1
|
Arnone AA, Tsai YT, Cline JM, Wilson AS, Westwood B, Seger ME, Chiba A, Howard-McNatt M, Levine EA, Thomas A, Soto-Pantoja DR, Cook KL. Endocrine-targeting therapies shift the breast microbiome to reduce estrogen receptor-α breast cancer risk. Cell Rep Med 2025; 6:101880. [PMID: 39742868 PMCID: PMC11866439 DOI: 10.1016/j.xcrm.2024.101880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/14/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
Studies indicate that breast tissue has a distinct modifiable microbiome population. We demonstrate that endocrine-targeting therapies, such as tamoxifen, reshape the non-cancerous breast microbiome to influence tissue metabolism and reduce tumorigenesis. Using 16S sequencing, we found that tamoxifen alters β-diversity and increases Firmicutes abundance, including Lactobacillus spp., in mammary glands (MGs) of mice and non-human primates. Immunohistochemistry showed that lipoteichoic acid (LTA)-positive bacteria were elevated in tamoxifen-treated breast tissue. In B6.MMTV-PyMT mice, intra-nipple probiotic bacteria injections reduced tumorigenesis, altered metabolic gene expression, and decreased tumor proliferation. Probiotic-conditioned media selectively reduced viability in estrogen receptor-positive (ER+) breast cancer cells and altered mitochondrial metabolism in non-cancerous epithelial cells. Human tumor samples revealed that LTA-positive bacteria negatively correlated with Ki67, suggesting that endocrine therapies influence tumor-associated microbiota to regulate proliferation. Our data indicate that endocrine-targeting therapies modify the breast microbiome, corresponding with a shift in tissue metabolism to potentially reduce ER+ breast cancer risk.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Yu-Ting Tsai
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Adam S Wilson
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian Westwood
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Meghan E Seger
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Akiko Chiba
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Durham VA Medical Center, Department of Surgery, Durham, NC 27705, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Marissa Howard-McNatt
- Department of General Surgery, Section of Surgical Oncology, Wake Forest University School of Medicine, Winston-Salem NC, 27157, USA
| | - Edward A Levine
- Department of General Surgery, Section of Surgical Oncology, Wake Forest University School of Medicine, Winston-Salem NC, 27157, USA
| | - Alexandra Thomas
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - David R Soto-Pantoja
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Katherine L Cook
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
2
|
Ho WT, Chang JS, Lei CJ, Chen TC, Wang JK, Chang SW, Yang MH, Jou TS, Wang IJ. ROCK Inhibitor Enhances Resilience Against Metabolic Stress Through Increasing Bioenergetic Capacity in Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2025; 66:51. [PMID: 39847368 PMCID: PMC11759620 DOI: 10.1167/iovs.66.1.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress. Methods Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured. BCECs were also challenged with monensin to induce metabolic stress. Cell viability, apoptosis, intracellular sodium levels, and hexokinase localization were assessed using calcein AM assay, flow cytometry, fluorescence imaging, and immunostaining, respectively. Results Y27632 increased maximal ATP production rates via both oxidative phosphorylation and glycolysis, thereby expanding the overall bioenergetic capacity in BCECs. Under monensin-induced metabolic stress, ROCK inhibitor pretreatment significantly enhanced glycolytic ATP production and reduced apoptosis compared with untreated cells. Y27632 also facilitated sodium export by increasing Na/K-ATPase activity, as evidenced by lower intracellular sodium levels. Additionally, Y27632 promoted the translocation of hexokinase 2 to mitochondria under stress conditions, thereby enhancing glycolytic capacity. The effect of Y27632 on cell viability and sodium export was abrogated when cells were forced to rely on oxidative phosphorylation in galactose media, indicating that the protective effects of Y27632 are dependent on glycolytic ATP production under monensin stress. Conclusions ROCK inhibitor Y27632 enhances the bioenergetic capacity of BCECs, allowing the cells to better withstand metabolic stress by rapidly generating ATP to meet increased energy demands, maintaining ion homeostasis and reducing apoptosis.
Collapse
Affiliation(s)
- Wei-Ting Ho
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jung-Shen Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Jen Lei
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsan-Chi Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jia-Kang Wang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan
| | - Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzuu-Shuh Jou
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Yan J, Goncalves CFL, Saha PS, Furdui CM, Zhu C. Optical imaging provides flow-cytometry-like single-cell level analysis of HIF-1 α-mediated metabolic changes in radioresistant head and neck squamous carcinoma cells. BIOPHOTONICS DISCOVERY 2025; 2:012702. [PMID: 39917319 PMCID: PMC11801402 DOI: 10.1117/1.bios.2.1.012702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Significance Radioresistance remains a significant problem for head and neck squamous cell carcinoma (HNSCC) patients. To mitigate this, the cellular and molecular pathways used by radioresistant HNSCC that drive recurrence must be studied. Aim We aim to demonstrate optical imaging strategies to provide flow cytometry-like single-cell level analysis of hypoxia-inducible factor 1-alpha (HIF-1α)-mediated metabolic changes in the radioresistant and radiosensitive HNSCC cells but in a more efficient, cost-effective, and non-destructive manner. Through both optical imaging and flow cytometry studies, we will reveal the role of radiation-induced HIF-1α overexpression and the following metabolic changes in the radioresistance development for HNSCC. Approach We optimized the use of two metabolic probes: 2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) (to report glucose uptake) and Tetramethylrhodamine ethyl ester (TMRE) (to report mitochondrial membrane potential) with both a standard fluorescence microscope and a flow cytometry device, to report the changes in metabolism between radioresistant (rSCC-61) and radiosensitive (SCC-61) HNSCC cell lines under radiation stresses with or without HIF-1α inhibition. Results We found that the matched HNSCC cell lines had different baseline metabolic phenotypes, and their metabolism responded differently to radiation stress along with significantly enhanced HIF-1α expressions in the rSCC-61 cells. HIF-1α inhibition during the radiation treatment modulates the metabolic changes and radio-sensitizes the rSCC-61 cells. Through these studies, we demonstrated that a standard fluorescence microscope along with proper image processing methods can provide flow cytometry-like single-cell level analysis of HIF-1α-mediated metabolic changes in the radioresistant and radiosensitive HNSCC cells. Conclusions Our reported optical imaging strategies may enable one to study the role of metabolism reprogramming in cancer therapeutic resistance development at the single-cell level in a more efficient, cost-effective, and non-destructive manner. Our understanding of radiation resistance mechanisms using our imaging methods will offer opportunities to design targeted radiotherapy for improved treatment outcomes for HNSCC patients.
Collapse
Affiliation(s)
- Jing Yan
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | | | - Pranto Soumik Saha
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Cristina M. Furdui
- Wake Forest University, Department of Internal Medicine, Winston-Salem, North Carolina, United States
| | - Caigang Zhu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| |
Collapse
|
4
|
Du Y, Ouyang B, Liu Y, Yin Y, Wu Y, Guo H. A Hydrogel for Nitric Oxide Sensitization Chemotherapy Mediated by Tumor Microenvironment Changes in 3D Spheroids and Breast Tumor Models. Curr Pharm Des 2025; 31:1227-1238. [PMID: 39819416 DOI: 10.2174/0113816128348357241209050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 11/15/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Nitric oxide (NO) is a low-toxicity and high-efficiency anticancer treatment that can augment the cytotoxicity of doxorubicin (DOX) towards breast cancer cells, thereby exhibiting a favorable effect on chemotherapy sensitization. OBJECTIVE The study aimed to establish a hydrogel that sensitizes chemotherapy by inducing local inflammatory stimulation to change the tumor microenvironment and promote NO production. The purpose of the study was to examine the anti-tumor effect in vivo and in vitro. METHODS The functional properties of the composite hydrogels were tested by UV spectrophotometry and NO detection kit. CCK8, DCFH-DA fluorescent probe, Calcein-AM/PI detection kit, and confocal detection methods were used for the cytocompatibility and cytotoxicity of the composite hydrogels. The subcutaneous tumor volume, weight, and tumor inhibition rate of 4T1 breast cancer cells were evaluated for pharmacodynamic study in vivo. RESULTS Each component of hydrogel has good biocompatibility. The combination of gas therapy and chemotherapy can significantly enhance the effect of inhibiting tumor cell growth. The tumor growth of tumor- bearing mice in the hydrogel administration group was slow, and the tumor inhibition rate was 85.10%. The body weight grew steadily, and no significant pathological changes were observed in the H&E staining of major organs. CONCLUSION A composite hydrogel with alginate as the carrier was successfully established, which was based on improving the tumor microenvironment to trigger gas therapy combined with chemotherapy for tumor treatment.
Collapse
Affiliation(s)
- Yang Du
- Central Laboratory, First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- The Institute of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
| | - Boshu Ouyang
- Department of Integrative Medicine, Institute of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yao Liu
- The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, China
- Center for Medical Research and Innovation, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Yuzhen Yin
- Central Laboratory, First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- The Institute of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
| | - Yining Wu
- Central Laboratory, First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- The Institute of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
| | - Huishu Guo
- Central Laboratory, First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- The Institute of Integrative Medicine, Dalian Medical University, Dalian, 116021, China
| |
Collapse
|
5
|
Hefzi H, Martínez-Monge I, Marin de Mas I, Cowie NL, Toledo AG, Noh SM, Karottki KJLC, Decker M, Arnsdorf J, Camacho-Zaragoza JM, Kol S, Schoffelen S, Pristovšek N, Hansen AH, Miguez AA, Bjørn SP, Brøndum KK, Javidi EM, Jensen KL, Stangl L, Kreidl E, Kallehauge TB, Ley D, Ménard P, Petersen HM, Sukhova Z, Bauer A, Casanova E, Barron N, Malmström J, Nielsen LK, Lee GM, Kildegaard HF, Voldborg BG, Lewis NE. Multiplex genome editing eliminates lactate production without impacting growth rate in mammalian cells. Nat Metab 2025; 7:212-227. [PMID: 39809975 DOI: 10.1038/s42255-024-01193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 11/27/2024] [Indexed: 01/16/2025]
Abstract
The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. These cells, which we refer to as Warburg-null cells, maintain wild-type growth rates while producing negligible lactate, show a compensatory increase in oxygen consumption, near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. Warburg-null cells remain amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titres and maintaining product glycosylation. The ability to eliminate lactate production may be useful for biotherapeutic production and provides a tool for investigating a common metabolic phenomenon.
Collapse
Affiliation(s)
- Hooman Hefzi
- Department of Bioengineering, University of California, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | - Iván Martínez-Monge
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Barcelona, Spain
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Igor Marin de Mas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Nicholas Luke Cowie
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Alejandro Gomez Toledo
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Soo Min Noh
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | | | - Marianne Decker
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Johnny Arnsdorf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Jose Manuel Camacho-Zaragoza
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Stefan Kol
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sanne Schoffelen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Nuša Pristovšek
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Anders Holmgaard Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Antonio A Miguez
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Sara Petersen Bjørn
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Karen Kathrine Brøndum
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Elham Maria Javidi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kristian Lund Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Laura Stangl
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Emanuel Kreidl
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | | | - Daniel Ley
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Patrice Ménard
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Helle Munck Petersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Zulfiya Sukhova
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Anton Bauer
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Emilio Casanova
- Institute of Pharmacology, Center of Physiology and Pharmacology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Niall Barron
- National Institute for Bioprocessing Research and Training (NIBRT), Blackrock, Dublin, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lars K Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Gyun Min Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | | | - Bjørn G Voldborg
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- National Biologics Facility, Technical University of Denmark, Lyngby, Denmark
| | - Nathan E Lewis
- Department of Bioengineering, University of California, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
- Center for Molecular Medicine, Complex Carbohydrate Research Center, and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Sharma A, Srivastava R, Gnyawali SC, Bhasme P, Anthony AJ, Xuan Y, Trinidad JC, Sen CK, Clemmer DE, Roy S, Ghatak S. Mitochondrial Bioenergetics of Functional Wound Closure is Dependent on Macrophage-Keratinocyte Exosomal Crosstalk. ACS NANO 2024; 18:30405-30420. [PMID: 39453865 PMCID: PMC11544725 DOI: 10.1021/acsnano.4c07610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/27/2024]
Abstract
Tissue nanotransfection (TNT)-based fluorescent labeling of cell-specific exosomes has shown that exosomes play a central role in physiological keratinocyte-macrophage (mϕ) crosstalk at the wound-site. Here, we report that during the early phase of wound reepithelialization, macrophage-derived exosomes (Exomϕ), enriched with the outer mitochondrial membrane protein TOMM70, are localized in leading-edge keratinocytes. TOMM70 is a 70 kDa adaptor protein anchored in the mitochondrial outer membrane and plays a critical role in maintaining mitochondrial function and quality. TOMM70 selectively recognizes cytosolic chaperones by its tetratricopeptide repeat (TPR) domain and facilitates the import of preproteins lacking a positively charged mitochondrial targeted sequence. Exosomal packaging of TOMM70 in mϕ was independent of mitochondrial fission. TOMM70-enriched Exomϕ compensated for the hypoxia-induced depletion of epidermal TOMM70, thereby rescuing mitochondrial metabolism in leading-edge keratinocytes. Thus, macrophage-derived TOMM70 is responsible for the glycolytic ATP supply to power keratinocyte migration. Blockade of exosomal uptake from keratinocytes impaired wound closure with the persistence of proinflammatory mϕ in the wound microenvironment, pointing toward a bidirectional crosstalk between these two cell types. The significance of such bidirectional crosstalk was established by the observation that in patients with nonhealing diabetic foot ulcers, TOMM70 is deficient in keratinocytes of wound-edge tissues.
Collapse
Affiliation(s)
- Anu Sharma
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Rajneesh Srivastava
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Surya C. Gnyawali
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Pramod Bhasme
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Adam J. Anthony
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yi Xuan
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Jonathan C. Trinidad
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Chandan K. Sen
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sashwati Roy
- McGowan
Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | | |
Collapse
|
7
|
Zuzak T, Bogaczyk A, Krata AA, Kamiński R, Paneth P, Kluz T. Isotopic Composition of C, N, and S as an Indicator of Endometrial Cancer. Cancers (Basel) 2024; 16:3169. [PMID: 39335141 PMCID: PMC11430076 DOI: 10.3390/cancers16183169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES The metabolic pathway of cancerous tissue differs from healthy tissue, leading to the unique isotopic composition of stable isotopes at their natural abundance. We have studied if these changes can be developed into diagnostic or prognostic tools in the case of endometrial cancer. METHODS Measurements of stable isotope ratios were performed using isotope ratio mass spectrometry for nitrogen, carbon, and sulfur isotopic assessment. Uterine tissue and serum samples were collected from patients and the control group. RESULTS At a natural abundance, the isotopic compositions of all three of the studied elements of uterus cancerous and healthy tissues are different. However, no correlation of the isotopic composition of the tissues with that of serum was found. CONCLUSIONS Differences in the isotopic composition of the tissues might be a potential prognostic tool. However, the lack of a correlation between the differences in the isotopic composition of the tissues and serum seems to exclude their application as diagnostic biomarkers, which, however, might be possible if a position-specific isotopic analysis is performed.
Collapse
Affiliation(s)
- Tomasz Zuzak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
| | - Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
| | - Agnieszka Anna Krata
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Rafał Kamiński
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, Szopena 2, 35-055 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
8
|
Pan M, Li H, Shi X. A New Target for Hepatic Fibrosis Prevention and Treatment: The Warburg Effect. FRONT BIOSCI-LANDMRK 2024; 29:321. [PMID: 39344326 DOI: 10.31083/j.fbl2909321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024]
Abstract
Hepatic fibrosis is a major public health problem that endangers human wellbeing. In recent years, a number of studies have revealed the important impact of metabolic reprogramming on the occurrence and development of hepatic fibrosis. Among them, the Warburg effect, as an intracellular glucose metabolism reprogramming, can promote the occurrence and development of hepatic fibrosis by promoting the activation of hepatic stellate cells (HSCs) and inducing the polarization of liver macrophages (KC). Understanding the Warburg effect and its important role in the progression of hepatic fibrosis will assist in developing new strategies for the prevention and treatment of hepatic fibrosis. This review focuses on the Warburg effect and the specific mechanism by which it affects the progression of hepatic fibrosis by regulating HSCs activation and KC polarization. In addition, we also summarize and discuss the related experimental drugs and their mechanisms that inhibit the Warburg effect by targeting key proteins of glycolysis in order to improve hepatic fibrosis in the hope of providing more effective strategies for the clinical treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Meng Pan
- College of Basic Medical Sciences, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Huanyu Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Xiaoyan Shi
- College of Basic Medical Sciences, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| |
Collapse
|
9
|
Hefzi H, Martínez-Monge I, Marin de Mas I, Cowie NL, Toledo AG, Noh SM, Karottki KJLC, Decker M, Arnsdorf J, Camacho-Zaragoza JM, Kol S, Schoffelen S, Pristovšek N, Hansen AH, Miguez AA, Bjorn SP, Brøndum KK, Javidi EM, Jensen KL, Stangl L, Kreidl E, Kallehauge TB, Ley D, Ménard P, Petersen HM, Sukhova Z, Bauer A, Casanova E, Barron N, Malmström J, Nielsen LK, Lee GM, Kildegaard HF, Voldborg BG, Lewis NE. Multiplex genome editing eliminates the Warburg Effect without impacting growth rate in mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606284. [PMID: 39211256 PMCID: PMC11361052 DOI: 10.1101/2024.08.02.606284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Warburg effect is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production, as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production via knockout have failed in mammalian bioprocessing since lactate dehydrogenase has proven essential. However, here we eliminated the Warburg effect in Chinese hamster ovary (CHO) and HEK293 cells by simultaneously knocking out lactate dehydrogenase and regulators involved in a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA. In contrast to long-standing assumptions about the role of aerobic glycolysis, Warburg-null cells maintain wildtype growth rate while producing negligible lactate. Further characterization of Warburg-null CHO cells showed a compensatory increase in oxygen consumption, a near total reliance on oxidative metabolism, and higher cell densities in fed-batch cell culture. These cells remained amenable for production of diverse biotherapeutic proteins, reaching industrially relevant titers and maintaining product glycosylation. Thus, the ability to eliminate the Warburg effect is an important development for biotherapeutic production and provides a tool for investigating a near-universal metabolic phenomenon.
Collapse
|
10
|
Leslie TK, Tripp A, James AD, Fraser SP, Nelson M, Sajjaboontawee N, Capatina AL, Toss M, Fadhil W, Salvage SC, Garcia MA, Beykou M, Rakha E, Speirs V, Bakal C, Poulogiannis G, Djamgoz MBA, Jackson AP, Matthews HR, Huang CLH, Holding AN, Chawla S, Brackenbury WJ. A novel Na v1.5-dependent feedback mechanism driving glycolytic acidification in breast cancer metastasis. Oncogene 2024; 43:2578-2594. [PMID: 39048659 PMCID: PMC11329375 DOI: 10.1038/s41388-024-03098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Solid tumours have abnormally high intracellular [Na+]. The activity of various Na+ channels may underlie this Na+ accumulation. Voltage-gated Na+ channels (VGSCs) have been shown to be functionally active in cancer cell lines, where they promote invasion. However, the mechanisms involved, and clinical relevance, are incompletely understood. Here, we show that protein expression of the Nav1.5 VGSC subtype strongly correlates with increased metastasis and shortened cancer-specific survival in breast cancer patients. In addition, VGSCs are functionally active in patient-derived breast tumour cells, cell lines, and cancer-associated fibroblasts. Knockdown of Nav1.5 in a mouse model of breast cancer suppresses expression of invasion-regulating genes. Nav1.5 activity increases ATP demand and glycolysis in breast cancer cells, likely by upregulating activity of the Na+/K+ ATPase, thus promoting H+ production and extracellular acidification. The pH of murine xenograft tumours is lower at the periphery than in the core, in regions of higher proliferation and lower apoptosis. In turn, acidic extracellular pH elevates persistent Na+ influx through Nav1.5 into breast cancer cells. Together, these findings show positive feedback between extracellular acidification and the movement of Na+ into cancer cells which can facilitate invasion. These results highlight the clinical significance of Nav1.5 activity as a potentiator of breast cancer metastasis and provide further evidence supporting the use of VGSC inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Theresa K Leslie
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Aurelien Tripp
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Andrew D James
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, London, UK
| | - Michaela Nelson
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Nattanan Sajjaboontawee
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Alina L Capatina
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Michael Toss
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Wakkas Fadhil
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Mar Arias Garcia
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Melina Beykou
- Division of Cancer Biology, Institute of Cancer Research, London, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Emad Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Valerie Speirs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Chris Bakal
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | | | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Haspolat, TRNC, Mersin, Turkey
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hugh R Matthews
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher L-H Huang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Andrew N Holding
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Sangeeta Chawla
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
11
|
Pukkanasut P, Jaskula-Sztul R, Gomora JC, Velu SE. Therapeutic targeting of voltage-gated sodium channel Na V1.7 for cancer metastasis. Front Pharmacol 2024; 15:1416705. [PMID: 39045054 PMCID: PMC11263763 DOI: 10.3389/fphar.2024.1416705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
This review focuses on the expression and function of voltage-gated sodium channel subtype NaV1.7 in various cancers and explores its impact on the metastasis driving cell functions such as proliferation, migration, and invasiveness. An overview of its structural characteristics, drug binding sites, inhibitors and their likely mechanisms of action are presented. Despite the lack of clarity on the precise mechanism by which NaV1.7 contributes to cancer progression and metastasis; many studies have suggested a connection between NaV1.7 and proteins involved in multiple signaling pathways such as PKA and EGF/EGFR-ERK1/2. Moreover, the functional activity of NaV1.7 appears to elevate the expression levels of MACC1 and NHE-1, which are controlled by p38 MAPK activity, HGF/c-MET signaling and c-Jun activity. This cascade potentially enhances the secretion of extracellular matrix proteases, such as MMPs which play critical roles in cell migration and invasion activities. Furthermore, the NaV1.7 activity may indirectly upregulate Rho GTPases Rac activity, which is critical for cytoskeleton reorganization, cell adhesion, and actin polymerization. The relationship between NaV1.7 and cancer progression has prompted researchers to investigate the therapeutic potential of targeting NaV1.7 using inhibitors. The positive outcome of such studies resulted in the discovery of several inhibitors with the ability to reduce cancer cell migration, invasion, and tumor growth underscoring the significance of NaV1.7 as a promising pharmacological target for attenuating cancer cell proliferation and metastasis. The research findings summarized in this review suggest that the regulation of NaV1.7 expression and function by small molecules and/or by genetic engineering is a viable approach to discover novel therapeutics for the prevention and treatment of metastasis of cancers with elevated NaV1.7 expression.
Collapse
Affiliation(s)
- Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Renata Jaskula-Sztul
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond) 2024; 44:761-786. [PMID: 38851859 PMCID: PMC11260772 DOI: 10.1002/cac2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
Collapse
Affiliation(s)
- Qiqi Qiao
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
13
|
Fanchon E, Stéphanou A. Is Cancer Metabolism an Atavism? Cancers (Basel) 2024; 16:2415. [PMID: 39001477 PMCID: PMC11240651 DOI: 10.3390/cancers16132415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The atavistic theory of cancer posits that cancer emerges and progresses through the reversion of cellular phenotypes to more ancestral types with genomic and epigenetic changes deactivating recently evolved genetic modules and activating ancient survival mechanisms. This theory aims at explaining the known cancer hallmarks and the paradox of cancer's predictable progression despite the randomness of genetic mutations. Lineweaver and colleagues recently proposed the Serial Atavism Model (SAM), an enhanced version of the atavistic theory, which suggests that cancer progression involves multiple atavistic reversions where cells regress through evolutionary stages, losing recently evolved traits first and reactivating primitive ones later. The Warburg effect, where cancer cells upregulate glycolysis and lactate production in the presence of oxygen instead of using oxidative phosphorylation, is one of the key feature of the SAM. It is associated with the metabolism of ancient cells living on Earth before the oxygenation of the atmosphere. This review addresses the question of whether cancer metabolism can be considered as an atavistic reversion. By analyzing several known characteristics of cancer metabolism, we reach the conclusion that this version of the atavistic theory does not provide an adequate conceptual frame for cancer research. Cancer metabolism spans a whole spectrum of metabolic states which cannot be fully explained by a sequential reversion to an ancient state. Moreover, we interrogate the nature of cancer metabolism and discuss its characteristics within the framework of the SAM.
Collapse
Affiliation(s)
- Eric Fanchon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Angélique Stéphanou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
14
|
Michaels AM, Zoccarato A, Hoare Z, Firth G, Chung YJ, Kuchel PW, Shah AM, Shattock MJ, Southworth R, Eykyn TR. Disrupting Na + ion homeostasis and Na +/K + ATPase activity in breast cancer cells directly modulates glycolysis in vitro and in vivo. Cancer Metab 2024; 12:15. [PMID: 38783368 PMCID: PMC11119389 DOI: 10.1186/s40170-024-00343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Glycolytic flux is regulated by the energy demands of the cell. Upregulated glycolysis in cancer cells may therefore result from increased demand for adenosine triphosphate (ATP), however it is unknown what this extra ATP turnover is used for. We hypothesise that an important contribution to the increased glycolytic flux in cancer cells results from the ATP demand of Na+/K+-ATPase (NKA) due to altered sodium ion homeostasis in cancer cells. METHODS Live whole-cell measurements of intracellular sodium [Na+]i were performed in three human breast cancer cells (MDA-MB-231, HCC1954, MCF-7), in murine breast cancer cells (4T1), and control human epithelial cells MCF-10A using triple quantum filtered 23Na nuclear magnetic resonance (NMR) spectroscopy. Glycolytic flux was measured by 2H NMR to monitor conversion of [6,6-2H2]D-glucose to [2H]-labelled L-lactate at baseline and in response to NKA inhibition with ouabain. Intracellular [Na+]i was titrated using isotonic buffers with varying [Na+] and [K+] and introducing an artificial Na+ plasma membrane leak using the ionophore gramicidin-A. Experiments were carried out in parallel with cell viability assays, 1H NMR metabolomics of intracellular and extracellular metabolites, extracellular flux analyses and in vivo measurements in a MDA-MB-231 human-xenograft mouse model using 2-deoxy-2-[18F]fluoroglucose (18F-FDG) positron emission tomography (PET). RESULTS Intracellular [Na+]i was elevated in human and murine breast cancer cells compared to control MCF-10A cells. Acute inhibition of NKA by ouabain resulted in elevated [Na+]i and inhibition of glycolytic flux in all three human cancer cells which are ouabain sensitive, but not in the murine cells which are ouabain resistant. Permeabilization of cell membranes with gramicidin-A led to a titratable increase of [Na+]i in MDA-MB-231 and 4T1 cells and a Na+-dependent increase in glycolytic flux. This was attenuated with ouabain in the human cells but not in the murine cells. 18FDG PET imaging in an MDA-MB-231 human-xenograft mouse model recorded lower 18FDG tumour uptake when treated with ouabain while murine tissue uptake was unaffected. CONCLUSIONS Glycolytic flux correlates with Na+-driven NKA activity in breast cancer cells, providing evidence for the 'centrality of the [Na+]i-NKA nexus' in the mechanistic basis of the Warburg effect.
Collapse
Affiliation(s)
- Aidan M Michaels
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Anna Zoccarato
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Zoe Hoare
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - George Firth
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Yu Jin Chung
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ajay M Shah
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Michael J Shattock
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Richard Southworth
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Thomas R Eykyn
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
15
|
Coleman JC, Tattersall L, Yianni V, Knight L, Yu H, Hallett SR, Johnson P, Caetano AJ, Cosstick C, Ridley AJ, Gartland A, Conte MR, Grigoriadis AE. The RNA binding proteins LARP4A and LARP4B promote sarcoma and carcinoma growth and metastasis. iScience 2024; 27:109288. [PMID: 38532886 PMCID: PMC10963253 DOI: 10.1016/j.isci.2024.109288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important regulators of cancer pathogenesis. We reveal that the RBPs LARP4A and LARP4B are differentially overexpressed in osteosarcoma and osteosarcoma lung metastases, as well as in prostate cancer. Depletion of LARP4A and LARP4B reduced tumor growth and metastatic spread in xenografts, as well as inhibiting cell proliferation, motility, and migration. Transcriptomic profiling and high-content multiparametric analyses unveiled a central role for LARP4B, but not LARP4A, in regulating cell cycle progression in osteosarcoma and prostate cancer cells, potentially through modulating key cell cycle proteins such as Cyclins B1 and E2, Aurora B, and E2F1. This first systematic comparison between LARP4A and LARP4B assigns new pro-tumorigenic functions to LARP4A and LARP4B in bone and prostate cancer, highlighting their similarities while also indicating distinct functional differences. Uncovering clear biological roles for these paralogous proteins provides new avenues for identifying tissue-specific targets and potential druggable intervention.
Collapse
Affiliation(s)
- Jennifer C. Coleman
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, SE1 1UL UK
| | - Luke Tattersall
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, S10 2RX UK
| | - Val Yianni
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Laura Knight
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Hongqiang Yu
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Sadie R. Hallett
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, SE1 1UL UK
| | - Philip Johnson
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Ana J. Caetano
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Charlie Cosstick
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, SE1 9RT UK
| | - Anne J. Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD UK
| | - Alison Gartland
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, S10 2RX UK
| | - Maria R. Conte
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, SE1 1UL UK
| | | |
Collapse
|
16
|
Scioscia M, Siwetz M, Robillard PY, Brizzi A, Huppertz B. Placenta and maternal endothelium during preeclampsia: Disruption of the glycocalyx explains increased inositol phosphoglycans and angiogenic factors in maternal blood. J Reprod Immunol 2023; 160:104161. [PMID: 37857160 DOI: 10.1016/j.jri.2023.104161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The etiology of the pregnancy syndrome preeclampsia is still unclear, while most hypotheses center on the placenta as the major contributor of the syndrome. Especially changes of the placental metabolism, including the use of glucose to produce energy, are important features. As an example, inositol phosphoglycan P-type molecules, second messengers involved in the glucose metabolism of all cells, can be retrieved from maternal urine of preeclamptic women, even before the onset of clinical symptoms. Alterations in the placental metabolism may subsequently lead to negative effects on the plasma membrane of the placental syncytiotrophoblast. This in turn may have deleterious effects on the glycocalyx of this layer and a disruption of this layer in all types of preeclampsia. The interruption of the glycocalyx in preeclampsia may result in changes of inositol phosphoglycan P-type signaling pathways and the release of these molecules as well as the release of soluble receptors such as sFlt-1 and sEndoglin. The release of placental factors later affects the maternal endothelium and disrupts the endothelial glycocalyx as well. This in turn may pave the way for edema, endothelial dysfunction, coagulation, all typical symptoms of preeclampsia.
Collapse
Affiliation(s)
- Marco Scioscia
- Department of Obstetrics and Gynecology, Mater Dei Hospital, Via SF Hahnemann 10, 70125 Bari, Italy.
| | - Monika Siwetz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Pierre-Yves Robillard
- Centre d'Études Périnatales Océan Indien, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre, La Réunion, France; Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre, La Réunion, France, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre, La Réunion, France
| | - Agostino Brizzi
- General and Locoregional Anesthesia Department, Santa Maria Clinic, Via A de Ferrariis, 22, 70124 Bari, Italy
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| |
Collapse
|
17
|
Renaud JM, Ørtenblad N, McKenna MJ, Overgaard K. Exercise and fatigue: integrating the role of K +, Na + and Cl - in the regulation of sarcolemmal excitability of skeletal muscle. Eur J Appl Physiol 2023; 123:2345-2378. [PMID: 37584745 PMCID: PMC10615939 DOI: 10.1007/s00421-023-05270-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
Perturbations in K+ have long been considered a key factor in skeletal muscle fatigue. However, the exercise-induced changes in K+ intra-to-extracellular gradient is by itself insufficiently large to be a major cause for the force decrease during fatigue unless combined to other ion gradient changes such as for Na+. Whilst several studies described K+-induced force depression at high extracellular [K+] ([K+]e), others reported that small increases in [K+]e induced potentiation during submaximal activation frequencies, a finding that has mostly been ignored. There is evidence for decreased Cl- ClC-1 channel activity at muscle activity onset, which may limit K+-induced force depression, and large increases in ClC-1 channel activity during metabolic stress that may enhance K+ induced force depression. The ATP-sensitive K+ channel (KATP channel) is also activated during metabolic stress to lower sarcolemmal excitability. Taking into account all these findings, we propose a revised concept in which K+ has two physiological roles: (1) K+-induced potentiation and (2) K+-induced force depression. During low-moderate intensity muscle contractions, the K+-induced force depression associated with increased [K+]e is prevented by concomitant decreased ClC-1 channel activity, allowing K+-induced potentiation of sub-maximal tetanic contractions to dominate, thereby optimizing muscle performance. When ATP demand exceeds supply, creating metabolic stress, both KATP and ClC-1 channels are activated. KATP channels contribute to force reductions by lowering sarcolemmal generation of action potentials, whilst ClC-1 channel enhances the force-depressing effects of K+, thereby triggering fatigue. The ultimate function of these changes is to preserve the remaining ATP to prevent damaging ATP depletion.
Collapse
Affiliation(s)
- Jean-Marc Renaud
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia
- College of Physical Education, Southwest University, Chongqing, China
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Desousa BR, Kim KKO, Jones AE, Ball AB, Hsieh WY, Swain P, Morrow DH, Brownstein AJ, Ferrick DA, Shirihai OS, Neilson A, Nathanson DA, Rogers GW, Dranka BP, Murphy AN, Affourtit C, Bensinger SJ, Stiles L, Romero N, Divakaruni AS. Calculation of ATP production rates using the Seahorse XF Analyzer. EMBO Rep 2023; 24:e56380. [PMID: 37548091 PMCID: PMC10561364 DOI: 10.15252/embr.202256380] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Oxidative phosphorylation and glycolysis are the dominant ATP-generating pathways in mammalian metabolism. The balance between these two pathways is often shifted to execute cell-specific functions in response to stimuli that promote activation, proliferation, or differentiation. However, measurement of these metabolic switches has remained mostly qualitative, making it difficult to discriminate between healthy, physiological changes in energy transduction or compensatory responses due to metabolic dysfunction. We therefore present a broadly applicable method to calculate ATP production rates from oxidative phosphorylation and glycolysis using Seahorse XF Analyzer data and empirical conversion factors. We quantify the bioenergetic changes observed during macrophage polarization as well as cancer cell adaptation to in vitro culture conditions. Additionally, we detect substantive changes in ATP utilization upon neuronal depolarization and T cell receptor activation that are not evident from steady-state ATP measurements. This method generates a single readout that allows the direct comparison of ATP produced from oxidative phosphorylation and glycolysis in live cells. Additionally, the manuscript provides a framework for tailoring the calculations to specific cell systems or experimental conditions.
Collapse
Affiliation(s)
- Brandon R Desousa
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Kristen KO Kim
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Anthony E Jones
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Andréa B Ball
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | - Wei Y Hsieh
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of California, Los AngelesLos AngelesCAUSA
| | | | - Danielle H Morrow
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | | | | | - Orian S Shirihai
- Department of MedicineUniversity of California, Los AngelesLos AngelesCAUSA
| | | | - David A Nathanson
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| | | | | | | | | | - Steven J Bensinger
- Department of Microbiology, Immunology, and Molecular GeneticsUniversity of California, Los AngelesLos AngelesCAUSA
| | - Linsey Stiles
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
- Department of MedicineUniversity of California, Los AngelesLos AngelesCAUSA
| | | | - Ajit S Divakaruni
- Department of Molecular and Medical PharmacologyUniversity of California, Los AngelesLos AngelesCAUSA
| |
Collapse
|
19
|
Halma MTJ, Tuszynski JA, Marik PE. Cancer Metabolism as a Therapeutic Target and Review of Interventions. Nutrients 2023; 15:4245. [PMID: 37836529 PMCID: PMC10574675 DOI: 10.3390/nu15194245] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is amenable to low-cost treatments, given that it has a significant metabolic component, which can be affected through diet and lifestyle change at minimal cost. The Warburg hypothesis states that cancer cells have an altered cell metabolism towards anaerobic glycolysis. Given this metabolic reprogramming in cancer cells, it is possible to target cancers metabolically by depriving them of glucose. In addition to dietary and lifestyle modifications which work on tumors metabolically, there are a panoply of nutritional supplements and repurposed drugs associated with cancer prevention and better treatment outcomes. These interventions and their evidentiary basis are covered in the latter half of this review to guide future cancer treatment.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- EbMC Squared CIC, Bath BA2 4BL, UK
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, AB T6G 2M9, Canada
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
- DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-1029 Turin, Italy
| | - Paul E. Marik
- Frontline COVID-19 Critical Care Alliance, Washington, DC 20036, USA
| |
Collapse
|
20
|
Wang Z, Hao D, Zhao S, Zhang Z, Zeng Z, Wang X. Lactate and Lactylation: Clinical Applications of Routine Carbon Source and Novel Modification in Human Diseases. Mol Cell Proteomics 2023; 22:100641. [PMID: 37678638 PMCID: PMC10570128 DOI: 10.1016/j.mcpro.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Cell metabolism generates numerous intermediate metabolites that could serve as feedback and feed-forward regulation substances for posttranslational modification. Lactate, a metabolic product of glycolysis, has recently been conceptualized to play a pleiotropic role in shaping cell identities through metabolic rewiring and epigenetic modifications. Lactate-derived carbons, sourced from glucose, mediate the crosstalk among glycolysis, lactate, and lactylation. Furthermore, the multiple metabolic fates of lactate make it an ideal substrate for metabolic imaging in clinical application. Several studies have identified the crucial role of protein lactylation in human diseases associated with cell fate determination, embryonic development, inflammation, neoplasm, and neuropsychiatric disorders. Herein, this review will focus on the metabolic fate of lactate-derived carbon to provide useful information for further research and therapeutic approaches in human diseases. We comprehensively discuss its role in reprogramming and modification during the regulation of glycolysis, the clinical translation prospects of the hyperpolarized lactate signal, lactyl modification in human diseases, and its application with other techniques and omics.
Collapse
Affiliation(s)
- Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Hao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Shijiazhuang Zhongnongtongchuang (ZNTC) Biotechnology Co, Ltd, Shijiazhuang, China
| | - Shuiying Zhao
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyin Zhang
- Division of Information, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China; Konge Larsen ApS, Kongens Lyngby, Denmark.
| |
Collapse
|
21
|
Directo D, Lee SR. Cancer Cachexia: Underlying Mechanisms and Potential Therapeutic Interventions. Metabolites 2023; 13:1024. [PMID: 37755304 PMCID: PMC10538050 DOI: 10.3390/metabo13091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor growth, is characterized by an accelerated loss of body weight accompanied by the depletion of skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired immune function, reduced functional capacity, compromised quality of life, and diminished survival in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this condition, ongoing research is shedding light on promising preclinical approaches that target the disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms, preclinical models for studying the progression of cancer cachexia, methods for clinical assessment, relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to contribute to the evolving foundation for effective, multifaceted counteractive strategies against this challenging condition.
Collapse
Affiliation(s)
| | - Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
22
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
23
|
Enders JD, Thomas S, Lynch P, Jack J, Ryals JM, Puchalska P, Crawford P, Wright DE. ATP-gated potassium channels contribute to ketogenic diet-mediated analgesia in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100138. [PMID: 38099277 PMCID: PMC10719532 DOI: 10.1016/j.ynpai.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 12/17/2023]
Abstract
Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.
Collapse
Affiliation(s)
- Jonathan D. Enders
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Sarah Thomas
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Paige Lynch
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jarrid Jack
- Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Janelle M. Ryals
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, United States
| | - Peter Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Douglas E. Wright
- Departments of Anesthesiology, University of Kansas Medical Center, Kansas City, KS 66160, United States
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
24
|
Coleman JC, Hallett SR, Grigoriadis AE, Conte MR. LARP4A and LARP4B in cancer: The new kids on the block. Int J Biochem Cell Biol 2023; 161:106441. [PMID: 37356415 DOI: 10.1016/j.biocel.2023.106441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Recent developments have mounted a stunning body of evidence underlying the importance of RNA binding proteins (RBPs) in cancer research. In this minireview we focus on LARP4A and LARP4B, two paralogs belonging to the superfamily of La-related proteins, and provide a critical overview of current research, including their roles in cancer pathogenesis and cell proliferation, migration, cell cycle and apoptosis. We highlight current controversies surrounding LARP4A and LARP4B and conclude that their complex roles in tumorigenesis are cell-, tissue- and context-dependent, warning that caution must be exercised before categorising either protein as an oncoprotein or tumour-suppressor. We also reveal that LARP4A and LARP4B have often been confused with one another, adding uncertainty in delineating their functions. We suggest that further functional and mechanistic studies of LARP4 proteins present significant challenges for future investigations to recognise the vital contributions of these RBPs in cancer research.
Collapse
Affiliation(s)
- Jennifer C Coleman
- Centre for Craniofacial & Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Sadie R Hallett
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
25
|
Jaworska M, Szczudło J, Pietrzyk A, Shah J, Trojan SE, Ostrowska B, Kocemba-Pilarczyk KA. The Warburg effect: a score for many instruments in the concert of cancer and cancer niche cells. Pharmacol Rep 2023:10.1007/s43440-023-00504-1. [PMID: 37332080 PMCID: PMC10374743 DOI: 10.1007/s43440-023-00504-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Although Warburg's discovery of intensive glucose uptake by tumors, followed by lactate fermentation in oxygen presence of oxygen was made a century ago, it is still an area of intense research and development of new hypotheses that, layer by layer, unravel the complexities of neoplastic transformation. This seemingly simple metabolic reprogramming of cancer cells reveals an intriguing, multi-faceted nature that may link various phenomena including cell signaling, cell proliferation, ROS generation, energy supply, macromolecules synthesis/biosynthetic precursor supply, immunosuppression, or cooperation of cancerous cells with cancer-associated fibroblasts (CAFs), known as reversed Warburg effect. According to the current perception of the causes and consequences of the Warburg effect, PI3K/Akt/mTOR are the main signaling pathways that, in concert with the transcription factors HIF-1, p53, and c-Myc, modulate the activity/expression of key regulatory enzymes, including PKM2, and PDK1 to tune in the most optimal metabolic setting for the cancer cell. This in turn secures adequate levels of biosynthetic precursors, NADPH, NAD+, and rapid ATP production to meet the increased demands of intensively proliferating tumor cells. The end-product of "aerobic glycolysis", lactate, an oncometabolite, may provide fuel to neighboring cancer cells, and facilitate metastasis and immunosuppression together enabling cancer progression. The importance and possible applicability of the presented issue are best illustrated by numerous trials with various agents targeting the Warburg effect, constituting a promising strategy in future anti-cancer regimens. In this review, we present the key aspects of this multifactorial phenomenon, depicting the mechanisms and benefits behind the Warburg effect, and also pointing to selected aspects in the field of anticancer therapy.
Collapse
Affiliation(s)
- Martyna Jaworska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Julia Szczudło
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Adrian Pietrzyk
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Jay Shah
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- Government Medical College Miraj, Miraj, Maharashtra, India
| | - Sonia E Trojan
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Barbara Ostrowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Kinga A Kocemba-Pilarczyk
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
26
|
Drochioiu G. Multifactorial Distress, the Warburg Effect, and Respiratory and pH Imbalance in Cancer Development. STRESSES 2023; 3:500-528. [DOI: 10.3390/stresses3020036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Oncogenes are thought to play an important role in aberrant regulation of growth factors, which is believed to be an initiation event of carcinogenesis. However, recent genetic and pharmacological studies have shown that the Warburg effect (WE) is needed for tumour growth. It refers to extensively studied aerobic glycolysis over the past decade, although its impact on cancer remains unclear. Meanwhile, a large body of evidence has indicated that oxidative stress (OS) is connected with the occurrence and progression of various forms of cancer. Psychosocial factors (PSF), such as chronic depression, sadness, stressful life experiences, stress-prone personality, and emotional distress or poor quality of life affect the immune system and contribute to cancer outcomes. Here, we examine the relationship between WE, OS, PSF, metal ions, other carcinogens, and the development of different cancers from the viewpoint of physiological and biochemical mechanisms.
Collapse
Affiliation(s)
- Gabi Drochioiu
- Biochemistry Group, Faculty of Chemistry, Alexandru Ioan Cuza University, 11 Carol I, 700506 Iasi, Romania
| |
Collapse
|
27
|
Pouliquen DL, Trošelj KG, Anto RJ. Curcuminoids as Anticancer Drugs: Pleiotropic Effects, Potential for Metabolic Reprogramming and Prospects for the Future. Pharmaceutics 2023; 15:1612. [PMID: 37376060 DOI: 10.3390/pharmaceutics15061612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of published studies on curcuminoids in cancer research, including its lead molecule curcumin and synthetic analogs, has been increasing substantially during the past two decades. Insights on the diversity of inhibitory effects they have produced on a multitude of pathways involved in carcinogenesis and tumor progression have been provided. As this wealth of data was obtained in settings of various experimental and clinical data, this review first aimed at presenting a chronology of discoveries and an update on their complex in vivo effects. Secondly, there are many interesting questions linked to their pleiotropic effects. One of them, a growing research topic, relates to their ability to modulate metabolic reprogramming. This review will also cover the use of curcuminoids as chemosensitizing molecules that can be combined with several anticancer drugs to reverse the phenomenon of multidrug resistance. Finally, current investigations in these three complementary research fields raise several important questions that will be put among the prospects for the future research related to the importance of these molecules in cancer research.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ruby John Anto
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram 695317, India
| |
Collapse
|
28
|
Enders JD, Thomas S, Lynch P, Jack J, Ryals JM, Puchalska P, Crawford P, Wright DE. ATP-Gated Potassium Channels Contribute to Ketogenic Diet-Mediated Analgesia in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541799. [PMID: 37292762 PMCID: PMC10245818 DOI: 10.1101/2023.05.22.541799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet.
Collapse
Affiliation(s)
- Jonathan D Enders
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Sarah Thomas
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Paige Lynch
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Jarrid Jack
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Janelle M Ryals
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455
| | - Peter Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, 55455
- Department of Molecular Biology, Biochemistry, and Biophysics, University of Minnesota, Minneapolis, MN, 55455
| | - Douglas E Wright
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, 66160
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, KS, 66160
| |
Collapse
|
29
|
Leslie TK, Brackenbury WJ. Sodium channels and the ionic microenvironment of breast tumours. J Physiol 2023; 601:1543-1553. [PMID: 36183245 PMCID: PMC10953337 DOI: 10.1113/jp282306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
Cancers of epithelial origin such as breast, prostate, cervical, gastric, colon and lung cancer account for a large proportion of deaths worldwide. Better treatment of metastasis, the main cause of cancer deaths, is therefore urgently required. Several of these tumours have been shown to have an abnormally high concentration of Na+ ([Na+ ]) and emerging evidence points to this accumulation being due to elevated intracellular [Na+ ]. This poses intriguing questions about the cellular mechanisms underlying Na+ dysregulation in cancer, and its pathophysiological significance. Elevated intracellular [Na+ ] may be due to alterations in activity of the Na+ /K+ -ATPase, and/or increased influx via Na+ channels and Na+ -linked transporters. Maintenance of the electrochemical Na+ gradient across the plasma membrane is vital to power many cellular processes that are highly active in cancer cells, including glucose and glutamine import. Na+ channels are also upregulated in cancer cells, which in turn promotes tumour growth and metastasis. For example, ENaC and ASICs are overexpressed in cancers, increasing invasion and proliferation. In addition, voltage-gated Na+ channels are also upregulated in a range of tumour types, where they promote metastatic cell behaviours via various mechanisms, including membrane potential depolarisation and altered pH regulation. Together, recent findings relating to elevated Na+ in the tumour microenvironment and how this may be regulated by several classes of Na+ channels provide a link between altered Na+ handling and poor clinical outcome. There are new opportunities to leverage this altered Na+ microenvironment for therapeutic benefit, as exemplified by several ongoing clinical trials.
Collapse
Affiliation(s)
- Theresa K. Leslie
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkHeslingtonYorkUK
- York Biomedical Research InstituteUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
30
|
Enders J, Elliott D, Wright DE. Emerging Nonpharmacologic Interventions to Treat Diabetic Peripheral Neuropathy. Antioxid Redox Signal 2023; 38:989-1000. [PMID: 36503268 PMCID: PMC10402707 DOI: 10.1089/ars.2022.0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/14/2022]
Abstract
Significance: Diabetic peripheral neuropathy (DPN), a complication of metabolic syndrome, type I and type II diabetes, leads to sensory changes that include slow nerve conduction, nerve degeneration, loss of sensation, pain, and gate disturbances. These complications remain largely untreatable, although tight glycemic control can prevent neuropathy progression. Nonpharmacologic approaches remain the most impactful to date, but additional advances in treatment approaches are needed. Recent Advances: This review highlights several emerging interventions, including a focus on dietary interventions and physical activity, that continue to show promise for treating DPN. We provide an overview of our current understanding of how exercise can improve aspects of DPN. We also highlight new studies in which a ketogenic diet has been used as an intervention to prevent and reverse DPN. Critical Issues: Both exercise and consuming a ketogenic diet induce systemic and cellular changes that collectively improve complications associated with DPN. Both interventions may involve similar signaling pathways and benefits but also impact DPN through unique mechanisms. Future Directions: These lifestyle interventions are critically important as personalized medicine approaches will likely be needed to identify specific subsets of neuropathy symptoms and deficits in patients, and determine the most impactful treatment. Overall, these two interventions have the potential to provide meaningful relief for patients with DPN and provide new avenues to identify new therapeutic targets.
Collapse
Affiliation(s)
- Jonathan Enders
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Daniel Elliott
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Douglas E. Wright
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
31
|
Liu Y, Jiang C, Liu Q, Huang R, Wang M, Guo X. CircRNAs: emerging factors for regulating glucose metabolism in colorectal cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03131-7. [PMID: 36944731 DOI: 10.1007/s12094-023-03131-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/19/2023] [Indexed: 03/23/2023]
Abstract
Colorectal cancer is a malignant disease with a high incidence and low survival rate, and the effectiveness of traditional treatments, such as surgery and radiotherapy, is very limited. CircRNAs, a kind of stable endogenous circular RNA, generally function by sponging miRNAs and binding or translating proteins. CircRNAs have been identified to play an important role in regulating the proliferation and metabolism of CRC. In recent years, many reports have indicated that by regulating the expression of glycolysis-related proteins, such as GLUT1 and HK2, or directly translating proteins, circRNAs can promote the Warburg effect in cancer cells, thereby driving CRC metabolism. Moreover, the Warburg effect increases lactate production in cancer cells and promotes acidification of the TME, which further drives cancer progression. In this review, we summarized the remarkable role of circRNAs in regulating glucose metabolism in CRC in recent years, which might be useful for finding new targets for the clinical treatment of CRC.
Collapse
Affiliation(s)
- Yulin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Chenjun Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
| | - Mancai Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China
- General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaohu Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000, The People's Republic of China.
- General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
32
|
Rastogi S, Aldosary S, Saeedan AS, Ansari MN, Singh M, Kaithwas G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharmacol 2023; 14:1108915. [PMID: 36891273 PMCID: PMC9986608 DOI: 10.3389/fphar.2023.1108915] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Hypoxia is caused by a cancer-promoting milieu characterized by persistent inflammation. NF-κB and HIF-1α are critical participants in this transition. Tumor development and maintenance are aided by NF-κB, while cellular proliferation and adaptability to angiogenic signals are aided by HIF-1α. Prolyl hydroxylase-2 (PHD-2) has been hypothesized to be the key oxygen-dependent regulator of HIF-1α and NF-transcriptional B's activity. Without low oxygen levels, HIF-1α is degraded by the proteasome in a process dependent on oxygen and 2-oxoglutarate. As opposed to the normal NF-κB activation route, where NF-κB is deactivated by PHD-2-mediated hydroxylation of IKK, this method actually activates NF-κB. HIF-1α is protected from degradation by proteasomes in hypoxic cells, where it then activates transcription factors involved in cellular metastasis and angiogenesis. The Pasteur phenomenon causes lactate to build up inside the hypoxic cells. As part of a process known as lactate shuttle, MCT-1 and MCT-4 cells help deliver lactate from the blood to neighboring, non-hypoxic tumour cells. Non-hypoxic tumour cells use lactate, which is converted to pyruvate, as fuel for oxidative phosphorylation. OXOPHOS cancer cells are characterized by a metabolic switch from glucose-facilitated oxidative phosphorylation to lactate-facilitated oxidative phosphorylation. Although PHD-2 was found in OXOPHOS cells. There is no clear explanation for the presence of NF-kappa B activity. The accumulation of the competitive inhibitor of 2-oxo-glutarate, pyruvate, in non-hypoxic tumour cells is well established. So, we conclude that PHD-2 is inactive in non-hypoxic tumour cells due to pyruvate-mediated competitive suppression of 2-oxo-glutarate. This results in canonical activation of NF-κB. In non-hypoxic tumour cells, 2-oxoglutarate serves as a limiting factor, rendering PHD-2 inactive. However, FIH prevents HIF-1α from engaging in its transcriptional actions. Using the existing scientific literature, we conclude in this study that NF-κB is the major regulator of tumour cell growth and proliferation via pyruvate-mediated competitive inhibition of PHD-2.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
33
|
Mitochondria directly sense osmotic stress to trigger rapid metabolic remodeling via regulation of pyruvate dehydrogenase phosphorylation. J Biol Chem 2022; 299:102837. [PMID: 36581206 PMCID: PMC9879793 DOI: 10.1016/j.jbc.2022.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
A high-salt diet significantly impacts various diseases, ilncluding cancer and immune diseases. Recent studies suggest that the high-salt/hyperosmotic environment in the body may alter the chronic properties of cancer and immune cells in the disease context. However, little is known about the acute metabolic changes in hyperosmotic stress. Here, we found that hyperosmotic stress for a few minutes induces Warburg-like metabolic remodeling in HeLa and Raw264.7 cells and suppresses fatty acid oxidation. Regarding Warburg-like remodeling, we determined that the pyruvate dehydrogenase phosphorylation status was altered bidirectionally (high in hyperosmolarity and low in hypoosmolarity) to osmotic stress in isolated mitochondria, suggesting that mitochondria themselves have an acute osmosensing mechanism. Additionally, we demonstrate that Warburg-like remodeling is required for HeLa cells to maintain ATP levels and survive under hyperosmotic conditions. Collectively, our findings suggest that cells exhibit acute metabolic remodeling under osmotic stress via the regulation of pyruvate dehydrogenase phosphorylation by direct osmosensing within mitochondria.
Collapse
|
34
|
Nellas I, Iyer KV, Iglesias‐Artola JM, Pippel M, Nadler A, Eaton S, Dye NA. Hedgehog signaling can enhance glycolytic ATP production in the Drosophila wing disc. EMBO Rep 2022; 23:e54025. [PMID: 36134875 PMCID: PMC9638854 DOI: 10.15252/embr.202154025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 09/08/2024] Open
Abstract
Adenosine triphosphate (ATP) production and utilization is critically important for animal development. How these processes are regulated in space and time during tissue growth remains largely unclear. We used a FRET-based sensor to dynamically monitor ATP levels across a growing tissue, using the Drosophila larval wing disc. Although steady-state levels of ATP are spatially uniform across the wing pouch, inhibiting oxidative phosphorylation reveals spatial differences in metabolic behavior, whereby signaling centers at compartment boundaries produce more ATP from glycolysis than the rest of the tissue. Genetic perturbations indicate that the conserved Hedgehog signaling pathway can enhance ATP production by glycolysis. Collectively, our work suggests the existence of a homeostatic feedback loop between Hh signaling and glycolysis, advancing our understanding of the connection between conserved developmental patterning genes and ATP production during animal tissue development.
Collapse
Affiliation(s)
- Ioannis Nellas
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Excellence Cluster, Physics of LifeTechnische Universität DresdenDresdenGermany
| | - K Venkatesan Iyer
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Department of Mechanical EngineeringIndian Institute of ScienceBangaloreIndia
| | | | - Martin Pippel
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| | - André Nadler
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
| | - Suzanne Eaton
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Excellence Cluster, Physics of LifeTechnische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - Natalie A Dye
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
- Excellence Cluster, Physics of LifeTechnische Universität DresdenDresdenGermany
- Mildred Scheel Nachwuchszentrum (MSNZ) P2, Medical FacultyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
35
|
Noel MS, Kim S, Hartley ML, Wong S, Picozzi V, Staszewski H, Kim DW, Van Tornout JM, Philip PA, Chung V, Ocean AJ, Wang‐Gillam A. A randomized phase II study of SM-88 plus methoxsalen, phenytoin, and sirolimus in patients with metastatic pancreatic cancer treated in the second line and beyond. Cancer Med 2022; 11:4169-4181. [PMID: 35499204 PMCID: PMC9678093 DOI: 10.1002/cam4.4768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/11/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This trial explores SM-88 used with methoxsalen, phenytoin, and sirolimus (MPS) in pretreated metastatic pancreatic ductal adenocarcinoma (mPDAC) METHODS: Forty-nine patients were randomized to daily 460 or 920 mg oral SM-88 with MPS (SM-88 Regimen). The primary endpoint was objective response rate (RECIST 1.1). RESULTS Thirty-seven patients completed ≥ one cycle of SM-88 Regimen (response evaluable population). Disease control rate (DCR), overall survival (OS), and progression-free survival (PFS) did not differ significantly between dose levels. Stable disease was achieved in 9/37 patients (DCR, 24.3%); there were no complete or partial responses. Quality-of-life (QOL) was maintained and trended in favor of 920 mg. SM-88 Regimen was well tolerated; a single patient (1/49) had related grade 3 and 4 adverse events, which later resolved. In the intention-to-treat population of 49 patients, the median overall survival (mOS) was 3.4 months (95% CI: 2.7-4.9 months). Those treated in the second line had an mOS of 8.1 months and a median PFS of 3.8 months. Survival was higher for patients with stable versus progressive disease (any line; mOS: 10.6 months vs. 3.9 months; p = 0.01). CONCLUSIONS SM-88 Regimen has a favorable safety profile with encouraging QOL effects, disease control, and survival trends. This regimen should be explored in the second-line treatment of patients with mPDAC. CLINICALTRIALS gov Identifier: NCT03512756.
Collapse
Affiliation(s)
- Marcus S. Noel
- Georgetown Lombardi Comprehensive Cancer CenterWashingtonDistrict of ColumbiaUSA
| | - Semmie Kim
- TYME Technologies Inc.BedminsterNew JerseyUSA
| | - Marion L. Hartley
- The Ruesch Center for the Cure of Gastrointestinal CancersWashingtonDistrict of ColumbiaUSA
| | - Steve Wong
- Sarcoma Oncology Research CenterSanta MonicaCaliforniaUSA
| | | | | | - Dae Won Kim
- The University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | | - Philip Agop Philip
- Karmanos Cancer CenterWayne State UniversityMichiganDetroitUSA
- SWOGFarmington HillsMichiganUSA
| | | | - Allyson J. Ocean
- Weill Cornell MedicineNew York‐Presbyterian HospitalNew YorkNew YorkUSA
| | - Andrea Wang‐Gillam
- Washington University School of Medicine in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
36
|
Chang YC, Chen SJ, Huang WH, Huang CP, Chen YH, Chen WC. Prostate Cancer after Percutaneous Arterial Embolization of the Prostate: A Case Report. Diagnostics (Basel) 2022; 12:diagnostics12102378. [PMID: 36292067 PMCID: PMC9600189 DOI: 10.3390/diagnostics12102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
We report a patient with prostate cancer found 2 years after percutaneous arterial embolization (PAE) of the prostate with a rapid increase in prostate specific antigen (PSA) 3 months later, even though the initial result was low. He did not consult a urologist during or after PAE until acute urinary retention developed. The clinical stage was cT2cN1M1b with Gleason grade 5 + 5 = 10. An increase in PSA a short interval after PAE may suggest the presence of prostate cancer. We suggest that patients undergoing PAE should consult a urologist, and that PSA levels should be checked every 3 months in the first year after PSA.
Collapse
Affiliation(s)
- Ying-Chieh Chang
- Department of Urology, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Szu-Ju Chen
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Wei-Hsuan Huang
- Department of Urology, Everan Hospital, Taichung 41159, Taiwan
| | - Chi-Ping Huang
- Department of Urology, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Yung-Hsiang Chen
- Department of Urology, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
| | - Wen-Chi Chen
- Department of Urology, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- School of Medicine, Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Correspondence:
| |
Collapse
|
37
|
In vivo metabolic imaging identifies lipid vulnerability in a preclinical model of Her2+/Neu breast cancer residual disease and recurrence. NPJ Breast Cancer 2022; 8:111. [PMID: 36163365 PMCID: PMC9512922 DOI: 10.1038/s41523-022-00481-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
Recurrent cancer cells that evade therapy is a leading cause of death in breast cancer patients. This risk is high for women showing an overexpression of human epidermal growth factor receptor 2 (Her2). Cells that persist can rely on different substrates for energy production relative to their primary tumor counterpart. Here, we characterize metabolic reprogramming related to tumor dormancy and recurrence in a doxycycline-induced Her2+/Neu model of breast cancer with varying times to recurrence using longitudinal fluorescence microscopy. Glucose uptake (2-NBDG) and mitochondrial membrane potential (TMRE) imaging metabolically phenotype mammary tumors as they transition to regression, dormancy, and recurrence. “Fast-recurrence” tumors (time to recurrence ~55 days), transition from glycolysis to mitochondrial metabolism during regression and this persists upon recurrence. “Slow-recurrence” tumors (time to recurrence ~100 days) rely on both glycolysis and mitochondrial metabolism during recurrence. The increase in mitochondrial activity in fast-recurrence tumors is attributed to a switch from glucose to fatty acids as the primary energy source for mitochondrial metabolism. Consequently, when fast-recurrence tumors receive treatment with a fatty acid inhibitor, Etomoxir, tumors report an increase in glucose uptake and lipid synthesis during regression. Treatment with Etomoxir ultimately prolongs survival. We show that metabolic reprogramming reports on tumor recurrence characteristics, particularly at time points that are essential for actionable targets. The temporal characteristics of metabolic reprogramming will be critical in determining the use of an appropriate timing for potential therapies; namely, the notion that metabolic-targeted inhibition during regression reports long-term therapeutic benefit.
Collapse
|
38
|
Li J, Valkenburgh JV, Fang J, Zhang D, Chen Y, Chen Q, Jia G, Chen AZ, Zhang X, Chen K. Development of a novel radiofluorinated riboflavin probe for riboflavin receptor-targeting PET imaging. Pharmacol Res 2022; 183:106395. [PMID: 35970328 DOI: 10.1016/j.phrs.2022.106395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Riboflavin receptor 3 (RFVT3) is a key protein in energetic metabolism reprogramming and is overexpressed in multiple cancers involved in malignant proliferation, angiogenesis, chemotherapy resistance, and immunosuppression. To enable non-invasive real-time quantification of RFVT3 in tumors, we sought to develop a suitable PET probe that would allow specific and selective RFVT3 imaging in vivo. A novel radiofluorinated riboflavin probe (18F-RFTA) based on riboflavin was synthesized and characterized in terms of radiochemical purity, hydrophilicity, binding affinity, and stability. Positron emission tomography (PET) imaging of 18F-RFTA was performed in U87MG tumor-bearing mice. Immunohistochemistry staining was carried out to determine the expression of RFVT3 in U87MG tumors. 18F-RFTA was characterized by high radiochemical purity and RFVT3 binding affinity, and remarkable stability in vitro and in vivo. Small-animal PET imaging with 18F-RFTA revealed significantly higher uptake in RFVT3-expressing U87MG tumors than in muscle. In conclusion, we have developed the first radiofluorinated riboflavin-based PET probe that is suitable for imaging RFVT3-positive tumors. The new target/probe system can be leveraged for extensive use in the diagnosis and treatment of RFVT3 overexpressing diseases, such as oncologic, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA; Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Jianyang Fang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Deliang Zhang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingxi Chen
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Austin Z Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC-135D, Los Angeles, CA 90033, USA.
| |
Collapse
|
39
|
Russell S, Xu L, Kam Y, Abrahams D, Ordway B, Lopez AS, Bui MM, Johnson J, Epstein T, Ruiz E, Lloyd MC, Swietach P, Verduzco D, Wojtkowiak J, Gillies RJ. Proton export upregulates aerobic glycolysis. BMC Biol 2022; 20:163. [PMID: 35840963 PMCID: PMC9287933 DOI: 10.1186/s12915-022-01340-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Aggressive cancers commonly ferment glucose to lactic acid at high rates, even in the presence of oxygen. This is known as aerobic glycolysis, or the "Warburg Effect." It is widely assumed that this is a consequence of the upregulation of glycolytic enzymes. Oncogenic drivers can increase the expression of most proteins in the glycolytic pathway, including the terminal step of exporting H+ equivalents from the cytoplasm. Proton exporters maintain an alkaline cytoplasmic pH, which can enhance all glycolytic enzyme activities, even in the absence of oncogene-related expression changes. Based on this observation, we hypothesized that increased uptake and fermentative metabolism of glucose could be driven by the expulsion of H+ equivalents from the cell. RESULTS To test this hypothesis, we stably transfected lowly glycolytic MCF-7, U2-OS, and glycolytic HEK293 cells to express proton-exporting systems: either PMA1 (plasma membrane ATPase 1, a yeast H+-ATPase) or CA-IX (carbonic anhydrase 9). The expression of either exporter in vitro enhanced aerobic glycolysis as measured by glucose consumption, lactate production, and extracellular acidification rate. This resulted in an increased intracellular pH, and metabolomic analyses indicated that this was associated with an increased flux of all glycolytic enzymes upstream of pyruvate kinase. These cells also demonstrated increased migratory and invasive phenotypes in vitro, and these were recapitulated in vivo by more aggressive behavior, whereby the acid-producing cells formed higher-grade tumors with higher rates of metastases. Neutralizing tumor acidity with oral buffers reduced the metastatic burden. CONCLUSIONS Therefore, cancer cells which increase export of H+ equivalents subsequently increase intracellular alkalization, even without oncogenic driver mutations, and this is sufficient to alter cancer metabolism towards an upregulation of aerobic glycolysis, a Warburg phenotype. Overall, we have shown that the traditional understanding of cancer cells favoring glycolysis and the subsequent extracellular acidification is not always linear. Cells which can, independent of metabolism, acidify through proton exporter activity can sufficiently drive their metabolism towards glycolysis providing an important fitness advantage for survival.
Collapse
Affiliation(s)
- Shonagh Russell
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Graduate School, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
| | - Liping Xu
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Yoonseok Kam
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 9505 USA
| | - Dominique Abrahams
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Bryce Ordway
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Graduate School, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33620 USA
| | - Alex S. Lopez
- Anatomic Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Marilyn M. Bui
- Anatomic Pathology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
- Analytic Microscopy Core, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Joseph Johnson
- Analytic Microscopy Core, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | | | - Epifanio Ruiz
- Small Animal Imaging Department, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Mark C. Lloyd
- Inspirata, Inc., One North Dale Mabry Hwy. Suite 600, Tampa, FL 33609 USA
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - Daniel Verduzco
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Jonathan Wojtkowiak
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| | - Robert J. Gillies
- Cancer Physiology, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612 USA
| |
Collapse
|
40
|
Markouli M, Strepkos D, Papavassiliou KA, Papavassiliou AG, Piperi C. Crosstalk of Epigenetic and Metabolic Signaling Underpinning Glioblastoma Pathogenesis. Cancers (Basel) 2022; 14:2655. [PMID: 35681635 PMCID: PMC9179868 DOI: 10.3390/cancers14112655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic alterations in neoplastic cells have recently gained increasing attention as a main topic of research, playing a crucial regulatory role in the development and progression of tumors. The interplay between epigenetic modifications and metabolic pathways in glioblastoma cells has emerged as a key pathogenic area with great potential for targeted therapy. Epigenetic mechanisms have been demonstrated to affect main metabolic pathways, such as glycolysis, pentose phosphate pathway, gluconeogenesis, oxidative phosphorylation, TCA cycle, lipid, and glutamine metabolism by modifying key regulatory genes. Although epigenetic modifications can primarily promote the activity of metabolic pathways, they may also exert an inhibitory role. In this way, they participate in a complex network of interactions that regulate the metabolic behavior of malignant cells, increasing their heterogeneity and plasticity. Herein, we discuss the main epigenetic mechanisms that regulate the metabolic pathways in glioblastoma cells and highlight their targeting potential against tumor progression.
Collapse
|
41
|
Kubik J, Humeniuk E, Adamczuk G, Madej-Czerwonka B, Korga-Plewko A. Targeting Energy Metabolism in Cancer Treatment. Int J Mol Sci 2022; 23:ijms23105572. [PMID: 35628385 PMCID: PMC9146201 DOI: 10.3390/ijms23105572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second most common cause of death worldwide after cardiovascular diseases. The development of molecular and biochemical techniques has expanded the knowledge of changes occurring in specific metabolic pathways of cancer cells. Increased aerobic glycolysis, the promotion of anaplerotic responses, and especially the dependence of cells on glutamine and fatty acid metabolism have become subjects of study. Despite many cancer treatment strategies, many patients with neoplastic diseases cannot be completely cured due to the development of resistance in cancer cells to currently used therapeutic approaches. It is now becoming a priority to develop new treatment strategies that are highly effective and have few side effects. In this review, we present the current knowledge of the enzymes involved in the different steps of glycolysis, the Krebs cycle, and the pentose phosphate pathway, and possible targeted therapies. The review also focuses on presenting the differences between cancer cells and normal cells in terms of metabolic phenotype. Knowledge of cancer cell metabolism is constantly evolving, and further research is needed to develop new strategies for anti-cancer therapies.
Collapse
Affiliation(s)
- Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
- Correspondence: ; Tel.: +48-81-448-65-20
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| | - Barbara Madej-Czerwonka
- Human Anatomy Department, Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (G.A.); (A.K.-P.)
| |
Collapse
|
42
|
Alba A, Vázquez AA, Sánchez J, Gourbal B. Immunological Resistance of Pseudosuccinea columella Snails From Cuba to Fasciola hepatica (Trematoda) Infection: What We Know and Where We Go on Comparative Molecular and Mechanistic Immunobiology, Ecology and Evolution. Front Immunol 2022; 13:794186. [PMID: 35140717 PMCID: PMC8818719 DOI: 10.3389/fimmu.2022.794186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most interesting biological models is that of snail-trematode interactions, many of which ultimately result in the transmission of several important diseases, particularly in the tropics. Herein, we review the scientific advances on a trematode-snail system in which certain populations of Pseudosuccinea columella (a common host species for trematodes) have been demonstrated naturally-resistant to Fasciola hepatica, in association with an effective encapsulation of the parasite by innate immune cells of the host, the hemocytes. Emphasis is made on the molecular and immunological features characterizing each P. columella phenotype in relation to their anti-parasitic competence, their distinctive ecological patterns and the existence of a significant cost of resistance. An integrative overview of the resistance to F. hepatica through comparative immunobiology, genetics and ecology is presented to hypothesize on the possible origins and evolution of this phenomenon and to postulate significant roles for parasite mediated-selection and environmental factors in shaping and maintaining the resistant phenotype in the field. Lastly, clues into future experimental perspectives to deeply characterize the interplay between P. columella and F. hepatica and the immunobiology of the resistance are also included. The advances revised in the present paper are only beginning to unravel mechanisms of anti-parasite innate defense responses and their evolutionary bases, and can facilitate the development of prospective approaches towards practical applications of P. columella resistance.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Antonio A. Vázquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Jorge Sánchez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
43
|
Effects of aging on protein expression in mice brain microvessels: ROS scavengers, mRNA/protein stability, glycolytic enzymes, mitochondrial complexes, and basement membrane components. GeroScience 2021; 44:371-388. [PMID: 34708300 PMCID: PMC8811117 DOI: 10.1007/s11357-021-00468-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Differentially expressed (DE) proteins in the cortical microvessels (MVs) of young, middle-aged, and old male and female mice were evaluated using discovery-based proteomics analysis (> 4,200 quantified proteins/group). Most DE proteins (> 90%) showed no significant differences between the sexes; however, some significant DE proteins showing sexual differences in MVs decreased from young (8.3%), to middle-aged (3.7%), to old (0.5%) mice. Therefore, we combined male and female data for age-dependent comparisons but noted sex differences for examination. Key proteins involved in the oxidative stress response, mRNA or protein stability, basement membrane (BM) composition, aerobic glycolysis, and mitochondrial function were significantly altered with aging. Relative abundance of superoxide dismutase-1/-2, catalase and thioredoxin were reduced with aging. Proteins participating in either mRNA degradation or pre-mRNA splicing were significantly increased in old mice MVs, whereas protein stabilizing proteins decreased. Glycolytic proteins were not affected in middle age, but the relative abundance of these proteins decreased in MVs of old mice. Although most of the 41 examined proteins composing mitochondrial complexes I–V were reduced in old mice, six of these proteins showed a significant reduction in middle-aged mice, but the relative abundance increased in fourteen proteins. Nidogen, collagen, and laminin family members as well as perlecan showed differing patterns during aging, indicating BM reorganization starting in middle age. We suggest that increased oxidative stress during aging leads to adverse protein profile changes of brain cortical MVs that affect mRNA/protein stability, BM integrity, and ATP synthesis capacity.
Collapse
|
44
|
Padda J, Khalid K, Kakani V, Cooper AC, Jean-Charles G. Metabolic Acidosis in Leukemia. Cureus 2021; 13:e17732. [PMID: 34659946 PMCID: PMC8491631 DOI: 10.7759/cureus.17732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/05/2022] Open
Abstract
In 2020, the incidence of leukemia was 474,519 with 311,594 mortality worldwide. In 2021, the American Cancer Society (ACS) has estimated 61,090 new cases of leukemia to occur within the United States. It has also been reported that the most common cause of death in children from one to fourteen years old is oncological, with leukemia being the most frequent cause. A phenomenon known as the Warburg effect has been affiliated with cancer. The Warburg effect is a metabolic abnormality of lactic acidosis in malignancies, with most cases presenting as hematological malignancies such as leukemia. Although many theories have been formulated to clarify the role of the Warburg effect, the exact role still remains uncertain. Four suggested theories on why the Warburg effect happens to include cell signaling, adenosine triphosphate (ATP) synthesis, biosynthesis, and the tumor microenvironment. The Warburg effect occurs in leukemia with the help of enzymes such as pyruvate kinases M2 (PKM2), lactate dehydrogenase A (LDHA), pyruvate dehydrogenase kinase 1 (PDK1), and fibroblast growth factor receptor 1 (FGFR1). In this literature, we explain the proposed hypotheses of the Warburg effect, along with the molecular mechanism of how leukemia is able to produce lactic acid, with the intent to better understand this phenomenon.
Collapse
Affiliation(s)
| | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, Advent Health & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
45
|
Schmidt CA, Fisher-Wellman KH, Neufer PD. From OCR and ECAR to energy: Perspectives on the design and interpretation of bioenergetics studies. J Biol Chem 2021; 297:101140. [PMID: 34461088 PMCID: PMC8479256 DOI: 10.1016/j.jbc.2021.101140] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Biological energy transduction underlies all physiological phenomena in cells. The metabolic systems that support energy transduction have been of great interest due to their association with numerous pathologies including diabetes, cancer, rare genetic diseases, and aberrant cell death. Commercially available bioenergetics technologies (e.g., extracellular flux analysis, high-resolution respirometry, fluorescent dye kits, etc.) have made practical assessment of metabolic parameters widely accessible. This has facilitated an explosion in the number of studies exploring, in particular, the biological implications of oxygen consumption rate (OCR) and substrate level phosphorylation via glycolysis (i.e., via extracellular acidification rate (ECAR)). Though these technologies have demonstrated substantial utility and broad applicability to cell biology research, they are also susceptible to historical assumptions, experimental limitations, and other caveats that have led to premature and/or erroneous interpretations. This review enumerates various important considerations for designing and interpreting cellular and mitochondrial bioenergetics experiments, some common challenges and pitfalls in data interpretation, and some potential "next steps" to be taken that can address these highlighted challenges.
Collapse
Affiliation(s)
- Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Departments of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Departments of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; Departments of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA; Departments of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
46
|
Yang R, Ying G, Li B. Potential of electron transfer and its application in dictating routes of biochemical processes associated with metabolic reprogramming. Front Med 2021; 15:679-692. [PMID: 34302614 DOI: 10.1007/s11684-021-0866-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/25/2021] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming, such as abnormal utilization of glucose, addiction to glutamine, and increased de-novo lipid synthesis, extensively occurs in proliferating cancer cells, but the underneath rationale has remained to be elucidated. Based on the concept of the degree of reduction of a compound, we have recently proposed a calculation termed as potential of electron transfer (PET), which is used to characterize the degree of electron redistribution coupled with metabolic transformations. When this calculation is combined with the assumed model of electron balance in a cellular context, the enforced selective reprogramming could be predicted by examining the net changes of the PET values associated with the biochemical pathways in anaerobic metabolism. Some interesting properties of PET in cancer cells were also discussed, and the model was extended to uncover the chemical nature underlying aerobic glycolysis that essentially results from energy requirement and electron balance. Enabling electron transfer could drive metabolic reprogramming in cancer metabolism. Therefore, the concept and model established on electron transfer could guide the treatment strategies of tumors and future studies on cellular metabolism.
Collapse
Affiliation(s)
- Ronghui Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, 100069, China
| | - Guoguang Ying
- Department of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Binghui Li
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, 100069, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
47
|
Zanotelli MR, Zhang J, Reinhart-King CA. Mechanoresponsive metabolism in cancer cell migration and metastasis. Cell Metab 2021; 33:1307-1321. [PMID: 33915111 PMCID: PMC9015673 DOI: 10.1016/j.cmet.2021.04.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Altered tissue mechanics and metabolism are defining characteristics of cancer that impact not only proliferation but also migration. While migrating through a mechanically and spatially heterogeneous microenvironment, changes in metabolism allow cells to dynamically tune energy generation and bioenergetics in response to fluctuating energy needs. Physical cues from the extracellular matrix influence mechanosignaling pathways, cell mechanics, and cytoskeletal architecture to alter presentation and function of metabolic enzymes. In cancer, altered mechanosensing and metabolic reprogramming supports metabolic plasticity and high energy production while cells migrate and metastasize. Here, we discuss the role of mechanoresponsive metabolism in regulating cell migration and supporting metastasis as well as the potential of therapeutically targeting cancer metabolism to block motility and potentially metastasis.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jian Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | |
Collapse
|
48
|
Podder A, Joseph MM, Biswas S, Samanta S, Maiti KK, Bhuniya S. Amphiphilic fluorescent probe self-encored in plasma to detect pH fluctuations in cancer cell membranes. Chem Commun (Camb) 2021; 57:607-610. [PMID: 33346278 DOI: 10.1039/d0cc06694j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an amphiphilic pH probe (P1CS) to detect pH levels in the plasma membrane in cancer cells. An elevated fluorescence signal at 550 nm at the cell surface of cancer cells (MDA-MB-231, HeLa cells) prompted the application of P1CS as a pH marker for the cancer cell surface, discriminating it from normal cells (WI-38). Moreover, the probe enables labeling of the surface of multilayered tumor spheroids, which promotes its use as a marker for the surface of tumor tissue.
Collapse
Affiliation(s)
- Arup Podder
- Amrita Centre for Industrial Research and Innovation, Amrita School of engineering, Coimbatore, Amrita Vishwa Vidyapeetham 641-112, India.
| | - Manu M Joseph
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India.
| | - Shayeri Biswas
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, 700091, India. spbhuniya@jisiasr@org
| | - Sanjib Samanta
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, 700091, India. spbhuniya@jisiasr@org
| | - Kaustabh K Maiti
- Chemical Sciences & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, Kerala 695019, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sankarprasad Bhuniya
- Centre for Interdisciplinary Science, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, 700091, India. spbhuniya@jisiasr@org
| |
Collapse
|
49
|
Vascular calcification and response to neoadjuvant therapy in locally advanced rectal cancer: an exploratory study. J Cancer Res Clin Oncol 2021; 147:3409-3420. [PMID: 33710416 PMCID: PMC8484095 DOI: 10.1007/s00432-021-03570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 11/04/2022]
Abstract
Purpose Patients with locally advanced rectal cancer (LARC) may experience a clinical complete response (cCR) to neoadjuvant chemoradiotherapy (NACRT) and opt for non-operative management. Pathological factors that relate to NACRT response have been well described. Host factors associated with response, however, are poorly defined. Calcification of the aortoiliac (AC) vessels supplying the rectum may influence treatment response. Methods Patients with LARC having NACRT prior to curative surgery at Glasgow Royal Infirmary (GRI) and St Mark’s hospital (SMH) between 2008 and 2016 were identified. AC was scored on pre-treatment CT imaging. NACRT response was assessed using pathologic complete response (pCR) rates, tumour regression grades (TRGs), the NeoAdjuvant Rectal score and T-/N-downstaging. Associations were assessed using Chi-squared, Mantel–Haenszel and Fisher’s exact tests. Results Of 231 patients from GRI, 79 (34%) underwent NACRT for LARC. Most were male (58%), aged over 65 (51%) with mid- to upper rectal tumours (56%) and clinical T3/4 (95%), node-positive (77%) disease. pCR occurred in 10 patients (13%). Trends were noted between higher clinical T stage and poor response by Royal College of Pathologist’s TRG (p = 0.021) and tumour height > 5 cm and poor response by Mandard TRG (0.068). In the SMH cohort, 49 of 333 (15%) patients underwent NACRT; 8 (16%) developed a pCR. AC was not associated with NACRT response in either cohort. Conclusions AC was not associated with NACRT response in this cohort. Larger contemporary cohorts are required to better assess host determinants of NACRT response and develop predictive models to improve patient selection. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03570-1.
Collapse
|
50
|
Schmidt CA, McLaughlin KL, Boykov IN, Mojalagbe R, Ranganathan A, Buddo KA, Lin CT, Fisher-Wellman KH, Neufer PD. Aglycemic growth enhances carbohydrate metabolism and induces sensitivity to menadione in cultured tumor-derived cells. Cancer Metab 2021; 9:3. [PMID: 33468237 PMCID: PMC7816515 DOI: 10.1186/s40170-021-00241-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most prevalent form of liver malignancy and carries poor prognoses due to late presentation of symptoms. Treatment of late-stage HCC relies heavily on chemotherapeutics, many of which target cellular energy metabolism. A key platform for testing candidate chemotherapeutic compounds is the intrahepatic orthotopic xenograft (IOX) model in rodents. Translational efficacy from the IOX model to clinical use is limited (in part) by variation in the metabolic phenotypes of the tumor-derived cells that can be induced by selective adaptation to subculture conditions. Methods In this study, a detailed multilevel systems approach combining microscopy, respirometry, potentiometry, and extracellular flux analysis (EFA) was utilized to examine metabolic adaptations that occur under aglycemic growth media conditions in HCC-derived (HEPG2) cells. We hypothesized that aglycemic growth would result in adaptive “aerobic poise” characterized by enhanced capacity for oxidative phosphorylation over a range of physiological energetic demand states. Results Aglycemic growth did not invoke adaptive changes in mitochondrial content, network complexity, or intrinsic functional capacity/efficiency. In intact cells, aglycemic growth markedly enhanced fermentative glycolytic substrate-level phosphorylation during glucose refeeding and enhanced responsiveness of both fermentation and oxidative phosphorylation to stimulated energy demand. Additionally, aglycemic growth induced sensitivity of HEPG2 cells to the provitamin menadione at a 25-fold lower dose compared to control cells. Conclusions These findings indicate that growth media conditions have substantial effects on the energy metabolism of subcultured tumor-derived cells, which may have significant implications for chemotherapeutic sensitivity during incorporation in IOX testing panels. Additionally, the metabolic phenotyping approach used in this study provides a practical workflow that can be incorporated with IOX screening practices to aid in deciphering the metabolic underpinnings of chemotherapeutic drug sensitivity. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00241-0.
Collapse
Affiliation(s)
- Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey L McLaughlin
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Ilya N Boykov
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rafiq Mojalagbe
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | | | - Katherine A Buddo
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA. .,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA. .,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|