1
|
Yan Z, Ji L. Hck promotes IL-1β-induced extracellular matrix degradation, inflammation, and apoptosis in osteoarthritis via activation of the JAK-STAT3 signaling pathway. Adv Rheumatol 2024; 64:88. [PMID: 39696562 DOI: 10.1186/s42358-024-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
We investigated role of haematopoietic cell kinase (Hck) in osteoarthritis (OA) and to explore the underlying mechanisms driving its effects. An OA animal model was established and after OA induction, rats received intra-articular injections of lentivirus twice a week for four weeks. Rats were divided into four groups: control (healthy rats without OA), OA model (rats with induced OA), OA + Len-si-NC (OA rats treated with a non-targeting control lentivirus), and OA + Len-si-Hck (OA rats treated with lentivirus targeting Hck). Blood samples were collected, and serum cytokine levels were measured using ELISA. Afterward, the rats were sacrificed for histological analysis and TUNEL assay. In vitro, IL-1β-treated human chondrocytes were transfected with Hck, and the effects on cell viability, apoptosis, ECM degradation, and JAK-STAT3 signaling were assessed. Colivelin, a JAK-STAT3 agonist, was used to confirm the pathway's involvement. Results indicated increased Hck expression in the cartilage tissues of OA rats and in IL-1β-stimulated chondrocytes. Silencing Hck in vivo reduced IL-6 and TNF-α levels, apoptosis, and preserved cartilage structure. In vitro, Hck knockdown in IL-1β-treated chondrocytes resulted in enhanced cell viability, reduced apoptosis, and decreased ECM degradation. Notably, the expression of MMP3 and MMP13 was significantly lowered, while collagen II and aggrecan levels were restored. Additionally, Hck knockdown inhibited JAK-STAT3 activation, which was evident from reduced levels of phosphorylated JAK1 and STAT3. The addition of colivelin reversed these effects, confirming that Hck mediates its effects through the JAK-STAT3 pathway. Overall, our findings indicate that Hck is critical in OA progression by promoting inflammation, apoptosis, and ECM degradation through the JAK-STAT3 signaling pathway activation.
Collapse
Affiliation(s)
- Zhenzhong Yan
- Department of Orthopedics, Changzhou No. 7 People's Hospital, No. 288 Yanling East Road, Economic Development Zone, Changzhou, Jiangsu, 213100, China
- Department of Orthopedics, Changzhou Geriatric Hospital Affiliated to Soochow University, No. 288 Yanling East Road, Economic Development Zone, Changzhou, Jiangsu, 213100, China
| | - Lin Ji
- Department of Orthopedics, Changzhou No. 7 People's Hospital, No. 288 Yanling East Road, Economic Development Zone, Changzhou, Jiangsu, 213100, China.
- Department of Orthopedics, Changzhou Geriatric Hospital Affiliated to Soochow University, No. 288 Yanling East Road, Economic Development Zone, Changzhou, Jiangsu, 213100, China.
| |
Collapse
|
2
|
Zhang H, Zheng C, Chen W, Li X, Wang J, Wang T, Zhao Q, Huang H, Li Y, Yang C, Xie K, Pan S, Wang B, Wang C, Tang Y, Li K, Liu J, Wang L. PP2 alleviates the progression of osteoarthritis by inhibiting Wnt/β-catenin and activating TGF-β/Smad signaling. Int Immunopharmacol 2023; 124:110948. [PMID: 37774483 DOI: 10.1016/j.intimp.2023.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVE We aimed to explore the effect and mechanism of the Src inhibitor PP2 on osteoarthritis (OA) progression. METHODS The protein expressions of Src, p-Src (y418) and p-FAK in normal and OA human chondrocytes were detected by immunofluorescence (IF) analysis. Chondrocytes from the femur and tibial plateau of 3-day-old mice were extracted and inoculated into 6-well plates. The chondrocytes were co-cultured with IL-1β and different doses of PP2, and then the degeneration of extracellular matrix was analyzed. A mouse OA model was induced by destabilizing medial meniscectomy of the right knee. Two weeks after the operation, different doses of PP2 were injected intraperitoneally. The drug was given three times a week for 6 weeks, and then the mice were sacrificed. Histopathological, IF and immunoblotting analyses were used to detect key OA catabolic markers and protein expression and related signaling. RESULTS The levels of Src, p-Src (y418) and p-FAK in the knee cartilage tissue of patients with OA were abnormally increased. After chondrocytes were co-treated with IL-1β and different doses of PP2, the results showed that PP2 reduced the abnormal increase of β-catenin, p-β-catenin and other proteins induced by IL-1β, and reversed the decrease of p-Smad3, aggrecan and collagen Ⅱ protein levels. Meanwhile, intraperitoneal injection of PP2 in vivo significantly reduced the degeneration of articular cartilage in the OA mouse model. CONCLUSION Our data indicate that targeting Src with PP2 protected against cartilage destruction in an OA mouse model by inhibiting Wnt/β-catenin and activating TGF-β/Smad signaling, suggesting that Src may be a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Chuanchuan Zheng
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Wei Chen
- Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Xiaoqiang Li
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Jinshu Wang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Taikun Wang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Qi Zhao
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Hao Huang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Yiting Li
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Chengliang Yang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Kegong Xie
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Shengcai Pan
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Binghao Wang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong 523820, China
| | - Yujin Tang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China.
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China.
| | - Jia Liu
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseass, Guangxi Health Commission Key Laboratory of Clinical Medicine Research on Bone and Joint Degenerative Diseases Cohort, Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, 533000, Guangxi, China.
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Gu JY, Li FJ, Hou CZ, Zhang Y, Bai ZX, Zhang Q. Mechanism of icariin for the treatment of osteoarthritis based on network pharmacology and molecular docking method. Am J Transl Res 2023; 15:5071-5084. [PMID: 37692948 PMCID: PMC10492078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/24/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Icarin's mechanism of action in osteoarthritis (OA) was explored using network pharmacology and the GEO database, and then further validated using molecular docking. METHODS GEO database using network pharmacology identified differential genes in OA based on Icariin's possible targets predicted by pharmmapper database. Combining the differentially expressed genes in OA with the OA-related targets, the overlapping targets were removed. In order to determine what Icariin's core targets are for treating OA, PPI network analysis was performed using OA-related targets and possible Icariin targets. Furthermore, molecular docking was used to verify the chemical's binding to the targets. Final steps included Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Cytoscape was used to construct a network of compound-target-pathway-disease. RESULTS Protein-protein interactions between overlapping targets revealed 151 intersection targets based on a network analysis. The top ten targets with the highest enrichment scores were SRC, MAPK1, HSP90AA1, AKT1, PTPN11, ESR1, EGFR, RhoA, JAK2, and MAPK14. KEGG enrichment analysis showed that the pathways at which Icariin intervention occurs include the OA including FOXO signaling pathway, and estrogen signaling pathway. The GO analysis result showed that various biologic processes such as proteolysis, angiogenesis, innate immune response, and positive regulation of inflammatory response were involved in treatment. Molecular docking analysis confirmed that Icariin could bind well to the targets through intermolecular forces. CONCLUSION With its multi-targeting and multi-pathway characteristics, Icariin is a promising candidate drug for treating OA.
Collapse
Affiliation(s)
- Jin-Yu Gu
- Department of Orthopaedic, The Hospital of Xi YuanBeijing, China
| | - Fa-Jie Li
- Department of Orthopaedic, The Hospital of Wang Jing, China Academy of Chinese Medical SciencesBeijing, China
| | - Cheng-Zhi Hou
- Department of Orthopaedic, The Hospital of Wang Jing, China Academy of Chinese Medical SciencesBeijing, China
| | - Yue Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China
| | - Zi-Xing Bai
- Department of Orthopaedic, The Hospital of Wang Jing, China Academy of Chinese Medical SciencesBeijing, China
| | - Qing Zhang
- Department of Orthopaedic, The Hospital of Wang Jing, China Academy of Chinese Medical SciencesBeijing, China
| |
Collapse
|
4
|
Ferrao Blanco MN, Domenech Garcia H, Legeai-Mallet L, van Osch GJVM. Tyrosine kinases regulate chondrocyte hypertrophy: promising drug targets for Osteoarthritis. Osteoarthritis Cartilage 2021; 29:1389-1398. [PMID: 34284112 DOI: 10.1016/j.joca.2021.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a major health problem worldwide that affects the joints and causes severe disability. It is characterized by pain and low-grade inflammation. However, the exact pathogenesis remains unknown and the therapeutic options are limited. In OA articular chondrocytes undergo a phenotypic transition becoming hypertrophic, which leads to cartilage damage, aggravating the disease. Therefore, a therapeutic agent inhibiting hypertrophy would be a promising disease-modifying drug. The therapeutic use of tyrosine kinase inhibitors has been mainly focused on oncology, but the Food and Drug Administration (FDA) approval of the Janus kinase inhibitor Tofacitinib in Rheumatoid Arthritis has broadened the applicability of these compounds to other diseases. Interestingly, tyrosine kinases have been associated with chondrocyte hypertrophy. In this review, we discuss the experimental evidence that implicates specific tyrosine kinases in signaling pathways promoting chondrocyte hypertrophy, highlighting their potential as therapeutic targets for OA.
Collapse
Affiliation(s)
- M N Ferrao Blanco
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - H Domenech Garcia
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - L Legeai-Mallet
- Université de Paris, INSERM U1163, Institut Imagine, Paris, France.
| | - G J V M van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
5
|
Enhanced differentiation of human pluripotent stem cells into pancreatic endocrine cells in 3D culture by inhibition of focal adhesion kinase. Stem Cell Res Ther 2020; 11:488. [PMID: 33198821 PMCID: PMC7667734 DOI: 10.1186/s13287-020-02003-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Generation of insulin-producing cells from human pluripotent stem cells (hPSCs) in vitro would be useful for drug discovery and cell therapy in diabetes. Three-dimensional (3D) culture is important for the acquisition of mature insulin-producing cells from hPSCs, but the mechanism by which it promotes β cell maturation is poorly understood. Methods We established a stepwise method to induce high-efficiency differentiation of human embryonic stem cells (hESCs) into mature monohormonal pancreatic endocrine cells (PECs), with the last maturation stage in 3D culture. To comprehensively compare two-dimensional (2D) and 3D cultures, we examined gene expression, pancreas-specific markers, and functional characteristics in 2D culture-induced PECs and 3D culture-induced PECs. The mechanisms were considered from the perspectives of cell–cell and cell–extracellular matrix interactions which are fundamentally different between 2D and 3D cultures. Results The expression of the pancreatic endocrine-specific transcription factors PDX1, NKX6.1, NGN3, ISL1, and PAX6 and the hormones INS, GCG, and SST was significantly increased in 3D culture-induced PECs. 3D culture yielded monohormonal endocrine cells, while 2D culture-induced PECs co-expressed INS and GCG or INS and SST or even expressed all three hormones. We found that focal adhesion kinase (FAK) phosphorylation was significantly downregulated in 3D culture-induced PECs, and treatment with the selective FAK inhibitor PF-228 improved the expression of β cell-specific transcription factors in 2D culture-induced PECs. We further demonstrated that 3D culture may promote endocrine commitment by limiting FAK-dependent activation of the SMAD2/3 pathway. Moreover, the expression of the gap junction protein Connexin 36 was much higher in 3D culture-induced PECs than in 2D culture-induced PECs, and inhibition of the FAK pathway in 2D culture increased Connexin 36 expression. Conclusion We developed a strategy to induce differentiation of monohormonal mature PECs from hPSCs and found limited FAK-dependent activation of the SMAD2/3 pathway and unregulated expression of Connexin 36 in 3D culture-induced PECs. This study has important implications for the generation of mature, functional β cells for drug discovery and cell transplantation therapy for diabetes and sheds new light on the signaling events that regulate endocrine specification. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02003-z.
Collapse
|
6
|
Actin reduction by MsrB2 is a key component of the cytokinetic abscission checkpoint and prevents tetraploidy. Proc Natl Acad Sci U S A 2020; 117:4169-4179. [PMID: 32029597 DOI: 10.1073/pnas.1911629117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abscission is the terminal step of cytokinesis leading to the physical separation of the daughter cells. In response to the abnormal presence of lagging chromatin between dividing cells, an evolutionarily conserved abscission/NoCut checkpoint delays abscission and prevents formation of binucleated cells by stabilizing the cytokinetic intercellular bridge (ICB). How this bridge is stably maintained for hours while the checkpoint is activated is poorly understood and has been proposed to rely on F-actin in the bridge region. Here, we show that actin polymerization is indeed essential for stabilizing the ICB when lagging chromatin is present, but not in normal dividing cells. Mechanistically, we found that a cytosolic pool of human methionine sulfoxide reductase B2 (MsrB2) is strongly recruited at the midbody in response to the presence of lagging chromatin and functions within the ICB to promote actin polymerization there. Consistently, in MsrB2-depleted cells, F-actin levels are decreased in ICBs, and dividing cells with lagging chromatin become binucleated as a consequence of unstable bridges. We further demonstrate that MsrB2 selectively reduces oxidized actin monomers and thereby counteracts MICAL1, an enzyme known to depolymerize actin filaments by direct oxidation. Finally, MsrB2 colocalizes and genetically interacts with the checkpoint components Aurora B and ANCHR, and the abscission delay upon checkpoint activation by nuclear pore defects also depends on MsrB2. Altogether, this work reveals that actin reduction by MsrB2 is a key component of the abscission checkpoint that favors F-actin polymerization and limits tetraploidy, a starting point for tumorigenesis.
Collapse
|
7
|
Nie P, Li Y, Suo H, Jiang N, Yu D, Fang B. Dasatinib Promotes Chondrogenic Differentiation of Human Mesenchymal Stem Cells via the Src/Hippo-YAP Signaling Pathway. ACS Biomater Sci Eng 2019; 5:5255-5265. [PMID: 33455230 DOI: 10.1021/acsbiomaterials.9b00618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are progenitors of chondrocytes and could be used as a potential therapy for cartilage defects in diarthrodial joints. However, promoting chondrogenic differentiation of MSCs remains a daunting challenge. As a small molecular drug, dasatinib can promote MSC differentiation, although the exact mechanisms of chondrogenic differentiation are unclear. In this study, the differentiation of MSCs into osteoblasts, adipocytes, and chondrocytes was assessed by the protein and mRNA levels of osteoblast- and chondrocyte-related proteins using western blotting and real-time polymerase chain reaction, respectively. MSCs were induced to differentiate into chondrocytes or osteoblasts with or without dasatinib in vitro. The effects of dasatinib on cartilage regeneration were also assessed in vivo in a rabbit model of full-thickness cartilage defects using methacrylate gelatin hydrogel as scaffolds. Dasatinib promoted chondrogenic differentiation and inhibited osteogenic differentiation of MSCs. Furthermore, dasatinib significantly inhibited the expression of YAP and TAZ and the phosphorylation of Src, but it enhanced serine phosphorylation of YAP during the chondrogenic differentiation of MSCs in vitro. Inhibition of the Hippo pathway using XMU-MP-1 dramatically suppressed the serine phosphorylation of YAP and chondrogenic differentiation of MSCs. Moreover, we confirmed that the sustained release of dasatinib from the hydrogel promoted rabbit cartilage repair. The results demonstrated that dasatinib might promote chondrogenic differentiation of MSCs via the Src/Hippo-YAP signaling pathway and that hydrogel sustained-release dasatinib had a certain effect on the repair of cartilage defects.
Collapse
Affiliation(s)
- Ping Nie
- Center of Cranio-facial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairui Suo
- School of Automation, Hangzhou Dianzi University, Zhejiang 310018, China
| | - Ning Jiang
- Center of Cranio-facial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Dedong Yu
- 2nd Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
8
|
Martinez JR, Grindel BJ, Hubka KM, Dodge GR, Farach-Carson MC. Perlecan/HSPG2: Signaling role of domain IV in chondrocyte clustering with implications for Schwartz-Jampel Syndrome. J Cell Biochem 2019; 120:2138-2150. [PMID: 30203597 PMCID: PMC6411452 DOI: 10.1002/jcb.27521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023]
Abstract
Perlecan/heparan sulfate proteoglycan 2 (HSPG2), a large HSPG, is indispensable for the development of musculoskeletal tissues, where it is deposited within the pericellular matrix (PCM) surrounding chondrocytes and disappears nearly completely at the chondro-osseous junction (COJ) of developing long bones. Destruction of perlecan at the COJ converts an avascular cartilage compartment into one that permits blood vessel infiltration and osteogenesis. Mutations in perlecan are associated with chondrodysplasia with widespread musculoskeletal and joint defects. This study elucidated novel signaling roles of perlecan core protein in endochondral bone formation and chondrocyte behavior. Perlecan subdomains were tested for chondrogenic properties in ATDC5 cells, a model for early chondrogenesis. A region within domain IV of perlecan (HSPG2 IV-3) was found to promote rapid prechondrocyte clustering. Introduction of the mutation (R3452Q) associated with the human skeletal disorder Schwartz-Jampel syndrome limited HSPG2 IV-3-induced clustering. HSPG2 IV-3 activity was enhanced when thermally unfolded, likely because of increased exposure of the active motif(s). HSPG2 IV-3-induced clustering was accompanied by the deactivation of key components of the focal adhesion complex, FAK and Src, with increased messenger RNA (mRNA) levels of precartilage condensation markers Sox9 and N-cadherin ( Cdh2), and cartilage PCM components collagen II ( Col2a1) and aggrecan ( Acan). HSPG2 IV-3 reduced signaling through the ERK pathway, where loss of ERK1/2 phosphorylation coincided with reduced FoxM1 protein levels and increased mRNA levels cyclin-dependent kinase inhibitor 1C (Cdkn1c) and activating transcription factor 3 ( Atf3), reducing cell proliferation. These findings point to a critical role for perlecan domain IV in cartilage development through triggering chondrocyte condensation.
Collapse
Affiliation(s)
- Jerahme R. Martinez
- Department of BioSciences, Rice University, Houston, TX 77005, USA,Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Brian J. Grindel
- Department of BioSciences, Rice University, Houston, TX 77005, USA,Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Kelsea M. Hubka
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA,Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - George R. Dodge
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Medical Center, Department of Veterans Affairs, Philadelphia, PA. University of Pennsylvania Perelman School of Medicine, Department of Orthopedic Surgery, Philadelphia, PA., 19104, USA
| | - Mary C. Farach-Carson
- Department of BioSciences, Rice University, Houston, TX 77005, USA,Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA,Department of Bioengineering, Rice University, Houston, TX 77005, USA,To whom correspondence should be addressed: Mary C. Farach-Carson, Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston TX 77054, Phone: 713-486-4438,
| |
Collapse
|
9
|
Krishnan H, Miller WT, Blanco FJ, Goldberg GS. Src and podoplanin forge a path to destruction. Drug Discov Today 2019; 24:241-249. [DOI: 10.1016/j.drudis.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
|
10
|
Guo SM, Wang JX, Li J, Xu FY, Wei Q, Wang HM, Huang HQ, Zheng SL, Xie YJ, Zhang C. Identification of gene expression profiles and key genes in subchondral bone of osteoarthritis using weighted gene coexpression network analysis. J Cell Biochem 2018; 119:7687-7695. [PMID: 29904957 DOI: 10.1002/jcb.27118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/04/2018] [Indexed: 02/05/2023]
Abstract
Osteoarthritis (OA) significantly influences the quality life of people around the world. It is urgent to find an effective way to understand the genetic etiology of OA. We used weighted gene coexpression network analysis (WGCNA) to explore the key genes involved in the subchondral bone pathological process of OA. Fifty gene expression profiles of GSE51588 were downloaded from the Gene Expression Omnibus database. The OA-associated genes and gene ontologies were acquired from JuniorDoc. Weighted gene coexpression network analysis was used to find disease-related networks based on 21756 gene expression correlation coefficients, hub-genes with the highest connectivity in each module were selected, and the correlation between module eigengene and clinical traits was calculated. The genes in the traits-related gene coexpression modules were subject to functional annotation and pathway enrichment analysis using ClusterProfiler. A total of 73 gene modules were identified, of which, 12 modules were found with high connectivity with clinical traits. Five modules were found with enriched OA-associated genes. Moreover, 310 OA-associated genes were found, and 34 of them were among hub-genes in each module. Consequently, enrichment results indicated some key metabolic pathways, such as extracellular matrix (ECM)-receptor interaction (hsa04512), focal adhesion (hsa04510), the phosphatidylinositol 3'-kinase (PI3K)-Akt signaling pathway (PI3K-AKT) (hsa04151), transforming growth factor beta pathway, and Wnt pathway. We intended to identify some core genes, collagen (COL)6A3, COL6A1, ITGA11, BAMBI, and HCK, which could influence downstream signaling pathways once they were activated. In this study, we identified important genes within key coexpression modules, which associate with a pathological process of subchondral bone in OA. Functional analysis results could provide important information to understand the mechanism of OA.
Collapse
Affiliation(s)
- Sheng-Min Guo
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian-Xiong Wang
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jin Li
- Hepatological Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fang-Yuan Xu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Quan Wei
- Rehabilitation Medicine Department, West China Hospital, Sichuan University, Chengdu, China
| | - Hai-Ming Wang
- Rehabilitation Medicine Department, West China Hospital, Sichuan University, Chengdu, China
| | - Hou-Qiang Huang
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Si-Lin Zheng
- Nursing Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-Jie Xie
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chi Zhang
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Yanoshita M, Hirose N, Okamoto Y, Sumi C, Takano M, Nishiyama S, Asakawa-Tanne Y, Horie K, Onishi A, Yamauchi Y, Mitsuyoshi T, Kunimatsu R, Tanimoto K. Cyclic Tensile Strain Upregulates Pro-Inflammatory Cytokine Expression Via FAK-MAPK Signaling in Chondrocytes. Inflammation 2018; 41:1621-1630. [DOI: 10.1007/s10753-018-0805-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Öztürk E, Despot-Slade E, Pichler M, Zenobi-Wong M. RhoA activation and nuclearization marks loss of chondrocyte phenotype in crosstalk with Wnt pathway. Exp Cell Res 2017; 360:113-124. [PMID: 28865751 DOI: 10.1016/j.yexcr.2017.08.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022]
Abstract
De-differentiation comprises a major drawback for the use of autologous chondrocytes in cartilage repair. Here, we investigate the role of RhoA and canonical Wnt signaling in chondrocyte phenotype. Chondrocyte de-differentiation is accompanied by an upregulation and nuclear localization of RhoA. Effectors of canonical Wnt signaling including β-catenin and YAP/TAZ are upregulated in de-differentiating chondrocytes in a Rho-dependent manner. Inhibition of Rho activation with C3 transferase inhibits nuclear localization of RhoA, induces expression of chondrogenic markers on 2D and enhances the chondrogenic effect of 3D culturing. Upregulation of chondrogenic markers by Rho inhibition is accompanied by loss of canonical Wnt signaling markers in 3D or on 2D whereas treatment of chondrocytes with Wnt-3a abrogates this effect. However, induction of canonical Wnt signaling inhibits chondrogenic markers on 2D but enhances chondrogenic re-differentiation on 2D with C3 transferase or in 3D. These data provide insights on the context-dependent role of RhoA and Wnt signaling in de-differentiation and on mechanisms to induce chondrogenic markers for therapeutic approaches.
Collapse
Affiliation(s)
- Ece Öztürk
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Evelin Despot-Slade
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Michael Pichler
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
13
|
Wan Q, TruongVo T, Steele HE, Ozcelikkale A, Han B, Wang Y, Oh J, Yokota H, Na S. Subcellular domain-dependent molecular hierarchy of SFK and FAK in mechanotransduction and cytokine signaling. Sci Rep 2017; 7:9033. [PMID: 28831165 PMCID: PMC5567257 DOI: 10.1038/s41598-017-09495-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/26/2017] [Indexed: 01/23/2023] Open
Abstract
Focal adhesion kinase (FAK) and Src family kinases (SFK) are known to play critical roles in mechanotransduction and other crucial cell functions. Recent reports indicate that they reside in different microdomains of the plasma membrane. However, little is known about their subcellular domain-dependent roles and responses to extracellular stimuli. Here, we employed fluorescence resonance energy transfer (FRET)-based biosensors in conjunction with collagen-coupled agarose gels to detect subcellular activities of SFK and FAK in three-dimensional (3D) settings. We observed that SFK and FAK in the lipid rafts and nonrafts are differently regulated by fluid flow and pro-inflammatory cytokines. Inhibition of FAK in the lipid rafts blocked SFK response to fluid flow, while inhibition of SFK in the non-rafts blocked FAK activation by the cytokines. Ex-vivo FRET imaging of mouse cartilage explants showed that intermediate level of interstitial fluid flow selectively decreased cytokine-induced SFK/FAK activation. These findings suggest that SFK and FAK exert distinctive molecular hierarchy depending on their subcellular location and extracellular stimuli.
Collapse
Affiliation(s)
- Qiaoqiao Wan
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - ThucNhi TruongVo
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Hannah E Steele
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
| | - Altug Ozcelikkale
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Bumsoo Han
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, USA
| | - Junghwan Oh
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202, USA.
- School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
14
|
Kara N, Wei C, Commanday AC, Patton JG. miR-27 regulates chondrogenesis by suppressing focal adhesion kinase during pharyngeal arch development. Dev Biol 2017. [PMID: 28625871 PMCID: PMC5582384 DOI: 10.1016/j.ydbio.2017.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cranial neural crest cells are a multipotent cell population that generate all the elements of the pharyngeal cartilage with differentiation into chondrocytes tightly regulated by temporal intracellular and extracellular cues. Here, we demonstrate a novel role for miR-27, a highly enriched microRNA in the pharyngeal arches, as a positive regulator of chondrogenesis. Knock down of miR-27 led to nearly complete loss of pharyngeal cartilage by attenuating proliferation and blocking differentiation of pre-chondrogenic cells. Focal adhesion kinase (FAK) is a key regulator in integrin-mediated extracellular matrix (ECM) adhesion and has been proposed to function as a negative regulator of chondrogenesis. We show that FAK is downregulated in the pharyngeal arches during chondrogenesis and is a direct target of miR-27. Suppressing the accumulation of FAK in miR-27 morphants partially rescued the severe pharyngeal cartilage defects observed upon knock down of miR-27. These data support a crucial role for miR-27 in promoting chondrogenic differentiation in the pharyngeal arches through regulation of FAK.
Collapse
Affiliation(s)
- Nergis Kara
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Chunyao Wei
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Alexander C Commanday
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
15
|
Shin H, Lee MN, Choung JS, Kim S, Choi BH, Noh M, Shin JH. Focal Adhesion Assembly Induces Phenotypic Changes and Dedifferentiation in Chondrocytes. J Cell Physiol 2016; 231:1822-31. [PMID: 26661891 DOI: 10.1002/jcp.25290] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 12/10/2015] [Indexed: 01/20/2023]
Abstract
The expansion of autologous chondrocytes in vitro is used to generate sufficient populations for cell-based therapies. However, during monolayer culture, chondrocytes lose inherent characteristics and shift to fibroblast-like cells as passage number increase. Here, we investigated passage-dependent changes in cellular physiology, including cellular morphology, motility, and gene and protein expression, as well as the role of focal adhesion and cytoskeletal regulation in the dedifferentiation process. We found that the gene and protein expression levels of both the focal adhesion complex and small Rho GTPases are upregulated with increasing passage number and are closely linked to chondrocyte dedifferentiation. The inhibition of focal adhesion kinase (FAK) but not small Rho GTPases induced the loss of fibroblastic traits and the recovery of collagen type II, aggrecan, and SOX9 expression levels in dedifferentiated chondrocytes. Based on these findings, we propose a strategy to suppress chondrogenic dedifferentiation by inhibiting the identified FAK or Src pathways while maintaining the expansion capability of chondrocytes in a 2D environment. These results highlight a potential therapeutic target for the treatment of skeletal diseases and the generation of cartilage in tissue-engineering approaches. J. Cell. Physiol. 231: 1822-1831, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyunjun Shin
- Division of Mechanical Engineering, School of Mechanical, Aerospace, and Systems Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Mi Nam Lee
- Division of Mechanical Engineering, School of Mechanical, Aerospace, and Systems Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin Seung Choung
- Division of Mechanical Engineering, School of Mechanical, Aerospace, and Systems Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | - Sanghee Kim
- Department of Mechanical Systems Engineering, Hansung University, Seoul, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Jung-gu, Incheon, Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Jennifer H Shin
- Division of Mechanical Engineering, School of Mechanical, Aerospace, and Systems Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Wan Q, Xu W, Yan JL, Yokota H, Na S. Distinctive subcellular inhibition of cytokine-induced SRC by salubrinal and fluid flow. PLoS One 2014; 9:e105699. [PMID: 25157407 PMCID: PMC4144888 DOI: 10.1371/journal.pone.0105699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/23/2014] [Indexed: 12/17/2022] Open
Abstract
A non-receptor protein kinase Src plays a crucial role in fundamental cell functions such as proliferation, migration, and differentiation. While inhibition of Src is reported to contribute to chondrocyte homeostasis, its regulation at a subcellular level by chemical inhibitors and mechanical stimulation has not been fully understood. In response to inflammatory cytokines and stress to the endoplasmic reticulum (ER) that increase proteolytic activities in chondrocytes, we addressed two questions: Do cytokines such as interleukin 1 beta (IL1β) and tumor necrosis factor alpha (TNFα) induce location-dependent Src activation? Can cytokine-induced Src activation be suppressed by chemically alleviating ER stress or by applying fluid flow? Using live cell imaging with two Src biosensors (i.e., cytosolic, and plasma membrane-bound biosensors) for a fluorescence resonance energy transfer (FRET) technique, we determined cytosolic Src activity as well as membrane-bound Src activity in C28/I2 human chondrocytes. In response to TNFα and IL1β, both cytosolic and plasma membrane-bound Src proteins were activated, but activation in the cytosol occurred earlier than that in the plasma membrane. Treatment with salubrinal or guanabenz, two chemical agents that attenuate ER stress, significantly decreased cytokine-induced Src activities in the cytosol, but not in the plasma membrane. In contrast, fluid flow reduced Src activities in the plasma membrane, but not in the cytosol. Collectively, the results demonstrate that Src activity is differentially regulated by salubrinal/guanabenz and fluid flow in the cytosol and plasma membrane.
Collapse
Affiliation(s)
- Qiaoqiao Wan
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Wenxiao Xu
- Department of Orthopedics, Second Clinical Hospital of Harbin Medical University, Harbin, China
| | - Jing-long Yan
- Department of Orthopedics, Second Clinical Hospital of Harbin Medical University, Harbin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
17
|
|
18
|
Feng ZY, He ZN, Zhang B, Chen Z. Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling. Mol Med Rep 2013; 8:1669-79. [PMID: 24126801 DOI: 10.3892/mmr.2013.1717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/26/2013] [Indexed: 11/06/2022] Open
Abstract
The involvement of osteoprotegerin (OPG) in bone metabolism has previously been established; however, whether OPG regulates chondrocytes directly and exerts precise cellular and molecular effects on chondrocytes remains to be determined. Thus, the present study aimed to investigate the direct effect of OPG on the viability, proliferation and functional consequences of chondrocytes. Primary chondrocytes were isolated from the knee of Sprague-Dawley rats. Passage 1 chondrocytes were identified by toluidine blue staining and used in the experiments. The cell proliferation induced by OPG at various concentrations was measured by a Cell Counting kit-8 (CCK-8) assay. Following pretreatment with mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitor U0126, extracellular signal-regulated kinase (ERK) inhibitor PD098059, and P38 mitogen-activated protein kinase (P38MAPK) inhibitor SB203580 for 30 min, chondrocytes were treated with OPG, and CCK-8 was performed. The cellular signals of MAPKs, including ERK, P38MAPK and c-Jun N-terminal protein kinase (JNK), were investigated by western blot analysis following treatment with OPG. The functional consequences following treatment with soluble OPG were analyzed by qPCR and western blot analysis. OPG increased chondrocyte proliferation with maximal effect at 10 ng/ml, and induced the phosphorylation of MEK and ERK but not P38MAPK or JNK. Suppression of ERK activity via PD098095 inhibited OPG-induced chondrocyte proliferation. Administration of OPG significantly downregulated ADAMTS‑5 and upregulated tissue inhibitor of metalloproteinase (TIMP)-4 production, but had no effect on the expression of TIMP-1, -2 and -3, insulin-like growth factor I, transforming growth factor-β, basic fibroblast growth factor, bone morphogenetic protein-2, collagen II, aggrecan and ADAMTS-4. Suppression of ERK activity via PD098095 inhibited the alteration of ADAMTS-5 and TIMP-4 expression induced by OPG. OPG therefore regulated the proliferation of chondrocytes via MEK/ERK signaling, and directly affected chondrocytes by influencing the expression profile of ADAMTS-5 and TIMP-4.
Collapse
Affiliation(s)
- Zhi-Yun Feng
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | | | | | | |
Collapse
|
19
|
Maruyama T, Miyamoto Y, Yamamoto G, Yamada A, Yoshimura K, Suzawa T, Takami M, Akiyama T, Hoshino M, Iwasa F, Ikumi N, Tachikawa T, Mishima K, Baba K, Kamijo R. Downregulation of carbonic anhydrase IX promotes Col10a1 expression in chondrocytes. PLoS One 2013; 8:e56984. [PMID: 23441228 PMCID: PMC3575511 DOI: 10.1371/journal.pone.0056984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Carbonic anhydrase (CA) IX is a transmembrane isozyme of CAs that catalyzes reversible hydration of CO(2). While it is known that CA IX is distributed in human embryonic chondrocytes, its role in chondrocyte differentiation has not been reported. In the present study, we found that Car9 mRNA and CA IX were expressed in proliferating but not hypertrophic chondrocytes. Next, we examined the role of CA IX in the expression of marker genes of chondrocyte differentiation in vitro. Introduction of Car9 siRNA to mouse primary chondrocytes obtained from costal cartilage induced the mRNA expressions of Col10a1, the gene for type X collagen α-1 chain, and Epas1, the gene for hypoxia-responsible factor-2α (HIF-2α), both of which are known to be characteristically expressed in hypertrophic chondrocytes. On the other hand, forced expression of CA IX had no effect of the proliferation of chondrocytes or the transcription of Col10a1 and Epas1, while the transcription of Col2a1 and Acan were up-regulated. Although HIF-2α has been reported to be a potent activator of Col10a1 transcription, Epas1 siRNA did not suppress Car9 siRNA-induced increment in Col10a1 expression, indicating that down-regulation of CA IX induces the expression of Col10a1 in chondrocytes in a HIF-2α-independent manner. On the other hand, cellular cAMP content was lowered by Car9 siRNA. Furthermore, the expression of Col10a1 mRNA after Car9 silencing was augmented by an inhibitor of protein kinase A, and suppressed by an inhibitor for phosphodiesterase as well as a brominated analog of cAMP. While these results suggest a possible involvement of cAMP-dependent pathway, at least in part, in induction of Col10a1 expression by down-regulation of Car9, more detailed study is required to clarify the role of CA IX in regulation of Col10a1 expression in chondrocytes.
Collapse
Affiliation(s)
- Toshifumi Maruyama
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- * E-mail:
| | - Gou Yamamoto
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Kentaro Yoshimura
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tetsuo Suzawa
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Masamichi Takami
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tomohito Akiyama
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Marie Hoshino
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Fuminori Iwasa
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Noriharu Ikumi
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Tetsuhiko Tachikawa
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Kazuyoshi Baba
- Department of Prosthodontics, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| |
Collapse
|
20
|
Src family kinase inhibitor PP2 accelerates differentiation in human intestinal epithelial cells. Biochem Biophys Res Commun 2012; 430:1195-200. [PMID: 23274493 DOI: 10.1016/j.bbrc.2012.12.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/17/2022]
Abstract
The proto-oncogene Src is an important protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and survival. Here, we investigated the involvement of Src family kinases (SFKs) in human intestinal cell differentiation. We first observed that Src activity peaked in early stages of Caco-2/15 cell differentiation. Inhibition of SFKs with PP2, a selective SFK inhibitor, accelerated the overall differentiation program. Interestingly, all polarization and terminal differentiation markers tested, including sucrase-isomaltase, lactase-phlorizin hydrolase and E and Li-cadherins were found to be significantly up-regulated after only 3 days of treatment in the newly differentiating cells. Further investigation of the effects of PP2 revealed a significant up-regulation of the two main intestinal epithelial cell-specific transcription factors Cdx2 and HNF1α and a reduction of polycomb PRC2-related epigenetic repressing activity as measured by a decrease in H3K27me3, two events closely related to the control of cell terminal differentiation in the intestine. Taken together, these data suggest that SFKs play a key role in the control of intestinal epithelial cell terminal differentiation.
Collapse
|
21
|
Woods A, James CG, Wang G, Dupuis H, Beier F. Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-alpha signalling in endochondral bone growth. J Cell Mol Med 2011; 13:3497-516. [PMID: 20196782 PMCID: PMC4516504 DOI: 10.1111/j.1582-4934.2009.00684.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Elucidating the signalling pathways that regulate chondrocyte differentiation, such as the actin cytoskeleton and Rho GTPases, during development is essential for understanding of pathological conditions of cartilage, such as chondrodysplasias and osteoarthritis. Manipulation of actin dynamics in tibia organ cultures isolated from E15.5 mice results in pronounced enhancement of endochondral bone growth and specific changes in growth plate architecture. Global changes in gene expression were examined of primary chondrocytes isolated from embryonic tibia, treated with the compounds cytochalasin D, jasplakinolide (actin modifiers) and the ROCK inhibitor Y27632. Cytochalasin D elicited the most pronounced response and induced many features of hypertrophic chondrocyte differentiation. Bioinformatics analyses of microarray data and expression validation by real-time PCR and immunohistochemistry resulted in the identification of the nuclear receptor retinoid related orphan receptor-α (Ror-α) as a novel putative regulator of chondrocyte hypertrophy. Expression of Ror-α target genes, (Lpl, fatty acid binding protein 4 [Fabp4], Cd36 and kruppel-like factor 5 [Klf15]) were induced during chondrocyte hypertrophy and by cytochalasin D and are cholesterol dependent. Stimulation of Ror-α by cholesterol results in increased bone growth and enlarged, rounded cells, a phenotype similar to chondrocyte hypertrophy and to the changes induced by cytochalasin D, while inhibition of cholesterol synthesis by lovastatin inhibits cytochalasin D induced bone growth. Additionally, we show that in a mouse model of cartilage specific (Col2-Cre) Rac1, inactivation results in increased Hif-1α (a regulator of Rora gene expression) and Ror-α+ cells within hypertrophic growth plates. We provide evidence that cholesterol signalling through increased Ror-α expression stimulates chondrocyte hypertrophy and partially mediates responses of cartilage to actin dynamics.
Collapse
Affiliation(s)
- Anita Woods
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
22
|
Tamm C, Galitó SP, Annerén C. Differential effects on cell motility, embryonic stem cell self-renewal and senescence by diverse Src kinase family inhibitors. Exp Cell Res 2011; 318:336-49. [PMID: 22197704 DOI: 10.1016/j.yexcr.2011.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 11/24/2022]
Abstract
The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt in proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2.
Collapse
Affiliation(s)
- Christoffer Tamm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
23
|
Wang G, Yan Q, Woods A, Aubrey LA, Feng Q, Beier F. Inducible nitric oxide synthase-nitric oxide signaling mediates the mitogenic activity of Rac1 during endochondral bone growth. J Cell Sci 2011; 124:3405-13. [PMID: 21965529 DOI: 10.1242/jcs.076026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Coordinated proliferation and differentiation of growth plate chondrocytes controls endochondral bone growth and final height in humans, and disruption of this process results in diseases of the growing and adult skeleton, such as chondrodysplasias or osteoarthritis. We had shown recently that chondrocyte-specific deletion of the gene Rac1 in mice leads to severe dwarfism due to reduced chondrocyte proliferation, but the molecular pathways involved remained unclear. Here, we demonstrate that Rac1-deficient chondrocytes have severely reduced levels of inducible nitric oxide synthase (iNOS) protein and nitric oxide (NO) production. NO donors reversed the proliferative effects induced by Rac1 deficiency, whereas inhibition of NO production mimicked the effects of Rac1 loss of function. Examination of the growth plate of iNOS-deficient mice revealed reduced chondrocyte proliferation and expression of cyclin D1, resembling the phenotype of Rac1-deficient growth plates. Finally, we demonstrate that Rac1-NO signaling inhibits the expression of ATF3, a known suppressor of cyclin D1 expression in chondrocytes. In conclusion, our studies identify the iNOS-NO pathway as a novel mediator of mitogenic Rac1 signaling and indicate that it could be a target for growth disorder therapies.
Collapse
Affiliation(s)
- Guoyan Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Pitsillides AA, Beier F. Cartilage biology in osteoarthritis--lessons from developmental biology. Nat Rev Rheumatol 2011; 7:654-63. [PMID: 21947178 DOI: 10.1038/nrrheum.2011.129] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular and molecular mechanisms responsible for the initiation and progression of osteoarthritis (OA), and in particular cartilage degeneration in OA, are not completely understood. Increasing evidence implicates developmental processes in OA etiology and pathogenesis. Herein, we review this evidence. We first examine subtle changes in cartilage development and the specification and formation of joints, which predispose to OA development, and second, we review the switch from an articular to a hypertrophic chondrocyte phenotype that is thought to be part of the OA pathological process ultimately resulting in cartilage degeneration. The latest studies are summarized and we discuss the concepts emerging from these findings in cartilage biology, in the light of our understanding of the developmental processes involved.
Collapse
Affiliation(s)
- Andrew A Pitsillides
- Department of Veterinary Basic Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | | |
Collapse
|
25
|
Afrikanova I, Yebra M, Simpkinson M, Xu Y, Hayek A, Montgomery A. Inhibitors of Src and focal adhesion kinase promote endocrine specification: impact on the derivation of β-cells from human pluripotent stem cells. J Biol Chem 2011; 286:36042-36052. [PMID: 21852242 DOI: 10.1074/jbc.m111.290825] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stepwise approaches for the derivation of β-cells from human embryonic stem cells have been described. However, low levels of endocrine specification limit the final yield of insulin-producing β-cells. In this study, we show that the pyrrolo-pyrimidine Src family kinase (SFK) inhibitor PP2 effectively promotes the endocrine specification of human embryonic stem cell derivatives based on its capacity to induce the expression of proendocrine transcription factors (NGN3, NEUROD1, NKX2.2, and PAX4) and to significantly increase the final yield of insulin-positive cells. We further demonstrate that PP2 inhibits the activation of focal adhesion kinase (FAK), and selective inhibition of this kinase is also sufficient to induce early endocrine commitment based on increased expression of NGN3, NEUROD1, and NKX2.2. Additional studies using dominant negative constructs and isolated human fetal pancreata suggest that c-Src is at least partially responsible for inhibiting early endocrine specification. Mechanistically, we propose that inhibition of SFK/FAK signaling can promote endocrine specification by limiting activation of the TGFβR/Smad2/3 pathway. Moreover, we show that inhibition of SFK/FAK signaling suppresses cell growth, increases the expression of the β-cell-associated cyclin-dependent kinase inhibitor p57kip2, and simultaneously suppresses the expression of Id1 and Id2. This study has important implications for the derivation of β-cells for the cell-based therapy of diabetes and sheds new light on the signaling events that regulate early endocrine specification.
Collapse
Affiliation(s)
- Ivka Afrikanova
- Department of Pediatrics, University of California San Diego, San Diego, California 92121; Pediatric Diabetes Research Center, University of California San Diego, San Diego, California 92121
| | - Mayra Yebra
- Department of Pediatrics, University of California San Diego, San Diego, California 92121; Pediatric Diabetes Research Center, University of California San Diego, San Diego, California 92121
| | - Megan Simpkinson
- Department of Pediatrics, University of California San Diego, San Diego, California 92121; Pediatric Diabetes Research Center, University of California San Diego, San Diego, California 92121
| | - Yang Xu
- Division of Biological Science, University of California San Diego, San Diego, California 92121
| | - Alberto Hayek
- Department of Pediatrics, University of California San Diego, San Diego, California 92121; Pediatric Diabetes Research Center, University of California San Diego, San Diego, California 92121
| | - Anthony Montgomery
- Department of Pediatrics, University of California San Diego, San Diego, California 92121; Pediatric Diabetes Research Center, University of California San Diego, San Diego, California 92121.
| |
Collapse
|
26
|
Lauzier A, Charbonneau M, Harper K, Jilaveanu-Pelmus M, Dubois CM. Formation of invadopodia-like structures by synovial cells promotes cartilage breakdown in collagen-induced arthritis: Involvement of the protein tyrosine kinase Src. ACTA ACUST UNITED AC 2011; 63:1591-602. [DOI: 10.1002/art.30305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Kim HA, Jung HA, Kim TY. Identification of Genes Regulated by IL-1β Using Integrative microRNA and mRNA Genomic Analysis in Human Articular Chondrocytes. JOURNAL OF RHEUMATIC DISEASES 2011. [DOI: 10.4078/jrd.2011.18.4.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyun Ah Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Hyun A Jung
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Tae Young Kim
- Department of Orthopedic Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
28
|
Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis. Dev Biol 2010; 346:170-80. [DOI: 10.1016/j.ydbio.2010.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/12/2010] [Accepted: 07/06/2010] [Indexed: 12/18/2022]
|
29
|
Johnston J, Ramos-Valdes Y, Stanton LA, Ladhani S, Beier F, Dimattia GE. Human stanniocalcin-1 or -2 expressed in mice reduces bone size and severely inhibits cranial intramembranous bone growth. Transgenic Res 2010; 19:1017-39. [PMID: 20174869 DOI: 10.1007/s11248-010-9376-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 02/04/2010] [Indexed: 01/27/2023]
Abstract
Stanniocalcin-1 (STC1) and -2 (STC2) are highly related, secreted, homodimeric glycoproteins that are significantly upregulated by different forms of stress including high phosphate levels. Transgenic mice that constitutively express either human STC1 or STC2 exhibit intra-uterine growth restriction and permanent post-natal growth retardation. STC1 is expressed in chondrocytic and osteoblastic cells during murine development and can enhance differentiation of calvarial cells in culture. Therefore, there is mounting evidence that stanniocalcins (STCs) modulate bone development in vivo. To further define the effects of stanniocalcins on skeletal development, we performed a series of measurements on components of the axial, appendicular, and cranial skeleton in transgenic and wildtype mice. We show that skeletal growth is retarded and that the intramembranous bones of the cranium exhibit a particularly severe delay in suture closure. The posterior frontal suture remains patent throughout the lifetime of human STC1 and STC2 transgenic mice. We did not observe significant effects on chondrogenesis: however, calvarial cells exhibited reduced viability, proliferation and delayed differentiation, indicating that developing osteoblasts are particularly sensitive to the levels of STCs. Given the evidence linking STC1 to cellular phosphate homeostasis, we assessed the expression of a variety of phosphate regulators in transgenic and wildtype calvarial cells and found significantly lower levels of Mepe, Dmp1, Sfrp4 in transgenic cells without a change in Pit1 or Pit2. Collectively these data support a direct regulatory role for STCs in osteoblasts and suggest that overexposure to these factors inhibits normal skeletal development without significant changes in patterning.
Collapse
Affiliation(s)
- Jennifer Johnston
- Cancer Research Laboratory Program, London Regional Cancer Program (LRCP), 790 Commissioners Rd, Room A4-921, London, ON, N6A 4L6, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Woods A, James CG, Wang G, Dupuis H, Beier F. Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-α signalling in endochondral bone growth. J Cell Mol Med 2010. [DOI: 10.1111/j.1582-4934.2008.00684.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
31
|
Geny B, Grassart A, Manich M, Chicanne G, Payrastre B, Sauvonnet N, Popoff MR. Rac1 inactivation by lethal toxin from Clostridium sordellii modifies focal adhesions upstream of actin depolymerization. Cell Microbiol 2009; 12:217-32. [PMID: 19840028 DOI: 10.1111/j.1462-5822.2009.01392.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inactivation of different small GTPases upon their glucosylation by lethal toxin from Clostridium sordellii strain IP82 (LT-82) is already known to lead to cell rounding, adherens junction (AJ) disorganization and actin depolymerization. In the present work, we observed that LT-82 induces a rapid dephosphorylation of paxillin, a protein regulating focal adhesion (FA), independently of inactivation of paxillin kinases such as Src, Fak and Pyk2. Among the small GTPases inactivated by this toxin, including Rac, Ras, Rap and Ral, we identified Rac1, as responsible for paxillin dephosphorylation using cells overexpressing Rac1(V12). Rac1 inactivation by LT-82 modifies interactions between proteins from AJ and FA complexes as shown by pull-down assays. We showed that in Triton X-100-insoluble membrane proteins from these complexes, namely E-cadherin, beta-catenin, p120-catenin and talin, are decreased upon LT-82 intoxication, a treatment that also induces a rapid decrease in cell phosphoinositide content. Therefore, we proposed that Rac inactivation by LT-82 alters phosphoinositide metabolism leading to FA and AJ complex disorganization and actin depolymerization.
Collapse
Affiliation(s)
- Blandine Geny
- Unité des Bactéries Anaérobies et Toxines, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
As the cellular component of articular cartilage, chondrocytes are responsible for maintaining in a low-turnover state the unique composition and organization of the matrix that was determined during embryonic and postnatal development. In joint diseases, cartilage homeostasis is disrupted by mechanisms that are driven by combinations of biological mediators that vary according to the disease process, including contributions from other joint tissues. In osteoarthritis (OA), biomechanical stimuli predominate with up-regulation of both catabolic and anabolic cytokines and recapitulation of developmental phenotypes, whereas in rheumatoid arthritis (RA), inflammation and catabolism drive cartilage loss. In vitro studies in chondrocytes have elucidated signaling pathways and transcription factors that orchestrate specific functions that promote cartilage damage in both OA and RA. Thus, understanding how the adult articular chondrocyte functions within its unique environment will aid in the development of rational strategies to protect cartilage from damage resulting from joint disease. This review will cover current knowledge about the specific cellular and biochemical mechanisms that regulate cartilage homeostasis and pathology.
Collapse
Affiliation(s)
- Mary B Goldring
- Research Division, Hospital for Special Surgery, affiliated with Weill College of Medicine of Cornell University, Caspary Research Building, 535 E. 70th Street, New York, NY 10021, USA
| | - Kenneth B Marcu
- Biochemistry and Cell Biology Department, Stony Brook University, Life Sciences Rm #330, Stony Brook, NY 11794, USA
- Centro Ricerca Biomedica Applicata, S. Orsola-Malpighi University Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
33
|
Alvarez SE, Seguin LR, Villarreal RS, Nahmias C, Ciuffo GM. Involvement of c-Src tyrosine kinase in SHP-1 phosphatase activation by Ang II AT2 receptors in rat fetal tissues. J Cell Biochem 2008; 105:703-11. [PMID: 18680145 DOI: 10.1002/jcb.21866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Angiotensin II (Ang II) AT(2) receptors are abundantly expressed in rat fetal tissues where they probably contribute to development. In the present study we examine the effects of Ang II type 2 receptor stimulation on SHP-1 activation. Ang II (10(-7) M) elicits a rapid and transient tyrosine phosphorylation of SHP-1, maximal at 1 min, in a dose-dependent form, blocked by the AT(2) antagonist, PD123319. SHP-1 phosphorylation is followed in time by tyrosine dephosphorylation of different proteins, suggesting a sequence of events. Ang II induces association of SHP-1 to AT(2) receptors as shown by co-immunoprecipitation, Western blot and binding assays. SHP-1 activity was determined in immunocomplexes obtained with either anti-AT(2) or anti-SHP-1 antibodies, after Ang II stimulation (1 min), in correlation with the maximal level of SHP-1 phosphorylation. Interestingly, following receptor stimulation (1 min) c-Src was associated to AT(2) or SHP-1 immunocomplexes. Preincubation with the c-Src inhibitor PP2 inhibited SHP-1 activation and c-Src association, thus confirming the participation of c-Src in this pathway. We demonstrated here for the first time the involvement of c-Src in SHP-1 activation via AT(2) receptors present in an ex vivo model expressing both receptor subtypes. In this model, AT(2) receptors are not constitutively associated to SHP-1 and SHP-1 is not constitutively activated. Thus, we clearly establish that SHP-1 activation, mediated by the AT(2) subtype, involves c-Src and precedes protein tyrosine dephosphorylation, in rat fetal membranes.
Collapse
Affiliation(s)
- Sergio E Alvarez
- Facultad de Química, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-CONICET), Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | | | | | | | | |
Collapse
|
34
|
Gill KS, Beier F, Goldberg HA. Rho-ROCK signaling differentially regulates chondrocyte spreading on fibronectin and bone sialoprotein. Am J Physiol Cell Physiol 2008; 295:C38-49. [PMID: 18463228 DOI: 10.1152/ajpcell.00548.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mammalian growth plate is a dynamic structure rich in extracellular matrix (ECM). Interactions of growth plate chondrocytes with ECM proteins regulate cell behavior. In this study, we compared chondrocyte adhesion and spreading dynamics on fibronectin (FN) and bone sialoprotein (BSP). Chondrocyte adhesion and spreading were also compared with fibroblasts to analyze potential cell-type-specific effects. Chondrocyte adhesion to BSP is independent of posttranslational modifications but is dependent on the RGD sequence in BSP. Whereas chondrocytes and fibroblasts adhered at similar levels on FN and BSP, cells displayed more actin-dependent spread on FN despite a 16x molar excess of BSP adsorbed to plastic. To identify intracellular mediators responsible for this difference in spreading, we investigated focal adhesion kinase (FAK)-Src and Rho-Rho kinase (ROCK) signaling. Although activated FAK localized to the vertices of adhered chondrocytes, levels of FAK activation did not correlate with the extent of spreading. Furthermore, Src inhibition reduced chondrocyte spreading on both FN and BSP, suggesting that FAK-Src signaling is not responsible for less cell spreading on BSP. In contrast, inhibition of Rho and ROCK in chondrocytes increased cell spreading on BSP and membrane protrusiveness on FN but did not affect cell adhesion. In fibroblasts, Rho inhibition increased fibroblast spreading on BSP while ROCK inhibition changed membrane protrusiveness of FN and BSP. In summary, we identify a novel role for Rho-ROCK signaling in regulating chondrocyte spreading and demonstrate both cell- and matrix molecule-specific mechanisms controlling cell spreading.
Collapse
Affiliation(s)
- Kamal S Gill
- CIHR Group in Skeletal Development and Remodeling, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
35
|
Akiyama H. Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol 2008; 18:213-9. [PMID: 18351289 DOI: 10.1007/s10165-008-0048-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/16/2008] [Indexed: 11/25/2022]
Abstract
Cell-fate determination of pluripotent cells, cell proliferation, differentiation, and maturation, as well as the maintenance of stem cells, are essential cellular events during organogenesis. Previous reports show that some distinct cell-specific transcription factors are the master genes that control cell lineage commitment and the subsequent cell proliferation and differentiation. Some of these transcription factors generate hierarchical regulation of expression and act in concert to fulfill their roles. This review discusses the molecular properties and mechanisms of Sry-related high-mobility-group box (Sox) transcription factor, Sox9, in chondrogenesis.
Collapse
Affiliation(s)
- Haruhiko Akiyama
- Department of Orthopaedics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|