1
|
Azzouz A, Dewez D, Benghaffour A, Hausler R, Roy R. Role of Clay Minerals in Natural Media Self-Regeneration from Organic Pollution-Prospects for Nature-Inspired Water Treatments. Molecules 2024; 29:5108. [PMID: 39519749 PMCID: PMC11547395 DOI: 10.3390/molecules29215108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pollution from organic molecules is a major environmental issue that needs to be addressed because of the negative impacts of both the harmfulness of the molecule structures and the toxicity that can spread through natural media. This is mainly due to their unavoidable partial oxidation under exposure to air and solar radiation into diverse derivatives. Even when insoluble, the latter can be dispersed in aqueous media through solvatation and/or complexation with soluble species. Coagulation-flocculation, biological water treatments or adsorption on solids cannot result in a total elimination of organic pollutants. Chemical degradation by chlorine and/or oxygen-based oxidizing agents is not a viable approach due to incomplete mineralization into carbon dioxide and other oxides. A more judicious strategy resides in mimicking natural oxidation under ambient conditions. Soils and aqueous clay suspensions are known to display adsorptive and catalytic properties, and slow and complete self-regeneration can be achieved in an optimum time frame with a much slower pollution throughput. A deep knowledge of the behavior of aluminosilicates and of oxidizing species in soils and aquatic media allows us to gain an understanding of their roles in natural oxidative processes. Their individual and combined contributions will be discussed in the present critical analysis of the reported literature.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
- Department of Construction Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada;
| | - David Dewez
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
| | - Amina Benghaffour
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
| | - Robert Hausler
- Department of Construction Engineering, École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada;
| | - René Roy
- Nanoqam, Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada; (D.D.); (A.B.); (R.R.)
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
2
|
Yang Q, Wei J, Chen Y, Xu Z, Ma D, Zheng M, Li J. Continuous operation of nano-catalytic ozonation using membrane separation coupling system: Influence factors and mechanism. CHEMOSPHERE 2024; 362:142117. [PMID: 38670501 DOI: 10.1016/j.chemosphere.2024.142117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/06/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The application of nano-catalysts in improving the ozonation removal efficiency for refractory organic compounds has been extensively investigated. However, cost-effective nano-catalysts separation remains a challenge. In this study, membrane separation processes were employed to separate nano-MgO catalysts from an ozonation system. A continuous nano-catalytic ozonation membrane separation (nCOMS) coupling system was successfully constructed for treating quinoline. The results showed that long hydraulic retention time (HRT) and high nano-MgO dosage could improve the quinolone removal efficiency but shorten operation cycles. At the optimal operation conditions of HRT = 4 h and nano-MgO dosage = 0.2 g/L, the nCOMS system achieved a stable quinoline removal efficiency of 85.2% for 240 min running with a transmembrane pressure lower than 10 kPa. The quinoline removal efficiency contribution for ozonation, catalysis and membrane separation was 57.1%, 24.9% and 18.0%, respectively. Compared to ozonation membrane separation system, the fouling rate index of the nCOMS system increased by 60% under optimal conditions, but the irreversible fouling was reduced to 28%. In addition, the nCOMS system exhibited reduced adverse effects of coexisting natural organic matter (NOM) on quinoline removal and membrane fouling. In conclusion, the nCOMS system demonstrated higher quinoline removal efficiency, lower irreversible fouling, and reduced adverse effect of coexisting NOM, thereby signifying its potential for practical applications in advanced treatment of industrial wastewater.
Collapse
Affiliation(s)
- Qiong Yang
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Jianjian Wei
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China; , Jiangsu Environmental Engineering Technology Co. Ltd, Jiangsu Environmental Protection Group Co. Ltd, Nanjing, 210036, Jiangsu Province, China
| | - Yili Chen
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Zhourui Xu
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Dehua Ma
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| | - Min Zheng
- , Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Jiansheng Li
- , Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| |
Collapse
|
3
|
Swenson JT, Ginder-Vogel M, Remucal CK. Influence of Divalent Cation Inhibition and Dissolved Organic Matter Enhancement on Phenol Oxidation Kinetics by Manganese Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2479-2489. [PMID: 38265036 DOI: 10.1021/acs.est.3c08273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Manganese oxides can oxidize organic compounds, such as phenols, and may potentially be used in passive water treatment applications. However, the impact of common water constituents, including cations and dissolved organic matter (DOM), on this reaction is poorly understood. For example, the presence of DOM can increase or decrease phenol oxidation rates with manganese oxides. Furthermore, the interactions of DOM and cations and their impact on the phenol oxidation rates have not been examined. Therefore, we investigated the oxidation kinetics of six phenolic contaminants with acid birnessite in ten whole water samples. The oxidation rate constants of 4-chlorophenol, 4-tert-octylphenol, 4-bromophenol, and phenol consistently decreased in all waters relative to buffered ultrapure water, whereas the oxidation rate of bisphenol A and triclosan increased by up to 260% in some waters. Linear regression analyses and targeted experiments demonstrated that the inhibition of phenol oxidation is largely determined by cations. Furthermore, quencher experiments indicated that radical-mediated interactions from oxidized DOM contributed to enhanced oxidation of bisphenol A. The variable changes between compounds and water samples demonstrate the challenge of accurately predicting contaminant transformation rates in environmentally relevant systems based on experiments conducted in the absence of natural water constituents.
Collapse
Affiliation(s)
- Jenna T Swenson
- Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Matthew Ginder-Vogel
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
State of Art and Perspectives in Catalytic Ozonation for Removal of Organic Pollutants in Water: Influence of Process and Operational Parameters. Catalysts 2023. [DOI: 10.3390/catal13020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The number of organic pollutants detected in water and wastewater is continuously increasing thus causing additional concerns about their impact on public and environmental health. Therefore, catalytic processes have gained interest as they can produce radicals able to degrade recalcitrant micropollutants. Specifically, catalytic ozonation has received considerable attention due to its ability to achieve advanced treatment performances at reduced ozone doses. This study surveys and summarizes the application of catalytic ozonation in water and wastewater treatment, paying attention to both homogeneous and heterogeneous catalysts. This review integrates bibliometric analysis using VOS viewer with systematic paper reviews, to obtain detailed summary tables where process and operational parameters relevant to catalytic ozonation are reported. New insights emerging from heterogeneous and homogenous catalytic ozonation applied to water and wastewater treatment for the removal of organic pollutants in water have emerged and are discussed in this paper. Finally, the activities of a variety of heterogeneous catalysts have been assessed using their chemical–physical parameters such as point of zero charge (PZC), pKa, and pH, which can determine the effect of the catalysts (positive or negative) on catalytic ozonation processes.
Collapse
|
5
|
Jin X, Wu C, Fu L, Tian X, Wang P, Zhou Y, Zuo J. Development, dilemma and potential strategies for the application of nanocatalysts in wastewater catalytic ozonation: A review. J Environ Sci (China) 2023; 124:330-349. [PMID: 36182143 DOI: 10.1016/j.jes.2021.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 06/16/2023]
Abstract
With the continuous development of nanomaterials in recent years, the application of nanocatalysts in catalytic ozone oxidation has attracted more and more researchers' attention due to their excellent catalytic properties. In this review, we systematically summarized the current research status of nanocatalysts mainly involving material categories, mechanisms and catalytic efficiency. Based on summary and analysis, we found most of the reported nanocatalysts were in the stage of laboratory research, which was caused by the nanocatalysts defects such as easy aggregation, difficult separation, and easy leakage. These defects might result in severe resource waste, economic loss and potentially adverse effects imposed on the ecosystem and human health. Aiming at solving these defects, we further analyzed the reasons and the existing reports, and revealed that coupling nano-catalyst and membrane, supported nanocatalysts and magnetic nanocatalysts had promising potential in solving these problems and promoting the actual application of nanocatalysts in wastewater treatment. Furthermore, the advantages, shortages and our perspectives of these methods are summarized and discussed.
Collapse
Affiliation(s)
- Xiaoguang Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Changyong Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| | - Liya Fu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Xiangmiao Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Panxin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environment Sciences, Beijing 100012, China.
| | - Jiane Zuo
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Baştürk E, Karataş M. Removal of pharmaceuticals by advanced treatment methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113808. [PMID: 34649316 DOI: 10.1016/j.jenvman.2021.113808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The removal of endocrine disrupting compounds (EDCs) remains a big challenge in water treatment in terms of public health. The aim of the study was evaluating the performance of nano TiO2, ozone, and UV system for removal of EDCs. In this study, the efficiency of the nano TiO2 to degrade target EDCs under catalytic and photocatalytic ozonation was examined at different operational conditions. The maximum removal of target pollutant was obtained with pH 6.8; ozone concentration 10 mg/L; catalyst dosage 0.050 g/L and the duration time of the photocatalytic performances was 10 min showing the most treatment conditions respectively. In addition, the surface reaction mechanism of endocrine disrupting compound removal by catalytic and photocatalytic ozonation was investigated. The results showed that the catalyst can significantly enhance the removal of target compound. The 99.0%, 88.3% and 51.8% removal rates were obtained at photocatalytic ozonation, catalytic ozonation and sole ozonation, respectively. These results indicated that the Ozone/TiO2/UV process was favorable for engineering applications for removal of endocrine disrupting compounds such as steroid hormone and likely similar micro pollutants.
Collapse
Affiliation(s)
- Emine Baştürk
- Aksaray University, Faculty of Engineering, Department of Environmental Engineering, 68100, Aksaray, Turkey; Department of Environmental Protection Technologies, Technical Sciences Vocational School, Aksaray University, 68100, Aksaray, Turkey.
| | - Mustafa Karataş
- Aksaray University, Faculty of Engineering, Department of Environmental Engineering, 68100, Aksaray, Turkey
| |
Collapse
|
7
|
Application of Catalytic Ozonation Process Using a Novel Fe3O4/Mg(OH)2/4A-Zeolite Catalyst for Swift Treatment of Dairy Effluent. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01904-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Comparison of the Efficiency of Ultraviolet/Zinc Oxide (UV/ZnO) and Ozone/Zinc Oxide (O3/ZnO) Techniques as Advanced Oxidation Processes in the Removal of Trimethoprim from Aqueous Solutions. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/9640918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Nowadays, advanced oxidation processes, particularly photocatalyst process and catalytic ozonation by ZnO nanoparticles, are the most efficient method of eliminating pharmaceuticals. The purpose of this study was to compare the efficiency of ultraviolet/zinc oxide (UV/ZnO) and ozone/zinc oxide (O3/ZnO) techniques as advanced oxidation processes in the removal of trimethoprim (TMP) from aqueous solutions. The process consisted of 0.6 g/L of ozone (O3), pH = 7.5 ± 0.5, TMP with a concentration of 0.5–5 mg/L, ZnO with a dose of 50–500 mg/L, 5–30 min reaction time, and 30–180 min contact time with UV radiation (6 W, 256 nm) in a continuous reactor. The high removal efficiency was achieved after 25 minutes when ZnO is used in 1 mg/L TMP under an operational condition at pH 7.5. When the concentration of the pollutant increased from 0.5 to 1, the average removal efficiency increased from 78% to 94%, and then, it remained almost constant. An increase in the reaction time from 5 to 25 minutes will cause the average elimination to increase from 84% to 94%. The results showed that the efficiency of O3/ZnO process in the removal of TMP was 94%, while the removal efficiency of UV/ZnO process was 91%. The findings exhibited that the kinetic study followed the second-order kinetics, both processes. With regard to the results, the photocatalyst process and catalytic ozonation by ZnO nanoparticles can make acceptable levels for an efficient posttreatment. Finally, this combined system is proven to be a technically effective method for treating antibiotic contaminants.
Collapse
|
9
|
Liu Y, Li J, Wu L, Wan D, Shi Y, He Q, Chen J. Synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride by magnetic spent bleaching earth carbon: Insights into performance and reaction mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143956. [PMID: 33352346 DOI: 10.1016/j.scitotenv.2020.143956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, the synergetic adsorption and Fenton-like degradation of tetracycline hydrochloride (TCH) by magnetic spent bleaching earth carbon (Mag-SBE@C) with H2O2 were developed and performed, with 91.5% of TCH degradation efficiency and 42.1% of TOC removal efficiency. The effects of the reaction parameters (temperature, initial pH, catalyst dosage, molar ratio of TCH to H2O2) on TCH degradation in Mag-SBE@C/H2O2 system were studied. Under the optimal conditions (temperature 41.1 °C, initial pH 4.89 and molar ratio of H2O2 to TCH 114.435) forecasted by response surface methodology (RSM), high TCH degradation efficiency (99%) was achieved. Also, four cycling tests were performed to confirm the excellent stability and regeneration ability of Mag-SBE@C in presence of H2O2. In addition, the characteristics of Mag-SBE@C after reaction are analyzed in details via scanning electron microscope (SEM), energy dispersive spectrometer (EDS), Brunner-Emmet-Teller (BET), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrum (FTIR) and X-ray diffraction (XRD), and it was found that Fe3O4 nanoparticles on Mag-SBE@C surface acted as co-catalyst and participated in degradation and improved reaction efficiency, while its properties were not greatly changed. The quenching experiments showed that hydroxyl radicals on Mag-SBE@C surface (OHadsorption) were dominant in Mag-SBE@C/H2O2 system. Meanwhile, three possible TCH degradation pathways were given based on the possible intermediates determined by liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS/MS). Mag-SBE@C is an excellent heterogeneous Fenton-like catalyst, exhibiting greatly potential to antibiotics elimination.
Collapse
Affiliation(s)
- Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China.
| | - Jinsong Li
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Lairong Wu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China.
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China
| | - Jing Chen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China; Henan Academician Workstation of Combined Pollution Control and Research, Zhengzhou, Henan 450001, China
| |
Collapse
|
10
|
Chen H, Wang J. MOF-derived Co 3O 4-C@FeOOH as an efficient catalyst for catalytic ozonation of norfloxacin. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123697. [PMID: 33264886 DOI: 10.1016/j.jhazmat.2020.123697] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/29/2020] [Accepted: 08/09/2020] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) ZIF-67-derived Co3O4-C@FeOOH composite was prepared, characterized and used as an efficinet catalyst for ozonation of norfloxacin (NOF). Results showed that ZIF-67-derived Co3O4-C composite maintained the polyhedral structure of ZIF-67. After modification, abundant amorphous FeOOH nanowire attached on the surface of Co3O4-C composite, resulting in Co3O4-C@FeOOH interwoven polyhedrons. Furthermore, the specific surface area of the formed composite was about 2.5 times that of Co3O4-C composite, which might provide more active sites for catalytic reaction. Compared with single ozonation system, the catalytic ozonation process (Co3O4-C@FeOOH/O3) had better performance in NOF mineralization under the same operating conditions. Moreover, in the presence of Co3O4-C@FeOOH, faster O3 decomposition and higher •OH concentration were observed, which could explain the significant enhancement of TOC removal. The co-existence of Fe and Co in various valence states in catalyst might improve the conversion of Co(III)/Co(II) and Fe(III)/Fe(II), which would increase the catalytic activity in catalytic ozonation process. Besides, several main intermediate products were detected and possible NOF degradation pathway was proposed.
Collapse
Affiliation(s)
- Hai Chen
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Jothinathan L, Cai QQ, Ong SL, Hu JY. Organics removal in high strength petrochemical wastewater with combined microbubble-catalytic ozonation process. CHEMOSPHERE 2021; 263:127980. [PMID: 33297029 DOI: 10.1016/j.chemosphere.2020.127980] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 06/12/2023]
Abstract
Ozonation is a well-known and widely applied advanced oxidation process (AOP) for industrial wastewater treatment, while the ozonation efficiency might be limited by low mass transfer, poor solubility, and rapid decomposition rate of ozone molecules in the aqueous phase. The present study aims to investigate the feasibility of combined microbubble-catalytic ozonation process (M-O3/Fe/GAC) for improving the ozonation efficiency during treatment of petrochemical wastewater (PCW). M-O3/Fe/GAC process optimization was carried out with different pH conditions, ozone dosages and catalyst loadings. The optimum operating conditions were identified as 50 mg L-1 ozone dosage, real PCW pH (7.0-7.5) and 4 g L-1 catalyst loading. Among different ozonation processes, M-O3/Fe/GAC process achieved the highest chemical oxidation demand (COD) removal efficiency of 88%, which is 18% and 43% higher than those achieved by the microbubble and macrobubble ozonation processes, respectively. Phenolic compounds presented in PCW could be reduced by 63% within 15 min in M-O3/Fe/GAC treatment process. Long-term continuous flow studies suggested M-O3/Fe/GAC process to be the most cost-effective technology for PCW treatment with an operating cost of S$0.18 kg-1 COD and S$0.4 m-3 with good catalyst stability. Liquid size exclusion chromatography with organic carbon detection (LC-OCD) data suggested humic substances to be the dominant organic species in PCW, M-O3/Fe/GAC could achieve significant humic substances removal and biodegradability enhancement in PCW. Kinetics and mechanism studies revealed that organics removal in M-O3/Fe/GAC was 1.8 times higher than that in microbubble ozonation process, and hydroxyl radical (●OH) was the dominant oxidant specie for organics removal in M-O3/Fe/GAC process.
Collapse
Affiliation(s)
- L Jothinathan
- Sembcorp-NUS Corporate Laboratory, National University of Singapore, Sembcorp-NUS Corporate Laboratory C/o FoE, Block E1A, #04-01, 1 Engineering Drive 2, 117576, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-01, 1 Engineering Drive 2, 117576, Singapore
| | - Q Q Cai
- Sembcorp-NUS Corporate Laboratory, National University of Singapore, Sembcorp-NUS Corporate Laboratory C/o FoE, Block E1A, #04-01, 1 Engineering Drive 2, 117576, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-01, 1 Engineering Drive 2, 117576, Singapore
| | - S L Ong
- Sembcorp-NUS Corporate Laboratory, National University of Singapore, Sembcorp-NUS Corporate Laboratory C/o FoE, Block E1A, #04-01, 1 Engineering Drive 2, 117576, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-01, 1 Engineering Drive 2, 117576, Singapore
| | - J Y Hu
- Sembcorp-NUS Corporate Laboratory, National University of Singapore, Sembcorp-NUS Corporate Laboratory C/o FoE, Block E1A, #04-01, 1 Engineering Drive 2, 117576, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-01, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
12
|
Heterogeneous Catalytic Ozonation of Aniline-Contaminated Waters: A Three-Phase Modelling Approach Using TiO2/GAC. WATER 2020. [DOI: 10.3390/w12123448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work aims to study the sustainable catalytic ozonation of aniline promoted by granular active carbon (GAC) doped with TiO2. Aniline was selected as a model compound for the accelerator manufacturing industries used in the manufacture of rubber due to its environmental impact, low biodegradability, and harmful genotoxic effects on human health. Based on the evolution of total organic carbon (TOC), aniline concentration measured using high performance liquid chromatography (HPLC), pH and ozone concentration in liquid and gas phase, and catalyst loading, a three-phase reaction system has been modelled. The proposed three-phase model related the ozone transfer parameters and the pseudo-first order kinetic constants through three coefficients that involve the adsorption process, oxidation in the liquid, and the solid catalyst. The interpretation of the kinetic constants of the process allowed the predominance of the mechanism of Langmuir–Hinshelwood or modified Eley–Rideal to be elucidated. Seven intermediate aromatic reaction products, representative of the direct action of ozone and the radical pathway, were identified and quantified, as well as precursors of the appearance of turbidity, with which two possible routes of degradation of aniline being proposed.
Collapse
|
13
|
Abstract
Iron-nickel supported on modified active carbon (Fe-Ni/MAC) was prepared and characterized by XRD, SEM, XPS and EDS, followed by evaluating the practicability of Fe-Ni/MAC in treating real wastewater with a high concentration of phenol. Results showed that the optimal conditions for catalytic ozonation obtained by response surface methodology (RSM) were catalyst 10 g/L, ozone 68 mg/L, pH 9 and reaction time 90 min. Fe-Ni alloy and NiFe2O4 were demonstrated to be the dominant active species involved in catalytic reaction. The Fe-Ni/MAC catalyst can be reused six times with a satisfactory performance and little leaching of metal ions. Although some radicals like ·OH and ·O2− functioned well, singlet oxygen (1O2) was regarded as the most important radical in the Fe-Ni/MAC process. Most noticeably, the fluorescence excitation emission matrices (EEMs) certified that as much as 1243 mg/L phenol in the real wastewater was completely degraded, which made Fe-Ni/MAC a fairly practical catalyst.
Collapse
|
14
|
Abstract
This study evaluates naproxen (NP) degradation efficiency by ozonation using nickel oxide films (NiO(F)) as a catalyst. The NiO films were synthesized by chemical vapor deposition and characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. NP degradation was conducted for 5 min using 10 films of NiO(F) comparing against ozonation using 100 mg/L NiO powder in suspension (NiO(S)) and conventional ozonation (O3-conv). Total organic carbon analysis demonstrated a mineralization degree of 12% with O3-conv, 35% with NiO as powder and 22% with NiO(F) after 60 min of reaction. The films of NiO(F) were sequentially used 4 times in ozonation demonstrating the stability of the synthesized material, as well as its properties as a catalyst for ozonation. A proposed modeling strategy using robust parametric identification techniques allows the comparison of NP decomposition pseudo-monomolecular reaction rates.
Collapse
|
15
|
Improving the Performance of Zinc Oxide Photocatalysts for Phenol Degradation through Addition of Lanthanum Species. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.4.109-116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
One green approach to degrade organic pollutants, such as phenol, is through the photocatalytic reaction. Despite having large band gap energy, which is enough for phenol degradation, zinc oxide (ZnO) has low photocatalytic efficiency. In this study, ZnO was modified by lanthanum (La) species, and the improved photocatalytic activity was confirmed for degradation of phenol under visible and ultraviolet (UV) light irradiation. The ZnO and its modified photocatalysts were prepared by the hydrothermal method in the absence and presence of La species (0.01‒2 wt%). X-ray diffraction (XRD) patterns showed that the addition of La did not disturb the structure of ZnO, but slightly decreased the crystallite size. While the La addition up to 1 wt% did not affect the optical properties of the ZnO, the addition of 2 wt% La slightly red-shifted the absorption band edge of the ZnO. The Fourier-transform infrared (FT-IR) spectra showed La oxide formation observed at 515-540 cm-1 after 2 wt% La addition. Fluorescence emission spectra revealed that synthesized ZnO has oxygen vacancies at 558 nm, and the presence of 1 wt% La did not significantly affect the emission intensity. The photocatalytic activity of ZnO was influenced by the La addition, where the best performance was obtained on the ZnO with 1 wt% La. This study demonstrated that the optimum amount of La species could increase the performance of the ZnO.
Collapse
|
16
|
Mansas C, Mendret J, Brosillon S, Ayral A. Coupling catalytic ozonation and membrane separation: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116221] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Wang J, Chen H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135249. [PMID: 31837842 DOI: 10.1016/j.scitotenv.2019.135249] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
Ozonation process has been widely applied in water and wastewater treatment, such as for disinfection, for degradation of toxic organic pollutants. However, the utilization efficiency of ozone is low and the mineralization of organic pollutants by ozone oxidation is ineffective, and some toxic disinfection byproducts (DBPs) may be formed during ozonation process. Catalytic ozonation process can overcome these problems to some extent, which has received increasing attention in recent years. During catalytic ozonation, catalysts can promote O3 decomposition and generate active free radicals, which can enhance the degradation and mineralization of organic pollutants. In this paper, the history of ozonation application in water treatment was briefly reviewed. The properties of the ozone molecule, the ozonation types and several ozone-based water treatment processes were briefly introduced. Various catalysts for catalytic ozonation, including homogeneous and heterogeneous catalysts, such as metal ions, metal oxidizes, carbon-based materials and their possible catalytic mechanisms were analyzed and summarized in detail. Furthermore, some inconsistent results of previous research on catalytic ozonation were analyzed and discussed. The application of catalytic oxidation for the degradation of toxic organic pollutants, including phenols, pesticides, dyes, pharmaceuticals and others, was summarized. Finally, several key aspects of catalytic ozonation, such as pH effect, the catalyst performance, the catalytic mechanism were proposed, to which more attention should be paid in future study.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China.
| | - Hai Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Asgari G, Seidmohammadi A, Esrafili A, Faradmal J, Noori Sepehr M, Jafarinia M. The catalytic ozonation of diazinon using nano-MgO@CNT@Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodology. RSC Adv 2020; 10:7718-7731. [PMID: 35492203 PMCID: PMC9049956 DOI: 10.1039/c9ra10095d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
In this research, the degradation of the insecticide diazinon was studied using a new hybrid catalyst consisting of magnesium oxide nanoparticles (nano-MgO), carbon nanotubes (CNTs), and graphite (Gr), nano-MgO@CNT@Gr, under various experimental conditions. This study shows the optimization of the nano-MgO@CNT@Gr/O3 process for diazinon degradation in aqueous solutions. Box-Behnken experimental design (BBD) and response surface methodology (RSM) were used to assess and optimize the solo effects and interactions of four variables, pH, catalyst loading, reaction time, and initial diazinon concentration, during the nano-MgO@CNT@Gr/O3 process. Analysis of regression revealed an adequate fit of the experimental results with a quadratic model, with R 2 > 0.91. Following the collection of analysis of variance (ANOVA) results, pH, catalyst loading, and reaction time were seen to have significant positive effects, whereas the concentration of diazinon had a considerable negative impact on diazinon removal via catalytic ozonation. The four variables for maximum diazinon removal were found to be optimum (82.43%) at the following levels: reaction time, 15 min; pH, 10; catalyst dosage, 1.5 g L-1; and diazinon concentration, 10 mg L-1. The degradation of diazinon gave six kinds of by-products. The mechanism of diazinon decomposition was considered on the basis of the identified by-products. According to these results, the nano-MgO@CNT@Gr/O3 process could be an applicable technique for the treatment of diazinon-containing wastewater.
Collapse
Affiliation(s)
- Ghorban Asgari
- Social Determinants of Health Research Center (SDHRC), Hamadan University of Medical Sciences Hamadan Iran
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Abdolmotaleb Seidmohammadi
- Social Determinants of Health Research Center (SDHRC), Hamadan University of Medical Sciences Hamadan Iran
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology, Iran University of Medical Sciences Tehran Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences Tehran Iran
| | - Javad Faradmal
- Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences Hamadan Iran
- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Mohammad Noori Sepehr
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences Karaj Iran
- Department of Environmental Health Engineering, School of Public Health, Alborz University of Medical Sciences Karaj Iran
| | - Maghsoud Jafarinia
- Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
19
|
Efficient visible light-induced photocatalytic removal of paraquat using N-doped TiO2@SiO2@Fe3O4 nanocomposite. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112167] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
20
|
Preparation of the Mn-Fe-Ce/γ-Al2O3 ternary catalyst and its catalytic performance in ozone treatment of dairy farming wastewater. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
21
|
Ahari SM, Yangejeh RJ, Mahvi AH, Shahamat YD, Takdastan A. A new method for the removal of ammonium from drinking water using hybrid method of modified zeolites/catalytic ozonation. DESALINATION AND WATER TREATMENT 2019; 170:148-157. [DOI: 10.5004/dwt.2019.24619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
22
|
Hairuddin MN, Mubarak NM, Khalid M, Abdullah EC, Walvekar R, Karri RR. Magnetic palm kernel biochar potential route for phenol removal from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35183-35197. [PMID: 31691169 DOI: 10.1007/s11356-019-06524-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/11/2019] [Indexed: 05/18/2023]
Abstract
The pollution of water resources due to the disposal of industrial wastes that have organic material like phenol is causing worldwide concern because of their toxicity towards aquatic life, human beings and the environment. Phenol causes nervous system damage, renal kidney disease, mental retardation, cancer and anaemia. In this study, magnetic palm kernel biochar is used for removal of phenol from wastewater. The effect of parameters such as pH, agitation speed, contact time and magnetic biochar dosage are validated using design of experiments. The statistical analysis reveals that the optimum conditions for the highest removal (93.39%) of phenol are obtained at pH of 8, magnetic biochar dosage of 0.6 g, agitation speed at 180 rpm and time of 60 min with the initial concentration of 10 mg/L. The maximum adsorption capacities of phenol were found to be 10.84 mg/g and Langmuir and Freundlich isotherm models match the experimental data very well and adsorption kinetic obeys a pseudo-second order. Hence, magnetic palm kernel can be a potential candidate for phenol removal from wastewater.
Collapse
Affiliation(s)
- Muhammad Nazmi Hairuddin
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra (Jalan Semarak), 54100, Kuala Lumpur, Malaysia.
| | - Rashmi Walvekar
- Sustainable Energy and Green Technology Research Group (SEGT), School of Engineering, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Mukim Gadong A, Brunei Darussalam
| |
Collapse
|
23
|
Malik SN, Khan SM, Ghosh PC, Vaidya AN, Das S, Mudliar SN. Nano catalytic ozonation of biomethanated distillery wastewater for biodegradability enhancement, color and toxicity reduction with biofuel production. CHEMOSPHERE 2019; 230:449-461. [PMID: 31121509 DOI: 10.1016/j.chemosphere.2019.05.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/20/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
The effectiveness of O3, O3/Fe2+, and O3/nZVI processes on biomethanated distillery wastewater (BMDWW) was evaluated in terms of biodegradability index (BI) enhancement, biofuel production, COD, color & toxicity reduction. A significant increase in biodegradability, COD, color and toxicity reduction was observed in O3/nZVI compared with O3, O3/Fe2+ due to more hydroxyl radical production. The O3/nZVI pretreated wastewater with enhanced BI (up to 0.71) showed 60% COD removal with additional biogas generation (64% methane content). From the Gas Chromatography Mass Spectrometry (GC-MS) analysis, 18 foremost organic compounds were predominantly detected in the raw distillery wastewater. The disappearance of the corresponding FTIR (Fourier Transform Infrared Spectroscopy) & GC-MS spectra during pretreatment processes signified the degradation or transformation of the recalcitrant present in the distillery wastewater. Subsequent (AnO + AO, AO) of pretreated BMDWW resulted in biodegradation rate enhancement by (1.83, 1.67), (3.5, 2.4) and (4.7, 2.9) times for O3, O3/Fe2+ and O3/nZVI processes respectively.
Collapse
Affiliation(s)
- Sameena N Malik
- Department of Energy Science & Engineering, Indian Institute of Technology, Bombay, Maharashtra, India; CSIR - National Environmental& Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India
| | - Shahbaz M Khan
- CSIR - National Environmental& Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India
| | - Prakash C Ghosh
- Department of Energy Science & Engineering, Indian Institute of Technology, Bombay, Maharashtra, India
| | - Atul N Vaidya
- CSIR - National Environmental& Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India
| | - Sera Das
- CSIR - National Environmental& Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India
| | - Sandeep N Mudliar
- CSIR - National Environmental& Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India.
| |
Collapse
|
24
|
Malik SN, Khan SM, Ghosh PC, Vaidya AN, Kanade G, Mudliar SN. Treatment of pharmaceutical industrial wastewater by nano-catalyzed ozonation in a semi-batch reactor for improved biodegradability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:114-122. [PMID: 31075578 DOI: 10.1016/j.scitotenv.2019.04.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/21/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
The study reports the biodegradability enhancement of pharmaceutical wastewater along with COD (Chemical Oxygen Demand) color and toxicity removal via O3, O3/Fe2+, O3/nZVI (nano zero valent iron) processes. Nano catalytic ozonation process (O3/nZVI) showed the highest biodegradability (BI = BOD5/COD) enhancement of pharmaceutical wastewater up to 0.63 from 0.18 of control with a COD, color and toxicity removal of 62.3%, 93% and 82% respectively. The disappearance of the corresponding Fourier transform infrared (FTIR) and gas chromatography-mass spectrometry (GC-MS) peaks after pretreatment indicated the degradation or transformation of the refractory organic compounds to more biodegradable organic compounds. The subsequent aerobic degradation study of pretreated pharmaceutical wastewater resulted in biodegradation rate enhancement of 5.31, 2.97, and 1.22 times for O3/nZVI O3/Fe2+ and O3 processes respectively. Seed germination test using spinach (Spinacia oleracea) seeds established the toxicity removal of pretreated pharmaceutical wastewater.
Collapse
Affiliation(s)
- Sameena N Malik
- Department of Energy Science & Engineering, Indian Institute of Technology, Bombay, Maharashtra, India; CSIR - National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India
| | - Shahbaz M Khan
- CSIR - National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India
| | - Prakash C Ghosh
- Department of Energy Science & Engineering, Indian Institute of Technology, Bombay, Maharashtra, India
| | - Atul N Vaidya
- CSIR - National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India
| | - Gajanan Kanade
- CSIR - National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India
| | - Sandeep N Mudliar
- CSIR - Central Food Technological Research Institute, Mysuru, Karnataka, India.
| |
Collapse
|
25
|
Xu S, Bi H, Liu G, Su B. Integration of catalytic ozonation and adsorption processes for increased efficiency of textile wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:650-660. [PMID: 30859663 DOI: 10.1002/wer.1102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Advanced and optimized textile wastewater treatment by catalytic ozonation and activated carbon (AC) adsorption was investigated. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that Mn and Ce oxides were successfully loaded on the γ-Al2 O3 support, and MnO2 , Mn2 O3 , CeO2 , and Ce2 O3 were the main components of the catalyst. Actual textile wastewater from biochemical effluent was used as experiment wastewater. The removal efficiencies of chemical oxygen demand (COD) and chromaticity were approximately 30.6% (414-287 mg/L on average) and 99.3% (4,033 times to 27 times on average), respectively during the 30-day on-site continuous-flow test with an ozone dosage, contact time, and gas-liquid ratio of 100 mg/L, 15.7 min, and 2.9, respectively. Following 1 g/L AC adsorption, the effluent COD concentration was reduced to 40 mg/L. By contrast, AC adsorption without catalytic ozonation as pretreatment required 10 g/L AC dosage to achieve similar treatment results. Gas chromatography-mass spectrometry analyses indicated that volatile phenols, sulfides, and aniline in wastewater were completely removed after treatment. Inductively coupled plasma results further showed that the active components of MnOx -CeOx in the catalyst were stable after continuous use for 60 days. PRACTITIONER POINTS: Mesoporous catalyst synthesized by impregnating MnOx -CeOx on γ-Al2 O3 support. Catalytic ozonation and AC adsorption were combined to degrade organics. Maximum degradation of COD and chromaticity by optimizing process variables. The efficiency of the method was compared to that of single AC adsorption.
Collapse
Affiliation(s)
- Shengkai Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Huaqi Bi
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Bensheng Su
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
26
|
Gounden AN, Singh S, Jonnalagadda SB. Removal of 2,4-Dichlorophenoxyacetic acid from water and organic by-product minimization by catalytic ozonation. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:85-95. [PMID: 31297204 PMCID: PMC6582182 DOI: 10.1007/s40201-018-00329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND 2,4-dichlorophenoxyacetic acid (2,4-DCPA acid) is a toxic herbicide. Earlier studies to remove 2,4-DCPA acid from water used expensive and/or toxic reagents, resulting in the formation of toxic organic by-products (Org-BPs). This study evaluates the removal of 2,4-DCPA acid from aqueous media using uncatalysed and catalytic ozonation with Fe doped with Ni and Co respectively. METHODS Mixed metal oxides of Ni and Co loaded on Fe respectively, prepared by co-precipitation and physical mixing were used as catalyst for ozone facilitated oxidation degradation of 2,4-DCPA acid. Their surface properties were determined by employing SEM, BET and NH3-TPD. HPLC, IC and TOC data were used for quantifying substrate and oxidation products. RESULTS Conversion of 2,4-DCPA acid increased from 38% in acidic water to 73% in basic water, however, only 26% of the total carbon was removed and 9.5% in the form of Org-BPs. With 7:3 Fe:Ni (Co-ppt) catalyst (surface area 253 m2 g-1; particle size 236 nm), 97% of pollutant was converted. Most importantly, 92% of carbon was removed and Org-BP formation was minimized to 1.5%. With 7:3 Fe:Ni (Mixed) catalyst (surface area 12 m2 g-1; particle size 1274 nm), 68% of 2,4-DCPA acid was converted, while 23% of TOC was removed, however, 66% of Org-BP's still remained. CONCLUSION In uncatalysed ozonation degradation of 2,4-DCPA acid improved with the increase in hydroxide ion concentration. Ozonation in presence of 7:3 Fe:Ni (Co-ppt) catalyst resulted in highest activity for dechlorination, TOC removal and Org-BP minimization, thus improving the quality of contaminated water.
Collapse
Affiliation(s)
- Asogan N. Gounden
- Department of Chemistry, Mangosuthu University of Technology, PO Box 12363, Jacobs, 4026 South Africa
| | - Sooboo Singh
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, P Bag X54001, Durban, 4000 South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, P Bag X54001, Durban, 4000 South Africa
| |
Collapse
|
27
|
Asgari G, Salari M. Optimized synthesis of carbon-doped nano-MgO and its performance study in catalyzed ozonation of humic acid in aqueous solutions: Modeling based on response surface methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:198-210. [PMID: 30901698 DOI: 10.1016/j.jenvman.2019.03.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 05/27/2023]
Abstract
This research study focused on the optimization of the synthesis of carbon-doped nano-MgO (C-MgO) and the investigation of its catalytic capacity in a catalytic ozonation process (COP) for the removal of humic acid (HA). Characterization analyses, including SEM, EDX, XRD, BET, and photoluminescence test showed that the C-MgO was successfully synthesized. L8 orthogonal arrays according to the Taguchi methodology optimized the synthesis of the C-MgO as follows: sucrose to MgO ratio = 0.5, sonication time = 15 min, calcination temperature = 400 °C and pH = 10.5. A central composite design based on response surface methodology was employed to optimize and model the COP in the removal of HA. A quadratic polynomial model with p-value < 0.0001 and R2 = 0.9988 showed a better fit to experimental responses. The optimum levels of the studied parameters in the COP based on the predictive model were obtained as follows: pH = 9.5, reaction time = 12 min, catalyst dose = 1 g/L, and HA concentration = 5 mg/L. The HA mineralization was determined to be 86.8% at the 100 min reaction time. Additionally, the COP exhibited 34% synergistic effect and the kinetic rate constant of 0.1898 min-1 in the HA removal. The presence of tert-butanol, methanol, salicylic acid, and some anions did not significantly affect the removal of the HA in the COP. From a practical view, this report indicated that the C-MgO catalyst could be potentially applied in the COP for the treatment of the water having high concentrations of HA substances.
Collapse
Affiliation(s)
- Ghorban Asgari
- Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran
| | - Mehdi Salari
- Social Determinants of Health Research Center (SDHRC), Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Science, Hamadan, Iran.
| |
Collapse
|
28
|
Khani MR, Kuhestani H, Kalankesh LR, Kamarehei B, Rodríguez-Couto S, Baneshi MM, Shahamat YD. Rapid and high purification of olive mill wastewater (OMV) with the combination electrocoagulation-catalytic sonoproxone processes. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
29
|
Abstract
Catalytic ozonation is believed to belong to advanced oxidation processes (AOPs). Over the past decades, heterogeneous catalytic ozonation has received remarkable attention as an effective process for the degradation of refractory organics in wastewater, which can overcome some disadvantages of ozonation alone. Metal oxides, metals, and metal oxides supported on oxides, minerals modified with metals, and carbon materials are widely used as catalysts in heterogeneous catalytic ozonation processes due to their excellent catalytic ability. An understanding of the application can provide theoretical support for selecting suitable catalysts aimed at different kinds of wastewater to obtain higher pollutant removal efficiency. Therefore, the main objective of this review article is to provide a summary of the accomplishments concerning catalytic ozonation to point to the major directions for choosing the catalysts in catalytic ozonation in the future.
Collapse
|
30
|
El Hassani K, Kalnina D, Turks M, Beakou BH, Anouar A. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.074] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Shahmoradi B, Farahani F, Kohzadi S, Maleki A, Pordel M, Zandsalimi Y, Gong Y, Yang J, McKay G, Lee SM, Yang JK. Application of cadmium-doped ZnO for the solar photocatalytic degradation of phenol. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:375-385. [PMID: 30865609 DOI: 10.2166/wst.2019.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, photocatalysis of phenol was studied using Cd-ZnO nanorods, which were synthesized by a hydrothermal method. The Cd-ZnO photocatalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, and Fourier transform infrared (FT-IR) and UV-Vis spectroscopy. XRD patterns exhibit diffraction peaks indexed to the hexagonal wurtzite structures with the P63mc space group. SEM images showed that the average size of the Cd-ZnO nanorods was about 90 nm. Moreover, the nanorods were not agglomerated and were well-dispersed in the aqueous medium. FT-IR analysis confirmed that a surface modifier (n-butylamine) did not add any functional groups onto the Cd-ZnO nanorods. The dopant used in this study showed reduction of the bandgap energy between valence and conduction of the photocatalyst. In addition, effect of various operational parameters including type of photocatalyst, pH, initial concentration of phenol, amount of photocatalyst, and irradiation time on the photocatalytic degradation of phenol has been investigated. The highest phenol removal was achieved using 1% Cd-ZnO for 20 mg/l phenol at pH 7, 3 g/l photocatalyst, 120 min contact time, and 0.01 mole H2O2.
Collapse
Affiliation(s)
- Behzad Shahmoradi
- Department of Environmental Health Engineering, Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran E-mail:
| | - Farzaneh Farahani
- Academic Center for Education, Culture and Research (ACECR), Alborz Branch, Alborz, Iran
| | - Shadi Kohzadi
- Department of Environmental Health Engineering, Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran E-mail:
| | - Afshin Maleki
- Department of Environmental Health Engineering, Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran E-mail:
| | - Mohammadamin Pordel
- Department of Environmental Health Engineering, Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran E-mail:
| | - Yahya Zandsalimi
- Department of Environmental Health Engineering, Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran E-mail:
| | - Yuxuan Gong
- Kazuo Inamori School of Engineering, Alfred University, Alfred, NY, 14802, USA
| | - Jixiang Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Gordon McKay
- Division of Sustainability, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, Qatar
| | - Seung-Mok Lee
- Department of Energy and Environment Convergence Technology, Catholic Kwandong University, Gangneung 25601, Korea
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Korea
| |
Collapse
|
32
|
Engineering aspects of catalytic ozonation for purification of real textile industry wastewater at the pilot scale. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
33
|
Malik SN, Ghosh PC, Vaidya AN, Mudliar SN. Catalytic ozone pretreatment of complex textile effluent using Fe 2+ and zero valent iron nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:363-375. [PMID: 29909170 DOI: 10.1016/j.jhazmat.2018.05.070] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/18/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
The study investigates the effect of catalytic ozone pretreatment via Fe2+ and nZVI on biodegradability enhancement of complex textile effluent. The nZVI particles were synthesized and characterized by XRD, TEM and SEM analyses. Results showed that nano catalytic ozone pretreatment led to higher biodegradability index (BOD5/COD = BI) enhancement up to 0.61 (134.6%) along with COD, color and toxicity removal up to 73.5%, 87%, and 92% respectively. The disappearance of the corresponding GCMS & FTIR spectral peaks during catalyzed ozonation process indicated the cleavage of chromophore group and degradation of organic compounds present in the textile effluent. Subsequent aerobic biodegradation of nZVI pretreated textile effluent resulted in maximum COD and color reduction of 78% and 98.5% respectively, whereas the untreated effluent (BI = 0.26) indicated poor COD and color reduction of only 31% and 33% respectively. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. Seed germination test using seeds of Spinach (Spinacia oleracea), indicated the effectiveness of nano catalyzed ozone pretreatment in removing toxicity from contaminated textile effluent.
Collapse
Affiliation(s)
- Sameena N Malik
- Department of Energy Science & Engineering, Indian Institute of Technology, Bombay, Maharashtra, India; CSIR - National Environmental& Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India
| | - Prakash C Ghosh
- Department of Energy Science & Engineering, Indian Institute of Technology, Bombay, Maharashtra, India
| | - Atul N Vaidya
- CSIR - National Environmental& Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India
| | - Sandeep N Mudliar
- CSIR - National Environmental& Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, India.
| |
Collapse
|
34
|
Immobilized titanium dioxide/powdered activated carbon system for the photocatalytic adsorptive removal of phenol. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0062-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
35
|
Lu LW, Peng YP, Chang CN. Catalytic ozonation by palladium–manganese for the decomposition of natural organic matter. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.10.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
36
|
Nitrobenzene degradation in aqueous solution using ozone/cobalt supported activated carbon coupling process: A kinetic approach. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
37
|
Yousefzadeh S, Ahmadi E, Gholami M, Ghaffari HR, Azari A, Ansari M, Miri M, Sharafi K, Rezaei S. A comparative study of anaerobic fixed film baffled reactor and up-flow anaerobic fixed film fixed bed reactor for biological removal of diethyl phthalate from wastewater: a performance, kinetic, biogas, and metabolic pathway study. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:139. [PMID: 28580013 PMCID: PMC5452402 DOI: 10.1186/s13068-017-0826-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 05/22/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Phthalic acid esters, including diethyl phthalate (DEP), which are considered as top-priority and hazardous pollutants, have received significant attention over the last decades. It is vital for industries to select the best treatment technology, especially when the DEP concentration in wastewater is high. Meanwhile, anaerobic biofilm-based reactors are considered as a promising option. Therefore, in the present study, for the biological removal of DEP from synthetic wastewater, two different anaerobic biofilm-based reactors, including anaerobic fixed film baffled reactor (AnFFBR) and up-flow anaerobic fixed film fixed bed reactor (UAnFFFBR), were compared from kinetic and performance standpoints. As in the previous studies, only the kinetic coefficients have been calculated and the relationship between kinetic coefficients and their interpretation has not been evaluated, the other aim of the present study was to fill this research gap. RESULTS In optimum conditions, 90.31 and 86.91% of COD as well as 91.11 and 88.72% of DEP removal were achieved for the AnFFBR and UAnFFFBR, respectively. According to kinetic coefficients (except biomass yield), the AnFFBR had better performance as it provided a more favorable condition for microbial growth. The Grau model was selected as the best mathematical model for designing and predicting the bioreactors' performance due to its high coefficients of determination (0.97 < R2). With regard to the insignificant variations of the calculated Grau kinetic coefficients (KG) when the organic loading rate (with constant HRT) increased, it can be concluded that both of the bioreactors can tolerate high organic loading rate and their performance is not affected by the applied DEP concentrations. CONCLUSIONS Both the bioreactors were capable of treating low-to-high strength DEP wastewater; however, according to the experimental results and obtained kinetic coefficients, the AnFFBR indicated higher performance. Although the AnFFBR can be considered as a safer treatment option than the UAnFFFBR due to its lower DEP concentrations in sludge, the UAnFFFBR had lower VSS/TSS ratio and sludge yield, which could make it more practical for digestion. Finally, both the bioreactors showed considerable methane yield; however, compared to the UAnFFFBR, the AnFFBR had more potential for bioenergy production. Although both the selected bioreactors achieved nearly 90% of DEP removal, they can only be considered as pre-treatment methods according to the standard regulations and should be coupled with further technology.
Collapse
Affiliation(s)
- Samira Yousefzadeh
- Department of Environmental Health Engineering, Aradan School of Public Health and Paramedical, Semnan University of Medical Sciences, Semnan, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadi
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Gholami
- Occupational Health Research Center (OHRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Ghaffari
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Azari
- Department of Environmental Health Engineering, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Ansari
- Environmental Science and Technology Research Center, Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Miri
- Department of Environmental Health, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Rezaei
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
38
|
Li W, Wan D, Wang G, Lu L, Wei X. Visible light induced photocatalytic degradation of rhodamine B by magnetic bentonite. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:2345-2352. [PMID: 27191554 DOI: 10.2166/wst.2016.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The photocatalytic activity of magnetic bentonite, Fe3O4 nanoparticles decorated Al-pillared bentonite (Fe3O4/Al-B), for the degradation of rhodamine B (RhB) in the presence of H2O2 under visible light (VL) was evaluated. The effects of different reaction parameters such as catalyst dose, dye concentration and externally added H2O2 were also investigated. The magnetic bentonite showed good photocatalytic activity, magnetic separability and stability for repeated use. More than 95% of 40 mg/L RhB was converted within 3 h under VL with a catalyst dose of 0.5 g/L. Suitable mechanisms have been proposed to account for the photocatalytic activities in the presence and absence of H2O2. The efficiency of H2O2 in VL process was much higher than that of the dark process. Results obtained in the current study may be useful to develop a suitable photocatalyst for photocatalytic remediation of different water contaminants including organic dyes.
Collapse
Affiliation(s)
- Wenbing Li
- College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Dong Wan
- College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Guanghua Wang
- College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Lulu Lu
- College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Xiaobi Wei
- College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| |
Collapse
|
39
|
Delnavaz M, Ayati B, Ganjidoust H, Sanjabi S. Application of concrete surfaces as novel substrate for immobilization of TiO2 nano powder in photocatalytic treatment of phenolic water. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2015; 13:58. [PMID: 26244097 PMCID: PMC4524361 DOI: 10.1186/s40201-015-0214-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 07/21/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND In this study, concrete application as a substrate for TiO2 nano powder immobilization in heterogeneous photocatalytic process was evaluated. TiO2 immobilization on the pervious concrete surface was done by different procedures containing slurry method (SM), cement mixed method (CMM) and different concrete sealer formulations. Irradiation of TiO2 was prepared by UV-A and UV-C lamps. Phenolic wastewater was selected as a pollutant and efficiency of the process was determined in various operation conditions including influent phenol concentration, pH, TiO2 concentration, immobilization method and UV lamp intensity. FINDINGS The removal efficiency of photocatalytic process in 4 h irradiation time and phenol concentration ranges of 25-500 mg/L was more than 80 %. Intermediates were identified by GC/Mass and spectrophotometric analysis. CONCLUSIONS According to the results, photocatalytic reactions followed the pseudo-first-order kinetics and can effectively treate phenol under optimal conditions.
Collapse
Affiliation(s)
- Mohammad Delnavaz
- />Civil and Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran
- />Civil Engineering Department, Faculty of Engineering, Kharazmi University, Tehran, Iran
| | - Bita Ayati
- />Civil and Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hossein Ganjidoust
- />Civil and Environmental Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Sohrab Sanjabi
- />Material Engineering Department, Nano Materials Division, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|