCLUSIONS In summary our results demonstrate that EGFRI-associated rashes can be effectively managed by specific dermatologic interventions. Whereas mild to moderate rashes should be treated with basic measures in combination with topical glucocorticosteroids or combined regiments using glucocorticosteroids and antiseptics/antibiotics, more severe or therapy-resistant rashes are likely to respond with the addition of systemic retinoids.
Collapse
Affiliation(s)
- Peter Arne Gerber
- Department of Dermatology, University of Duesseldorf, Medical Faculty, Moorenstrasse 5, D-40225 Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tóthová L, Celec P, Bábíčková J, Gajdošová J, Al-Alami H, Kamodyova N, Drahovská H, Liptáková A, Turňa J, Hodosy J. Phage therapy of Cronobacter-induced urinary tract infection in mice. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2011; 17:BR173-8. [PMID: 21709627 DOI: 10.12659/msm.>16271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cronobacter spp. is an opportunistic pathogen causing rare but dangerous cases of meningitis, sepsis and urinary tract infection. Phage therapy overcomes antibiotic resistance and represents an alternative approach to standard antimicrobial treatment. There are no published studies on the use of phages against Cronobacter spp. in vivo. The aim of our study was to prove the effects of isolated Cronobacter-specific phages on renal colonization in a model of urinary tract infection in mice. MATERIAL/METHODS Urinary tract infection was induced by transurethral application of Cronobacter turicensis (1011 CFU/ml). Simultaneously, isolated Cronobacter-specific phages were administered intraperitoneally (1011 PFU/ml). After 24 hours, kidneys and bladder were collected and used for cultivation and analysis of gene expression and oxidative stress markers. RESULTS Phage therapy reduced the number of Cronobacter colonies in the kidney by 70%. Higher levels of malondialdehyde were reduced by phage therapy without affecting the antioxidant status. The expression of pro-inflammatory cytokines tumor necrosis factor-alpha and monocyte chemoattractant protein-1 increased by the infection and was attenuated by phage therapy. CONCLUSIONS Phage therapy proved effective in the prevention of ascending renal infection in a murine model of urinary tract infection. Long-term effects and safety of the treatment are currently unknown. Further studies should test phage therapy in other Cronobacter infection models.
Collapse
Affiliation(s)
- Lubomíra Tóthová
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Casetti F, Bartelke S, Biehler K, Augustin M, Schempp CM, Frank U. Antimicrobial Activity Against Bacteria with Dermatological Relevance and Skin Tolerance of the Essential Oil fromCoriandrum sativumL. Fruits. Phytother Res 2011; 26:420-4. [DOI: 10.1002/ptr.3571] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 11/06/2022]
Affiliation(s)
- F. Casetti
- Competence Centre skin tegral®, Department of Dermatology; University Medical Centre Freiburg; Hauptstrasse 7 D-79104 Freiburg Germany
| | - S. Bartelke
- Department of Environmental Health Sciences; University Medical Centre Freiburg; Breisacher Strasse 115B D-79106 Freiburg Germany
| | - K. Biehler
- Department of Environmental Health Sciences; University Medical Centre Freiburg; Breisacher Strasse 115B D-79106 Freiburg Germany
| | - M. Augustin
- CVderm, Department of Dermatology; University Medical Centre Hamburg Eppendorf; Martinistr. 52 D-20246 Hamburg Germany
| | - C. M. Schempp
- Competence Centre skin tegral®, Department of Dermatology; University Medical Centre Freiburg; Hauptstrasse 7 D-79104 Freiburg Germany
| | - U. Frank
- Department of Environmental Health Sciences; University Medical Centre Freiburg; Breisacher Strasse 115B D-79106 Freiburg Germany
| |
Collapse
|
25
|
Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol 2011; 6:933-40. [DOI: 10.2217/fmb.11.78] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nanotechnology is the creation of functional materials, devices and systems at atomic and molecular scales (1–100 nm), where properties differ significantly from those at a larger scale. The use of nanotechnology and nanomaterials in medical research is growing rapidly. Recently, nanotechnologic developments in microbiology have gained importance in the field of chemotherapy. Bacterial strains that are resistant to current antibiotics have become serious public health problems that raise the need to develop new bactericidal materials. Metal oxide nanoparticles, especially TiO2 and Ag2O nanoparticles, have demonstrated significant antibacterial activity. Therefore, it is thought that this property of metal oxide nanoparticles could effectively be used as a novel solution strategy. In this review, we focus on the unique properties of nanoparticles, their mechanism of action as antibacterial agents and recent studies in which the effects of visible and UV-light induced TiO2 and Ag2O nanoparticles on drug-resistant bacteria have been documented. In addition, from to previous results of our studies, antileishmanial effects of metal oxide nanoparticles are also demonstrated, indicating that metal oxide nanoparticles can also be effective against eukaryotic infectious agents. Conversely, despite their significant potential in antimicrobial applications, the toxicity of metal oxide nanoparticles restricts their use in humans. However, recent studies infer that metal oxide nanoparticles have considerable potential to be the first-choice for antibacterial and antiparasitic applications in the future, provided that researchers can bring new ideas in order to cope with their main problem of toxicity.
Collapse
Affiliation(s)
| | - Emrah Sefik Abamor
- Yildiz Technical University, Department of Bioengineering, Istanbul, Turkey
| | - Malahat Bagirova
- Yildiz Technical University, Department of Bioengineering, Istanbul, Turkey
| | - Miriam Rafailovich
- SUNY Stony Brook University, Department of Materials Science and Engineering, NY, USA
| |
Collapse
|
26
|
Treatment and prophylaxis of invasive candidiasis with anidulafungin, caspofungin and micafungin and its impact on use and costs: review of the literature. Eur J Med Res 2011; 16:180-6. [PMID: 21486732 PMCID: PMC3352074 DOI: 10.1186/2047-783x-16-4-180] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Invasive fungal infections are on the rise. Echinocandins are a relatively new class of antifungal drugs that act by inhibition of a key enzyme necessary for integrity of the fungal cell wall. Currently there are three available agents: caspofungin, micafungin and anidulafungin. While the individual echinocandin antifungals have a different spectrum of licensed indications, basically all of them are available for the treatment of candidemia and invasive candidiasis. Antifungal treatment modalities basically include in therapy for suspected or proven infection and prophylaxis. All three drugs are comparatively expensive. Therefore a systematic review of the literature was performed to investigate the following aspects: * General aspects of cost-effectiveness in the treatment of invasive fungal infections * Cost-effectiveness of the treatment with the above-mentioned antifungals * Cost-effectiveness in two settings: therapy and prophylaxis - Early initiation of antifungal therapy, adjustment after availability of microbiological results, duration of therapy, success and occurrence of severe complications (e.g. renal failure) are the most important cost drivers in antifungal therapy. - Considering the specific antifungals, for caspofungin the best evidence for cost-effectiveness is found in treatment of invasive candidiasis and in empiric therapy of suspected infections. Favourable economic data are available for micafungin as a cost-effective alternative to LAmB for prophylaxis in patients with hematopoietic stem cell transplantation (HSCT). For anidulafungin, cost-effectiveness was demostrated in a pharmacoeconomic model. Net savings - yet not significant - were observed in a retrospective chart review of 234 patients. Generally, however, most analyses are still based on pharmacoeconomic modelling rather than direct analysis of trial data or real-life clinical populations. - As an overall conclusion, using caspofungin, micafungin, or anidulafungin is not more expensive than using other established therapies. Micafungin has proven to be cost-effective in prophylaxis if the local fungal epidemiology indicates a high level of resistance to fluconazole. Switch strategies involving early initiation of broadly active therapy with switch to cheaper alternatives according to microbiology results and clinical status and early initiation of an appropriate therapy have been proven to be cost-efficient independent of the antifungal agent.
Collapse
|
27
|
Tóthová Ľ, Celec P, Bábíčková J, Gajdošová J, Al-Alami H, Kamodyová N, Drahovská H, Liptáková A, Turňa J, Hodosy J. Phage therapy of Cronobacter-induced urinary tract infection in mice. Med Sci Monit 2011. [PMID: 21709627 PMCID: PMC3539570 DOI: 10.12659/msm.>16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cronobacter spp. is an opportunistic pathogen causing rare but dangerous cases of meningitis, sepsis and urinary tract infection. Phage therapy overcomes antibiotic resistance and represents an alternative approach to standard antimicrobial treatment. There are no published studies on the use of phages against Cronobacter spp. in vivo. The aim of our study was to prove the effects of isolated Cronobacter-specific phages on renal colonization in a model of urinary tract infection in mice. MATERIAL/METHODS Urinary tract infection was induced by transurethral application of Cronobacter turicensis (1011 CFU/ml). Simultaneously, isolated Cronobacter-specific phages were administered intraperitoneally (1011 PFU/ml). After 24 hours, kidneys and bladder were collected and used for cultivation and analysis of gene expression and oxidative stress markers. RESULTS Phage therapy reduced the number of Cronobacter colonies in the kidney by 70%. Higher levels of malondialdehyde were reduced by phage therapy without affecting the antioxidant status. The expression of pro-inflammatory cytokines tumor necrosis factor-alpha and monocyte chemoattractant protein-1 increased by the infection and was attenuated by phage therapy. CONCLUSIONS Phage therapy proved effective in the prevention of ascending renal infection in a murine model of urinary tract infection. Long-term effects and safety of the treatment are currently unknown. Further studies should test phage therapy in other Cronobacter infection models.
Collapse
Affiliation(s)
- Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia,Department of Molecular Biology, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia,Department of Molecular Biology, Comenius University, Bratislava, Slovakia,Institute of Pathophysiology, Comenius University, Bratislava, Slovakia,Peter Celec, Institute of Molecular Biomedicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak Republic, e-mail:
| | - Janka Bábíčková
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Jana Gajdošová
- Department of Molecular Biology, Comenius University, Bratislava, Slovakia
| | - Hend Al-Alami
- Department of Molecular Biology, Comenius University, Bratislava, Slovakia
| | - Natália Kamodyová
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Hana Drahovská
- Department of Molecular Biology, Comenius University, Bratislava, Slovakia
| | - Adriana Liptáková
- Institute of Immunology, Comenius University and Ministry of Health, Bratislava, Slovakia
| | - Ján Turňa
- Department of Molecular Biology, Comenius University, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia,Institute of Physiology, Comenius University, Bratislava, Slovakia
| |
Collapse
|