1
|
Kacprzak B, Stańczak M, Bielenda B, Yarmohammadi AA, Hagner-Derengowska M. Molecular Aspects of Cartilage Microfracturation: Rehabilitation Insights. Orthop Rev (Pavia) 2025; 17:129917. [PMID: 40276361 PMCID: PMC12021420 DOI: 10.52965/001c.129917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/16/2024] [Indexed: 04/26/2025] Open
Abstract
Cartilage microfracturation is a surgical technique specifically designed to address chondral defects, which are injuries to the cartilage that covers the ends of bones in joints. These defects can result from traumatic injuries, degenerative conditions such as osteoarthritis, or congenital abnormalities. The primary objective of microfracture surgery is to promote the regeneration of functional cartilage tissue, thereby restoring joint function, alleviating pain, and enhancing mobility. The procedure involves creating small, controlled perforations, or microfractures, in the subchondral bone plate beneath the damaged cartilage. This process, performed with precision to minimize damage to surrounding healthy tissue, penetrates the subchondral bone to reach the bone marrow, which is rich in mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
| | - Mikołaj Stańczak
- AECC University College, Bournemouth, UK
- Volleybox, Gliwice, Poland
| | | | | | | |
Collapse
|
2
|
Xu P, Cheng S, Yang X, Xu K, Hou W, Liu L, Peng K, Wen Y, Zhang F. Integrative single-cell analysis reveals transcriptional and epigenetic regulatory features of human developmental dysplasia of the hip. Osteoarthritis Cartilage 2025:S1063-4584(25)00866-0. [PMID: 40154730 DOI: 10.1016/j.joca.2025.02.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/18/2025] [Accepted: 02/14/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE Developmental dysplasia of the hip (DDH) is a developmental disorder that has long-term chronic pain and limited hip joint mobility. The aim of the current study is to understand the specific chondrocyte composition involved in DDH development, identify effective biomarkers for DDH prediction, and elucidate the gene regulatory elements driving DDH progression. METHOD In this study, we performed an integrated analysis combining single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing to investigate the molecular programs and epigenetic changes governing human DDH pathogenesis. Validation of marker genes for distinct chondrocyte populations was performed via immunohistochemical assays, alongside characterization of regulatory elements specific to DDH. RESULTS Our analysis identified seven molecularly distinct chondrocyte populations in DDH cartilage, including a novel inflammatory chondrocyte population with unique molecular signatures. Furthermore, we reconstructed the differentiation trajectory of chondrocytes, shedding light on their roles in DDH pathogenesis. Integrative analyses of transcriptomic and chromatin accessibility profiles highlighted shared regulatory features and transcriptional programs among chondrocyte subtypes, with several regulatory elements linked to DDH progression. Immunohistochemical validation corroborated the presence of key marker genes in distinct chondrocyte subsets. CONCLUSION Our findings contribute to clarifying the cellular heterogeneity of DDH and offer insights into potential early diagnostic and therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Weikun Hou
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Kan Peng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
3
|
Liu M, Wu C, Wu C, Zhou Z, Fang R, Liu C, Ning R. Immune cells differentiation in osteoarthritic cartilage damage: friends or foes? Front Immunol 2025; 16:1545284. [PMID: 40201177 PMCID: PMC11975574 DOI: 10.3389/fimmu.2025.1545284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Osteoarthritis (OA) is a chronic disease primarily characterized by degenerative changes in articular cartilage and synovitis, for which there are currently no targeted or curative therapies available in clinical practice. In recent years, the in-depth analysis of OA using single-cell sequencing and immunomics technologies has revealed the presence of multiple immune cell subsets, as well as different differentiation states within the same subset, in OA. Through immune-immune and immune-joint tissue interactions, these cells collectively promote or inhibit the progression of arthritis. This complex immune network, where "friends and foes coexist," has made targeted therapeutic strategies aimed at directly eliminating immune cells challenging, highlighting the urgent need for a detailed review of the composition, distribution, functional heterogeneity, therapeutic potential, and potential risks of immune subsets within the joint. Additionally, the similarities and differences between OA and rheumatoid arthritis (RA) in terms of diagnosis and immunotherapy need to be precisely understood, in order to draw lessons from or reject RA-based immunotherapies. To this end, this review summarizes the major triggers of inflammation in OA, the differentiation characteristics of key immune cell subsets, and compares the similarities and differences between OA and RA in diagnosis and treatment. It also outlines the current immunomodulatory strategies for OA and their limitations. Furthermore, we provide a detailed and focused discussion on immune cells that act as "friends or foes" in arthritis, covering the M1/M2 polarization of macrophages, functional heterogeneity of neutrophils, unique roles of dendritic cells at different maturation states, the balance between pro-inflammatory T cells and regulatory T cells (Tregs), and the diverse functions of B cells, plasma cells, and regulatory B cells (Bregs) in OA. By interpreting the roles of these immune cells, this review clarifies the dynamic changes and interactions of immune cells in OA joints, providing a theoretical foundation for more precise targeted interventions in future clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenfeng Liu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Rende Ning
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), School of Life Science, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Meenakshi Sundaram RS, Rupert S, Srinivasan P, Sathyanesan J, Govarthanan K, Jeyaraman N, Ramasubramanian S, Jeyaraman M, Chung HY, Gangadaran P, Ahn BC. Decoding Cytokine Dynamics: Wharton's Jelly Stromal Cells and Chondro-Differentiates in PHA-Stimulated Co-Culture. Cells 2025; 14:174. [PMID: 39936966 PMCID: PMC11817647 DOI: 10.3390/cells14030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION Articular cartilage damage presents a significant clinical challenge, with limited options for effective regeneration. Mesenchymal stromal cells (MSCs) derived from Wharton's jelly (WJ) are a promising cell source for cartilage repair due to their regenerative and immunomodulatory properties. While undifferentiated MSCs have demonstrated potent immunoregulatory effects, the immunomodulatory potential of chondrocytes derived from WJ-MSCs remains underexplored, particularly under inflammatory conditions. This study investigates the differential cytokine expression profiles of WJ-MSC-derived chondrocytes and undifferentiated MSCs under inflammatory stimulation with phytohemagglutinin (PHA) to understand their immunomodulatory capacities. MATERIALS AND METHODS WJ-MSCs were differentiated into chondrocytes using a micromass culture system. Differentiated chondrocytes were then co-cultured with immune cells under PHA-induced inflammatory conditions. Control groups included co-cultured cells without PHA activation and chondrocytes activated with PHA in the absence of immune cell interaction. Cytokine expression profiles were analyzed using the RT2 Customized Gene Array to evaluate pro- and anti-inflammatory markers. Morphological changes were assessed microscopically. The immunomodulatory responses of chondrocytes were compared to those of undifferentiated MSCs under the same experimental conditions. RESULTS Chondrocytes co-cultured with immune cells under PHA activation exhibited downregulation of IDO, HLA-G, PDGF, IL-10, TNF-α, IL-6, and IFN-γ compared to undifferentiated MSCs in similar conditions. In non-PHA co-cultured conditions, chondrocytes showed increased expression of IL-6, IFN-γ, IL-4, VEGF, iNOS, PDGF, PTGS-2 and TGF-β, while TNF-α, IL-10, IDO and HLA-G were decreased. In contrast, chondrocytes activated with PHA without immune cell interaction displayed reduced expression of HLA-G and TNF-α, with no significant changes in IL-6, IFN-γ, IL-4, IL-10, VEGF, PDGF, PTGS-2, TGF-β, IDO, and iNOS compared to PHA-stimulated undifferentiated MSCs. CONCLUSION This study demonstrates that chondrocytes derived from WJ-MSCs exhibit limited immunomodulatory potential compared to undifferentiated MSCs, particularly under PHA-induced inflammatory conditions. Undifferentiated MSCs showed superior regulation of key cytokines associated with immune modulation. These findings suggest that maintaining MSCs in an undifferentiated state may be advantageous for therapeutic applications targeting inflammatory conditions, such as osteoarthritis. Future research should explore strategies to enhance the immunomodulatory efficacy of chondrocytes, potentially through genetic modification or adjunctive therapies.
Collapse
Affiliation(s)
- Raja Sundari Meenakshi Sundaram
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (P.S.)
| | - Secunda Rupert
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (P.S.)
| | - Prasanna Srinivasan
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (P.S.)
| | - Jeswanth Sathyanesan
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (P.S.)
| | - Kavitha Govarthanan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India;
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600017, Tamil Nadu, India; (N.J.); (M.J.)
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India;
| | - Swaminathan Ramasubramanian
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India;
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600017, Tamil Nadu, India; (N.J.); (M.J.)
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India;
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea;
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
5
|
Chen Q, Su Y, Yang Z, Lin Q, Ke Y, Xing D, Li H. Bibliometric mapping of mesenchymal stem cell therapy for bone regeneration from 2013 to 2023. Front Med (Lausanne) 2025; 11:1484097. [PMID: 39835103 PMCID: PMC11743382 DOI: 10.3389/fmed.2024.1484097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have shown significant potential in bone regeneration and regenerative medicine in recent years. With the advancement of tissue engineering, MSCs have been increasingly applied in bone repair and regeneration, and their clinical application potential has grown through interdisciplinary approaches involving biomaterials and genetic engineering. However, there is a lack of systematic reviews summarizing their applications in bone regeneration. To address this gap, we analyzed the latest research on MSCs for bone regeneration published from 2013 to 2023. Using the Web of Science Core Collection, we conducted a literature search in December 2024 and employed bibliometric tools like CiteSpace and VOSviewer for a comprehensive analysis of the key research trends. Our findings focus on the development of cell engineering, highlighting the advantages, limitations, and future prospects of MSC applications in bone regeneration. These insights aim to enhance understanding of MSC-based bone regeneration, inspire new research directions, and facilitate the clinical translation of MSC research.
Collapse
Affiliation(s)
- Qianqian Chen
- Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Arthritis Clinic & Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqi Su
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Zhen Yang
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Qiyuan Lin
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
| | - Yan Ke
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Dan Xing
- Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Arthritis Clinic & Research Center, Zhejiang Chinese Medical University, Hangzhou, China
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| | - Hui Li
- Arthritis Clinic & Research Center, Peking University People’s Hospital, Peking University, Beijing, China
- Arthritis Institute, Peking University, Beijing, China
| |
Collapse
|
6
|
Zampogna B, Parisi FR, Ferrini A, Zampoli A, Papalia GF, Shanmugasundaram S, Papalia R. Safety and efficacy of autologous adipose-derived stem cells for knee osteoarthritis in the elderly population: A systematic review. J Clin Orthop Trauma 2024; 59:102804. [PMID: 39628863 PMCID: PMC11609259 DOI: 10.1016/j.jcot.2024.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/17/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a progressive joint disease, and over 240 million people suffer from symptomatic OA, primarily in the knee, and mainly affects the elderly population over 65. A combination of different risk factors leads to biological changes in the microenvironments of the joints, causing cartilage overload and chondrocyte aging. Adipose-derived MSCs (ADSCs) are demonstrated to improve joint environments with an effective therapy for Knee OA. This review focused on patients over 65 years old to evaluate the effectiveness of ADSC therapies in treating KOA in elderly patients and demonstrate that complications are not higher in this cohort of patients. MATERIALS AND METHODS We conducted a bibliography search through the PubMed, Scopus, and Cochrane databases for English-language and human clinical trials published until Feb 7, 2024. We extracted the following study characteristics: Authors, year of publication, type of study, number of patients, number of knees, sex, Kellgren-Lawrence classification, culture ADSC, Number of cells injected, mean follow-up, adverse events, significant complications, and clinical outcomes data were extracted recorded and analyzed. RESULTS According to inclusion criteria, seven clinical trials on autologous adipose-derived stem cells were considered. Four studies analyzed stem cells as a stromal vascular fraction (SVF), two as ADSC cultured, and 1 study investigated the MAT procedure. All studies reported improved clinical outcomes using autologous adipose-derived stem cells, on 339 knees. Post-treatment increased KOOS, WOMAC, IKS, VAS, and Lysholm knee scores were highlighted. All studies showed an improvement in all outcomes scores, and regarding complications, only 44 knees underwent adverse events, but no significant complications were found in all the studies reported. CONCLUSIONS The current systematic review demonstrated that using autologous adipose-derived stem cells improved clinical outcomes and is effective and safe in elderly patients. Additionally, this study will encourage orthopedic surgeons not to consider surgery as the only solution in elderly patients who are refractory to treatment and do not show end-stage knee osteoarthritis. LEVEL OF EVIDENCE Level IV, systematic review of level IV studies.
Collapse
Affiliation(s)
- Biagio Zampogna
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
- BIOMORF Department, Biomedical, Dental and Morphological and Functional Images, University of Messina. A.O.U. Policlinico “G. Martino”, Messina, Italy
| | - Francesco Rosario Parisi
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | - Augusto Ferrini
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | - Andrea Zampoli
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | - Giuseppe Francesco Papalia
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| | | | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Roma, Italy
| |
Collapse
|
7
|
Han JH, Jung M, Chung K, Jung SH, Choi CH, Kim SH. Bone Marrow Aspirate Concentrate Injections for the Treatment of Knee Osteoarthritis: A Systematic Review of Randomized Controlled Trials. Orthop J Sports Med 2024; 12:23259671241296555. [PMID: 39640186 PMCID: PMC11618931 DOI: 10.1177/23259671241296555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 12/07/2024] Open
Abstract
Background Osteoarthritis (OA) poses a significant global burden, with conventional treatments like corticosteroid and hyaluronic acid (HA) injections commonly used. Emerging injectable biologics, including bone marrow aspirate concentrate (BMAC), show promise in OA management. Purpose To investigate the clinical efficacy of BMAC injection compared with other injection treatments for knee OA. Study Design Systematic review; Level of evidence, 1. Methods A systematic review was conducted using PubMed, Embase, Cochrane Library, and Google Scholar to identify randomized controlled trials with Level 1 evidence that compared the clinical efficacy of BMAC with other injections. The visual analog scale for pain and the Pain subscale of the Knee injury and Osteoarthritis Outcome Score (KOOS) were used as clinical scores representing pain. For functional assessment, the Western Ontario and McMaster Universities Osteoarthritis Index and the International Knee Documentation Committee subjective form were used. For studies comparing BMAC with HA, each clinical score was standardized to pain and function scales based on the minimal clinically important difference (MCID). Results Eight studies, consisting of a total of 937 patients, were included. Patients treated with BMAC showed a significant improvement in clinical scores compared with baseline, starting at 1 month postinjection. For pain scores at 6-month (P = .033) and 12-month follow-up (P = .011), BMAC demonstrated favorable results over HA, with a statistically significant difference. However, these differences did not exceed the MCID. When BMAC was compared with other injections, no significant differences were observed in the degree of clinical score improvement. No serious adverse events or events significantly associated with BMAC compared with other treatments were reported. Conclusion BMAC injections demonstrated effectiveness in providing pain relief and functional improvement for patients with knee OA. When BMAC was compared with other intra-articular injection options, distinct differences surpassing the MCID were not evident. Further research is deemed necessary to investigate the role of BMAC in the treatment of knee OA.
Collapse
Affiliation(s)
- Joo Hyung Han
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangho Chung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Se-Han Jung
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chong-Hyuk Choi
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Tai C, Ito A, Zhao Z, Kuroki H, Aoyama T. Attenuating Cartilage Degeneration in a Low Mechanical Compression Rat Model Through Intra-Articular Injections of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells. Cartilage 2024:19476035241301291. [PMID: 39611391 DOI: 10.1177/19476035241301291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVE Mechanical stimulation significantly contributes to posttraumatic osteoarthritis (PTOA), a condition that impedes patient recovery following intra-articular injury. Effective treatment options for compression-induced injuries are limited. Bone marrow-derived mesenchymal stem cell (BMSC) implantation has emerged as a potential therapeutic breakthrough for joint diseases. The aim of this study was to attenuate the progression of PTOA induced by cyclic loading and demonstrate the potential effectiveness of BMSCs in a rat model of low mechanical compression. DESIGN Using a rat model of compression-induced articular cartilage injury, assessments were conducted 2, 4, and 8 weeks after cyclic compressive loading. The expression of matrix metallopeptidase 13, transforming growth factor-beta 3 (TGF-β3), insulin-like growth factor 1 (IGF-1), and cleaved caspase-3 was evaluated through immunohistochemistry to investigate the mechanistic aspects underlying the prevention of compression-induced injury following BMSCs treatment. RESULTS Intra-articular injections of BMSCs significantly improved scores in the OARSI (Osteoarthritis Research Society International) Osteoarthritis Cartilage Histopathology Assessment System and Histological-Histochemical Grading System. This treatment showed positive outcomes in maintaining high relative cell density and reducing proteoglycan loss after cyclic compression-induced injury. The expression patterns of IGF-1 and TGF-β3 provide valuable insights into the presence and distribution of these growth factors in healthy and injured cartilage. CONCLUSIONS These findings highlight the efficacy of BMSCs treatment in attenuating the advancement of compression-induced injuries, albeit within a limited timeframe.
Collapse
Affiliation(s)
- Chia Tai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zixi Zhao
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Monckeberg JE, Rafols C, Gerhard P, Del Canto L, Rosales J, Verdugo MA, Saez C, De la Fuente C. Chondral regeneration in femoroacetabular lesions is favoured using peripheral blood stem cells with hyaluronan-based scaffold and micro-drilling: A prospective cohort study. J Exp Orthop 2024; 11:e70009. [PMID: 39219706 PMCID: PMC11362612 DOI: 10.1002/jeo2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose To determine whether intra-articular injections of peripheral blood stem cells (PBSC) with hyaluronan (HA)-based scaffold improve articular cartilage regeneration in chondral injuries caused by mixed-femoroacetabular impingement syndrome (FAIS) over a period longer than 24 months post-hip arthroscopy. Methods In this prospective cohort study, patients with mixed-FAIS and chondral injury ≥ IIIB according to the International Cartilage Regeneration and Joint Preservation Society grade or III/IV of Konan/Haddad classification underwent intra-articular injection of PBSC with an HA-based scaffold and micro-drillings during hip arthroscopy. The degree of chondral repair was measured at baseline and 5 years using the International Cartilage Repair Society morphologic score system (MSS) as the primary outcome. Pain was measured at baseline and 5 years using the Visual Analogue Scale for Pain (VAS Pain), and hip functionality was measured at baseline (presurgery), 6 months, 1 year, and 5 years using the Hip Outcome Score (HOS). The largest diameter of injury, median follow-up, side effects, complications, and improvements were described. T-test, ANOVA with multiple comparisons, and statistical power were estimated. Results From initially 34 cases, 25 patients were enrolled. The median follow-up was 5.1 ± 0.3 years. One patient (4%) reported a few side effects with filgrastim administration. No infection, tumours, or synovitis was reported. The largest diameters in zones two, three, and four were 12.4 ± 3.1 mm (n = 8), 13.5 ± 2.8 mm (n = 14), and 11.4 ± 1.9 mm (n = 3), respectively. Ninety-two percent (23/25) of patients improved their outcomes. The MSS and HOS increased from 3.8 ± 1.1 to 9.6 ± 1.5 pts (p < 0.001) and from 65.5 ± 13.0 to 93.9 ± 2.4 pts (p < 0.001), respectively. The VAS-Pain decreased from 5.3 ± 0.7 to 1.3 ± 0.6 mm (p < 0.001). The obtained a posteriori power-size was 0.99. Conclusion The intervention suggests a favourable impact on articular cartilage regeneration and clinical outcomes for hip chondral lesions in mixed-FAIS injuries after a median follow-up of 5.1 ± 0.3 years. Level of Evidence Level IV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carlos De la Fuente
- Exercise and Rehabilitation Sciences Institute, Postgraduate, Faculty of Rehabilitation SciencesUniversidad Andres BelloSantiago de ChileChile
| |
Collapse
|
10
|
Yoo JC, Kim MS, Sohn S, Woo SH, Choi YR, Kwak AS, Lee DS. Atelocollagen Scaffold Enhances Cartilage Regeneration in Osteochondral Defects: A Study in Rabbits. Tissue Eng Regen Med 2024; 21:329-339. [PMID: 37853285 PMCID: PMC10825099 DOI: 10.1007/s13770-023-00589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND To enhance articular cartilage healing, microfractures (Mfx) and bone marrow aspirate concentrate (BMAC) are commonly used, and some form of scaffold is often used together to increase its efficacy. Herein, we compared the efficacy of atelocollagen scaffold to that of collagen scaffold when used with Mfx or BMAC on osteochondral defect of animal. METHODS This experiment was designed in two stages, and therapeutic effects of Mfx and BMAC were respectively evaluated when used with atelocollagen or collagen scaffold. Femoral condyle defects were artificially created in male New Zealand White rabbits, and in each stage, 12 rabbits were randomly allocated into three treatment groups: test group with additional atelocollagen scaffold, the positive control group with collagen scaffold, and the negative control group. Then, for 12 weeks, macroscopic and histological evaluations were performed. RESULTS At 12 weeks, defects in the test group were fully regenerated with normal cartilage-like tissue, and were well integrated with the surrounding cartilage at both stages experiment, whereas defects in the control groups were not fully filled with regenerated tissue, and the tissue appeared as fibrous tissue. Histologically, the regenerated tissue in the test group showed a statistically significant improvement compared to the positive and negative control groups, achieving a similar structure as normal articular cartilage. CONCLUSION The results showed that implantation of the atelocollagen scaffold enhanced cartilage regeneration following osteochondral defects in rabbits. This suggests that the atelocollagen scaffold can be used with Mfx or BMAC for effective regeneration of osteochondral defects.
Collapse
Affiliation(s)
- Ji-Chul Yoo
- R&D Division, Cellontech Co., Ltd, 04783, Seoul, Republic of Korea.
| | - Man Soo Kim
- Department of Orthopaedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University, Seoul, Republic of Korea
| | - Sueen Sohn
- Department of Orthopaedic Surgery, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Sang Hun Woo
- R&D Division, Cellontech Co., Ltd, 04783, Seoul, Republic of Korea
| | - Yu Ri Choi
- R&D Division, Cellontech Co., Ltd, 04783, Seoul, Republic of Korea
| | - Andrew S Kwak
- R&D Division, Cellontech Co., Ltd, 04783, Seoul, Republic of Korea
| | - Dong Shin Lee
- R&D Division, Cellontech Co., Ltd, 04783, Seoul, Republic of Korea
| |
Collapse
|
11
|
Gong Z, Shu Z, Zhou Y, Chen Y, Zhu H. KLF2 regulates stemness of human mesenchymal stem cells by targeting FGFR3. Biotech Histochem 2023; 98:447-455. [PMID: 37381732 DOI: 10.1080/10520295.2023.2225225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive source of pluripotent cells for regenerative therapy; however, maintaining stemness and self-renewal of MSCs during expansion ex vivo is challenging. For future clinical applications, it is essential to define the roles and signaling pathways that regulate the fate of MSCs. Based on our earlier finding that Krüppel-like factor 2 (KLF2) participates in maintaining stemness in MSCs, we examined further the role of this factor in intrinsic signaling pathways. Using a chromatin immunoprecipitation (ChIP)-sequence assay, we found that the FGFR3 gene is a KLF2 binding site. Knockdown of FGFR3 significantly decreased the levels of key pluripotency factors, enhanced the expression of differentiation-related genes and down-regulated colony formation of human bone marrow MSCs (hBMSCs). Using alizarin red S and oil red O staining, we found that knockdown of FGFR3 inhibited the osteogenic and adipogenic ability of MSCs under conditions of differentiation. The ChIP-qPCR assay confirmed that KLF2 interacts with the promoter regions of FGFR3. Our findings suggest that KLF2 promotes hBMSC stemness by direct regulation of FGFR. Our findings may contribute to enhanced MSC stemness by genetic modification of stemness-related genes.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Zhanhao Shu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Ying Zhou
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
12
|
Jeong JH, Park KN, Kim JH, Noh K, Hur SS, Kim Y, Hong M, Chung JC, Park JH, Lee J, Son YI, Lee JH, Kim SH, Hwang Y. Self-organized insulin-producing β-cells differentiated from human omentum-derived stem cells and their in vivo therapeutic potential. Biomater Res 2023; 27:82. [PMID: 37644502 PMCID: PMC10466773 DOI: 10.1186/s40824-023-00419-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Human omentum-derived mesenchymal stem cells (hO-MSCs) possess great potential to differentiate into multiple lineages and have self-renewal capacity, allowing them to be utilized as patient-specific cell-based therapeutics. Although the use of various stem cell-derived β-cells has been proposed as a novel approach for treating diabetes mellitus, developing an efficient method to establish highly functional β-cells remains challenging. METHODS We aimed to develop a novel cell culture platform that utilizes a fibroblast growth factor 2 (FGF2)-immobilized matrix to regulate the adhesion and differentiation of hO-MSCs into insulin-producing β-cells via cell-matrix/cell-cell interactions. In our study, we evaluated the in vitro differentiation potential of hO-MSCs cultured on an FGF2-immobilized matrix and a round-bottom plate (RBP). Further, the in vivo therapeutic efficacy of the β-cells transplanted into kidney capsules was evaluated using animal models with streptozotocin (STZ)-induced diabetes. RESULTS Our findings demonstrated that cells cultured on an FGF2-immobilized matrix could self-organize into insulin-producing β-cell progenitors, as evident from the upregulation of pancreatic β-cell-specific markers (PDX-1, Insulin, and Glut-2). Moreover, we observed significant upregulation of heparan sulfate proteoglycan, gap junction proteins (Cx36 and Cx43), and cell adhesion molecules (E-cadherin and Ncam1) in cells cultured on the FGF2-immobilized matrix. In addition, in vivo transplantation of differentiated β-cells into animal models of STZ-induced diabetes revealed their survival and engraftment as well as glucose-sensitive production of insulin within the host microenvironment, at over 4 weeks after transplantation. CONCLUSIONS Our findings suggest that the FGF2-immobilized matrix can support initial cell adhesion, maturation, and glucose-stimulated insulin secretion within the host microenvironment. Such a cell culture platform can offer novel strategies to obtain functional pancreatic β-cells from patient-specific cell sources, ultimately enabling better treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Ki Nam Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, 14584, Republic of Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - KyungMu Noh
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Moonju Hong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
| | - Jun Chul Chung
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Jongsoon Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Young-Ik Son
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Department of Bio-Med Engineering, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea.
| |
Collapse
|
13
|
Cavallo C, Boffa A, Salerno M, Merli G, Grigolo B, Filardo G. Adipose Tissue-Derived Products May Present Inflammatory Properties That Affect Chondrocytes and Synoviocytes from Patients with Knee Osteoarthritis. Int J Mol Sci 2023; 24:12401. [PMID: 37569775 PMCID: PMC10418602 DOI: 10.3390/ijms241512401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Adipose tissue-derived cell-based injectable therapies have been demonstrated to have disease-modifying effects on joint tissues in preclinical studies on animal osteoarthritis (OA) models, but clinical results are heterogeneous and not always satisfactory. The aim of this study was to investigate the influence of adipose tissue properties on the therapeutic effects of the adipose-derived product in an in vitro OA setting. Micro-fragmented adipose tissue (MF-AT) samples were obtained from 21 OA patients (mean age 51.7 ± 11.8 years, mean BMI 25.7 ± 4.1 kg/m2). The analysis of the MF-AT supernatant was performed to analyze the release of inflammatory factors. The effects of MF-AT inflammatory factors were investigated on chondrocytes and synoviocytes gene expression levels. Patients' characteristics were analyzed to explore their influence on MF-AT inflammatory molecules and on the MF-AT effects on the gene expression of chondrocytes and synoviocytes. The study results demonstrated that adipose tissue-derived products may present inflammatory properties that influence the therapeutic potential for OA treatment, with products with a higher pro-inflammatory profile stimulating a higher expression of genes related to a more inflamed and catabolic phenotype. A higher pro-inflammatory cytokine pattern and a higher pro-inflammatory effect were found in adipose tissue-derived products obtained from OA patients with higher BMI.
Collapse
Affiliation(s)
- Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (C.C.); (B.G.)
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Manuela Salerno
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.M.); (G.F.)
| | - Giulia Merli
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.M.); (G.F.)
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (C.C.); (B.G.)
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.M.); (G.F.)
| |
Collapse
|
14
|
Di Matteo B, Anzillotti G, Gallese A, Vitale U, Gaggia GMMC, Ronzoni FL, Marcacci M, Kon E. Placenta-Derived Products Demonstrate Good Safety Profile and Overall Satisfactory Outcomes for Treating Knee Osteoarthritis: A Systematic Review of Clinical Evidence. Arthroscopy 2023; 39:1892-1904. [PMID: 37116549 DOI: 10.1016/j.arthro.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 04/30/2023]
Abstract
PURPOSE To summarize the available evidence regarding the clinical application of placenta-derived products to treat knee osteoarthritis (OA), underlining the differences existing among products, their preparation methods, and the clinical results reported so far. METHODS A research on PubMed, Cochrane, and Google Scholar databases was performed. The following inclusion criteria for relevant articles were used: (1) randomized controlled trials (RCTs), prospective and retrospective studies, on humans; (2) written in English; (3) published in indexed journals in the last 10 years (2011-2022); and (4) dealing with the use of placenta-derived products for the treatment of knee OA. Exclusion criteria were articles written in other languages; animals or in vitro trials; reviews; and trials analyzing other applications of placenta-derived products not related to knee OA. RESULTS In total, 16 studies were included in the present systematic review. Five studies investigated placenta-derived products as an augmentation during surgical procedures, whereas 11 studies were focused on the injective approach only. Of these, only 4 were RCTs and were all from the injective approach group. Potential risk of bias was carried out using Cochrane Risk of Bias 2 tool for RCTs and a modified Coleman approach for nonrandomized studies, revealing for both an overall insufficient quality. Clinical outcomes reveal excellent safety profile and notable efficacy, despite the different types of products used and different administration methods adopted. CONCLUSIONS Placental products showed a good safety profile and overall satisfactory outcomes for the treatment of knee OA. LEVEL OF EVIDENCE Level IV, systematic review of Level II, III and IV studies.
Collapse
Affiliation(s)
- Berardo Di Matteo
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Giuseppe Anzillotti
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
| | - Alessandro Gallese
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Umberto Vitale
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Flavio L Ronzoni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Maurilio Marcacci
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
15
|
Cheng HY, Liang CW, Chu CL, Hsu HW, Hou SM, Shih KS. Using multivariate nonlinear mixed-effects model to investigate factors influencing symptom improvement after high tibial osteotomy in combination with bone marrow concentrate injection for medial compartment knee osteoarthritis: a prospective, open-label study. BMC Musculoskelet Disord 2023; 24:208. [PMID: 36941604 PMCID: PMC10026441 DOI: 10.1186/s12891-023-06314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/11/2023] [Indexed: 03/23/2023] Open
Abstract
PURPOSE To investigate the effects of various demographic, structural, radiographic, and clinical factors on the prognosis of patients with medial compartmental knee osteoarthritis with varus deformity undergoing medial opening wedge high tibial osteotomy (HTO) in combination with bone marrow concentrate (BMC) injection. METHODS In this prospective study, 20 patients underwent medial opening wedge HTO in combination with BMC injection with 12 months of follow-up. The structural and radiographic outcomes were evaluated by femorotibial angle and posterior tibial slope angle. The clinical outcomes were evaluated by visual analogue scale (VAS), Western Ontario and McMaster Universities Arthritis Index (WOMAC), and The Knee injury and Osteoarthritis Outcome Score (KOOS). Multivariate nonlinear mixed-effects models with asymptotic regressions were used to model the trajectory of symptom improvement. RESULTS Medial opening wedge HTO in combination with BMC corrected the malalignment of the knee and led to significant symptom relief. The improvement of clinical symptoms reached a plateau 6 months after the surgery. Greater symptom severity at baseline and lower Kellgren-Lawrance (KL) grades were correlated with better post-operative clinical outcomes. Body-Mass-Index (BMI), femorotibial angle, age, and sex may also play a role in influencing the extent of symptom relief. CONCLUSION Symptom severity at baseline is important for prognosis prediction. In clinical practice, we suggest that the evaluation of clinical features and functional status of the patients be more emphasised.
Collapse
Affiliation(s)
- Hsiao-Yi Cheng
- Department of Primary Care Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Wei Liang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Lun Chu
- Department of Orthopaedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hao-Wei Hsu
- Department of Orthopaedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Sheng-Mou Hou
- Department of Orthopaedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kao-Shang Shih
- Department of Orthopaedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
16
|
O'Connell CD, Duchi S, Onofrillo C, Caballero‐Aguilar LM, Trengove A, Doyle SE, Zywicki WJ, Pirogova E, Di Bella C. Within or Without You? A Perspective Comparing In Situ and Ex Situ Tissue Engineering Strategies for Articular Cartilage Repair. Adv Healthc Mater 2022; 11:e2201305. [PMID: 36541723 PMCID: PMC11468013 DOI: 10.1002/adhm.202201305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/21/2022] [Indexed: 11/23/2022]
Abstract
Human articular cartilage has a poor ability to self-repair, meaning small injuries often lead to osteoarthritis, a painful and debilitating condition which is a major contributor to the global burden of disease. Existing clinical strategies generally do not regenerate hyaline type cartilage, motivating research toward tissue engineering solutions. Prospective cartilage tissue engineering therapies can be placed into two broad categories: i) Ex situ strategies, where cartilage tissue constructs are engineered in the lab prior to implantation and ii) in situ strategies, where cells and/or a bioscaffold are delivered to the defect site to stimulate chondral repair directly. While commonalities exist between these two approaches, the core point of distinction-whether chondrogenesis primarily occurs "within" or "without" (outside) the body-can dictate many aspects of the treatment. This difference influences decisions around cell selection, the biomaterials formulation and the surgical implantation procedure, the processes of tissue integration and maturation, as well as, the prospects for regulatory clearance and clinical translation. Here, ex situ and in situ cartilage engineering strategies are compared: Highlighting their respective challenges, opportunities, and prospects on their translational pathways toward long term human cartilage repair.
Collapse
Affiliation(s)
- Cathal D. O'Connell
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Lilith M. Caballero‐Aguilar
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- School of ScienceComputing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVictoria3122Australia
| | - Anna Trengove
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Stephanie E. Doyle
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Wiktor J. Zywicki
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Elena Pirogova
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
- Department of MedicineSt Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| |
Collapse
|
17
|
Boffa A, Di Martino A, Andriolo L, De Filippis R, Poggi A, Kon E, Zaffagnini S, Filardo G. Bone marrow aspirate concentrate injections provide similar results versus viscosupplementation up to 24 months of follow-up in patients with symptomatic knee osteoarthritis. A randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 2022; 30:3958-3967. [PMID: 34767030 DOI: 10.1007/s00167-021-06793-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023]
Abstract
PURPOSE The purpose of this double-blind randomized controlled trial (RCT) was to compare clinical improvement and radiographic findings up to 2 years of follow-up of a single intra-articular injection of bone marrow aspirate concentrate (BMAC) versus hyaluronic acid (HA) for the treatment of knee osteoarthritis (OA). The hypothesis was that BMAC injection could lead to better clinical and radiographic results compared to viscosupplementation. METHODS Patients with bilateral knee OA were randomized to one intra-articular injection of tibial-derived BMAC in one knee and one HA injection in the contralateral knee. Sixty patients were enrolled, and 56 were studied up to the final follow-up (35 men, 21 women, mean age 57.8 ± 8.9 years), for a total of 112 knees. Patients were evaluated before the injection and at 1, 3, 6, 12, and 24 months with the IKDC subjective score, VAS for pain, and the KOOS score. Minimal clinically important difference (MCID), patient treatment judgement, and adverse events were documented, as well as bilateral X-Rays (Rosenberg view) before and after treatment. RESULTS No severe adverse events nor differences were reported in terms of mild adverse events (7.1% vs 5.4%, p = ns) and treatment failures (10.7% vs 12.5%, p = ns) in BMAC and HA groups, respectively. The IKDC subjective score improved from baseline to all follow-ups for BMAC (p < 0.0005), while it improved up to 12 months (p < 0.0005) and then decreased at 24 months (p = 0.030) for HA. Compared to HA, BMAC showed a higher improvement for VAS pain at 12 (2.2 ± 2.6 vs 1.7 ± 2.5, p = 0.041) and 24 months (2.2 ± 2.6 vs 1.4 ± 2.8, p = 0.002). The analysis based on OA severity confirmed this difference only in Kellgren-Lawrence 1-2 knees, while comparable results were observed in moderate/severe OA. Radiographic evaluation did not show knee OA deterioration for both treatment groups, without intergroup differences. CONCLUSION BMAC did not demonstrate a clinically significant superiority at short-term compared to viscosupplementation, reporting overall comparable results in terms of clinical scores, failures, adverse events, radiographic evaluation, MCID achievement, and patient treatment judgment. However, while HA results decreased over time, BMAC presented more durable results in mild OA knees. LEVEL OF EVIDENCE Level I.
Collapse
Affiliation(s)
- Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Alessandro Di Martino
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | | | - Alberto Poggi
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy.
| | - Elizaveta Kon
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University (Sechenov University), 2-4 Bolshaya Pirogovskaya st., 119991, Moscow, Russia
| | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
18
|
Zaffagnini M, Boffa A, Andriolo L, Raggi F, Zaffagnini S, Filardo G. Orthobiologic Injections for the Treatment of Hip Osteoarthritis: A Systematic Review. J Clin Med 2022; 11:jcm11226663. [PMID: 36431138 PMCID: PMC9699182 DOI: 10.3390/jcm11226663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
The use of orthobiologics is gaining increasing interest as a minimally invasive treatment for hip osteoarthritis (OA). The aim of this study was to investigate the evidence about the safety and efficacy of these products. A systematic review of the literature was performed according to the PRISMA and Cochrane guidelines. The study quality was assessed using the RoB 2.0 for randomized controlled trials (RCTs) and the modified Coleman Methodology Score (mCMS) for all studies. A total of 20 clinical studies (735 patients) was identified, 12 on PRP injections and eight on cell-based therapies (five from bone marrow, two from adipose tissue, and one from amniotic fluid). The publication trend increased over time, with over 50% of articles published from 2019. The literature analysis showed only six RCTs, all on PRP injections. The mCMS showed an overall fair methodology (mean score 59.4). While the number of studies and their methodology are still limited, the available evidence suggests safety and overall promising results, with the treatment success being inversely proportional to the severity of OA. Further high-level controlled trials are needed before drawing more definitive conclusions on the real potential of orthobiologics for the injective treatment of patients affected by hip OA.
Collapse
Affiliation(s)
- Marco Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-0516-366-072
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Federico Raggi
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
19
|
Zhu Y, Fu W. Peripheral Blood-Derived Stem Cells for the Treatment of Cartilage Injuries: A Systematic Review. Front Bioeng Biotechnol 2022; 10:956614. [PMID: 35935493 PMCID: PMC9355401 DOI: 10.3389/fbioe.2022.956614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The treatment of cartilage damage is a hot topic at present, and cell therapy is an emerging alternative therapy. Stem cells derived from peripheral blood have become the focus of current research due to the ease of obtaining materials and a wide range of sources.Methods: We used a text search strategy using the [“mesenchymal stem cells” (MeSH term) OR “MSC” OR “BMMSC” OR “PBMSC” OR” PBMNC” OR “peripheral blood stem cells”] AND (cartilage injury [MeSH term] OR “cartilage” OR “chondral lesion”). After searching the literature, through the inclusion and exclusion criteria, the last included articles were systematically reviewed.Result: We found that peripheral blood-derived stem cells have chondrogenic differentiation ability and can induce chondrogenic differentiation and repair in vivo and have statistical significance in clinical and imaging prognosis. It is an improvement of academic differences. Compared with the bone marrow, peripheral blood is easier to obtain, widely sourced, and simple to obtain. In the future, peripheral blood will be a more potential cell source for cell therapy in the treatment of cartilage damage.Conclusion: Stem cells derived from peripheral blood can repair cartilage and are an important resource for the treatment of cartilage damage in the future. The specific mechanism and way of repairing cartilage need further study.
Collapse
|
20
|
Bolia IK, Bougioukli S, Hill WJ, Trasolini NA, Petrigliano FA, Lieberman JR, Weber AE. Clinical Efficacy of Bone Marrow Aspirate Concentrate Versus Stromal Vascular Fraction Injection in Patients With Knee Osteoarthritis: A Systematic Review and Meta-analysis. Am J Sports Med 2022; 50:1451-1461. [PMID: 34102078 DOI: 10.1177/03635465211014500] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Knee injection using either bone marrow aspirate concentrate (BMAC) or stromal vascular fraction (SVF) from adipose tissue has been shown to result in symptomatic improvement in patients with knee osteoarthritis (OA). It is still unclear whether one of these therapies is superior over the other. PURPOSE To systematically report the clinical studies evaluating BMAC and SVF in the treatment of knee OA and to compare the clinical efficacy of these 2 injection therapies. STUDY DESIGN Meta-analysis; Level of evidence, 4. METHODS This meta-analysis was performed per the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Studies were included if they reported the clinical outcomes after a single BMAC or SVF injection in the knee joint of patients with OA. Studies evaluating preparations of culture-expanded stem cells were excluded. A random effects model was used; the clinical efficacy of BMAC or SVF injection was assessed using the standardized mean difference (SMD) and compared. Visual analog scale (VAS) scores for pain and Western Ontario and McMaster Universities Osteoarthritis (WOMAC) knee index were the primary outcomes. The level of statistical significance was set at P < .05. RESULTS Ten studies and 472 patients with knee OA who received either BMAC (233 patients) or SVF (239 patients) were included. Patients who received an injection had improved VAS outcomes (mean ± SD): from 5.8 ± 1.3 to 2.6 ± 17 for BMAC and from 6.4 ± 1.4 to 3.4 ± 0.5 for SVF. They also experienced significantly reduced pain (SMD [VAS], 2.6 for BMAC and 3.4 for SVF) and improved function (SMD [WOMAC], 1.4 for BMAC and 1.2 for SVF). However, the SVF injection had a significantly greater effect on pain reduction than did the BMAC injection (P < .0001). Based on WOMAC, the clinical effect of BMAC versus SVF knee injection in patients with knee OA was equivalent (P = .626). Results were limited by the presence of publication bias as well as variability in the preparation methods utilized in the BMAC and SVF injection protocols. Complications were reported in 50% of the BMAC studies (knee stiffness, persistent knee swelling) and 67% of the SVF studies (knee swelling, knee pain, positive SVF cultures without symptoms of infection, and bleeding at the abdominal harvest site). CONCLUSION A single BMAC or SVF injection into the knee joint of patients with OA resulted in symptomatic improvement at short-term follow-up. However, SVF seemed to be more effective than did BMAC in the reduction of knee pain. There was significant variation in the BMAC and SVF injection preparation techniques used across the studies and a lack of stratification of outcomes based on the radiologic classification of OA. Therefore, these results should be taken with caution.
Collapse
Affiliation(s)
- Ioanna K Bolia
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, California, USA
| | - Sofia Bougioukli
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, California, USA
| | - William J Hill
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, California, USA
| | - Nicholas A Trasolini
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, California, USA
| | - Frank A Petrigliano
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, California, USA
| | - Jay R Lieberman
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, California, USA
| | - Alexander E Weber
- USC Epstein Family Center for Sports Medicine at Keck Medicine of USC, Los Angeles, California, USA
| |
Collapse
|
21
|
Efficacy and Safety of Mesenchymal Stem Cell Transplantation in the Treatment of Autoimmune Diseases (Rheumatoid Arthritis, Systemic Lupus Erythematosus, Inflammatory Bowel Disease, Multiple Sclerosis, and Ankylosing Spondylitis): A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Stem Cells Int 2022; 2022:9463314. [PMID: 35371265 PMCID: PMC8970953 DOI: 10.1155/2022/9463314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 01/30/2023] Open
Abstract
Objective To evaluate the efficacy and safety of mesenchymal stem cell (MSC) transplantation in the treatment of autoimmune diseases. Methods The Chinese and English databases were searched for clinical research on the treatment of autoimmune diseases with mesenchymal stem cells. The search time range is from a self-built database to October 1, 2021. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted data, and evaluated the bias of the included studies. RevMan 5.3 analysis software was used for meta-analysis. Results A total of 18 RCTs involving 5 autoimmune diseases were included. The 5 autoimmune disease were rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease, ankylosing spondylitis, and multiple sclerosis. For RA, the current randomized controlled trials (RCTs) still believe that stem cell transplantation may reduce disease activity, improve the clinical symptoms (such as DAS28), and the percentage of CD4+CD 25+Foxp3+Tregs in the response group increased and the percentage of CD4+IL-17A+Th17 cells decreased. The total clinical effective rate of RA is 54%. For SLE, the results showed that mesenchymal stem cell transplantation may improve SLEDAI [-2.18 (-3.62, -0.75), P = 0.003], urine protein [-0.93 (-1.04, -0.81), P < 0.00001], and complement C3 [0.31 (0.19, 0.42), P < 0.00001]. For inflammatory bowel disease, the results showed that mesenchymal stem cell transplantation may improve clinical efficacy [2.50 (1.07, 5.84), P = 0.03]. For ankylosing spondylitis, MSC treatment for 6 months may increase the total effective rate; reduce erythrocyte sedimentation rate, intercellular adhesion molecules, and serum TNF-α; and improve pain and activity. For multiple sclerosis, the current research results are still controversial, so more RCTs are needed to amend or confirm the conclusions. No obvious adverse events of mesenchymal stem cell transplantation were found in all RCTs. Conclusion MSCs have a certain effect on different autoimmune diseases, but more RCTs are needed to further modify or confirm the conclusion.
Collapse
|
22
|
Walzer SM, Toegel S, Chiari C, Farr S, Rinner B, Weinberg AM, Weinmann D, Fischer MB, Windhager R. A 3-Dimensional In Vitro Model of Zonally Organized Extracellular Matrix. Cartilage 2021; 13:336S-345S. [PMID: 31370667 PMCID: PMC8804753 DOI: 10.1177/1947603519865320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Functional cartilage repair requires the new formation of organized hyaline cartilaginous matrix to avoid the generation of fibrous repair tissue. The potential of mesenchymal progenitors was used to assemble a 3-dimensional structure in vitro, reflecting the zonation of collagen matrix in hyaline articular cartilage. DESIGN The 3-dimensional architecture of collagen alignment in pellet cultures of chondroprogenitors (CPs) was assessed with Picrosirius red staining analyzed under polarized light. In parallel assays, the trilineage capability was confirmed by calcium deposition during osteogenesis by alizarin S staining and alkaline phosphatase staining. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), mRNA levels of ALP, RUNX2, and BGLAP were assessed after 21 days of osteoinduction. Lipid droplets were stained with oil red O and adipogenic differentiation was confirmed by RT-qPCR analysis of PPARG and LPL gene expression. RESULTS Under conditions promoting the chondrogenic signature in self-assembling constructs, CPs formed an aligned extracellular matrix, positive for glycosaminoglycans and collagen type II, showing developing zonation of birefringent collagen fibers along the cross section of pellets, which reflect the distribution of collagen fibers in hyaline cartilage. Induced osteogenic and adipogenic differentiation confirmed the trilineage potential of CPs. CONCLUSION This model promotes the differentiation and self-organization of postnatal chondroprogenitors, resulting in the formation of zonally organized engineered hyaline cartilage comparable to the 3 zones of native cartilage.
Collapse
Affiliation(s)
- Sonja M. Walzer
- Karl Chiari Lab for Orthopaedic Biology,
Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna,
Austria,Sonja M. Walzer, Karl Chiari Lab for
Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical
University of Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria.
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic Biology,
Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna,
Austria
| | - Catharina Chiari
- Karl Chiari Lab for Orthopaedic Biology,
Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna,
Austria
| | | | - Beate Rinner
- Division of Biomedical Research, Medical
University of Graz, Graz, Steiermark, Austria
| | - Annelie-Martina Weinberg
- Department of Orthopaedic and Trauma
Surgery, Medical University of Graz, Graz, Steiermark, Austria
| | - Daniela Weinmann
- Karl Chiari Lab for Orthopaedic Biology,
Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna,
Austria
| | - Michael B. Fischer
- Center for Biomedical Technology, Danube
University Krems, Krems an der Donau, Austria,Clinic for Bloodgroup Serology and
Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic Biology,
Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna,
Austria
| |
Collapse
|
23
|
Fang W, Sun Z, Chen X, Han B, Vangsness CT. Synovial Fluid Mesenchymal Stem Cells for Knee Arthritis and Cartilage Defects: A Review of the Literature. J Knee Surg 2021; 34:1476-1485. [PMID: 32403148 DOI: 10.1055/s-0040-1710366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that have the ability to self-renew and differentiate into several cell lineages including adipocytes, chondrocytes, tenocytes, bones, and myoblasts. These properties make the cell a promising candidate for regenerative medicine applications, especially when dealing with sports injuries in the knee. MSCs can be isolated from almost every type of adult tissue. However, most of the current research focuses on MSCs derived from bone marrow, adipose, and placenta derived products. Synovial fluid-derived MSCs (SF-MSCs) are relatively overlooked but have demonstrated promising therapeutic properties including possessing higher chondrogenic proliferation capabilities than other types of MSCs. Interestingly, SF-MSC population has shown to increase exponentially in patients with joint injury or disease, pointing to a potential use as a biomarker or as a treatment of some orthopaedic disorders. In this review, we go over the current literature on synovial fluid-derived MSCs including the characterization, the animal studies, and discuss future perspectives.
Collapse
Affiliation(s)
- William Fang
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - ZhiTao Sun
- Department of Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangzhou, China
| | - Xiao Chen
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Bo Han
- Department of Surgery, USC Keck School of Medicine, Los Angeles, California
| | - C Thomas Vangsness
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
24
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
25
|
Di Piazza E, Pandolfi E, Cacciotti I, Del Fattore A, Tozzi AE, Secinaro A, Borro L. Bioprinting Technology in Skin, Heart, Pancreas and Cartilage Tissues: Progress and Challenges in Clinical Practice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010806. [PMID: 34682564 PMCID: PMC8535210 DOI: 10.3390/ijerph182010806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Bioprinting is an emerging additive manufacturing technique which shows an outstanding potential for shaping customized functional substitutes for tissue engineering. Its introduction into the clinical space in order to replace injured organs could ideally overcome the limitations faced with allografts. Presently, even though there have been years of prolific research in the field, there is a wide gap to bridge in order to bring bioprinting from "bench to bedside". This is due to the fact that bioprinted designs have not yet reached the complexity required for clinical use, nor have clear GMP (good manufacturing practices) rules or precise regulatory guidelines been established. This review provides an overview of some of the most recent and remarkable achievements for skin, heart, pancreas and cartilage bioprinting breakthroughs while highlighting the critical shortcomings for each tissue type which is keeping this technique from becoming widespread reality.
Collapse
Affiliation(s)
- Eleonora Di Piazza
- Multifactorial and Complex Disease Research Area, Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (E.D.P.); (A.E.T.)
| | - Elisabetta Pandolfi
- Multifactorial and Complex Disease Research Area, Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (E.D.P.); (A.E.T.)
- Correspondence:
| | - Ilaria Cacciotti
- Engineering Department, Niccolò Cusano University of Rome, INSTM RU, 00166 Rome, Italy;
| | - Andrea Del Fattore
- Genetics and Rare Diseases Research Area, Bone Physiopathology Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Alberto Eugenio Tozzi
- Multifactorial and Complex Disease Research Area, Preventive and Predictive Medicine Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (E.D.P.); (A.E.T.)
| | - Aurelio Secinaro
- Clinical Management and Technological Innovations Area, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.S.); (L.B.)
| | - Luca Borro
- Clinical Management and Technological Innovations Area, Department of Imaging, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (A.S.); (L.B.)
| |
Collapse
|
26
|
Chondrogenic Potential of Human Dental Pulp Stem Cells Cultured as Microtissues. Stem Cells Int 2021; 2021:7843798. [PMID: 34539791 PMCID: PMC8443354 DOI: 10.1155/2021/7843798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Several tissue engineering stem cell-based procedures improve hyaline cartilage repair. In this work, the chondrogenic potential of dental pulp stem cell (DPSC) organoids or microtissues was studied. After several weeks of culture in proliferation or chondrogenic differentiation media, synthesis of aggrecan and type II and I collagen was immunodetected, and SOX9, ACAN, COL2A1, and COL1A1 gene expression was analysed by real-time RT-PCR. Whereas microtissues cultured in proliferation medium showed the synthesis of aggrecan and type II and I collagen at the 6th week of culture, samples cultured in chondrogenic differentiation medium showed an earlier and important increase in the synthesis of these macromolecules after 4 weeks. Gene expression analysis showed a significant increase of COL2A1 after 3 days of culture in chondrogenic differentiation medium, while COL1A1 was highly expressed after 14 days. Cell-cell proximity promotes the chondrogenic differentiation of DPSCs and important synthesis of hyaline chondral macromolecules.
Collapse
|
27
|
Lee NH, Na SM, Ahn HW, Kang JK, Seon JK, Song EK. Allogenic Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Are More Effective Than Bone Marrow Aspiration Concentrate for Cartilage Regeneration After High Tibial Osteotomy in Medial Unicompartmental Osteoarthritis of Knee. Arthroscopy 2021; 37:2521-2530. [PMID: 33621649 DOI: 10.1016/j.arthro.2021.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE The purpose of this study was to compare the outcome of cartilage regeneration between bone marrow aspirate concentrate (BMAC) augmentation and allogeneic human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSCs) transplantation in high tibial osteotomy (HTO) with microfracture (MFX) for medial unicompartmental osteoarthritis (OA) of the knee in the young and active patient. METHODS Between January 2015 and December 2019, the patients who underwent HTO and arthroscopy with MFX combined with BMAC or allogeneic hUCB-MSCs procedure for medial unicompartmental OA with kissing lesion, which was shown full-thickness cartilage defect (≥ International Cartilage Repair Society [ICRS] grade 3B) in medial femoral cartilage and medial tibial cartilage, were include in this study. Retrospectively we compared clinical outcomes, including Hospital for Special Surgery score, Knee Society Score (KSS) pain and function, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score between BMAC and hUCB-MSCs group at minimum of 1-year follow-up. Also, second-look arthroscopy was performed simultaneously with removal of the plate after complete bone union. Cartilage regeneration was graded by the ICRS grading system at second-look arthroscopy. Radiological measurement including hip-knee-ankle (HKA) angle, posterior tibial slope angle, and correction angle were assessed. RESULTS Of 150 cases that underwent HTO with MFX combined with BMAC or allogeneic hUCB-MSCs procedure for medial unicompartmental OA, 123 cases underwent plate removal and second-look arthroscopy after a minimum of 1 year after the HTO surgery. Seventy-four cases were kissing lesion in medial femoral cartilage and medial tibial cartilage during initial HTO surgery. Finally, the BMAC group composed of 42 cases and hUCB-MSCs group composed of 32 cases were retrospectively identified in patients who had kissing lesions and second-look arthroscopies with a minimum of 1 year of follow-up. At the final follow-up of mean 18.7 months (standard deviation = 4.6 months), clinical outcomes in both groups had improved. However, there were no significant differences between the IKDC, WOMAC, or KSS pain and function scores in the 2 groups (P > .05). At second-look arthroscopy, the ICRS grade was significantly better in the hUCB-MSC group than in the BMAC group in both medial femoral and medial tibial cartilage (P = .001 for both). The average ICRS grade of the BMAC group improved from 3.9 before surgery to 2.8 after surgery. The average ICRS grade of the hUBC-MSC group improved from 3.9 before surgery to 2.0 after surgery. Radiological findings comparing postoperative HKA angle, posterior tibial slope angle, and correction angle showed no significant differences between the groups (P > .05). Therefore it was found that the postoperative correction amount did not affect the postoperative cartilage regeneration results. CONCLUSIONS We found that the hUCB-MSC procedure was more effective than the BMAC procedure for cartilage regeneration in medial unicompartmental knee OA even though the clinical outcomes improved regardless of which treatment was administered. LEVEL OF EVIDENCE Level III, retrospective comparative study.
Collapse
Affiliation(s)
- Nam-Hun Lee
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Seung-Min Na
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Hyeon-Wook Ahn
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Joon-Kyoo Kang
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| | - Jong-Keun Seon
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea.
| | - Eun-Kyoo Song
- Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, Hwasun, Republic of Korea
| |
Collapse
|
28
|
Hernigou J, Vertongen P, Rasschaert J, Hernigou P. Role of Scaffolds, Subchondral, Intra-Articular Injections of Fresh Autologous Bone Marrow Concentrate Regenerative Cells in Treating Human Knee Cartilage Lesions: Different Approaches and Different Results. Int J Mol Sci 2021; 22:ijms22083844. [PMID: 33917689 PMCID: PMC8068069 DOI: 10.3390/ijms22083844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/29/2023] Open
Abstract
The value of bone marrow aspirate concentrates for treatment of human knee cartilage lesions is unclear. Most of the studies were performed with intra-articular injections. However, subchondral bone plays an important role in the progression of osteoarthritis. We investigated by a literature review whether joint, subchondral bone, or/and scaffolds implantation of fresh autologous bone marrow aspirate concentrated (BMAC) containing mesenchymal stem cells (MSCs) would improve osteoarthritis (OA). There is in vivo evidence that suggests that all these different approaches (intra-articular injections, subchondral implantation, scaffolds loaded with BMAC) can improve the patient. This review analyzes the evidence for each different approach to treat OA. We found that the use of intra-articular injections resulted in a significant relief of pain symptoms in the short term and was maintained in 12 months. However, the clinical trials indicate that the application of autologous bone marrow concentrates in combination with scaffolds or in injection in the subchondral bone was superior to intra-articular injection for long-term results. The tendency of MSCs to differentiate into fibrocartilage affecting the outcome was a common issue faced by all the studies when biopsies were performed, except for scaffolds implantation in which some hyaline cartilage was found. The review suggests also that both implantation of subchondral BMAC and scaffolds loaded with BMAC could reduce the need for further surgery.
Collapse
Affiliation(s)
- Jacques Hernigou
- Department of Orthopedic Surgery, EpiCURA Hospital, 7331 Baudour, Belgium;
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medecine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (P.V.); (J.R.)
| | - Pascale Vertongen
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medecine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (P.V.); (J.R.)
| | - Joanne Rasschaert
- Laboratory of Bone and Metabolic Biochemistry, Faculty of Medecine, Université Libre de Bruxelles, 1070 Brussels, Belgium; (P.V.); (J.R.)
| | - Philippe Hernigou
- Department of Orthopaedic Surgery, Faculty of Medicine, UPEC (University Paris-Est, Créteil), 94000 Créteil, France
- Correspondence:
| |
Collapse
|
29
|
Dwivedi G, Chevrier A, Alameh MG, Hoemann CD, Buschmann MD. Quality of Cartilage Repair from Marrow Stimulation Correlates with Cell Number, Clonogenic, Chondrogenic, and Matrix Production Potential of Underlying Bone Marrow Stromal Cells in a Rabbit Model. Cartilage 2021; 12:237-250. [PMID: 30569762 PMCID: PMC7970370 DOI: 10.1177/1947603518812555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Previous studies have shown that intrinsic behavior of subchondral bone marrow stem cells (BMSCs) is influenced by donors and locations. To understand the variability in cartilage repair outcomes following bone marrow stimulation, we tested the hypothesis that in vivo cartilage repair correlates with in vitro biological properties of BMSCs using a rabbit model. METHODS Full-thickness cartilage defects were created in the trochlea and condyle in one knee of skeletally mature New Zealand White rabbits (n = 8) followed by microdrilling. Three-week repair tissues were analyzed by macroscopic International Cartilage Repair Society (ICRS) scores, O'Driscoll histological scores, and Safranin-O (Saf-O) and type-II collagen (Coll-II) % stain. BMSCs isolated from contralateral knees were assessed for cell yield, surface marker expression, CFU-f, %Saf-O, and %Coll-II in pellet culture followed by correlation analyses with the above cartilage repair responses. RESULTS In vivo cartilage repair scores showed strong, positive correlation with cell number, clonogenic, chondrogenic, and matrix production (Coll-II, GAG) potential of in vitro TGF-βIII stimulated BMSC cultures. Trochlear repair showed clear evidence of donor dependency and strong correlation was observed for interdonor variation in repair and the above in vitro properties of trochlear BMSCs. Correlation analyses indicated that donor- and location-dependent variability observed in cartilage repair can be attributed to variation in the properties of BMSCs in underlying subchondral bone. CONCLUSION Variation in cell number, clonogenic, chondrogenic, and matrix production potential of BMSCs correlated with repair response observed in vivo and appear to be responsible for interanimal variability as well as location-dependent repair.
Collapse
Affiliation(s)
- Garima Dwivedi
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada
| | - Anik Chevrier
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada
| | | | - Caroline D. Hoemann
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada,Biomedical Engineering Institute,
Polytechnique Montreal, Montreal, Quebec, Canada
| | - Michael D. Buschmann
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada,Biomedical Engineering Institute,
Polytechnique Montreal, Montreal, Quebec, Canada,Michael D. Buschmann, Department of
Bioengineering, Volgenau School of Engineering, George Mason University, 4400
University Drive, MS 1J7, Fairfax, VA 22030, USA.
| |
Collapse
|
30
|
Salkın H, Gönen ZB, Özcan S, Bahar D, Lekesizcan A, Taheri S, Kütük N, Alkan A. Effects of combination TGF-B1 transfection and platelet rich plasma (PRP) on three-dimension chondrogenic differentiation of rabbit dental pulp-derived mesenchymal stem cells. Connect Tissue Res 2021; 62:226-237. [PMID: 31581853 DOI: 10.1080/03008207.2019.1675649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: The aim of this study was to evaluate the effects of standard culture medium and chondrogenic differentiation medium with PRP on chondrogenic differentiation of rabbit dental pulp-derived mesenchymal stem cells (rabbit DPSCs) that are transfected with transforming growth factor-beta 1 (TGF-B1) gene, based on the hypothesis of TGF- B1 and PRP can be effective on the chondrogenesis of stem cells. Materials and Methods: Rabbit DPSCs were characterized by using flow cytometry, immunofluorescent staining, quantitative Real Time Polymerase Chain Reaction (qRT-PCR) and differentiation tests. For the characterization, CD29, CD44 and CD45 mesenchymal cell markers were used. Rabbit DPSCs were transfected with TGF-B1 gene using electroporation technique in group 1; with PRP 10% in group 2; with chondrogenic medium in group 3; with both chondrogenic medium and PRP in group 4. DPSCs were cultured in medium with 10% inactive PRP in group 5, chondrogenic medium in group 6, chondrogenic medium with PRP 10% in group 7. SOX9, MMP13 and Aggrecan gene expression levels were evaluated in 3, 6, 12. and 24. days by qRT-PCR. Results: The expression levels of SOX9, MMP13 and Aggrecan were higher in group 2, 3 and group 7 in 3th day however in 24th day group 7 and group 2 were found higher. The expression levels changed by time-dependent. The extracellular matrix of the cells in experimental groups were positively stained with safranin O and toluidine blue. Conclusion: The combination in culture medium of TGF-B1 gene transfection and 10% PRP accelerates the chondrogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Hasan Salkın
- Department of Pathology Laboratory Techniques, Vocational School, Beykent University , Istanbul, Turkey.,Genome and Stem Cell Center, Erciyes University , Kayseri, Turkey.,Department of Histology and Embryology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | | | - Servet Özcan
- Genome and Stem Cell Center, Erciyes University , Kayseri, Turkey
| | - Dilek Bahar
- Genome and Stem Cell Center, Erciyes University , Kayseri, Turkey
| | - Ayça Lekesizcan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | - Serpil Taheri
- Department of Medical Biology, Faculty of Medicine, Erciyes University , Kayseri, Turkey
| | - Nükhet Kütük
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, BezmiAlem University , İstanbul, Turkey
| | - Alper Alkan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, BezmiAlem University , İstanbul, Turkey
| |
Collapse
|
31
|
Berninger MT, Rodriguez-Gonzalez P, Schilling F, Haller B, Lichtenstein T, Imhoff AB, Rummeny EJ, Anton M, Vogt S, Henning TD. Bifunctional Labeling of Rabbit Mesenchymal Stem Cells for MR Imaging and Fluorescence Microscopy. Mol Imaging Biol 2021; 22:303-312. [PMID: 31209781 DOI: 10.1007/s11307-019-01385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Longitudinal imaging studies are important in the translational process of stem cell-based therapies. Small animal imaging models are widely available and practical but insufficiently depict important morphologic detail. In contrary, large animal models are logistically challenging and costly but offer greater imaging quality. In order to combine the advantages of both, we developed an intermediate-sized rabbit animal model for cartilage imaging studies. PROCEDURES Rabbit mesenchymal stem cells (rMSC) were isolated as primary cultures from the bone marrow of New Zealand white rabbits. rMSC were subsequentially transduced lentivirally with eGFP and magnetically labeled with the iron oxide ferucarbotran. eGFP expression was evaluated by flow cytometry and iron uptake was analyzed by isotope dilution mass spectrometry and Prussian blue staining. Fluorescence microscopy of eGFP-transduced rMSC was performed. Viability and induction of apoptosis were assessed by XTT and caspase-3/-7 measurements. The chondrogenic potential of labeled cells was quantified by glycosaminoglycan contents in TGF-β3 induced pellet cultures. Labeled and unlabeled cells underwent magnetic resonance imaging (MRI) at 1.5 T before and after differentiation using T1-, T2-, and T2*-weighted pulse sequences. Relaxation rates were calculated. rMSCs were implanted in fibrin clots in osteochondral defects of cadaveric rabbit knees and imaged by 7 T MRI. T2* maps were calculated. Statistical analyses were performed using multiple regression models. RESULTS Efficiency of lentiviral transduction was greater than 90 %. Fluorescence signal was dose dependent. Cellular iron uptake was significant for all concentrations (p < 0.05) and dose dependent (3.3-56.5 pg Fe/cell). Labeled rMSC showed a strong, dose-dependent contrast on all MR pulse sequences and a significant decrease in T2 and T2* relaxation rates. Compared with non-transduced or unlabeled controls, there were no adverse effects on cell viability, rate of apoptosis, or chondrogenic differentiation. MRI of labeled rMSCs in osteochondral defects showed a significant signal of the transplant with additional high-resolution anatomical information. CONCLUSIONS This intermediate-sized rabbit model and its bifunctional labeling technique allow for improved depiction of anatomic detail for noninvasive in vivo rMSC tracking with MRI and for immunohistological correlation by fluorescence microscopy.
Collapse
Affiliation(s)
- Markus T Berninger
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- Department of Trauma Surgery, BG Trauma Center Murnau, Prof.-Küntscher-Strasse 8, 82418, Murnau, Germany.
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Bernhard Haller
- Institute for Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Andreas B Imhoff
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ernst J Rummeny
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martina Anton
- Institute for Experimental Oncology and Therapy Research, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan Vogt
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Tobias D Henning
- Section of Neuroradiology, Uniklinik Köln, Cologne, Germany
- Section of Neuroradiology, Krankenhaus der Barmherzigen Brüder, Trier, Germany
| |
Collapse
|
32
|
Zhu W, Cao L, Song C, Pang Z, Jiang H, Guo C. Cell-derived decellularized extracellular matrix scaffolds for articular cartilage repair. Int J Artif Organs 2020; 44:269-281. [PMID: 32945220 DOI: 10.1177/0391398820953866] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Articular cartilage repair remains a great clinical challenge. Tissue engineering approaches based on decellularized extracellular matrix (dECM) scaffolds show promise for facilitating articular cartilage repair. Traditional regenerative approaches currently used in clinical practice, such as microfracture, mosaicplasty, and autologous chondrocyte implantation, can improve cartilage repair and show therapeutic effect to some degree; however, the long-term curative effect is suboptimal. As dECM prepared by proper decellularization procedures is a biodegradable material, which provides space for regeneration tissue growth, possesses low immunogenicity, and retains most of its bioactive molecules that maintain tissue homeostasis and facilitate tissue repair, dECM scaffolds may provide a biomimetic microenvironment promoting cell attachment, proliferation, and chondrogenic differentiation. Currently, cell-derived dECM scaffolds have become a research hotspot in the field of cartilage tissue engineering, as ECM derived from cells cultured in vitro has many advantages compared with native cartilage ECM. This review describes cell types used to secrete ECM, methods of inducing cells to secrete cartilage-like ECM and decellularization methods to prepare cell-derived dECM. The potential mechanism of dECM scaffolds on cartilage repair, methods for improving the mechanical strength of cell-derived dECM scaffolds, and future perspectives on cell-derived dECM scaffolds are also discussed in this review.
Collapse
Affiliation(s)
- Wenrun Zhu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunfeng Song
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiying Pang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochen Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changan Guo
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The decreased contact area, edge loading, and increased stress in the adjacent area cartilage resulting from chondral defects are believed to predispose this tissue to degenerative changes that have significant economic implications, especially when considering its progression to osteoarthritis of the knee. Growth factors are considered therapeutic possibilities to enhance healing of chondral injuries and modify the progression to degenerative arthritis. Thus, the purposes of this review are to first to summarize important points for defect preparation and recent advances in techniques for marrow stimulation and second, and to identify specific growth factors and cytokines that have the capacity to advance cartilage regeneration and the treatment of osteoarthritis in light of recent laboratory and clinical studies. RECENT FINDINGS TGF-β, BMP-2, BMP-7, IGF-1, as IL-1 receptor antagonist, and recombinant human FGF-18 are some of the promising growth factor/cytokine treatments with pioneering and evolving clinical developments. The bulk of the review describes and discusses these developments in light of fundamental basic science. It is crucial to also understand the other underlying advances made in the surgical management of cartilage defects prior to onset of OA. These advances are in techniques for defect preparation and marrow stimulation, a common cartilage repair procedure used in combination with growth factor/cytokine augmentation. Multiple growth factor/cytokine modulation therapies are currently undergoing clinical trial investigation including Invossa (currently in phase III study), Kineret (currently in phase I study), and Sprifermin (currently in phase II study) for the treatment of symptomatic osteoarthritis.
Collapse
|
34
|
Bone marrow concentrate injections for the treatment of osteoarthritis: evidence from preclinical findings to the clinical application. INTERNATIONAL ORTHOPAEDICS 2020; 45:525-538. [PMID: 32661635 PMCID: PMC7843474 DOI: 10.1007/s00264-020-04703-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Purpose To investigate the available literature on the use of bone marrow aspirate concentrate (BMAC) and summarize the current evidence supporting its potential for the injective treatment of joints affected by osteoarthritis (OA). Methods A systematic literature search was conducted on three electronic databases (PubMed, Embase, and Cochrane Library) in April 2020, using the following string: “((bone marrow concentrate) OR (BMC) OR (bone marrow aspirate concentrate) OR (BMAC)) AND (osteoarthritis)”, and inclusion criteria: clinical and preclinical (animal) studies of any level of evidence, written in English language, and evaluating the intra-articular or subchondral use of BMAC for the injective treatment of OA joints. Results The publication trend remarkably increased over time. A total of 22 studies were included in the qualitative data synthesis: four preclinical studies and 18 clinical studies, for a total number of 4626 patients. Safety was documented by all studies, with a low number of adverse events. An overall improvement in pain and function was documented in most of the studies, but the clinical studies present significant heterogeneity, few patients, short-term follow-up, and overall poor methodology. Conclusion There is a growing interest in the field of BMAC injections for the treatment of OA, with promising results in preclinical and clinical studies in terms of safety and effectiveness. Nevertheless, the current knowledge is still preliminary. Preclinical research is still needed to optimize BMAC use, as well as high-level large controlled trials to better understand the real potential of BMAC injections for the treatment of patients affected by OA.
Collapse
|
35
|
Liao S, Tang Y, Chu C, Lu W, Baligen B, Man Y, Qu Y. Application of green tea extracts epigallocatechin‐3‐gallate in dental materials: Recent progress and perspectives. J Biomed Mater Res A 2020; 108:2395-2408. [PMID: 32379385 DOI: 10.1002/jbm.a.36991] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shengnan Liao
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yu Tang
- Stomatology College & the Affiliated Stomatology Hospital of Southwest Medical University Luzhou Sichuan China
| | - Chenyu Chu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Weitong Lu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Bolatihan Baligen
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yi Man
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yili Qu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| |
Collapse
|
36
|
CORR Synthesis: What Is the Evidence for the Clinical Use of Stem Cell-based Therapy in the Treatment of Osteoarthritis of the Knee? Clin Orthop Relat Res 2020; 478:964-978. [PMID: 31899738 PMCID: PMC7170666 DOI: 10.1097/corr.0000000000001105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
37
|
Braniste T, Cobzac V, Ababii P, Plesco I, Raevschi S, Didencu A, Maniuc M, Nacu V, Ababii I, Tiginyanu I. Mesenchymal stem cells proliferation and remote manipulation upon exposure to magnetic semiconductor nanoparticles. ACTA ACUST UNITED AC 2020; 25:e00435. [PMID: 32090026 PMCID: PMC7025179 DOI: 10.1016/j.btre.2020.e00435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/28/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
In this paper, we report on spatial redistribution of bone marrow mesenchymal stem cells loaded with magnetic nanoparticles under the influence of continuously applied magnetic field. Semiconductor nanoparticles were synthesized by epitaxial growth of a GaN thin layer on magnetic sacrificial core consisting of ZnFe2O4 nanoparticles. Different quantities of nanoparticles were incubated in vitro with mesenchymal stem cells. High density of nanoparticles (50 μg/ml) leads to a decrease in the number of cells during incubation, while the density of nanoparticles as low as 10 μg/ml is enough to drag cells in culture and rearrange them according to the spatial distribution of the magnetic field intensity.
Collapse
Affiliation(s)
- Tudor Braniste
- National Center for Materials Study and Testing. Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, 2004, Republic of Moldova
- Corresponding authors at: National Center for Materials Study and Testing. Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, 2004, Republic of Moldova.
| | - Vitalie Cobzac
- Laboratory of Tissue Engineering and Cells Cultures. State University of Medicine and Pharmacy “Nicolae Testemiteanu”, Stefan cel Mare av. 165, Chisinau, 2004, Republic of Moldova
| | - Polina Ababii
- Department of Otorhinolaryngology. State University of Medicine and Pharmacy “Nicolae Testemiteanu”, Stefan cel Mare av. 165, Chisinau, 2004, Republic of Moldova
| | - Irina Plesco
- National Center for Materials Study and Testing. Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, 2004, Republic of Moldova
| | - Simion Raevschi
- Department of Physics and Engineering, State University of Moldova, Alexei Mateevici str. 60, Chisinau, 2009, Republic of Moldova
| | - Alexandru Didencu
- Department of Otorhinolaryngology. State University of Medicine and Pharmacy “Nicolae Testemiteanu”, Stefan cel Mare av. 165, Chisinau, 2004, Republic of Moldova
| | - Mihail Maniuc
- Department of Otorhinolaryngology. State University of Medicine and Pharmacy “Nicolae Testemiteanu”, Stefan cel Mare av. 165, Chisinau, 2004, Republic of Moldova
| | - Viorel Nacu
- Laboratory of Tissue Engineering and Cells Cultures. State University of Medicine and Pharmacy “Nicolae Testemiteanu”, Stefan cel Mare av. 165, Chisinau, 2004, Republic of Moldova
| | - Ion Ababii
- Department of Otorhinolaryngology. State University of Medicine and Pharmacy “Nicolae Testemiteanu”, Stefan cel Mare av. 165, Chisinau, 2004, Republic of Moldova
| | - Ion Tiginyanu
- National Center for Materials Study and Testing. Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, 2004, Republic of Moldova
- Academy of Sciences of Moldova, Stefan cel Mare av. 1, Chisinau, 2001, Republic of Moldova
- Corresponding authors at: National Center for Materials Study and Testing. Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, 2004, Republic of Moldova.
| |
Collapse
|
38
|
Voisin C, Cauchois G, Reppel L, Laroye C, Louarn L, Schenowitz C, Sonon P, Poras I, Wang V, D. Carosella E, Benkirane-Jessel N, Moreau P, Rouas-Freiss N, Bensoussan D, Huselstein C. Are the Immune Properties of Mesenchymal Stem Cells from Wharton's Jelly Maintained during Chondrogenic Differentiation? J Clin Med 2020; 9:jcm9020423. [PMID: 32033151 PMCID: PMC7073626 DOI: 10.3390/jcm9020423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Umbilical mesenchymal stem/stromal cells (MSCs), and especially those derived from Wharton’s jelly (WJ), are a promising engineering tool for tissue repair in an allogeneic context. This is due to their differentiation capacity and immunological properties, like their immunomodulatory potential and paracrine activity. Hence, these cells may be considered an Advanced Therapy Medicinal Product (ATMP). The purpose of this work was to differentiate MSCs from WJ (WJ-MSCs) into chondrocytes using a scaffold and to evaluate, in vitro, the immunomodulatory capacities of WJ-MSCs in an allogeneic and inflammatory context, mimicked by IFN-γ and TNF-α priming during the chondrogenic differentiation. Methods: Scaffolds were made from hydrogel composed by alginate enriched in hyaluronic acid (Alg/HA). Chondrogenic differentiation, immunological function, phenotype expression, but also secreted soluble factors were the different parameters followed during 28 days of culture. Results: During chondrocyte differentiation, even in an allogeneic context, WJ-MSCs remained unable to establish the immunological synapse or to induce T cell alloproliferation. Moreover, interestingly, paracrine activity and functional immunomodulation were maintained during cell differentiation. Conclusion: These results show that WJ-MSCs remained hypoimmunogenic and retained immunomodulatory properties even when they had undergone chondrocyte differentiation.
Collapse
Affiliation(s)
- Charlotte Voisin
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l’Université de Lorraine, Campus brabois-santé, Faculté de Médecine, 9 Avenue de la Forêt de Haye, BP 184, 54500 Vandoeuvre-lès-nancy, France; (G.C.); (L.R.); (C.L.); (V.W.); (D.B.); (C.H.)
- UMS2008 IBSLor, Campus brabois-santé, 9 Avenue de la Forêt de Haye, BP20199, 54500 Vandoeuvre-lès-nancy, France
- Correspondence: ; Tel.: +33-372-74-6585
| | - Ghislaine Cauchois
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l’Université de Lorraine, Campus brabois-santé, Faculté de Médecine, 9 Avenue de la Forêt de Haye, BP 184, 54500 Vandoeuvre-lès-nancy, France; (G.C.); (L.R.); (C.L.); (V.W.); (D.B.); (C.H.)
- UMS2008 IBSLor, Campus brabois-santé, 9 Avenue de la Forêt de Haye, BP20199, 54500 Vandoeuvre-lès-nancy, France
| | - Loïc Reppel
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l’Université de Lorraine, Campus brabois-santé, Faculté de Médecine, 9 Avenue de la Forêt de Haye, BP 184, 54500 Vandoeuvre-lès-nancy, France; (G.C.); (L.R.); (C.L.); (V.W.); (D.B.); (C.H.)
- UMS2008 IBSLor, Campus brabois-santé, 9 Avenue de la Forêt de Haye, BP20199, 54500 Vandoeuvre-lès-nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire Banque de Tissus, 54500 Vandœuvre-lès-Nancy, France
| | - Caroline Laroye
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l’Université de Lorraine, Campus brabois-santé, Faculté de Médecine, 9 Avenue de la Forêt de Haye, BP 184, 54500 Vandoeuvre-lès-nancy, France; (G.C.); (L.R.); (C.L.); (V.W.); (D.B.); (C.H.)
- UMS2008 IBSLor, Campus brabois-santé, 9 Avenue de la Forêt de Haye, BP20199, 54500 Vandoeuvre-lès-nancy, France
- CHRU de Nancy, Unité de Thérapie Cellulaire Banque de Tissus, 54500 Vandœuvre-lès-Nancy, France
| | - Laetitia Louarn
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hopital Saint-Louis, 75010 Paris, France; (L.L.); (C.S.); (P.S.); (I.P.); (E.D.C.); (P.M.); (N.R.-F.)
- Université de Paris, CEA, U976 HIPI Unit (Human Immunology, Physiopathology, Immunotherapy), Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Chantal Schenowitz
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hopital Saint-Louis, 75010 Paris, France; (L.L.); (C.S.); (P.S.); (I.P.); (E.D.C.); (P.M.); (N.R.-F.)
- Université de Paris, CEA, U976 HIPI Unit (Human Immunology, Physiopathology, Immunotherapy), Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Paulin Sonon
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hopital Saint-Louis, 75010 Paris, France; (L.L.); (C.S.); (P.S.); (I.P.); (E.D.C.); (P.M.); (N.R.-F.)
- Université de Paris, CEA, U976 HIPI Unit (Human Immunology, Physiopathology, Immunotherapy), Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Isabelle Poras
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hopital Saint-Louis, 75010 Paris, France; (L.L.); (C.S.); (P.S.); (I.P.); (E.D.C.); (P.M.); (N.R.-F.)
- Université de Paris, CEA, U976 HIPI Unit (Human Immunology, Physiopathology, Immunotherapy), Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Valentine Wang
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l’Université de Lorraine, Campus brabois-santé, Faculté de Médecine, 9 Avenue de la Forêt de Haye, BP 184, 54500 Vandoeuvre-lès-nancy, France; (G.C.); (L.R.); (C.L.); (V.W.); (D.B.); (C.H.)
- UMS2008 IBSLor, Campus brabois-santé, 9 Avenue de la Forêt de Haye, BP20199, 54500 Vandoeuvre-lès-nancy, France
| | - Edgardo D. Carosella
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hopital Saint-Louis, 75010 Paris, France; (L.L.); (C.S.); (P.S.); (I.P.); (E.D.C.); (P.M.); (N.R.-F.)
- Université de Paris, CEA, U976 HIPI Unit (Human Immunology, Physiopathology, Immunotherapy), Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Nadia Benkirane-Jessel
- INSERM-UNISTRA UMR1260, Regenerative Nanomedicine laboratory, Faculté de Médecine, FMTS, Strasbourg CEDEX F-67085, France;
| | - Philippe Moreau
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hopital Saint-Louis, 75010 Paris, France; (L.L.); (C.S.); (P.S.); (I.P.); (E.D.C.); (P.M.); (N.R.-F.)
- Université de Paris, CEA, U976 HIPI Unit (Human Immunology, Physiopathology, Immunotherapy), Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Nathalie Rouas-Freiss
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hopital Saint-Louis, 75010 Paris, France; (L.L.); (C.S.); (P.S.); (I.P.); (E.D.C.); (P.M.); (N.R.-F.)
- Université de Paris, CEA, U976 HIPI Unit (Human Immunology, Physiopathology, Immunotherapy), Institut de Recherche Saint-Louis, 75010 Paris, France
| | - Danièle Bensoussan
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l’Université de Lorraine, Campus brabois-santé, Faculté de Médecine, 9 Avenue de la Forêt de Haye, BP 184, 54500 Vandoeuvre-lès-nancy, France; (G.C.); (L.R.); (C.L.); (V.W.); (D.B.); (C.H.)
- CHRU de Nancy, Unité de Thérapie Cellulaire Banque de Tissus, 54500 Vandœuvre-lès-Nancy, France
| | - Céline Huselstein
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle de l’Université de Lorraine, Campus brabois-santé, Faculté de Médecine, 9 Avenue de la Forêt de Haye, BP 184, 54500 Vandoeuvre-lès-nancy, France; (G.C.); (L.R.); (C.L.); (V.W.); (D.B.); (C.H.)
- UMS2008 IBSLor, Campus brabois-santé, 9 Avenue de la Forêt de Haye, BP20199, 54500 Vandoeuvre-lès-nancy, France
| |
Collapse
|
39
|
Doyle EC, Wragg NM, Wilson SL. Intraarticular injection of bone marrow-derived mesenchymal stem cells enhances regeneration in knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2020; 28:3827-3842. [PMID: 32006075 PMCID: PMC7669782 DOI: 10.1007/s00167-020-05859-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/16/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE This review aimed to evaluate the efficacy of intra-articular injections of bone marrow derived mesenchymal stem cells (BM-MSCs) for the treatment of knee osteoarthritis (KOA). METHODS This narrative review evaluates recent English language clinical data and published research articles between 2014 and 2019. Key word search strings of ((("bone marrow-derived mesenchymal stem cell" OR "bone marrow mesenchymal stromal cell" OR "bone marrow stromal cell")) AND ("osteoarthritis" OR "knee osteoarthritis")) AND ("human" OR "clinical"))) AND "intra-articular injection" were used to identify relevant articles using PMC, Cochrane Library, Web Of Science and Scopus databases. RESULTS Pre-clinical studies have demonstrated successful, safe and encouraging results for articular cartilage repair and regeneration. This is concluded to be due to the multilineage differential potential, immunosuppressive and self-renewal capabilities of BM-MSCs, which have shown to augment pain and improve functional outcomes. Subsequently, clinical applications of intra-articular injections of BM-MSCs are steadily increasing, with most studies demonstrating a decrease in poor cartilage index, improvements in pain, function and Quality of Life (QoL); with moderate-to-high level evidence regarding safety for therapeutic administration. However, low confidence in clinical efficacy remains due to a plethora of heterogenous methodologies utilised, resulting in challenging study comparisons. A moderate number of cells (40 × 106) were identified as most likely to achieve optimal responses in individuals with grade ≥ 2 KOA. Likewise, significant improvements were reported when using lower (24 × 106) and higher (100 × 106) cell numbers, although adverse effects including persistent pain and swelling were a consequence. CONCLUSION Overall, the benefits of intra-articular injections of BM-MSCs were deemed to outweigh the adverse effects; thus, this treatment be considered as a future therapy strategy. To realise this, long-term large-scale randomised clinical trials are required to enable improved interpretations, to determine the validity of efficacy in future studies. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Emily Claire Doyle
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, LE11 3TU Leicestershire UK
| | - Nicholas Martin Wragg
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, LE11 3TU Leicestershire UK
| | - Samantha Louise Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Epinal Way, Loughborough, LE11 3TU, Leicestershire, UK.
| |
Collapse
|
40
|
Shin K, Cha Y, Ban YH, Seo DW, Choi EK, Park D, Kang SK, Ra JC, Kim YB. Anti-osteoarthritis effect of a combination treatment with human adipose tissue-derived mesenchymal stem cells and thrombospondin 2 in rabbits. World J Stem Cells 2019; 11:1115-1129. [PMID: 31875872 PMCID: PMC6904861 DOI: 10.4252/wjsc.v11.i12.1115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage, is one of the leading causes of disability. As a new strategy for treatment of OA, mesenchymal stem cells (MSCs) have the potential for articular cartilage regeneration. Meanwhile, thrombospondin 2 (TSP2) promotes the chondrogenic differentiation of MSCs. AIM To investigate whether TSP2 induces chondrogenic differentiation of human adipose-derived MSCs (hADMSCs) and potentiates the therapeutic effects of hADMSCs in OA rabbits. METHODS We investigated the chondrogenic potential of TSP2 in hADMSCs by analyzing the expression of chondrogenic markers as well as NOTCH signaling genes in normal and TSP2 small interfering RNA (siRNA)-treated stem cells. Anterior cruciate ligament transection surgery was performed in male New Zealand white rabbits, and 8 wk later, hADMSCs (1.7 × 106 or 1.7 × 107 cells) were injected into the injured knees alone or in combination with intra-articular injection of TSP2 (100 ng/knee) at 2-d intervals. OA progression was monitored by gross, radiological, and histological examinations. RESULTS In hADMSC culture, treatment with TSP2 increased the expression of chondrogenic markers (SOX9 and collagen II) as well as NOTCH signaling genes (JAGGED1 and NOTCH3), which were inhibited by TSP2 siRNA treatment. In vivo, OA rabbits treated with hADMSCs or TSP2 alone exhibited lower degree of cartilage degeneration, osteophyte formation, and extracellular matrix loss 8 wk after cell transplantation. Notably, such cartilage damage was further alleviated by the combination of hADMSCs and TSP2. In addition, synovial inflammatory cytokines, especially tumor-necrosis factor-α, markedly decreased following the combination treatment. CONCLUSION The results indicate that TSP2 enhances chondrogenic differentiation of hADMSCs via JAGGED1/NOTCH3 signaling, and that combination therapy with hADMSCs and TSP2 exerts synergistic effects in the cartilage regeneration of OA joints.
Collapse
Affiliation(s)
- Kyungha Shin
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, South Korea
| | - Yeseul Cha
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, South Korea
| | - Young-Hwan Ban
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, South Korea
| | - Da Woom Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, South Korea
| | - Ehn-Kyoung Choi
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, South Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Chungbuk, South Korea
| | - Sung Keun Kang
- Biostar Stem Cell Research Institute, R-BIO Co., Ltd., Seoul 07238, South Korea
| | - Jeong Chan Ra
- Biostar Stem Cell Research Institute, R-BIO Co., Ltd., Seoul 07238, South Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, South Korea.
| |
Collapse
|
41
|
Wang L, Huang S, Li S, Li M, Shi J, Bai W, Wang Q, Zheng L, Liu Y. Efficacy and Safety of Umbilical Cord Mesenchymal Stem Cell Therapy for Rheumatoid Arthritis Patients: A Prospective Phase I/II Study. Drug Des Devel Ther 2019; 13:4331-4340. [PMID: 31908418 PMCID: PMC6930836 DOI: 10.2147/dddt.s225613] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The traditional anti-inflammation disease-modifying anti-rheumatic drugs (DMARDs) have limited therapeutic effects in rheumatoid arthritis (RA) patients. We previously reported the safety and efficacy of umbilical cord mesenchymal stem cell (UC-MSC) treatment in RA patients that were observed for up to 8 months after UC-MSC infusion. The aim of this study is to assess the long-term efficacy and safety of UC-MSC along with DMARDs for the treatment of RA. METHODS 64 RA patients aged 18-64 years were recruited in the study. During the treatment, patients were treated with 40 mL UC-MSC suspension product (2 × 107 cells/20 mL) via intravenous injection immediately after the infusion of 100 mL saline. The serological markers tests were used to assess safety and the 28-joint disease activity score (DAS28) and the Health Assessment Questionnaire (HAQ) to assess efficacy. RESULTS 1 year and 3 years after UC-MSC cells treatment, the blood routine, liver and kidney function and immunoglobulin examination showed no abnormalities, which were all in the normal range. The ESR, CRP, RF of 1 year and 3 years after treatment and anti-CCP of 3 years after treatment were detected to be lower than that of pretreatment, which showed significant change (P < 0.05). Health index (HAQ) and joint function index (DAS28) decreased 1 year and 3 years after treatment than before treatment (P < 0.05). CONCLUSION UC-MSC cells plus DMARDs therapy can be a safe, effective and feasible therapeutic option for RA patients.
Collapse
Affiliation(s)
- Liming Wang
- Cell Therapy Center, 986 Hospital of People’s Liberation Army Air Force, Xi’an, Shaanxi, People’s Republic of China
| | - Shigao Huang
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, People’s Republic of China
| | - Shimei Li
- Cell Therapy Center, 986 Hospital of People’s Liberation Army Air Force, Xi’an, Shaanxi, People’s Republic of China
| | - Ming Li
- Cell Therapy Center, 986 Hospital of People’s Liberation Army Air Force, Xi’an, Shaanxi, People’s Republic of China
| | - Jun Shi
- Cell Therapy Center, 986 Hospital of People’s Liberation Army Air Force, Xi’an, Shaanxi, People’s Republic of China
| | - Wen Bai
- Cell Therapy Center, 986 Hospital of People’s Liberation Army Air Force, Xi’an, Shaanxi, People’s Republic of China
| | - Qianyun Wang
- Cell Therapy Center, 986 Hospital of People’s Liberation Army Air Force, Xi’an, Shaanxi, People’s Republic of China
| | - Libo Zheng
- Stem Cell Biology and Regenerative Medicine Institution, Yi-Chuang Institute of Bio-Industry, Beijing, People’s Republic of China
| | - Yongjun Liu
- Stem Cell Biology and Regenerative Medicine Institution, Yi-Chuang Institute of Bio-Industry, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Kolber MJ, Purita J, Sterling B, Stermer J, Salamh P, Masaracchio M, Hanney WJ. Stem Cell Injections for Musculoskeletal Pathology: An Overview for the Sports Medicine Professional. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
The Effectiveness and Safety of Percutaneous Platelet-Rich Plasma and Bone Marrow Aspirate Concentrate for the Treatment of Suspected Discogenic Low Back Pain: a Comprehensive Review. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2019. [DOI: 10.1007/s40141-019-00243-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Shapiro SA, Arthurs JR, Heckman MG, Bestic JM, Kazmerchak SE, Diehl NN, Zubair AC, O’Connor MI. Quantitative T2 MRI Mapping and 12-Month Follow-up in a Randomized, Blinded, Placebo Controlled Trial of Bone Marrow Aspiration and Concentration for Osteoarthritis of the Knees. Cartilage 2019; 10:432-443. [PMID: 30160168 PMCID: PMC6755869 DOI: 10.1177/1947603518796142] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Bone marrow aspiration and concentration (BMAC) is becoming a more common regenerative therapy for musculoskeletal pathology. In our current pilot study, we studied patients with mild-to-moderate bilateral knee osteoarthritis, compared pain at 12-month follow-up between BMAC-injected and saline-injected knees, and examined cartilage appearance measured by magnetic resonance imaging (MRI) T2 quantitative mapping. DESIGN Twenty-five patients with mild-to-moderate bilateral osteoarthritic knee pain were randomized to receive BMAC into one knee and saline placebo into the other. Bone marrow was aspirated from the iliac crests, concentrated in an automated centrifuge, combined with platelet-poor plasma for knee injection, and compared with saline injection into the contralateral knee. Primary outcome measures were T2 MRI cartilage mapping at 6-month and Visual Analog Scale and Osteoarthritis Research Society International Intermittent and Constant Osteoarthritis Pain scores and radiographs at 12-month follow-up. RESULTS Constant, intermittent, and overall knee pain remained significantly decreased from baseline at 12-month follow-up (all P ⩽ 0.01), with no apparent difference between BMAC- and saline-treated knees (all P ⩾ 0.54). A similar significant increase from baseline to 12-month follow-up regarding quality of life was observed for both BMAC- and saline-treated knees (all P ⩽ 0.04). T2 quantitative MRI mapping showed no significant changes as a result of treatment. CONCLUSIONS BMAC is safe to perform and relieves pain from knee arthritis but showed no superiority to saline injection at 12-month follow-up. MRI cartilage sequences failed to show regenerative benefit with single BMAC injection. The mechanisms of action that led to pain relief remain unclear and warrant further studies.
Collapse
Affiliation(s)
- Shane A. Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL, USA,Shane A. Shapiro, Department of Orthopedic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
| | | | - Michael G. Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Nancy N. Diehl
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Abba C. Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Mary I. O’Connor
- Department of Orthopedic Surgery, Yale-New Haven Hospital, New Haven, CT, USA
| |
Collapse
|
45
|
Xu T, Yu X, Yang Q, Liu X, Fang J, Dai X. Autologous Micro-Fragmented Adipose Tissue as Stem Cell-Based Natural Scaffold for Cartilage Defect Repair. Cell Transplant 2019; 28:1709-1720. [PMID: 31565996 PMCID: PMC6923561 DOI: 10.1177/0963689719880527] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Osteoarthritis (OA) poses a tough challenge worldwide. Adipose-derived stem cells (ASCs)
have been proved to play a promising role in cartilage repair. However, enzymatic
digestion, ex vivo culture and expansion, with significant senescence and decline in
multipotency, limit their application. The present study was designed to obtain
micro-fragmented adipose tissue (MFAT) through gentle mechanical force and determine the
effect of this stem cell-based natural scaffold on repair of full-thickness cartilage
defects. In this study, ASCs sprouted from MFAT were characterized by
multi-differentiation induction and flow cytometry. Scratch and transwell migration assays
were operated to determine whether MFAT could promote migration of chondrocytes in vitro.
In a rat model, cartilage defects were created on the femoral groove and treated with
intra-articular injection of MFAT or PBS for 6 weeks and 12 weeks (n =
12). At the time points, the degree of cartilage repair was evaluated by histological
staining, immunohistochemistry and scoring, respectively. Two unoperated age-matched
animals served as native controls. ASCs derived from MFAT possessed properties to
differentiate into adipocytes, osteocytes and chondrocytes, with expression of mesenchymal
stem cell markers (CD29, 44, 90) and no expression of hematopoietic markers (CD31, 34,
45). In addition, MFAT could significantly promote migration of chondrocytes. MFAT-treated
defects showed improved macroscopic appearance and histological evaluation compared with
PBS-treated defects at both time points. After 12 weeks of treatment, MFAT-treated defects
displayed regular surface, high amount of hyaline cartilage, intact subchondral bone
reconstruction and corresponding formation of type I, II, and VI collagen, which resembled
the normal cartilage. This study demonstrates the efficacy of MFAT on cartilage repair in
an animal model for the first time, and the utility of MFAT as a ready-to-use therapeutic
alternative to traditional stem cell therapy.
Collapse
Affiliation(s)
- Tengjing Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinning Yu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University School of Medicine), Hangzhou, China
| | - Quanming Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghua Fang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University School of Medicine), Hangzhou, China
| | - Xuesong Dai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University School of Medicine), Hangzhou, China
| |
Collapse
|
46
|
Microporous acellular extracellular matrix combined with adipose-derived stem cell sheets as a promising tissue patch promoting articular cartilage regeneration and interface integration. Cytotherapy 2019; 21:856-869. [DOI: 10.1016/j.jcyt.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/04/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022]
|
47
|
Monckeberg JE, Rafols C, Apablaza F, Gerhard P, Rosales J. Intra-articular administration of peripheral blood stem cells with platelet-rich plasma regenerated articular cartilage and improved clinical outcomes for knee chondral lesions. Knee 2019; 26:824-831. [PMID: 31227435 DOI: 10.1016/j.knee.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/10/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE To determine whether intra-articular injections of peripheral blood stem cells improved the regeneration of articular cartilage in patients with osteochondral knee injuries. METHODS This prospective study included 20 patients with grade 3b knee osteochondral lesions who underwent knee arthroscopies. All were white, and all had performed physical activity at least five times a week. International Knee Documentation Committee (IKDC) and visual analog scale scores were recorded before surgery, six months and one year after surgery, and then yearly until five years after surgery. Magnetic resonance imaging scans were obtained six months preoperatively and then yearly and were evaluated by musculoskeletal radiologists blinded to the patient data. Tissue repair was quantified using the International Cartilage Repair Society morphologic score system. Unpaired t-tests were used for comparisons between the time points. RESULTS The mean preoperative IKDC score was 50.5 (42-61). At the six-month follow-up, the mean values were 60.79 (P = 0.32) and 90.97. At the six-month follow-up, the mean values were 70.8 (P = 0.043). At the end of the five-year follow-up, the IKDC was 82.2 (P = 0.024). At five-year follow-up, the visual analog scale score was 1.1 (P = 0.0018). The main morphologic score system score was 3.2 preoperatively and 9.7 ± 1.6 at five-year follow-up (P = 0.0021). No infection, tumors, or synovitis were reported at the end of the follow-up. CONCLUSIONS Intra-articular peripheral blood stem cells with platelet-rich plasma regenerated articular cartilage and improved clinical outcomes for knee chondral lesions at five years of follow-up.
Collapse
|
48
|
Popielarczyk TL, Huckle WR, Barrett JG. Human Bone Marrow-Derived Mesenchymal Stem Cells Home via the PI3K-Akt, MAPK, and Jak/Stat Signaling Pathways in Response to Platelet-Derived Growth Factor. Stem Cells Dev 2019; 28:1191-1202. [PMID: 31190615 DOI: 10.1089/scd.2019.0003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have great potential to improve clinical outcomes for many inflammatory and degenerative diseases either through intravenously delivered MSCs or through mobilization and migration of endogenous MSCs to injury sites, termed "stem cell homing." Stem cell homing involves the processes of attachment to and transmigration through endothelial cells lining the vasculature and migration through the tissue stroma to a site of injury or inflammation. Although the process of leukocyte transendothelial migration (TEM) is well understood, far less is known about stem cell homing. In this study, a transwell-based model was developed to monitor adherence and TEM of human MSCs in response to chemokine exposure. Specifically, transwell membranes lined with human synovial microvascular endothelial cells were partitioned from the tissue injury-mimetic site containing chemokine stromal cell-derived factor-1 (SDF-1). Two population subsets of MSCs were studied: migratory cells that initiated transmigration on the endothelial lining and nonmigratory cells. We hypothesized that cells would adhere to and migrate through the endothelial lining in response to SDF-1 exposure and that gene and protein expression changes would be observed between migratory and nonmigratory cells. We validated a vasculature model for MSC transmigration that showed increased expression of several genes and activation of proteins of the PI3K-Akt, MAPK, and Jak/Stat signaling pathways. These findings showed that MSC homing may be driven by activation of PDGFRA/PI3K/Akt, PDGFRA/MAPK/Grb2, and PDGFRA/Jak2/Stat signaling, as a result of SDF-1-stimulated endothelial cell production of platelet-derived growth factor. This model can be used to further investigate these key regulatory molecules toward the development of targeted therapies.
Collapse
Affiliation(s)
- Tracee L Popielarczyk
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, Virginia
| | - William R Huckle
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Jennifer G Barrett
- Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Leesburg, Virginia
| |
Collapse
|
49
|
Lu L, Liu Y, Zhang X, Lin J. The therapeutic role of bone marrow stem cell local injection in rat experimental periodontitis. J Oral Rehabil 2019; 47 Suppl 1:73-82. [PMID: 31220354 DOI: 10.1111/joor.12843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/26/2019] [Accepted: 06/15/2019] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cell therapy brings hope for regenerating damaged periodontal tissues. The present study aimed to investigate the therapeutic role of local bone marrow stem cell (BMSC) injection in ligation-induced periodontitis and the underlying mechanisms. Alveolar bone lesion was induced by placing ligatures subgingivally around the bilateral maxillary second molars for 28 days. The alveolar bone lesion was confirmed by micro-CT analysis and bone histomorphometry. Allogeneic BMSC transplantation was carried out at 28 day after ligation. The survival state of the transplanted BMSC was observed by bioluminescent imaging. The implantation of the BMSC into the gingival tissues and periodontal ligament was confirmed by green fluorescent protein (GFP) immunohistochemical staining. The expression level of pro-inflammatory, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and receptor activator of nuclear factor-κ B ligand (RANKL) and osteoprotegerin (OPG) in periodontal tissues were evaluated by immunohistochemical staining and real-time PCR. Significant reverse of alveolar bone lesion was observed after BMSC transplantation. The expression of TNF-α and IL-1β was down-regulated by BMSC transplantation. The number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in the periodontal ligament was reduced, and the increased RANKL expression and decreased OPG expression were also reversed after BMSC transplantation. It is concluded that allogeneic BMSC local injection could inhibit the inflammation of the periodontitis tissue and promote periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lei Lu
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Stomatology, Technology Innovation Park, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xu Zhang
- Department of Oral Anatomy and Physiology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Stomatology, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Jiang Lin
- Department of Periodontology, the Fourth Hospital of Harbin Medical University, Harbin, China.,Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Ziegler CG, Van Sloun R, Gonzalez S, Whitney KE, DePhillipo NN, Kennedy MI, Dornan GJ, Evans TA, Huard J, LaPrade RF. Characterization of Growth Factors, Cytokines, and Chemokines in Bone Marrow Concentrate and Platelet-Rich Plasma: A Prospective Analysis. Am J Sports Med 2019; 47:2174-2187. [PMID: 31034242 DOI: 10.1177/0363546519832003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Platelet-rich plasma (PRP) and bone marrow concentrate (BMC) are orthobiologic therapies with numerous growth factors and other bioactive molecules. Before the clinical utility of PRP and BMC is optimized as a combined therapy or monotherapy, an improved understanding of the components and respective concentrations is necessary. PURPOSE To prospectively measure and compare anabolic, anti-inflammatory, and proinflammatory growth factors, cytokines, and chemokines in bone marrow aspirate (BMA), BMC, whole blood, leukocyte-poor PRP (LP-PRP), and leukocyte-rich PRP (LR-PRP) from samples collected and processed concurrently on the same day from patients presenting for elective knee surgery. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Patients presenting for elective knee surgery were prospectively enrolled over a 3-week period. Whole blood from peripheral venous draw and BMA from the posterior iliac crest were immediately processed via centrifugation and manual extraction methods to prepare LR-PRP, LP-PRP, and BMC samples, respectively. BMA, BMC, whole blood, LR-PRP, and LP-PRP samples were immediately assayed and analyzed to measure protein concentrations. RESULTS BMC had a significantly higher interleukin 1 receptor antagonist (IL-1Ra) concentration than all other preparations (all P < .0009). LR-PRP also had a significantly higher IL-1Ra concentration than LP-PRP (P = .0006). There were no significant differences in IL-1Ra concentration based on age, sex, body mass index, or chronicity of injury in all preparations. LR-PRP had significantly higher concentrations of platelet-derived growth factor AA (PDGF-AA) and PDGF-AB/BB than all other preparations (all P < .0006). LR-PRP also had significantly higher concentrations of matrix metalloproteinase 1 (MMP-1) and soluble CD40 ligand than all other preparations (all P < .004). LP-PRP had significantly higher concentrations of MMPs, namely MMP-2, MMP-3, and MMP-12, than all other preparations (all P < .007). CONCLUSION BMC is a clinically relevant source of anti-inflammatory biologic therapy that may be more effective in treating osteoarthritis and for use as an intra-articular biologic source for augmented healing in the postsurgical inflammatory and healing phases, owing to its significantly higher concentration of IL-1Ra as compared with LR-PRP and LP-PRP. Additionally, LR-PRP had a significantly higher concentration of IL-1Ra than LP-PRP. In cases where increased vascularity and healing are desired for pathological or injured tissues, including muscle and tendon, LR-PRP may be optimal given its higher overall concentrations of PDGF, TGF-β, EGF, VEGF, and soluble CD40 ligand.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grant J Dornan
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | | | - Johnny Huard
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | | |
Collapse
|