1
|
Battafarano G, Lancellotti S, Sacco M, Rossi M, Terreri S, Di Gregorio J, Di Giuseppe L, D'Agostini M, Porzio O, Di Gennaro L, Tardugno M, Pelle S, Minisola S, Toniolo RM, Luciani M, Del Fattore A, De Cristofaro R. Effects of coagulation factors on bone cells and consequences of their absence in haemophilia a patients. Sci Rep 2024; 14:25001. [PMID: 39443571 PMCID: PMC11499919 DOI: 10.1038/s41598-024-75747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Haemophilia is associated with reduced bone mass and mineral density. Due to the rarity of the disease and the heterogeneity among the studies, the pathogenesis of bone loss is still under investigation. We studied the effects of coagulation factors on bone cells and characterized in a pilot study the osteoclastogenic potential of patients' osteoclast precursors. To evaluate the effect of coagulation factors on osteoclasts, we treated Healthy Donor-Peripheral Blood Mononuclear Cells (HD-PBMC) with Factor VIII (FVIII), von Willebrand Factor (VWF), FVIII/VWF complex, activated Factor IX (FIXa), activated Factor X (FXa) and Thrombin (THB). FVIII, VWF, FVIII/VWF, FXa and THB treatments reduced osteoclast differentiation of HD-PBMC and VWF affected also bone resorption. Interestingly, PBMC isolated from patients with moderate/severe haemophilia showed an increased osteoclastogenic potential due to the alteration of osteoclast precursors. Moreover, increased expression of genes involved in osteoclast differentiation/activity was revealed in osteoclasts of an adult patient with moderate haemophilia. Control osteoblasts treated with the coagulation factors showed that FVIII and VWF reduced ALP positivity; the opposite effect was observed following THB treatment. Moreover, FVIII, VWF and FVIII/VWF reduced mineralization ability. These results could be important to understand how coagulation factors deficiency influences bone remodeling activity in haemophilia.
Collapse
Affiliation(s)
- Giulia Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Lancellotti
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Monica Sacco
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Michela Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jacopo Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Di Giuseppe
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, "Sapienza" University, viale del Policlinico 155, 00161, Rome, Italy
| | - Matteo D'Agostini
- Clinical Laboratory Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ottavia Porzio
- Clinical Laboratory Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Leonardo Di Gennaro
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Maira Tardugno
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Simone Pelle
- "Polo Sanitario San Feliciano-Villa Aurora" Clinic, Rome, Italy
| | - Salvatore Minisola
- Department of Clinical, Internal, Anaesthesiological and Cardiovascular Sciences, "Sapienza" University, viale del Policlinico 155, 00161, Rome, Italy
| | - Renato Maria Toniolo
- Department of Orthopaedics and Traumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Luciani
- Pediatric Hematology/Oncology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics e Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Raimondo De Cristofaro
- Center for Hemorrhagic and Thrombotic Diseases, Foundation University Hospital "A. Gemelli", IRCCS, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, 00168, Rome, Italy.
| |
Collapse
|
2
|
Park SM, Chen CJJ, Verdon DJ, Ooi MPY, Brooks AES, Martin RCW, Mathy JA, Emanuel PO, Dunbar PR. Proliferating macrophages in human tumours show characteristics of monocytes responding to myelopoietic growth factors. Front Immunol 2024; 15:1412076. [PMID: 38903497 PMCID: PMC11188303 DOI: 10.3389/fimmu.2024.1412076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Macrophages play essential roles in maintaining tissue homeostasis and immune defence. However, their extensive infiltration into tumours has been linked to adverse outcomes in multiple human cancers. Within the tumour microenvironment (TME), tumour-associated macrophages (TAMs) promote tumour growth and metastasis, making them prime targets for cancer immunotherapy. Recent single-cell analysis suggest that proliferating TAMs accumulate in human cancers, yet their origins and differentiation pathways remain uncertain. Here, we show that a subpopulation of CD163+ TAMs proliferates in situ within the TME of melanoma, lung cancer, and breast cancer. Consistent with their potential role in suppressing anti-tumour activities of T cells, CD163+ TAMs express a range of potent immunosuppressive molecules, including PD-L1, PD-L2, IL-10, and TGF-β. Other phenotypic markers strongly suggested that these cells originate from CD14+ CCR2+ monocytes, a cell population believed to have minimal capacity for proliferation. However, we demonstrate in vitro that certain myelopoietic cytokines commonly available within the TME induce robust proliferation of human monocytes, especially the combination of interleukin 3 (IL-3) and Macrophage Colony-Stimulating Factor 1 (M-CSF). Monocytic cells cultured with these cytokines efficiently modulate T cell proliferation, and their molecular phenotype recapitulates that of CD163+ TAMs. IL-3-driven proliferation of monocytic cells can be completely blocked by IL-4, associated with the induction of CDKN1A, alongside the upregulation of transcription factors linked to dendritic cell function, such as BATF3 and IRF4. Taken together, our work suggests several novel therapeutic routes to reducing immunosuppressive TAMs in human tumours, from blocking chemokine-mediated recruitment of monocytes to blocking their proliferation.
Collapse
Affiliation(s)
- Saem Mul Park
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Chun-Jen J. Chen
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Daniel J. Verdon
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Marcus P. Y. Ooi
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Anna E. S. Brooks
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | | | - Jon A. Mathy
- Department of Surgery, Faculty of Medical Health Sciences, The University of Auckland, Auckland, New Zealand
- Auckland Regional Plastic, Reconstructive and Hand Surgery Unit, Auckland, New Zealand
| | - Patrick O. Emanuel
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - P. Rod Dunbar
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| |
Collapse
|
3
|
Tsai J, Kaneko K, Suh AJ, Bockman R, Park-Min KH. Origin of Osteoclasts: Osteoclast Precursor Cells. J Bone Metab 2023; 30:127-140. [PMID: 37449346 PMCID: PMC10346003 DOI: 10.11005/jbm.2023.30.2.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 07/18/2023] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells and a key player in bone remodeling for health and disease. Since the discovery of osteoclasts in 1873, the structure and function of osteoclasts and the molecular and cellular mechanisms of osteoclastogenesis have been extensively studied. Moreover, it has been well established that osteoclasts are differentiated in vitro from myeloid cells such as bone marrow macrophages or monocytes. The concept showing that osteoclasts are derived from a specific population (named osteoclast precursor cells [OCPs]) among myeloid cells has been long hypothesized. However, the specific precursor population of osteoclasts is not clearly defined yet. A growing body of work provides evidence of the developmental origin and lifespan of murine osteoclasts, particularly in vivo. Here, we review the emerging evidence that supports the existence of OCPs and discuss current insights into their identity.
Collapse
Affiliation(s)
- Jefferson Tsai
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
| | - Kaichi Kaneko
- Division of Rheumatology, Department of Internal Medicine, Toho University Sakura Medical Center, Chiba,
Japan
| | - Andrew J. Suh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
| | - Richard Bockman
- Division of Endocrinology and Metabolism, Hospital for Special Surgery, New York, NY,
USA
- Department of Medicine, Weill Cornell Medical College, New York, NY,
USA
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY,
USA
- Department of Medicine, Weill Cornell Medical College, New York, NY,
USA
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY,
USA
| |
Collapse
|
4
|
Giannoni P, Marini C, Cutrona G, Todoerti K, Neri A, Ibatici A, Sambuceti G, Pigozzi S, Mora M, Ferrarini M, Fais F, de Totero D. A High Percentage of CD16+ Monocytes Correlates with the Extent of Bone Erosion in Chronic Lymphocytic Leukemia Patients: The Impact of Leukemic B Cells in Monocyte Differentiation and Osteoclast Maturation. Cancers (Basel) 2022; 14:cancers14235979. [PMID: 36497460 PMCID: PMC9740193 DOI: 10.3390/cancers14235979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Significant skeletal alterations are present in Chronic Lymphocytic Leukemia (CLL) patients; bone erosion, particularly evident in the long bone shaft, appeared increased in the progressive disease stage. Moreover, the partial colonization of the bone with reactive bone marrow we documented via PET-FDG imaging suggests that neoplastic cell overgrowth contributes to bone derangement. Indeed, cytokines released by leukemic B cells impair osteoblast differentiation and enhance osteoclast formation in vitro. CD16, Fcγ-RIIIa, has been previously indicated as a marker of osteoclast precursors. We demonstrate, here, that the percentage of circulating monocytes, CD16+, is significantly higher in CLL patients than in normal controls and directly correlated with the extent of bone erosion. When we assessed if healthy monocytes, treated with a CLL-conditioned medium, modulated RANK, RANKL and CD16, we observed that all these molecules were up-regulated and CD16 to a greater extent. Altogether, these findings suggest that leukemic cells facilitate osteoclast differentiation. Interestingly, the evidence that monocytes, polarized toward the M2 phenotype, were characterized by high CD16 expression and showed a striking propensity to differentiate toward osteoclasts may provide further explanations for the enhanced levels of bone erosion detected, in agreement with the high number of immunosuppressive-M2 cells present in these patients.
Collapse
Affiliation(s)
- Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genova, 16132 Genova, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, 20054 Milano, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Katia Todoerti
- Hematology Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
- Department of Pathology, IRCCS Istituto Nazionale dei Tumori G. Venezian, 20133 Milano, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Adalberto Ibatici
- Hematology Unit and Bone Marrow Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Simona Pigozzi
- Department of Surgical and Diagnostic Sciences, University of Genova, 16132 Genova, Italy
| | - Marco Mora
- Pathology Anatomy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Daniela de Totero
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence:
| |
Collapse
|
5
|
Zeb1 Regulation of Wound Healing-Induced Inflammation in Alkali-Damaged Corneas. iScience 2022; 25:104038. [PMID: 35340433 PMCID: PMC8941209 DOI: 10.1016/j.isci.2022.104038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
The cornea is an avascular tissue for vision clarity. Alkali burn could cause severe traumatic damage on the cornea with inflammation and neovascularization (NV), leading to vision reduction and blindness. Mechanisms underlying corneal inflammation and NV are not as clear. We previously reported that Zeb1 is an important factor in corneal NV, and we sought to clarify whether it is also involved in regulation of corneal inflammation. We analyzed the alkali burn-induced corneal inflammation and wound healing in both Zeb1+/+ and Zeb1−/+ littermates through a multidisciplinary approach. We provide evidence that Zeb1 forms a positive regulatory loop with Tgfb to regulate early corneal inflammation by maintenance of immune cell viability and mobility and later wound healing by activation of both Nf-κb and Tgfb-related Stat3 signaling pathways. We believe that ZEB1 is a potential therapeutic target, and inactivation of ZEB1 could be a strategy to treat severe corneal inflammation condition. Traumatic wound induces inflammation in the cornea, resulting in vision reduction Zeb1 is a key factor to retain immune cell viability, mobility, and cytokine expression Zeb1 regulates cytokine gene expression through both Nf-κb and Stat3 pathways Inactivation of ZEB1 could be a strategy to treat severe corneal inflammation condition
Collapse
|
6
|
Han L, Chen Z, Yu K, Yan J, Li T, Ba X, Lin W, Huang Y, Shen P, Huang Y, Qin K, Geng Y, Liu Y, Wang Y, Tu S. Interleukin 27 Signaling in Rheumatoid Arthritis Patients: Good or Evil? Front Immunol 2022; 12:787252. [PMID: 35058928 PMCID: PMC8764250 DOI: 10.3389/fimmu.2021.787252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
The occurrence and development of rheumatoid arthritis (RA) is regulated by numerous cytokines. Interleukin 27 (IL-27) is a soluble cytokine that exerts biological effects by regulating the Janus tyrosine kinase (JAK)/signal transducer and activator of the transcription (STAT) signaling pathway via the IL-27 receptor. IL-27 is known for its pleiotropic roles in modulating inflammatory responses. Previous studies found that IL-27 levels are elevated in RA blood, synovial fluid, and rheumatoid nodules. Cellular and animal experiments indicated that IL-27 exerts multiple regulatory functions in RA patients via different mechanisms. IL-27 inhibits ectopic-like structure (ELS) formation and CD4+ T helper type 2 (Th2) cell, CD4+ T helper type 17 (Th17) cell, and osteoclast differentiation in RA, contributing to alleviating RA. However, IL-27 promotes Th1 cell differentiation, which may exacerbate RA synovitis. Moreover, IL-27 also acts on RA synovial fibroblasts (RA-FLSs) and regulatory T cells (Tregs), but some of its functions are unclear. There is currently insufficient evidence to determine whether IL-27 promotes or relieves RA. Targeting IL-27 signaling in RA treatment should be deliberate based on current knowledge.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yu
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yinhong Geng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Differentiation of Cells Isolated from Human Femoral Heads into Functional Osteoclasts. J Dev Biol 2022; 10:jdb10010006. [PMID: 35225960 PMCID: PMC8883933 DOI: 10.3390/jdb10010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Proper formation of the skeleton during development is crucial for the mobility of humans and the maintenance of essential organs. The production of bone is regulated by osteoblasts and osteoclasts. An imbalance of these cells can lead to a decrease in bone mineral density, which leads to fractures. While many studies are emerging to understand the role of osteoblasts, less studies are present about the role of osteoclasts. This present study utilized bone marrow cells isolated directly from the bone marrow of femoral heads obtained from osteoarthritic (OA) patients after undergoing hip replacement surgery. Here, we used tartrate resistant acid phosphatase (TRAP) staining, Cathepsin K, and nuclei to identity osteoclasts and their functionality after stimulation with macrophage-colony stimulation factor (M-CSF) and receptor activator of nuclear factor kappa-β ligand (RANKL). Our data demonstrated that isolated cells can be differentiated into functional osteoclasts, as indicated by the 92% and 83% of cells that stained positive for TRAP and Cathepsin K, respectively. Furthermore, isolated cells remain viable and terminally differentiate into osteoclasts when stimulated with RANKL. These data demonstrate that cells isolated from human femoral heads can be differentiated into osteoclasts to study bone disorders during development and adulthood.
Collapse
|
8
|
Bhagavatham SKS, Kannan V, Darshan VMD, Sivaramakrishnan V. Nucleotides modulate synoviocyte proliferation and osteoclast differentiation in macrophages with potential implications for rheumatoid arthritis. 3 Biotech 2021; 11:504. [PMID: 34840926 DOI: 10.1007/s13205-021-03052-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/30/2021] [Indexed: 12/29/2022] Open
Abstract
P2 receptors are nucleotide-activated receptors involved in inflammation, cell proliferation osteoblastogenesis, osteoclastogenesis and their function. They can be potential role players in the pathophysiology of rheumatoid arthritis (RA). Our analysis of gene expression datasets of synovial tissue biopsy from the GEO database shows changes in the expression levels of P2 receptors. HIG-82, a synovial fibroblast cell line and RAW 264.7, a macrophage cell line are good in vitro models to study RA. Nucleotide addition experiments showed UDP Glucose significantly increased the proliferation of synovial fibroblasts (HIG-82). Similarly, nucleotides such as Adenosine tri-phosphate (ATP), Adenosine di-phosphate (ADP), Uridine tri-phosphate (UTP), Uridine di-phosphate (UDP) and Uridine diphosphoglucose (UDPG) induced elevated reactive oxygen species (ROS) and tartrate Resistant Acid Phosphatase (TRAP) activity in RAW264.7 cells. The ADP-induced TRAP could be inhibited by clopidogrel a P2Y12 inhibitor. ATP, ADP, UTP, UDP and UDPG also induced osteoclastogenesis as evident from fused multinucleate cells and expression of osteoclast markers (TRAP, Cathepsin K [CTSK]) as determined by Q-PCR. Apyrase (APY) a nucleotidase and an enzyme that is used to modulate extracellular nucleotide concentration is sufficient to induce osteoclastogenesis. Taken together our results show that nucleotides modulate synoviocyte proliferation and macrophage differentiation into osteoclast and play an important role in RA. Nucleotide receptors might be potential therapeutic targets in RA. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03052-8.
Collapse
|
9
|
Han L, Tu S, Shen P, Yan J, Huang Y, Ba X, Li T, Lin W, Li H, Yu K, Guo J, Huang Y, Qin K, Wang Y, Chen Z. A comprehensive transcriptomic analysis of alternate interferon signaling pathways in peripheral blood mononuclear cells in rheumatoid arthritis. Aging (Albany NY) 2021; 13:20511-20533. [PMID: 34432649 PMCID: PMC8436925 DOI: 10.18632/aging.203432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 01/13/2023]
Abstract
Interferon (IFN) signaling pathways play crucial roles in the pathogenesis of rheumatoid arthritis (RA). Prior studies have mainly studied mixed alterations in the IFN signaling pathway in RA, but these studies have not been sufficient to elucidate how imbalanced IFN signaling subtly influences immune cells. Single-cell RNA (scRNA) sequencing makes it possible to better understand the alternations in the interferon signaling pathways in RA. In the present study, we found that IFN signaling pathways were activated in natural killer (NK) cells, monocytes, T cells, B cells, and most immune cell subclasses in RA. We then explored and analyzed the connections between abnormal IFN signaling pathways and cellular functional changes in RA. Single-Cell rEgulatory Network Inference and Clustering (SCENIC) analysis and gene regulatory network (GRN) construction were also performed to identify key transcription factors in RA. Finally, we also investigated altered IFN signaling pathways in multiple RA peripheral blood samples, which indicated that abnormal IFN signaling pathways were universally observed in RA. Our study contributes to a better understanding of the delicate and precise regulation of IFN signaling in the immune system in RA. Furthermore, common alternations in IFN signaling pathway-related transcription factors could help to identify novel therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pan Shen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihui Li
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Yu
- Department of Cardiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Guo
- Wuhan Institute of Biotechnology, Wuhan Biobank, Wuhan 430000, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Maros ME, Balla P, Micsik T, Sapi Z, Szendroi M, Wenz H, Groden C, Forsyth RG, Picci P, Krenacs T. Cell Cycle Regulatory Protein Expression in Multinucleated Giant Cells of Giant Cell Tumor of Bone: do They Proliferate? Pathol Oncol Res 2021; 27:643146. [PMID: 34257609 PMCID: PMC8262213 DOI: 10.3389/pore.2021.643146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/01/2021] [Indexed: 12/24/2022]
Abstract
Cells of the monocyte macrophage lineage form multinucleated giant cells (GCs) by fusion, which may express some cell cycle markers. By using a comprehensive marker set, here we looked for potential replication activities in GCs, and investigated whether these have diagnostic or clinical relevance in giant cell tumor of bone (GCTB). GC rich regions of 10 primary and 10 first recurrence GCTB cases were tested using immunohistochemistry in tissue microarrays. The nuclear positivity rate of the general proliferation marker, replication licensing, G1/S-phase, S/G2/M-phase, mitosis promoter, and cyclin dependent kinase (CDK) inhibitor reactions was analyzed in GCs. Concerning Ki67, moderate SP6 reaction was seen in many GC nuclei, while B56 and Mib1 positivity was rare, but the latter could be linked to more aggressive (p = 0.012) phenotype. Regular MCM6 reaction, as opposed to uncommon MCM2, suggested an initial DNA unwinding. Early replication course in GCs was also supported by widely detecting CDK4 and cyclin E, for the first time, and confirming cyclin D1 upregulation. However, post-G1-phase markers CDK2, cyclin A, geminin, topoisomerase-2a, aurora kinase A, and phospho-histone H3 were rare or missing. These were likely silenced by upregulated CDK inhibitors p15INK4b, p16INK4a, p27KIP1, p53 through its effector p21WAF1 and possibly cyclin G1, consistent with the prevention of DNA replication. In conclusion, the upregulation of known and several novel cell cycle progression markers detected here clearly verify early replication activities in GCs, which are controlled by cell cycle arresting CDK inhibitors at G1 phase, and support the functional maturation of GCs in GCTB.
Collapse
Affiliation(s)
- Mate E. Maros
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Department of Biomedical Informatics at the Center for Preventive Medicine and Digital Health, Mannheim, Germany
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Balla
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tamas Micsik
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Sapi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Miklos Szendroi
- Department of Orthopedics, Semmelweis University, Budapest, Hungary
| | - Holger Wenz
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ramses G. Forsyth
- Department of Anatomic Pathology and Experimental Pathology, University Ziekenhuis, Brussels, Belgium
| | - Piero Picci
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tibor Krenacs
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW One aim in bone tissue engineering is to develop human cell-based, 3D in vitro bone models to study bone physiology and pathology. Due to the heterogeneity of cells among patients, patient's own cells are needed to be obtained, ideally, from one single cell source. This review attempts to identify the appropriate cell sources for development of such models. RECENT FINDINGS Bone marrow and peripheral blood are considered as suitable sources for extraction of osteoblast/osteocyte and osteoclast progenitor cells. Recent studies on these cell sources have shown no significant differences between isolated progenitor cells. However, various parameters such as medium composition affect the cell's proliferation and differentiation potential which could make the peripheral blood-derived stem cells superior to the ones from bone marrow. Peripheral blood can be considered a suitable source for osteoblast/osteocyte and osteoclast progenitor cells, being less invasive for the patient. However, more investigations are needed focusing on extraction and differentiation of both cell types from the same donor sample of peripheral blood.
Collapse
Affiliation(s)
- Sana Ansari
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
12
|
Xue J, Xu L, Zhu H, Bai M, Li X, Zhao Z, Zhong H, Cheng G, Li X, Hu F, Su Y. CD14 +CD16 - monocytes are the main precursors of osteoclasts in rheumatoid arthritis via expressing Tyro3TK. Arthritis Res Ther 2020; 22:221. [PMID: 32958023 PMCID: PMC7507256 DOI: 10.1186/s13075-020-02308-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Background Monocytes as precursors of osteoclasts in rheumatoid arthritis (RA) are well demonstrated, while monocyte subsets in osteoclast formation are still controversial. Tyro3 tyrosine kinase (Tyro3TK) is a member of the receptor tyrosine kinase family involved in immune homeostasis, the role of which in osteoclast differentiation was reported recently. This study aimed to compare the osteoclastic capacity of CD14+CD16+ and CD14+CD16− monocytes in RA and determine the potential involvement of Tyro3TK in their osteoclastogenesis. Methods Osteoclasts were induced from CD14+CD16+ and CD14+CD16− monocyte subsets isolated from healthy control (HC) and RA patients in vitro and evaluated by tartrate-resistant acid phosphatase (TRAP) staining. Then, the expression of Tyro3TK on CD14+CD16+ and CD14+CD16− monocyte subsets in the peripheral blood of RA, osteoarthritis (OA) patients, and HC were evaluated by flow cytometry and qPCR, and their correlation with RA patient clinical and immunological features was analyzed. The role of Tyro3TK in CD14+CD16− monocyte-mediated osteoclastogenesis was further investigated by osteoclast differentiation assay with Tyro3TK blockade. Results The results revealed that CD14+CD16− monocytes were the primary source of osteoclasts. Compared with HC and OA patients, the expression of Tyro3TK on CD14+CD16− monocytes in RA patients was significantly upregulated and positively correlated with the disease manifestations, such as IgM level, tender joint count, and the disease activity score. Moreover, anti-Tyro3TK antibody could inhibit Gas6-mediated osteoclast differentiation from CD14+CD16− monocytes in a dose-dependent manner. Conclusions These findings indicate that elevated Tyro3TK on CD14+CD16− monocytes serves as a critical signal for osteoclast differentiation in RA.
Collapse
Affiliation(s)
- Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xin Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhen Zhao
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hua Zhong
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Gong Cheng
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xue Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China. .,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China. .,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, China. .,Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
| |
Collapse
|
13
|
Quantification of aminobutyric acids and their clinical applications as biomarkers for osteoporosis. Commun Biol 2020; 3:39. [PMID: 31969651 PMCID: PMC6976694 DOI: 10.1038/s42003-020-0766-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a highly prevalent chronic aging-related disease that frequently is only detected after fracture. We hypothesized that aminobutyric acids could serve as biomarkers for osteoporosis. We developed a quick, accurate, and sensitive screening method for aminobutyric acid isomers and enantiomers yielding correlations with bone mineral density (BMD) and osteoporotic fracture. In serum, γ-aminobutyric acid (GABA) and (R)-3-aminoisobutyric acid (D-BAIBA) have positive associations with physical activity in young lean women. D-BAIBA positively associated with hip BMD in older individuals without osteoporosis/osteopenia. Lower levels of GABA were observed in 60–80 year old women with osteoporotic fractures. Single nucleotide polymorphisms in seven genes related to these metabolites associated with BMD and osteoporosis. In peripheral blood monocytes, dihydropyrimidine dehydrogenase, an enzyme essential to D-BAIBA generation, exhibited positive association with physical activity and hip BMD. Along with their signaling roles, BAIBA and GABA might serve as biomarkers for diagnosis and treatments of osteoporosis. Wang et al. develop an LC/MS based screening method to separate and quantify aminobutyric acids isoforms. Applying it to osteoporosis clinical studies, their method yields important correlations with bone mineral density and osteoporotic fracture and highlight the role of γ-aminobutyric acid and β-aminoisobutyric acid as biomarkers for osteoporosis.
Collapse
|
14
|
Yang X, Pande S, Scott C, Friesel R. Macrophage colony-stimulating factor pretreatment of bone marrow progenitor cells regulates osteoclast differentiation based upon the stage of myeloid development. J Cell Biochem 2019; 120:12450-12460. [PMID: 30805994 DOI: 10.1002/jcb.28512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/11/2019] [Indexed: 11/11/2022]
Abstract
Osteoclasts (OCs) are large, multinucleated bone resorbing cells originating from the bone marrow myeloid lineage, and share a common progenitor with macrophages and dendritic cells. Bone marrow cells (BMCs) are a common source for in vitro osteoclastogenesis assays but are a highly heterogeneous mixture of cells. Protocols for in vitro osteoclastogenesis vary considerably thus hindering interpretation and comparison of results between studies. Macrophage colony-stimulating factor (M-CSF) pretreatment is commonly used to expand OC progenitors (OCPs) in BMC cultures before in vitro differentiation. However, the failure of osteoclastogenesis of M-CSF primed bone marrow myeloid blasts has been reported. In this study, we used a simple method of differential adherence to plastic to enrich OCP from mouse BMCs. We found that M-CSF pretreatment of plastic-adherent BMCs (adBMCs) increased the number of CD11b-F4/80+ macrophages and decreased the number of CD11b+ monocytes resulting in decreased OC formation. M-CSF pretreatment of purified c-Kit+ progenitors weakly inhibited OC formation, whereas M-CSF pretreatment of purified c-Kit-CD11b+ progenitors promoted the formation of large OC. M-CSF pretreatment increased the proliferation of both purified c-Kit+ and c-Kit-CD11b+ cells and increased the percentage of CD11b-F4/80+ cells from c-Kit+ progenitors. In addition, M-CSF pretreatment increased the percentage of CD11b+ F4/80- cells from purified c-Kit-CD11b+ cells. M-CSF pretreatment increased the percentage of CD14 + CD16 + intermediate monocytes and subsequent OC formation from human 2adBMCs, and increased OC formation of purified CD14 + cells. Together, these results indicate that in vitro OCP expansion in the presence of M-CSF and bone marrow stromal cells is dependent upon the developmental stage of myeloid cells, in which M-CSF favors macrophage differentiation of multipotent progenitors, promotes monocyte maturation and supports differentiation of late-stage OCP cells.
Collapse
Affiliation(s)
- Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Shivangi Pande
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine
| | - Cameron Scott
- Department of Biology, University of Southern Maine, Portland, Maine
| | - Robert Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine
| |
Collapse
|
15
|
Integrative genomic analysis predicts novel functional enhancer-SNPs for bone mineral density. Hum Genet 2019; 138:167-185. [PMID: 30656451 DOI: 10.1007/s00439-019-01971-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/03/2019] [Indexed: 01/20/2023]
Abstract
Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and deterioration of bone microarchitecture. To identify novel genetic loci underlying osteoporosis, an effective strategy is to focus on scanning of variants with high potential functional impacts. Enhancers play a crucial role in regulating cell-type-specific transcription. Therefore, single-nucleotide polymorphisms (SNPs) located in enhancers (enhancer-SNPs) may represent strong candidate functional variants. Here, we performed a targeted analysis for potential functional enhancer-SNPs that may affect gene expression and biological processes in bone-related cells, specifically, osteoblasts, and peripheral blood monocytes (PBMs), using five independent cohorts (n = 5905) and the genetics factors for osteoporosis summary statistics, followed by comprehensive integrative genomic analyses of chromatin states, transcription, and metabolites. We identified 15 novel enhancer-SNPs associated with femoral neck and lumbar spine BMD, including 5 SNPs mapped to novel genes (e.g., rs10840343 and rs10770081 in IGF2 gene) and 10 novel SNPs mapped to known BMD-associated genes (e.g., rs2941742 in ESR1 gene, and rs10249092 and rs4342522 in SHFM1 gene). Interestingly, enhancer-SNPs rs10249092 and rs4342522 in SHFM1 were tightly linked, but annotated to different enhancers in PBMs and osteoblasts, respectively, suggesting that even tightly linked SNPs may regulate the same target gene and contribute to the phenotype variation in cell-type-specific manners. Importantly, ten enhancer-SNPs may also regulate BMD variation by affecting the serum metabolite levels. Our findings revealed novel susceptibility loci that may regulate BMD variation and provided intriguing insights into the genetic mechanisms of osteoporosis.
Collapse
|
16
|
Qiu C, Shen H, Fu X, Xu C, Deng H. Meta-Analysis of Genome-Wide Association Studies Identifies Novel Functional CpG-SNPs Associated with Bone Mineral Density at Lumbar Spine. Int J Genomics 2018; 2018:6407257. [PMID: 30159320 PMCID: PMC6109501 DOI: 10.1155/2018/6407257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is a serious public health issue, which is mostly characterized by low bone mineral density (BMD). To search for additional genetic susceptibility loci underlying BMD variation, an effective strategy is to focus on testing of specific variants with high potential of functional effects. Single nucleotide polymorphisms (SNPs) that introduce or disrupt CpG dinucleotides (CpG-SNPs) may alter DNA methylation levels and thus represent strong candidate functional variants. Here, we performed a targeted GWAS for 63,627 potential functional CpG-SNPs that may affect DNA methylation in bone-related cells, in five independent cohorts (n = 5905). By meta-analysis, 9 CpG-SNPs achieved a genome-wide significance level (p < 7.86 × 10-7) for association with lumbar spine BMD and additional 15 CpG-SNPs showed suggestive significant (p < 5.00 × 10-5) association, of which 2 novel SNPs rs7231498 (NFATC1) and rs7455028 (ESR1) also reached a genome-wide significance level in the joint analysis. Several identified CpG-SNPs were mapped to genes that have not been reported for association with BMD in previous GWAS, such as NEK3 and NFATC1 genes, highlighting the enhanced power of targeted association analysis for identification of novel associations that were missed by traditional GWAS. Interestingly, several genomic regions, such as NEK3 and LRP5 regions, contained multiple significant/suggestive CpG-SNPs for lumbar spine BMD, suggesting that multiple neighboring CpG-SNPs may synergistically mediate the DNA methylation level and gene expression pattern of target genes. Furthermore, functional annotation analyses suggested a strong regulatory potential of the identified BMD-associated CpG-SNPs and a significant enrichment in biological processes associated with protein localization and protein signal transduction. Our results provided novel insights into the genetic basis of BMD variation and highlighted the close connections between genetic and epigenetic mechanisms of complex disease.
Collapse
Affiliation(s)
- Chuan Qiu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Hui Shen
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Xiaoying Fu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Chao Xu
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
| | - Hongwen Deng
- Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, New Orleans 70112, USA
- School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
17
|
"Omics" Signatures in Peripheral Monocytes from Women with Low BMD Condition. J Osteoporos 2018; 2018:8726456. [PMID: 29744028 PMCID: PMC5878888 DOI: 10.1155/2018/8726456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/12/2018] [Indexed: 01/20/2023] Open
Abstract
Postmenopausal osteoporosis (PMO) is a result of increased bone resorption compared to formation. Osteoclasts are responsible for bone resorption, which are derived from circulating monocytes that undertake a journey from the blood to the bone for the process of osteoclastogenesis. In recent times, the use of high throughput technologies to explore monocytes from women with low versus high bone density has led to the identification of candidate molecules that may be deregulated in PMO. This review provides a list of molecules in monocytes relevant to bone density which have been identified by "omics" studies in the last decade or so. The molecules in monocytes that are deregulated in low BMD condition may contribute to processes such as monocyte survival, migration/chemotaxis, adhesion, transendothelial migration, and differentiation into the osteoclast lineage. Each of these processes may be crucial to the overall route of osteoclastogenesis and an increase in any/all of these processes can lead to increased bone resorption and subsequently low bone density. Whether these molecules are indeed the cause or effect is an arena currently unexplored.
Collapse
|
18
|
Sprangers S, Schoenmaker T, Cao Y, Everts V, de Vries TJ. Integrin αMβ2 is differently expressed by subsets of human osteoclast precursors and mediates adhesion of classical monocytes to bone. Exp Cell Res 2016; 350:161-168. [PMID: 27889375 DOI: 10.1016/j.yexcr.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023]
Abstract
Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral blood and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.
Collapse
Affiliation(s)
- Sara Sprangers
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Ton Schoenmaker
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Yixuan Cao
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Teun J de Vries
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| |
Collapse
|
19
|
Kalantari N, Abroun S, Soleimani M, Kaviani S, Azad M, Eskandari F, Habibi H. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133(+) Hematopoietic Stem Cells to Osteoclasts. CELL JOURNAL 2016; 18:322-31. [PMID: 27602313 PMCID: PMC5011319 DOI: 10.22074/cellj.2016.4559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 01/02/2016] [Indexed: 01/08/2023]
Abstract
Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be
an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple
myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma
cells expressed RANK and RANKL. It had been reported that the expression of myeloid
and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic
stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK
and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well
as expression of calcitonin receptor (CTR) on cord blood HSC surface.
Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were
isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using
tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping,
and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes.
Results Hematopoietic stem cells expressed RANK before and after differentiation into
osteoclast. Compared to control group, flow cytometric results showed an increased
expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells.
Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs
differentiation into osteoclast.
Collapse
Affiliation(s)
- Nasim Kalantari
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Kaviani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Eskandari
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Habibi
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Cubillos S, Krieg N, Norgauer J. Effect of Vitamin D on Peripheral Blood Mononuclear Cells from Patients with Psoriasis Vulgaris and Psoriatic Arthritis. PLoS One 2016; 11:e0153094. [PMID: 27050092 PMCID: PMC4822855 DOI: 10.1371/journal.pone.0153094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023] Open
Abstract
Background Psoriasis, a chronic skin disease with or without joint inflammation, has increased circulating proinflammatory cytokine levels. Vitamin D is involved in calcium homeostasis, bone formation, osteoclastogenesis and osteoclast activity, as well as regulation of immune response. We aimed to study osteoclast differentiation and cytokine secretion of peripheral blood mononuclear cells (PBMCs) from patients with psoriasis vulgaris and psoriatic arthritis, in response to 1,25(OH)2D3. Methods Serum levels of bone turnover markers were measured by ELISA in patients with psoriasis vulgaris and psoriatic arthritis, and healthy controls. PBMCs were isolated and cultured with or without RANKL/M-CSF and 1,25(OH)2D3. Osteoclast differentiation and cytokine secretion were assessed. Results Psoriatic arthritis patients had lower osteocalcin, as well as higher C-telopeptide of type I collagen and cathepsin K serum levels compared with psoriasis vulgaris patients and controls. RANKL/M-CSF-stimulated PBMCs from psoriatic arthritis patients produced higher proinflammatory cytokine levels and had a differential secretion profile in response to 1,25(OH)2D3, compared with psoriasis vulgaris and control PBMCs. Conclusions Our data confirmed altered bone turnover in psoriatic arthritis patients, and demonstrated increased osteoclastogenic potential and proinflammatory cytokine secretion capacity of these PBMCs compared with psoriasis vulgaris and controls. 1,25(OH)2D3 abrogated these effects.
Collapse
Affiliation(s)
- Susana Cubillos
- Department of Dermatology, Jena University Hospital, Jena, Thüringen, Germany
| | - Nadine Krieg
- Department of Dermatology, Jena University Hospital, Jena, Thüringen, Germany
| | - Johannes Norgauer
- Department of Dermatology, Jena University Hospital, Jena, Thüringen, Germany
| |
Collapse
|
21
|
Lin X, Yu H, Zhao C, Qian Y, Hong D, Huang K, Mo J, Qin A, Fang X, Fan S. The Peripheral Blood Mononuclear Cell Count Is Associated With Bone Health in Elderly Men: A Cross-Sectional Population-Based Study. Medicine (Baltimore) 2016; 95:e3357. [PMID: 27082593 PMCID: PMC4839837 DOI: 10.1097/md.0000000000003357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The peripheral blood mononuclear cell (PBMC) count is a routinely used and meaningful index for infection and blood diseases. PBMCs may be closely related to osteoclasts and include osteoclast precursors; we examined the association between the PBMC count and bone health. This research included 2806 community men aged ≥50 years who underwent full health examinations from October 2007 through December 2011 in four medical centers. The PBMC count was significantly high among subjects with "at least osteopenia" compared with controls. In analysis of covariance adjusted for potential confounders, the bone mineral density (BMD) value and T-score had a significant decreasing trend across the quartiles of PBMC count. In univariate analysis, the PBMC count had a strong association with "at least osteopenia" (odds ratio [OR] = 2.520, 95% confidence interval [CI]: 1.397-4.547). After adjustment for confounding factors (multivariate analysis) from Model 1 to 4, PBMC count remained as an independent risk factor for "at least osteopenia" (OR = 2.481, 95% CI: 1.176-5.236). Moreover, after adjusting for all confounding variables, participants had a significantly high OR in the body mass index (BMI) <25 group (OR = 2.798, CI: 1.122-6.973; P = 0.027) and systolic blood pressure (SBP) <140 group (OR = 2.519, CI: 1.059-5.993; P = 0.037). In conclusion, the PBMC count is significantly associated with bone loss in elderly men and the exact mechanism requires further clarification.
Collapse
Affiliation(s)
- Xianfeng Lin
- From the Department of Orthopedic Surgery, Sir Run Run Shaw Hospital (XL, HY, KH, JM, XF, SF); Department of Orthopedic Surgery, the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou (CZ); Department of Orthopedic Surgery, Shaoxing People's Hospital, Shaoxing (YQ); Department of Orthopedic Surgery, Taizhou Hospital of Wenzhou Medical University, Linhai (DH); and Department of Orthopedic, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (AQ), China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cao Y, Jansen IDC, Sprangers S, Stap J, Leenen PJ, Everts V, de Vries TJ. IL-1β differently stimulates proliferation and multinucleation of distinct mouse bone marrow osteoclast precursor subsets. J Leukoc Biol 2016; 100:513-23. [DOI: 10.1189/jlb.1a1215-543r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 02/02/2023] Open
|
23
|
Saha H, Mukherjee B, Bindhani B, Ray MR. Changes in RANKL and osteoprotegerin expression after chronic exposure to indoor air pollution as a result of cooking with biomass fuel. J Appl Toxicol 2015; 36:969-76. [DOI: 10.1002/jat.3275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/07/2015] [Accepted: 11/08/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Hirak Saha
- Department of Experimental Hematology; Chittaranjan National Cancer Institute; Kolkata- 700 026 India
| | - Bidisha Mukherjee
- Department of Experimental Hematology; Chittaranjan National Cancer Institute; Kolkata- 700 026 India
- Department of Zoology; Ravenshaw University; Cuttack- 753003 India
| | - Banani Bindhani
- Department of Experimental Hematology; Chittaranjan National Cancer Institute; Kolkata- 700 026 India
| | - Manas Ranjan Ray
- Department of Experimental Hematology; Chittaranjan National Cancer Institute; Kolkata- 700 026 India
| |
Collapse
|
24
|
Zhang L, Liu YZ, Zeng Y, Zhu W, Zhao YC, Zhang JG, Zhu JQ, He H, Shen H, Tian Q, Deng FY, Papasian CJ, Deng HW. Network-based proteomic analysis for postmenopausal osteoporosis in Caucasian females. Proteomics 2015; 16:12-28. [DOI: 10.1002/pmic.201500005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 09/06/2015] [Accepted: 10/28/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Lan Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Yao-Zhong Liu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Yong Zeng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; Beijing P. R. China
| | - Wei Zhu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Ying-Chun Zhao
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Ji-Gang Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Jia-Qiang Zhu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Hao He
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Fei-Yan Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
- Laboratory of Proteins and Proteomics, Department of Epidemiology; Soochow University School of Public Health; Suzhou P. R. China
| | - Christopher J. Papasian
- Department of Basic Medical Sciences, School of Medicine; University of Missouri - Kansas City; MO USA
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; Beijing P. R. China
| |
Collapse
|
25
|
Zhou Y, Deng HW, Shen H. Circulating monocytes: an appropriate model for bone-related study. Osteoporos Int 2015; 26:2561-72. [PMID: 26194495 DOI: 10.1007/s00198-015-3250-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Peripheral blood monocytes (PBMs) are an important source of precursors of osteoclasts, the bone-resorbing cells and the cytokines produced by PBMs that have profound effects on osteoclast differentiation, activation, and apoptosis. So PBMs represent a highly valuable and unique working cell model for bone-related study. Finding an appropriate working cell model for clinical and (epi-)genomic studies of human skeletal disorders is a challenge. Peripheral blood monocytes (PBMs) can give rise to osteoclasts, the bone-resorbing cells. Particularly, PBMs provide the sole source of osteoclast precursors for adult peripheral skeleton where the bone marrow is normally hematopoietically inactive. PBMs can secrete potent pro- and anti-inflammatory cytokines, which are important for osteoclast differentiation, activation, and apoptosis. Reduced production of PBM cytokines represents a major mechanism for the inhibitory effects of sex hormones on osteoclastogenesis and bone resorption. Abnormalities in PBMs have been linked to various skeletal disorders/traits, strongly supporting for the biological relevance of PBMs with bone metabolism and disorders. Here, we briefly review the origin and further differentiation of PBMs. In particular, we discuss the close relationship between PBMs and osteoclasts, and highlight the utility of PBMs in study the pathophysiological mechanisms underlying various skeletal disorders.
Collapse
Affiliation(s)
- Y Zhou
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA
| | - H-W Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA
| | - H Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA.
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., Suite 2001, New Orleans, LA, 70112, USA.
| |
Collapse
|
26
|
Przybyl J, Kozak K, Kosela H, Falkowski S, Switaj T, Lugowska I, Szumera-Cieckiewicz A, Ptaszynski K, Grygalewicz B, Chechlinska M, Pienkowska-Grela B, Debiec-Rychter M, Siedlecki JA, Rutkowski P. Gene expression profiling of peripheral blood cells: new insights into Ewing sarcoma biology and clinical applications. Med Oncol 2014; 31:109. [PMID: 25008066 PMCID: PMC4119582 DOI: 10.1007/s12032-014-0109-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
Abstract
Ewing sarcoma (ES) is a group of highly aggressive small round cell tumors of bone or soft tissue with high metastatic potential and low cure rate. ES tumors are associated with a rapid osteolysis and necrosis. The currently accepted clinical prognostic parameters do not accurately predict survival of high-risk patients. Moreover, neither the subtype of EWS-FLI1/ERG in the tumor, nor the detection of fusion transcripts in the peripheral blood (PB) samples, has prognostic value in ES patients. We evaluated the prevalence of circulating tumor cells (CTCs) in 34 adult ES patients. Since CTCs were confirmed in only small subset of patients, we further explored the expression profiles of PB leukocytes using a panel of genes associated with immune system status and increased tumor invasiveness. Moreover, we analyzed the alterations of the routine blood tests in the examined cohort of patients and correlated our findings with the clinical outcome. A uniform decrease in ZAP70 expression in PB cells among all ES patients, as compared to healthy individuals, was observed. Monocytosis and the abnormal expression of CDH2 and CDT2 genes in the PB cells significantly correlated with poor prognosis in ES patients. Our study supports the previously proposed hypothesis of systemic nature of ES. Based on the PB cell expression profiles, we propose a mechanism by which immune system may be involved in intensification of osteoclastogenesis and disease progression in ES patients. Moreover, we demonstrate the prognostic value of molecular PB testing at the time of routine histopathological diagnosis.
Collapse
Affiliation(s)
- Joanna Przybyl
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5 W.K. Roentgen Street, 02-781, Warsaw, Poland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Šućur A, Katavić V, Kelava T, Jajić Z, Kovačić N, Grčević D. Induction of osteoclast progenitors in inflammatory conditions: key to bone destruction in arthritis. INTERNATIONAL ORTHOPAEDICS 2014; 38:1893-903. [DOI: 10.1007/s00264-014-2386-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
|
28
|
Anbazhagan K, Duroux-Richard I, Jorgensen C, Apparailly F. Transcriptomic network support distinct roles of classical and non-classical monocytes in human. Int Rev Immunol 2014; 33:470-89. [PMID: 24730730 DOI: 10.3109/08830185.2014.902453] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Classical and non-classical monocytes are two well-defined subsets of monocytes displaying distinct roles. They differentially express numerous genes relevant to their primary role. Using five independent transcriptomic microarray datasets, we ruled out several inconsistent genes and identified common genes consistently overexpressed either in classical or non-classical monocytes. One hundred and eight genes were significantly increased in classical monocytes and are involved in bacterial defense, inflammation and atherosclerosis. Whereas the 74 genes overexpressed in non-classical monocytes are involved in cytoskeletal dynamics and invasive properties for enhanced motility and infiltration. These signatures unravel the biological functions of monocyte subsets. HIGHLIGHTS We compared five transcriptomic GEO datasets of human monocyte subsets. 108 genes in classical and 74 genes in non-classical monocytes are upregulated. Upregulated genes in classical monocytes support anti-bacterial and inflammatory responses. Upregulated genes in non-classical monocytes support patrolling and infiltration functions.
Collapse
|
29
|
Vasudeva K, Andersen K, Zeyzus-Johns B, Hitchens TK, Patel SK, Balducci A, Janjic JM, Pollock JA. Imaging neuroinflammation in vivo in a neuropathic pain rat model with near-infrared fluorescence and ¹⁹F magnetic resonance. PLoS One 2014; 9:e90589. [PMID: 24587398 PMCID: PMC3938771 DOI: 10.1371/journal.pone.0090589] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 02/03/2014] [Indexed: 12/21/2022] Open
Abstract
Chronic neuropathic pain following surgery represents a serious worldwide health problem leading to life-long treatment and the possibility of significant disability. In this study, neuropathic pain was modeled using the chronic constriction injury (CCI). The CCI rats exhibit mechanical hypersensitivity (typical neuropathic pain symptom) to mechanical stimulation of the affected paw 11 days post surgery, at a time when sham surgery animals do not exhibit hypersensitivity. Following a similar time course, TRPV1 gene expression appears to rise with the hypersensitivity to mechanical stimulation. Recent studies have shown that immune cells play a role in the development of neuropathic pain. To further explore the relationship between neuropathic pain and immune cells, we hypothesize that the infiltration of immune cells into the affected sciatic nerve can be monitored in vivo by molecular imaging. To test this hypothesis, an intravenous injection of a novel perfluorocarbon (PFC) nanoemulsion, which is phagocytosed by inflammatory cells (e.g. monocytes and macrophages), was used in a rat CCI model. The nanoemulsion carries two distinct imaging agents, a near-infrared (NIR) lipophilic fluorescence reporter (DiR) and a ¹⁹F MRI (magnetic resonance imaging) tracer, PFC. We demonstrate that in live rats, NIR fluorescence is concentrated in the area of the affected sciatic nerve. Furthermore, the ¹⁹FF MRI signal was observed on the sciatic nerve. Histological examination of the CCI sciatic nerve reveals significant infiltration of CD68 positive macrophages. These results demonstrate that the infiltration of immune cells into the sciatic nerve can be visualized in live animals using these methods.
Collapse
Affiliation(s)
- Kiran Vasudeva
- Biological Sciences, Bayer School of Natural and Environmental Sciences, and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Karl Andersen
- Biological Sciences, Bayer School of Natural and Environmental Sciences, and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Bree Zeyzus-Johns
- Biological Sciences, Bayer School of Natural and Environmental Sciences, and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - T. Kevin Hitchens
- NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Sravan Kumar Patel
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Anthony Balducci
- Department of Research and Development, Celsense, Inc., Pittsburgh, Pennsylvania, Unite States of America
| | - Jelena M. Janjic
- Graduate School of Pharmaceutical Sciences, Mylan School of Pharmacy, and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - John A. Pollock
- Biological Sciences, Bayer School of Natural and Environmental Sciences, and Chronic Pain Research Consortium, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
30
|
Ikić M, Jajić Z, Lazić E, Ivčević S, Grubišić F, Marušić A, Kovačić N, Grčević D. Association of systemic and intra-articular osteoclastogenic potential, pro-inflammatory mediators and disease activity with the form of inflammatory arthritis. INTERNATIONAL ORTHOPAEDICS 2013; 38:183-92. [PMID: 24100919 DOI: 10.1007/s00264-013-2121-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/10/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE We aimed to assess osteoclastogenic potential of peripheral blood mononuclear cells (PBMC) and synovial fluid-derived mononuclear cells (SFMC) in different forms of arthritis and to correlate it with inflammatory mediators within intra-articular and circulatory compartments. METHODS Paired PBMC and SFMC samples of patients with rheumatoid arthritis (RA; n = 10) and psoriatic arthritis (PsA; n = 10), and PBMC of healthy controls were cultured to assess osteoclastogenic potential by the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts (OCs) and expression of OC-related genes (receptor activator of nuclear factor-κΒ (RANK), cFMS, and TRAP). Osteoclastogenesis was correlated with the arthritis-related inflammatory indicators in serum and synovial fluid (SF). RESULTS Number of OCs differentiated from PBMC was significantly higher in RA and PsA compared with control, with RA having more OCs compared with PsA. There was no difference in SFMC OC number between arthritic patients, but RANK expression in OCs differentiated from SFMC was higher in PsA compared with RA. SF of PsA patients more potently induced OC differentiation from control CD3(-)CD19(-)CD56(-)CD11b(+)CD115(+) PBMC compared with RA, paralleled with higher RANK-ligand expression in PsA SFMC. Positive correlations of OC number with erythrocyte sedimentation rate, serum level of CCL2, and PBMC gene expression of interleukin-18 and Fas-ligand were observed. CONCLUSION Osteoclastogenic potential is systemically enhanced in patients with RA, paralleled by disordered systemic and local expression of proinflammatory mediators, whereas PsA involves specific deregulation in RANKL/RANK axis. Our study reveals arthritis-specific mediators associated with the form of arthritis, indicating clinical relevance for diagnosis and treatment.
Collapse
Affiliation(s)
- Marina Ikić
- Laboratory for Molecular Immunology, University of Zagreb School of Medicine, Salata 12, Zagreb, 10000, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Measles virus glycoprotein-pseudotyped lentiviral vectors are highly superior to vesicular stomatitis virus G pseudotypes for genetic modification of monocyte-derived dendritic cells. J Virol 2012; 86:5192-203. [PMID: 22345444 DOI: 10.1128/jvi.06283-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells capable of promoting or regulating innate and adaptive immune responses against non-self antigens. To better understand the DC biology or to use them for immune intervention, a tremendous effort has been made to improve gene transfer in these cells. Lentiviral vectors (LVs) have conferred a huge advantage in that they can transduce nondividing cells such as human monocyte-derived DCs (MDDCs) but required high amounts of viral particles and/or accessory proteins such as Vpx or Vpr to achieve sufficient transduction rates. As a consequence, these LVs have been shown to cause dramatic functional modifications, such as the activation or maturation of transduced MDDCs. Taking advantage of new pseudotyped LVs, i.e., with envelope glycoproteins from the measles virus (MV), we demonstrate that MDDCs are transduced very efficiently with these new LVs compared to the classically used vesicular stomatitis virus G-pseudotyped LVs and thus allowed to achieve high transduction rates at relatively low multiplicities of infection. Moreover, in this experimental setting, no activation or maturation markers were upregulated, while MV-LV-transduced cells remained able to mature after an appropriate Toll-like receptor stimulation. We then demonstrate that our MV-pseudotyped LVs use DC-SIGN, CD46, and CD150/SLAM as receptors to transduce MDDCs. Altogether, our results show that MV-pseudotyped LVs provide the most accurate and simple viral method for efficiently transferring genes into MDDCs without affecting their activation and/or maturation status.
Collapse
|
32
|
Cannon JG, Kraj B, Sloan G. Follicle-stimulating hormone promotes RANK expression on human monocytes. Cytokine 2010; 53:141-4. [PMID: 21159522 DOI: 10.1016/j.cyto.2010.11.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/01/2010] [Accepted: 11/18/2010] [Indexed: 11/26/2022]
Abstract
Elevated serum concentrations of follicle-stimulating hormone (FSH) are associated with diminished bone density in women, beginning years before menopause and the decline in estradiol. We hypothesized that FSH promotes development of myeloid cells toward the bone-resorbing osteoclast phenotype. This was tested by isolating peripheral blood mononuclear cells from nine healthy adults, incubating them in the presence of FSH at three different concentrations spanning the physiological range, and then measuring the expression of receptor activator for NF-κB (RANK, a surface marker for osteoclasts) on CD14(+) cells by flow cytometry. In the absence of FSH, 3.3±0.5% of the cells expressed high levels of the receptor (RANK(high)). Increasing concentrations of FSH caused a biphasic dose-response, with a maximal (1.5-fold) increase in RANK(high) cells achieved with 50 mIU/ml FSH (P=0.02). Cytokines that influence development of osteoclasts were also measured in culture supernatants: macrophage colony stimulating factor (M-CSF), osteoprotegerin (OPG) and tumor necrosis factor-α (TNFα) concentrations were not significantly influenced by FSH, whereas RANK-ligand was undetectable. This study supports the concept that the elevated circulating concentrations of FSH during perimenopause may contribute to the increased rate of bone loss by promoting the development of osteoclast precursor cells.
Collapse
Affiliation(s)
- Joseph G Cannon
- School of Allied Health Sciences, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
33
|
Chiu YG, Shao T, Feng C, Mensah KA, Thullen M, Schwarz EM, Ritchlin CT. CD16 (FcRgammaIII) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res Ther 2010; 12:R14. [PMID: 20102624 PMCID: PMC2875642 DOI: 10.1186/ar2915] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/11/2009] [Accepted: 01/26/2010] [Indexed: 12/17/2022] Open
Abstract
Introduction Psoriatic arthritis (PsA) is a chronic inflammatory arthritis characterized by bone erosion mediated by osteoclasts (OC). Our previous studies showed an elevated frequency of OC precursors (OCP) in PsA patients. Here, we examined if OC arise from CD16-positive monocytes in PsA. Methods Peripheral blood mononuclear cells (PBMC) or monocytes were isolated from human peripheral blood and sorted based on CD16 expression. Sorted cells were cultured alone or with bone wafers in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Enumeration and bone erosion activity of OC were examined after culture. The effects of tumor necrosis factor-alpha (TNFα), OC-promoting (M-CSF plus RANKL), and dendritic cell (DC)-promoting (GM-CSF plus interleukin (IL)-4) cytokines on CD16 surface expression were examined by flow cytometry. Results PsA and psoriasis (Ps) subjects had a higher percentage of circulating inflammatory CD14+CD16+ cells than healthy controls (HC). Exposure of cells to OC-promoting, but not DC-promoting media, was associated with CD16 up-regulation. PBMC of Ps and PsA had a higher frequency of cells expressing intermediate levels of CD16. OC were mainly derived from CD16+ cells in PsA. Increased CD16 expression was associated with a higher bone erosion activity in PsA. Conclusions An increased frequency of circulating CD14+CD16+ cells was noted in PsA compared to controls, and intermediate levels of CD16 may suggest a transitional state of OCP during osteoclastogenesis. Intriguingly, TNFα blocked CD16 expression on a subset of CD14+ monocytes. Collectively, our data suggest that CD16 has the potential to serve as an OCP marker in inflammatory arthritis.
Collapse
Affiliation(s)
- Yahui Grace Chiu
- Allergy/Immunology & Rheumatology Unit, University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Ritchlin C. The quest for a biomarker of circulating osteoclast precursors. Arthritis Res Ther 2009; 11:113. [PMID: 19591635 PMCID: PMC2714124 DOI: 10.1186/ar2707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Osteoclast precursors arise from the CD14+ CD16- population in controls but details about cell surface marker expression and functional characteristics of these cells is unknown, particularly in patients with inflammatory arthritis. In a recent issue of Arthritis, Research and Therapy, Lari and colleagues found that osteoclasts developed from a proliferative CD14+ CD16- subset in healthy controls. These cells took on the morphology of osteoclasts, expressed mRNA for osteoclast-related genes and excavated pits on bone wafers. These findings provide new insights into monocyte diversity and provide evidence that osteoclast precursors arise from a small proliferating monocyte population in controls. Additional studies are needed in patients with inflammatory arthritis.
Collapse
|