1
|
Kamata M, Tada Y. Dendritic Cells and Macrophages in the Pathogenesis of Psoriasis. Front Immunol 2022; 13:941071. [PMID: 35837394 PMCID: PMC9274091 DOI: 10.3389/fimmu.2022.941071] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by scaly indurated erythema. This disease impairs patients’ quality of life enormously. Pathological findings demonstrate proliferation and abnormal differentiation of keratinocytes and massive infiltration of inflammatory immune cells. The pathogenesis of psoriasis is complicated. Among immune cells, dendritic cells play a pivotal role in the development of psoriasis in both the initiation and the maintenance phases. In addition, it has been indicated that macrophages contribute to the pathogenesis of psoriasis especially in the initiation phase, although studies on macrophages are limited. In this article, we review the roles of dendritic cells and macrophages in the pathogenesis of psoriasis.
Collapse
|
2
|
Comparison of Minimally Invasive Procedures to Treat Knee Pain Secondary to Osteoarthritis: A Systematic Review and Meta-Analysis. J Vasc Interv Radiol 2021; 33:238-248.e4. [PMID: 34822993 DOI: 10.1016/j.jvir.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To review and indirectly compare the outcomes of minimally invasive therapies for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. MATERIALS AND METHODS A literature search via Medline and Cochrane Central databases was completed for randomized control studies published between January 2000 to April 2020 for the following therapies: Rezum, Urolift, Aquablation, and prostate artery embolization (PAE). Data on the following variables were included: international Prostate Symptom Score (IPSS), maximum urinary flow rate (Qmax), quality of life (QoL), and post-void residual (PVR). Standard mean differences between treatments were compared through a meta-analysis using transurethral resection of the prostate (TURP) to assess differences in treatment effect. RESULTS No significant difference in outcomes between therapies were noted for IPSS at the 3-, 6-, and 12-month follow-ups. Although outcomes for rezum were only available out to 3 months, there were no consistently significant differences in outcomes when comparing Aquablation vs PAE vs Rezum. TURP PVR was significantly better than Urolift at 3-, 6-, and 12 months. No significant differences in minor or major AEs were noted. CONCLUSION Although significant differences in outcomes were limited, aquablation and PAE were the most durable at 12 months. PAE has been well studied on multiple randomized control trials with minimal adverse events while aquablation has limited high quality data and has been associated with bleeding-related complications.
Collapse
|
3
|
Aslanalp Z, Tikiz C, Ulusoy A, Orguc Ş, Bİlgİ Yedekcİ A, Ulman C. The Relationship Between Serum Angiogenic Factor Levels and Disease Activity in Rheumatoid Arthritis. Arch Rheumatol 2021; 35:416-425. [PMID: 33458666 PMCID: PMC7788655 DOI: 10.46497/archrheumatol.2020.7416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/04/2019] [Indexed: 12/03/2022] Open
Abstract
Objectives
This study aims to evaluate the relationship between serum angiogenic factor levels and disease activity in patients with rheumatoid arthritis (RA) using both clinical and dynamic wrist magnetic resonance imaging (MRI) data. Patients and methods
Simultaneous serum angiogenesis markers [vascular endothelial growth factor (VEGF), angiopoietin-1 (ANG1), ANG2, and tyrosine-protein kinase receptor for angiopoietin (Tie-2)] were studied in 40 patients with RA (13 males, 27 females; mean age 51.1±10.8 years; range, 23 to 69 years) and 20 healthy controls (11 males, 9 females; mean age 47.3±12.8 years; range, 29 to 69 years) and dynamic contrast-enhanced wrist MRI was performed in 40 RA patients and seven controls. Rate of early in 55th second (REE) and Relative enhancement (REt) values were calculated from the signal time curve values obtained from the analysis of images. In clinical assessment, duration of morning stiffness, patient pain assessment [visual analog scale (VAS)], physician and patient global assessments (VAS) were recorded. The number of tender joints and swollen joints were determined. Disease activity score 28 and Ritchie scores were calculated. Health assessment questionnaire was used for functional evaluation. Anti-cyclic citrullinated peptide, rheumatoid factor, erythrocyte sedimentation rate and high sensitive C-reactive protein analyses were performed. Results
Serum VEGF, REE and REt values were significantly higher in RA patients than healthy controls (p=0.002, p=0.00, p=0.00, respectively). There was no significant correlation between serum angiogenesis markers and clinical parameters or REE and REt (p>0.05). VEGF value correlated positively with disease duration (p=0.024). Conclusion Serum VEGF was higher in RA patients. While its level was associated with disease duration, no significant correlation was found with disease activity. As a diagnostic test, dynamic contrast-enhanced MRI was a valuable method for showing disease activity.
Collapse
Affiliation(s)
- Zahide Aslanalp
- Department of Physical Medicine and Rehabilitation, Manisa Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Canan Tikiz
- Department of Physical Medicine and Rehabilitation, Manisa Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Aslıhan Ulusoy
- Department of Physical Medicine and Rehabilitation, Manisa Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Şebnem Orguc
- Department of Radiodiagnostic, Manisa Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Aysun Bİlgİ Yedekcİ
- Department of Biochemistry, Manisa Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Cevval Ulman
- Department of Biochemistry, Manisa Celal Bayar University Faculty of Medicine, Manisa, Turkey
| |
Collapse
|
4
|
Kabala PA, Malvar-Fernández B, Lopes AP, Carvalheiro T, Hartgring SAY, Tang MW, Conde C, Baeten DL, Sleeman M, Tak PP, Connor J, Radstake TR, Reedquist KA, García S. Promotion of macrophage activation by Tie2 in the context of the inflamed synovia of rheumatoid arthritis and psoriatic arthritis patients. Rheumatology (Oxford) 2020; 59:426-438. [PMID: 31377797 PMCID: PMC7571483 DOI: 10.1093/rheumatology/kez315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To examine the role of Tie2 signalling in macrophage activation within the context of the inflammatory synovial microenvironment present in patients with RA and PsA. METHODS Clinical responses and macrophage function were examined in wild-type and Tie2-overexpressing (Tie2-TG) mice in the K/BxN serum transfer model of arthritis. Macrophages derived from peripheral blood monocytes from healthy donors, RA and PsA patients, and RA and PsA synovial tissue explants were stimulated with TNF (10 ng/ml), angiopoietin (Ang)-1 or Ang-2 (200 ng/ml), or incubated with an anti-Ang2 neutralizing antibody. mRNA and protein expression of inflammatory mediators was analysed by quantitative PCR, ELISA and Luminex. RESULTS Tie2-TG mice displayed more clinically severe arthritis than wild-type mice, accompanied by enhanced joint expression of IL6, IL12B, NOS2, CCL2 and CXCL10, and activation of bone marrow-derived macrophages in response to Ang-2 stimulation. Ang-1 and Ang-2 significantly enhanced TNF-induced expression of pro-inflammatory cytokines and chemokines in macrophages from healthy donors differentiated with RA and PsA SF and peripheral blood-derived macrophages from RA and PsA patients. Both Ang-1 and Ang-2 induced the production of IL-6, IL-12p40, IL-8 and CCL-3 in synovial tissue explants of RA and PsA patients, and Ang-2 neutralization suppressed the production of IL-6 and IL-8 in the synovial tissue of RA patients. CONCLUSION Tie2 signalling enhances TNF-dependent activation of macrophages within the context of ongoing synovial inflammation in RA and PsA, and neutralization of Tie2 ligands might be a promising therapeutic target in the treatment of these diseases.
Collapse
Affiliation(s)
- Pawel A Kabala
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Beatriz Malvar-Fernández
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Ana P Lopes
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Tiago Carvalheiro
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Sarita A Y Hartgring
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Man Wai Tang
- Department of Experimental Immunology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
| | - Carmen Conde
- Laboratorio de Investigación 8 y Servicio de Reumatología, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - Dominique L Baeten
- Department of Experimental Immunology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Paul P Tak
- Department of Clinical Immunology and Rheumatology, University of Amsterdam, Amsterdam, The Netherlands
- GlaxoSmithKline, Stevenage
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Timothy R Radstake
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Kris A Reedquist
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| | - Samuel García
- Department of Rheumatology and Clinical Immunology, University of Utrecht, Utrecht
- Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht
| |
Collapse
|
5
|
A fresh look at angiogenesis in juvenile idiopathic arthritis. Cent Eur J Immunol 2018; 43:325-330. [PMID: 30863199 PMCID: PMC6410962 DOI: 10.5114/ceji.2018.80052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is the complex process of creating new capillaries from preexisting blood vessels due to hypoxemia, injury or inflammation of the tissues. Numerous cytokines and cell mediators have been identified to induce and stimulate angiogenesis, but vascular endothelial growth factor (VEGF) is a key regulator. The role of proangiogenic factors in the pathogenesis of chronic arthritis is currently a subject of intensive investigations in adult patients with rheumatoid arthritis (RA) and, to a limited extent, in children with juvenile idiopathic arthritis (JIA). Recent studies has shown a significant correlation between proangiogenic marker concentrations and the severity of inflammation in either RA or JIA patients. The serum neovascularization markers correlate with the power Doppler ultrasound image of the inflamed joint and hypertrophic synovium, which may be connected with the disease activity. The aim of this paper is to describe the state of the art on the important role of angiogenesis in adult and childhood rheumatoid arthritis.
Collapse
|
6
|
Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmun Rev 2017; 16:594-601. [PMID: 28414154 DOI: 10.1016/j.autrev.2017.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
In Rheumatoid arthritis (RA), neoangiogenesis is an early and crucial event to promote the development of the hyperplasic proliferative pathologic synovium. Endothelial cells are critical for the formation of new blood vessels since they highly contribute to angiogenesis and vasculogenesis. Current therapies in RA target the inflammatory consequences of autoimmune activation and despite major improvements these last years still refractory patients or incomplete responders may be seen raising the point of the need to identify complementary additive and innovative therapies. This review resumes the mechanisms of synovial neoangiogenesis in RA, including recent insights on the implication of vasculogenesis, and the regulation of synovial neoangiogenesis by angiogenic and inflammatory mediators. In line with the recent development of vascular-targeted therapies used in cancer and beyond, we also discuss possible therapeutic implications in RA, in particular the combination of targeted immunotherapies with anti-angiogenic molecules.
Collapse
Affiliation(s)
- Agathe Leblond
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France.
| |
Collapse
|
7
|
Low-intensity treadmill exercise promotes rat dorsal wound healing. ACTA ACUST UNITED AC 2016; 36:121-126. [PMID: 26838752 DOI: 10.1007/s11596-016-1553-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/07/2016] [Indexed: 12/17/2022]
Abstract
In order to investigate the promoting effect of low-intensity treadmill exercise on rat dorsal wound healing and the mechanism, 20 Sprague-Dawley rats were randomly divided into two groups: exercise group (Ex) and non-exercise group (non-ex). The rats in Ex group were given treadmill exercise for one month, and those in non-ex group raised on the same conditions without treadmill exercise. Both groups received dorsal wound operation with free access to food and water. By two-week continuous observation and recording of the wound area, the healing rate was analyzed. The blood sample was collected at day 14 post-operation via cardiac puncture for determination of the number of endothelial progenitor cells (EPCs) by flow cytometry, and the concentrations of relevant cytokines such as basic fibroblast growth factor (bFGF), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by ELISA. The skin tissue around the wound was dissected to observe the vascular density under the microscope after HE staining, to detect the mRNA level of VEGFR2 and angiopoietin-1 (Ang-1) receptor using RT-qPCR, and protein expression of a-smooth muscle actin (αSMA) and type III collagen (ColIII) using Western blotting. It was found that the wound area in Ex group was smaller at the same time point than in non-ex group. The number of circulating EPCs was greater and the concentrations of vasoactive factors such as VEGF, eNOS and bFGF were higher in Ex group than in non-ex group. HE staining displayed a higher vessel density in Ex group than in non-ex group. Moreover, the mRNA expression of VEGFR2 and Ang-1 detected in the wound tissue in Ex group was higher than in non-ex group. Meanwhile, the protein expression of αSMA and ColIII was more abundant in Ex group than in non-ex group. Conclusively, the above results demonstrate Ex rats had a higher wound healing rate, suggesting low-intensity treadmill exercise accelerates wound healing. The present work may provide some hint for future study of treating refractory wound.
Collapse
|
8
|
Ferrari M, Onuoha SC, Pitzalis C. Going with the flow: harnessing the power of the vasculature for targeted therapy in rheumatoid arthritis. Drug Discov Today 2015; 21:172-179. [PMID: 26523772 DOI: 10.1016/j.drudis.2015.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/30/2015] [Accepted: 10/16/2015] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disease that leads to excessive joint inflammation and is associated with significant morbidity and mortality. Although much is still to be learned about the aetiology RA, a growing body of evidence suggests that an altered vascular environment is an important aspect of its pathophysiology. In this context, RA shares many similarities with cancer, and it is expected that several angiogenic targets in cancer might be relevant to the treatment of RA. Here, we discuss how these targets can be combined with advances in drug development to generate the next generation of RA therapeutics.
Collapse
Affiliation(s)
- Mathieu Ferrari
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Shimobi C Onuoha
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015; 18:433-48. [PMID: 26198292 PMCID: PMC4879881 DOI: 10.1007/s10456-015-9477-2] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022]
Abstract
Angiogenesis is the formation of new capillaries from pre-existing vasculature, which plays a critical role in the pathogenesis of several inflammatory autoimmune diseases such as rheumatoid arthritis (RA), spondyloarthropathies, psoriasis, systemic lupus erythematosus, systemic sclerosis, and atherosclerosis. In RA, excessive migration of circulating leukocytes into the inflamed joint necessitates formation of new blood vessels to provide nutrients and oxygen to the hypertrophic joint. The dominance of the pro-angiogenic factors over the endogenous angiostatic mediators triggers angiogenesis. In this review article, we highlight the underlying mechanisms by which cells present in the RA synovial tissue are modulated to secrete pro-angiogenic factors. We focus on the significance of pro-angiogenic factors such as growth factors, hypoxia-inducible factors, cytokines, chemokines, matrix metalloproteinases, and adhesion molecules on RA pathogenesis. As pro-angiogenic factors are primarily produced from RA synovial tissue macrophages and fibroblasts, we emphasize the key role of RA synovial tissue lining layer in maintaining synovitis through neovascularization. Lastly, we summarize the specific approaches utilized to target angiogenesis. We conclude that the formation of new blood vessels plays an indispensable role in RA progression. However, since the function of several pro-angiogenic mediators is cross regulated, discovering novel approaches to target multiple cascades or selecting an upstream cascade that impairs the activity of a number of pro-angiogenic factors may provide a promising strategy for RA therapy.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Zhenlong Chen
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Shalini Ravella
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Shanti Virupannavar
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA
| | - Shiva Shahrara
- Division of Rheumatology, Department of Medicine, University of Illinois at Chicago, MSB 835 S Wolcott Ave., E807-E809, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Serum Angiogenesis Markers and Their Correlation with Ultrasound-Detected Synovitis in Juvenile Idiopathic Arthritis. J Immunol Res 2015; 2015:741457. [PMID: 26065004 PMCID: PMC4434192 DOI: 10.1155/2015/741457] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/13/2015] [Indexed: 11/21/2022] Open
Abstract
Synovial angiogenesis is considered to be an important early step in the pathogenesis of juvenile idiopathic arthritis (JIA). In this study we assessed levels of angiogenic markers in serum or synovial fluid and their possible relevance to disease activity or degree of ultrasound signs of synovial inflammation and angiogenesis in early JIA. The concentration of vascular endothelial growth factor (VEGF), its soluble receptors 1 and 2 (sVEGF-R1, sVEGF-R2), and angiopoietins 1 and 2 (ANG-1, ANG-2) were evaluated in 43 JIA patients and 23 healthy controls. Synovial angiogenesis was assessed by means of Power-Doppler Ultrasonography (PDUS), according to the fourth-grade vascularity scale. VEGF and its receptors' (sVEGF-R1, sVEGF-R2) serum levels were significantly higher in JIA patients (p = 0.002). We found large variation in serum ANG-1 and ANG-2 levels. The PDUS imaging identified increased synovial microvascular blood flow in 15 (35.7%) examined JIA children. Intensity of joint vascularization correlated with higher serum VEGF and its levels was lowest in grade 0 and highest in grade 3 (p < 0.007 and p < 0.001, resp.). In conclusion, the high correlation between synovial microvascular blood flow, serum angiogenic proteins, and symptoms of synovitis may indicate its important role in pathogenesis of JIA.
Collapse
|
11
|
Wragg JW, Durant S, McGettrick HM, Sample KM, Egginton S, Bicknell R. Shear stress regulated gene expression and angiogenesis in vascular endothelium. Microcirculation 2015; 21:290-300. [PMID: 24471792 DOI: 10.1111/micc.12119] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/22/2014] [Indexed: 01/13/2023]
Abstract
The behavior of vascular EC is greatly altered in sites of pathological angiogenesis, such as a developing tumor or atherosclerotic plaque. Until recently it was thought that this was largely due to abnormal chemical signaling, i.e., endothelial cell chemo transduction, at these sites. However, we now demonstrate that the shear stress intensity encountered by EC can have a profound impact on their gene expression and behavior. We review the growing body of evidence suggesting that mechanotransduction, too, is a major regulator of pathological angiogenesis. This fits with the evolving story of physiological angiogenesis, where a combination of metabolic and mechanical signaling is emerging as the probable mechanism by which tight feedback regulation of angiogenesis is achieved in vivo.
Collapse
Affiliation(s)
- Joseph W Wragg
- Angiogenesis Group, Centre for Cardiovascular Sciences, Institute for Biomedical Research, Schools of Immunity and Infection and Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
12
|
Smith MD, Wechalekar MD. The synovium. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
13
|
|
14
|
Evening primrose oil and celecoxib inhibited pathological angiogenesis, inflammation, and oxidative stress in adjuvant-induced arthritis: novel role of angiopoietin-1. Inflammopharmacology 2014; 22:305-17. [DOI: 10.1007/s10787-014-0200-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/19/2014] [Indexed: 01/22/2023]
|
15
|
van de Sande MGH, de Launay D, de Hair MJH, García S, van de Sande GPM, Wijbrandts CA, Gerlag DM, Reedquist KA, Tak PP. Local synovial engagement of angiogenic TIE-2 is associated with the development of persistent erosive rheumatoid arthritis in patients with early arthritis. ACTA ACUST UNITED AC 2014; 65:3073-83. [PMID: 23982963 DOI: 10.1002/art.38128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To examine the role of vascular endothelial growth factor (VEGF) and angiopoietin signaling in the diagnosis and disease outcome of patients with early arthritis. METHODS Fifty patients with early arthritis (disease duration <1 year) who had not been treated with disease-modifying antirheumatic drugs (DMARDs) were monitored prospectively and were classified at baseline and after 2 years as having undifferentiated arthritis (UA), rheumatoid arthritis (RA), or spondyloarthritis (SpA). All patients underwent arthroscopic synovial biopsy at baseline. Synovial expression of VEGF, VEGF receptor, angiopoietin 1 (Ang-1), Ang-2, TIE-2, and activated p-TIE-2 was evaluated by immunohistochemistry. Serum levels of VEGF, Ang-1, and Ang-2 were measured by enzyme-linked immunosorbent assay. Secreted products of macrophages stimulated with Ang-1 and Ang-2 were measured using a multiplex system. RESULTS Expression of Ang-1 was comparable between the patients with RA at baseline and patients with UA who fulfilled the criteria for RA over time (UA/RA), and it was significantly higher in patients with RA (P < 0.05) or UA/RA (P < 0.005) than in patients with SpA. TIE-2 and p-TIE-2 were more highly expressed in patients with RA (P < 0.005) or UA/RA (P < 0.05) than in patients with SpA. Ang-1 significantly enhanced the tumor necrosis factor-dependent macrophage production of cytokines and chemokines that are known to be elevated in the synovial fluid of patients with early RA. In RA, relative TIE-2 activation predicted the development of erosive disease (R(2) = 0.35, P < 0.05). CONCLUSION Local engagement of synovial TIE-2 is observed during the earliest phases of RA, suggesting that TIE-2 signaling may contribute to disease development and progression or may indicate an attempt to protect against these processes. Early therapeutic targeting of TIE-2 signaling may be useful in improving outcome in arthritis.
Collapse
|
16
|
Senna MK, Machaly SA, Foda M, Eid N. Baseline angiopoietin-2/angiopoietin-1 (Ang2/Ang1) ratio is correlated with the synovial vascularity measured 1 month later in rheumatoid arthritis. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2013. [DOI: 10.4103/1110-161x.123797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Lu Q, Wang C, Pan R, Gao X, Wei Z, Xia Y, Dai Y. Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor. J Cell Biochem 2013; 114:1009-19. [PMID: 23225320 DOI: 10.1002/jcb.24440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/24/2012] [Indexed: 11/06/2022]
Abstract
Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration-dependently enhance bFGF-induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1-receptor antagonist), SB203580 (selective p38 mitogen-activated protein kinase (MAPK) inhibitor) and L-NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2-receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF-incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF-κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF-induced angiogenesis, and this action was linked to VEGF production through H1-receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells.
Collapse
Affiliation(s)
- Qian Lu
- Department of Pharmacology of Chinese Materia Medica, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Gao W, Sweeney C, Walsh C, Rooney P, McCormick J, Veale DJ, Fearon U. Notch signalling pathways mediate synovial angiogenesis in response to vascular endothelial growth factor and angiopoietin 2. Ann Rheum Dis 2013; 72:1080-8. [PMID: 23161900 PMCID: PMC3664379 DOI: 10.1136/annrheumdis-2012-201978] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2012] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Notch signalling pathways are critical for angiogenesis and endothelial cell (EC) fate; however the mechanisms regulating these processes in the inflamed joint remain to be elucidated. Here, we examine whether Notch signalling mediates vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2)-induced vascular function. METHODS Notch-1 intracellular domain (Notch-1 IC), Notch-4 IC, Delta-like-ligand 4, Hes-related transcriptional repressors-1 and 2 (Hrt-1, Hrt-2) mRNA and/or protein expression was measured by Real-time PCR and/or western blot. VEGF/Ang2 induced EC function was assessed using transwell invasion chambers, matrigel tube formation assays and wound repair scratch assays±Notch-1 siRNA or an γ-secretase inhibitor N-(N-(3,5-Difluorophenacetyl-L-alanly))-S-phenylglycine-t-Butyl Ester (DAPT) in RA synovial explants or human microvascular EC. Interleukin (IL)-6 and IL-8 were measured by ELISA and MMP2 and 9 by gelatine zymography. RESULTS Notch-1 IC and Notch-4 IC protein expressions were demonstrated in RA and psoriatic arthritis synovial biopsies, with minimal expression observed in Osteoarthritis (OA). VEGF and Ang2 induced Notch-1 IC/ Notch-4 IC protein expression in synovial explant cultures and human microvascular EC levels were further potentiated by VEGF/Ang2 stimulation in combination. Notch-1, Delta-like-ligand 4, and Hrt-2 mRNA expression were significantly induced by VEGF and Ang2 alone and in combination. Furthermore VEGF/Ang2-induced EC invasion, angiogenesis and migration were inhibited by Notch-1 siRNA or DAPT. Conditioned media from VEGF/Ang2 stimulated RA synovial explants induced EC tube formation, an effect that was inhibited by DAPT. Finally, DAPT significantly decreased VEGF/Ang2 induced IL-6, IL-8, MMP2 and 9 expressions in RA synovial explants. CONCLUSIONS Notch-1 mediates VEGF/Ang2-induced angiogenesis and EC invasion in inflammatory arthritis.
Collapse
Affiliation(s)
- Wei Gao
- Department of Rheumatology, Translational Research Group, Dublin Academic Medical Centre, St Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang M, Liu C, Zhang Y, Hao Y, Zhang X, Zhang YM. Protein interaction and microRNA network analysis in osteoarthritis meniscal cells. GENETICS AND MOLECULAR RESEARCH 2013; 12:738-46. [PMID: 23546957 DOI: 10.4238/2013.march.13.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Osteoarthritis is the most common form of arthritis among elderly adults. Herein, we performed protein-protein interaction (PPI) and miRNA network analysis to evaluate the global correlation between miRNA regulation and the PPI network in human osteoarthritis. Our results showed that desmoplakin (DSP), cystatin A (CSTA), calmodulin 1, tyrosine kinase endothelial, insulin-like growth factor 1 (IGF-1), IGF-binding protein 7 (IGFBP7), syndecan 1 (SDC1), ephrin type-A receptor 4, and PDZ and LIM domain protein 1 were associated with osteoarthritis. Among these proteins, DSP and CSTA interaction and IGF-1, IGFBP7 and SDC1 interaction were observed in our PPI network. Furthermore, these potential target proteins were also linked with individual miRNA in the network. Our findings shed light on the PPIs and mechanisms by which miRNA may regulate the protein interaction network in osteoarthritis, which might provide theoretical support for further studies aimed at discovering new therapeutic strategies.
Collapse
Affiliation(s)
- M Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
20
|
Nataraj NB, Krishnamurthy J, Salimath BP. Treatment with anti-NAP monoclonal antibody reduces disease severity in murine model of novel angiogenic protein-induced or ovalbumin-induced arthritis. Clin Exp Immunol 2013; 171:155-63. [PMID: 23286942 DOI: 10.1111/cei.12009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2012] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis (RA) is a polyarticular inflammatory, angiogenic disease. Synovial angiogenesis contributes to inflammation in RA. In this study we have developed an arthritic model in rats using a novel angiogenic protein (NAP), isolated from human synovial fluid of RA patients. We produced anti-NAP monoclonal antibodies (mAbs) and investigated the therapeutic efficacy of the same in adjuvant-induced or NAP-induced arthritis as a model of human RA. The treatment of arthritic rats with anti-NAP mAbs resulted in effective amelioration of paw oedema, radiological arthritic characteristics, serum levels of vascular endothelial growth factor (VEGF) and NAP, compared to that of untreated arthritic animals. Further, profiling of angiogenic markers such as synovial microvessel density, angiogenesis, CD31, VEGF and fms-like tyrosine kinase (Flt1) by immunohistochemistry both in arthritic and anti-NAP mAb-treated animals revealed the efficacy of mAb as an anti-angiogenic functional antibody. Therefore, NAP may be an attractive target to design anti-angiogenic and anti-arthritic therapies to control the pathogenesis of arthritis.
Collapse
Affiliation(s)
- N B Nataraj
- Department of Biotechnology, University of Mysore, Karnataka, India
| | | | | |
Collapse
|
21
|
Abstract
Atherosclerotic plaques develop in a nonrandom manner along the vasculature following a hemodynamically determined distribution profile. The pathogenesis of shear stress-induced inflammation and atherosclerotic lesion formation has led to discussions about personalized strategies in prevention and treatment. Recent discoveries involving the tyrosine kinase receptor Tie1 in (1) mechanotransduction, (2) inflammation, and (3) neovascularization have invigorated these efforts. In this review, we present the current understanding on Tie1 and its role in these key components of atherogenesis.
Collapse
Affiliation(s)
- Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
22
|
Guma M, Firestein GS. c-Jun N-Terminal Kinase in Inflammation and Rheumatic Diseases. Open Rheumatol J 2012; 6:220-31. [PMID: 23028407 PMCID: PMC3460413 DOI: 10.2174/1874312901206010220] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 01/03/2011] [Accepted: 07/13/2011] [Indexed: 01/24/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family and are activated by environmental stress. JNK is also activated by proinflammatory cytokines, such as TNF and IL-1, and Toll-like receptor ligands. This pathway, therefore, can act as a critical convergence point in immune system signaling for both adaptive and innate responses. Like other MAPKs, the JNKs are activated via the sequential activation of protein kinases that includes two dual-specificity MAP kinase kinases (MKK4 and MKK7) and multiple MAP kinase kinase kinases. MAPKs, including JNKs, can be deactivated by a specialized group of phosphatases, called MAP kinase phosphatases. JNK phosphorylates and regulates the activity of transcription factors other than c-Jun, including ATF2, Elk-1, p53 and c-Myc and non-transcription factors, such as members of the Bcl-2 family. The pathway plays a critical role in cell proliferation, apoptosis, angiogenesis and migration. In this review, an overview of the functions that are related to rheumatic diseases is presented. In addition, some diseases in which JNK participates will be highlighted.
Collapse
Affiliation(s)
- Monica Guma
- Division of Rheumatology, Allergy and Immunology, UC San Diego School of Medicine, La Jolla, CA, USA
| | | |
Collapse
|
23
|
Krausz S, Garcia S, Ambarus CA, de Launay D, Foster M, Naiman B, Iverson W, Connor JR, Sleeman MA, Coyle AJ, Hamann J, Baeten D, Tak PP, Reedquist KA. Angiopoietin-2 promotes inflammatory activation of human macrophages and is essential for murine experimental arthritis. Ann Rheum Dis 2012; 71:1402-10. [PMID: 22730375 DOI: 10.1136/annrheumdis-2011-200718] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Angiopoietin (Ang)-1 and Ang-2, and their shared receptor Tie2, are expressed in rheumatoid arthritis (RA) synovial tissue, but the cellular targets of Ang signalling and the relative contributions of Ang-1 and Ang-2 to arthritis are poorly understood. OBJECTIVES To determine the cellular targets of Ang signalling in RA synovial tissue, and the effects of Ang-2 neutralisation in murine collagen-induced arthritis (CIA). METHODS RA and psoriatic arthritis (PsA) synovial biopsies were examined for expression of Tie2 and activated phospho (p)-Tie2 by quantitative immunohistochemistry and immunofluorescent double staining. Human monocyte and macrophage Tie2 expression was determined by flow cytometry and quantitative PCR. Regulation of macrophage intracellular signalling pathways and gene expression were examined by immunoblotting and ELISA. CIA was assessed in mice treated with saline, control antibody, prednisolone or neutralising anti-Ang-2 antibody. RESULTS Expression of synovial Tie2 and p-Tie2 was similar in RA and PsA. Tie2 activation in RA patient synovial tissue was predominantly localised in synovial macrophages and was expressed by human macrophage. Ang-1 and Ang-2 stimulated activation of multiple intracellular signalling pathways, and cooperated with tumour necrosis factor to induce macrophage interleukin 6 and macrophage inflammatory protein 1α production. Ang-2 selectively suppressed macrophage thrombospondin-2 production. Ang-2 neutralisation significantly decreased disease severity, synovial inflammation, neo-vascularisation and joint destruction in established CIA. CONCLUSIONS The authors identify synovial macrophages as primary targets of Ang signalling in RA, and demonstrate that Ang-2 promotes the pro-inflammatory activation of human macrophages. Ang-2 makes requisite contributions to pathology in CIA, indicating that targeting Ang-2 may be of therapeutic benefit in the treatment of RA.
Collapse
MESH Headings
- Angiopoietin-1/metabolism
- Angiopoietin-1/pharmacology
- Angiopoietin-2/immunology
- Angiopoietin-2/metabolism
- Angiopoietin-2/pharmacology
- Animals
- Antibodies, Blocking/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Psoriatic/metabolism
- Arthritis, Psoriatic/pathology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Chemokine CCL3/biosynthesis
- Gene Expression/drug effects
- Humans
- Interleukin-6/biosynthesis
- Macrophage Activation/drug effects
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred DBA
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/metabolism
- Phosphorylation
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, TIE-2
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Thrombospondins/biosynthesis
Collapse
Affiliation(s)
- Sarah Krausz
- Experimental Immunology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Raatz Y, Ibrahim S, Feldmann M, Paleolog EM. Gene expression profiling and functional analysis of angiogenic markers in murine collagen-induced arthritis. Arthritis Res Ther 2012; 14:R169. [PMID: 22817681 PMCID: PMC3580563 DOI: 10.1186/ar3922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 07/20/2012] [Indexed: 01/13/2023] Open
Abstract
Introduction Dysregulated angiogenesis is implicated in the pathogenesis of rheumatoid arthritis (RA). To provide a more profound understanding of arthritis-associated angiogenesis, we evaluated the expression of angiogenesis-modulating genes at onset, peak and declining phases of collagen-induced arthritis (CIA), a well-established mouse model for RA. Methods CIA was induced in DBA/1 mice with type II collagen. Functional capillary density in synovial tissue of knee joints was determined by intravital fluorescence microscopy. To assess the ability of arthritic joint homogenates to induce angiogenesis, an endothelial chemotaxis assay and an in vivo matrigel plug assay were employed. The temporal expression profile of angiogenesis-related genes in arthritic paws was analysed by quantitative real-time RT-PCR using an angiogenesis focused array as well as gene specific PCR. Finally, we investigated the therapeutic effect of a monoclonal antibody specifically blocking the binding of VEGF to neuropilin (NRP)-1. Results Although arthritic paw homogenates displayed angiogenic activity in vitro and in vivo, and synovia of arthritic paws appeared highly vascularised on histological examination, the functional capillary density in arthritic knee synovia was significantly decreased, whereas capillary diameter was increased. Of the 84 genes analysed, 41 displayed a differential expression in arthritic paws as compared to control paws. Most significant alterations were seen at the peak of clinical arthritis. Increased mRNA expression could be observed for VEGF receptors (Flt-1, Flk-1, Nrp-1, Nrp-2), as well as for midkine, hepatocyte growth factor, insulin-like growth factor-1 and angiopoietin-1. Signalling through NRP-1 accounted in part for the chemotactic activity for endothelial cells observed in arthritic paw homogenates. Importantly, therapeutic administration of anti-NRP1B antibody significantly reduced disease severity and progression in CIA mice. Conclusions Our findings confirm that the arthritic synovium in murine CIA is a site of active angiogenesis, but an altered balance in the expression of angiogenic factors seems to favour the formation of non-functional and dilated capillaries. Furthermore, our results validate NRP-1 as a key player in the pathogenesis of CIA, and support the VEGF/VEGF receptor pathway as a potential therapeutic target in RA.
Collapse
|
25
|
Lambert C, Mathy-Hartert M, Dubuc JE, Montell E, Vergés J, Munaut C, Noël A, Henrotin Y. Characterization of synovial angiogenesis in osteoarthritis patients and its modulation by chondroitin sulfate. Arthritis Res Ther 2012; 14:R58. [PMID: 22409996 PMCID: PMC3446424 DOI: 10.1186/ar3771] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/11/2011] [Accepted: 03/12/2012] [Indexed: 01/15/2023] Open
Abstract
Introduction This work aimed at comparing the production of inflammatory and pro- and anti-angiogenic factors by normal/reactive (N/R) or inflammatory (I) areas of the osteoarthritic synovial membrane. The effects of interleukin (IL)-1β and chondroitin sulfate (CS) on the expression of pro- and anti-angiogenic factors by synovial fibroblasts cells (SFC) were also studied. Methods Biopsies from N/R or from I areas of osteoarthritic synovial membrane were collected at the time of surgery. The inflammatory status of the synovial membrane was characterized by the surgeon according to macroscopic criteria, including the synovial vascularization, the villi formation and the hypertrophic aspect of the tissue. We assessed the expression of CD45, von Willebrand factor and vascular endothelial growth factor (VEGF) antigen by immunohistochemistry in both N/R and I biopsies. The production of IL-6, -8, VEGF and thrombospondin (TSP)-1 by N/R or I synovial cells was quantified by ELISA. SFC were cultured in the absence or in the presence of IL-1β (1 ng/ml) and with or without CS (10, 50, 200 μg/ml). Gene expression of pro-angiogenic factors (VEGF, basic fibroblast growth factor (bFGF), nerve growth factor (NGF), matrix metalloproteinase (MMP)-2 and angiopoietin (ang)-1) and anti-angiogenic factors (vascular endothelial growth inhibitor (VEGI), TSP-1 and -2) were determined by real time RT-PCR. Production of VEGI and TSP-1 was also estimated by ELISA. Results Immunohistochemistry showed the increase of lymphocyte infiltration, vascular density and VEGF expression in I compared to N/R synovial biopsies. Synovial cells from I areas produced more IL-6, IL-8 and VEGF but less TSP-1 than cells isolated from N/R synovial biopsies. The expression of pro-angiogenic factors by SFC was stimulated by IL-1β. A time dependent regulation of the expression of anti-angiogenic factor genes was observed. IL-1β stimulated the expression of anti-angiogenic factor genes but inhibited it after 24 h. CS reversed the inhibitory effect of IL-1β on anti-angiogenic factors, VEGI and TSP-1. Conclusions We demonstrated that synovial biopsies from I areas expressed a pro-angiogenic phenotype. IL-1β induced an imbalance between pro- and anti-angiogenic factors in SFC and CS tended to normalize this IL-1β-induced imbalance, providing a new possible mechanism of action of this drug.
Collapse
Affiliation(s)
- Cécile Lambert
- Bone and Cartilage Research Unit, Institute of pathology, CHU Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Angiogenic growth factors in rheumatoid arthritis. Rheumatol Int 2011; 33:523-7. [DOI: 10.1007/s00296-011-2210-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/22/2011] [Indexed: 01/01/2023]
|
27
|
Toll-like receptor 2 induced angiogenesis and invasion is mediated through the Tie2 signalling pathway in rheumatoid arthritis. PLoS One 2011; 6:e23540. [PMID: 21858161 PMCID: PMC3157402 DOI: 10.1371/journal.pone.0023540] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/20/2011] [Indexed: 12/16/2022] Open
Abstract
Background Angiogenesis is a critical early event in inflammatory arthritis, facilitating leukocyte migration into the synovium resulting in invasion and destruction of articular cartilage and bone. This study investigates the effect of TLR2 on angiogenesis, EC adhesion and invasion using microvascular endothelial cells and RA whole tissue synovial explants ex-vivo. Methods Microvascular endothelial cells (HMVEC) and RA synovial explants ex vivo were cultured with the TLR2 ligand, Pam3CSK4 (1 µg/ml). Angiopoietin 2 (Ang2), Tie2 and TLR2 expression in RA synovial tissue was assessed by immunohistology. HMVEC tube formation was assessed using Matrigel matrix assays. Ang2 was measured by ELISA. ICAM-1 cell surface expression was assessed by flow cytometry. Cell migration was assessed by wound repair scratch assays. ECM invasion, MMP-2 and -9 expression were assessed using transwell invasion chambers and zymography. To examine if the angiopoietin/Tie2 signalling pathway mediates TLR2 induced EC tube formation, invasion and migration assays were performed in the presence of a specific neutralising anti-Tie2mAb (10 ug/ml) and matched IgG isotype control Ab (10 ug/ml). Results Ang2 and Tie2 were localised to RA synovial blood vessels, and TLR2 was localised to RA synovial blood vessels, sub-lining infiltrates and the lining layer. Pam3CSK4 significantly increased angiogenenic tube formation (p<0.05), and upregulated Ang2 production in HMVEC (p<0.05) and RA synovial explants (p<0.05). Pam3CSK4 induced cell surface expression of ICAM-1, from basal level of 149±54 (MFI) to 617±103 (p<0.01). TLR-2 activation induced an 8.8±2.8 fold increase in cell invasion compared to control (p<0.05). Pam3CSK4 also induced HMVEC cell migration and induced MMP-2 and -9 from RA synovial explants. Neutralisation of the Ang2 receptor, Tie2 significantly inhibited Pam3CSK4-induced EC tube formation and invasion (p<0.05). Conclusion TLR2 activation promotes angiogenesis, cell adhesion and invasion, effects that are in part mediated through the Tie2 signalling pathway, key mechanisms involved in the pathogenesis of RA.
Collapse
|
28
|
Anti-CXCL5 therapy ameliorates IL-17-induced arthritis by decreasing joint vascularization. Angiogenesis 2011; 14:443-55. [PMID: 21779896 DOI: 10.1007/s10456-011-9227-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/09/2011] [Indexed: 12/23/2022]
Abstract
IL-17-induced joint inflammation is associated with increased angiogenesis. However, the mechanism by which IL-17 mediates angiogenesis is undefined. Therefore, the pathologic role of CXCL1 and CXCL5 was investigated in arthritis mediated by local expression of IL-17, employing a neutralizing antibody to each chemokine. Next, endothelial chemotaxis was utilized to examine whether endothelial migration was differentially mediated by CXCL1 and CXCL5. Our results demonstrate that IL-17-mediated disease activity was not affected by anti-CXCL1 treatment alone. In contrast, mice receiving anti-CXCL5 demonstrated significantly reduced clinical signs of arthritis, compared to the mice treated with IgG control. Consistently, while inflammation, synovial lining thickness, bone erosion and vascularization were markedly reduced in both the anti-CXCL5 and combination anti-CXCL1 and 5 treatment groups, mice receiving anti-CXCL1 antibody had clinical scores similar to the control group. In contrast to joint FGF2 and VEGF levels, TNF-α was significantly reduced in mice receiving anti-CXCL5 or combination of anti-CXCL1 and 5 therapies compared to the control group. We found that, like IL-17, CXCL1-induced endothelial migration is mediated through activation of PI3K. In contrast, activation of NF-κB pathway was essential for endothelial chemotaxis induced by CXCL5. Although CXCL1 and CXCL5 can differentially mediate endothelial trafficking, blockade of CXCR2 can inhibit endothelial chemotaxis mediated by either of these chemokines. These results suggest that blockade of CXCL5 can modulate IL-17-induced inflammation in part by reducing joint blood vessel formation through a non-overlapping IL-17 mechanism.
Collapse
|
29
|
Pickens SR, Chamberlain ND, Volin MV, Pope RM, Mandelin AM, Shahrara S. Characterization of CCL19 and CCL21 in rheumatoid arthritis. ACTA ACUST UNITED AC 2011; 63:914-22. [PMID: 21225692 DOI: 10.1002/art.30232] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To characterize the expression of CCL19 and CCL21 in rheumatoid arthritis (RA) synovial tissue (ST) and to examine their regulation and pathogenetic role in macrophages and RA ST fibroblasts. METHODS Expression of CCL19 and CCL21 in RA and normal ST was demonstrated by immunohistochemistry analysis. CCL19 and CCL21 levels in synovial fluid (SF) from patients with osteoarthritis (OA), juvenile idiopathic arthritis, psoriatic arthritis (PsA), and RA were quantified by enzyme-linked immunosorbent assay (ELISA). Regulation of CCL19 and CCL21 expression in in vitro-differentiated RA peripheral blood macrophages as well as RA ST fibroblasts was determined by real-time reverse transcription-polymerase chain reaction. Proangiogenic factor production in CCL19- and CCL21-activated in vitro-differentiated peripheral blood macrophages and RA ST fibroblasts was examined by ELISA. RESULTS CCL19 and CCL21 were elevated in RA ST compared to tissue from normal controls. Levels of CCL19 and CCL21 were greatly increased in RA and PsA SF versus OA SF. In RA macrophages and fibroblasts, expression of CCL19 was increased by stimulation with lipopolysaccharide, tumor necrosis factor α (TNFα), and interleukin-1β (IL-1β). However, CCL21 expression was modulated only by IL-1β in RA fibroblasts, and by TNFα and RA SF in RA macrophages. CCL19 and CCL21 activation induced vascular endothelial growth factor and angiotensin I (Ang I) production in RA ST fibroblasts and secretion of IL-8 and Ang I from macrophages. CONCLUSION The findings of the present study identify, for the first time, regulators of CCL19 and CCL21 in RA fibroblasts and in vitro-differentiated RA peripheral blood macrophages and demonstrate a novel role of CCL19/CCL21 in angiogenesis in RA.
Collapse
Affiliation(s)
- Sarah R Pickens
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
30
|
Choe JY, Lee SJ, Park SH, Kim SK. Tacrolimus (FK506) inhibits interleukin-1β-induced angiopoietin-1, Tie-2 receptor, and vascular endothelial growth factor through down-regulation of JNK and p38 pathway in human rheumatoid fibroblast-like synoviocytes. Joint Bone Spine 2011; 79:137-43. [PMID: 21550286 DOI: 10.1016/j.jbspin.2011.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/23/2011] [Indexed: 12/17/2022]
Abstract
OBJECT This study aimed to identify the regulatory effect of tacrolimus on the interleukin-1β (IL-1β)-induced expressions of angiopoietin-1 (Ang-1), Tie-2 receptor (Tie-2), and vascular endothelial growth factor (VEGF) in human rheumatoid fibroblast-like synoviocytes (FLS) and to determine the regulatory mechanism in the mitogen-activated protein kinases (MAPKs) signaling pathway. METHODS IL-1β-induced Ang-1, Tie-2, and VEGF expressions with and without tacrolimus were measured in cultured FLS using real time-polymerase chain reaction, enzyme-linked immunosorbent assay, Western blotting, and immunofluorescence staining. The effect of tacrolimus on the regulation of Ang-1, Tie-2 and VEGF expressions through the MAPK signaling pathway was identified by Western blotting and immunofluorescence staining. RESULTS IL-1β appeared to induce marked expressions of Ang-1, Tie-2, and VEGF in cultured FLS. Tacrolimus significantly inhibited Ang-1, Tie-2, and VEGF mRNA and protein in cultured FLS treated with 10 ng/ml IL-1β. In addition, expressions of these angiogenic molecules were shown to involve all three of the studied MAPK signaling pathways, including ERK, JNK, and p38. However, the inhibitory effects of tacrolimus on Ang-1, Tie-2, and VEGF proteins were regulated by blocking the phosphorylations of JNK and p38 MAPK, but not that of ERK. CONCLUSION This study demonstrates that tacrolimus inhibits the expressions of Ang-1, Tie-2, and VEGF by blocking the activations of the IL-1β-mediated JNK and p38 MAPK pathways in human FLS. This suggests that tacrolimus contributes to the suppression of angiogenesis in the pathogenesis of RA.
Collapse
Affiliation(s)
- Jung-Yoon Choe
- Department of Internal Medicine, Arthritis and Autoimmunity Research Center, Catholic University of Daegu School of Medicine, 3056-6 Daemyung 4-Dong, Namgu, Daegu 705-718, Republic of Korea
| | | | | | | |
Collapse
|
31
|
Angiogenesis as a therapeutic target in arthritis in 2011: learning the lessons of the colorectal cancer experience. Angiogenesis 2011; 14:223-34. [DOI: 10.1007/s10456-011-9208-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/13/2011] [Indexed: 01/21/2023]
|
32
|
Woo KV, Qu X, Babaev VR, Linton MF, Guzman RJ, Fazio S, Baldwin HS. Tie1 attenuation reduces murine atherosclerosis in a dose-dependent and shear stress-specific manner. J Clin Invest 2011; 121:1624-35. [PMID: 21383501 DOI: 10.1172/jci42040] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/12/2011] [Indexed: 01/11/2023] Open
Abstract
Although the response of endothelial cells to the disturbed blood flow in the vicinity of atherosclerotic lesions is known to be distinct from that elicited by nonatherogenic laminar flow, the mechanisms involved are poorly understood. Our initial studies confirmed that expression of the endothelial receptor tyrosine kinase Tie1 was evident at regions of atherogenic flow in mature animals. We therefore hypothesized that Tie1 plays a role in the endothelial response to atherogenic shear stress. Consistent with this, we found that Tie1+/- mice bred to the apoE-deficient background displayed a 35% reduction in atherosclerosis relative to Tie1+/+;Apoe-/- mice. Since deletion of Tie1 results in embryonic lethality secondary to vascular dysfunction, we used conditional and inducible mutagenesis to study the effect of endothelial-specific Tie1 attenuation on atherogenesis in Apoe-/- mice and found a dose-dependent decrease in atherosclerotic lesions. Analysis of primary aortic endothelial cells indicated that atheroprotective laminar flow decreased Tie1 expression in vitro. Attenuation of Tie1 was associated with an increase in eNOS expression and Tie2 phosphorylation. In addition, Tie1 attenuation increased IkBα expression while decreasing ICAM levels. In summary, we have found that shear stress conditions that modulate atherogenic events also regulate Tie1 expression. Therefore, Tie1 may play a novel proinflammatory role in atherosclerosis.
Collapse
Affiliation(s)
- Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0439, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Malik NM, Jin P, Raatz Y, Sumariwalla PF, Kiriakidis S, Shepard M, Feldmann M, Paleolog EM. Regulation of the angiopoietin-Tie ligand-receptor system with a novel splice variant of Tie1 reduces the severity of murine arthritis. Rheumatology (Oxford) 2010; 49:1828-39. [PMID: 20547659 DOI: 10.1093/rheumatology/keq163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES To determine the function of the angiopoietin (Ang)-Tie ligand-receptor system, and to assess the effect of Tie1-751, a naturally occurring extracellular domain of the Tie1 receptor derived by alternative splicing, in an in vivo model of RA. METHODS In the murine CIA model, expression of endogenous Ang1, Ang2, Tie1 and Tie2 in whole paws was analysed by quantitative RT-PCR. To assess the effect of inhibition of the Ang-Tie axis, Tie1-751 was expressed and fused to the Fc fragment of human IgG1. The effect of Tie1-751-Fc on human umbilical vein endothelial cell (HUVEC) cytoprotection and migration in response to Ang1, either alone or in combination with VEGF, was investigated. Furthermore, an in vitro angiogenesis assay was used to determine the effect of Tie1-751-Fc on Ang1-mediated angiogenesis. Finally, Tie1-751-Fc was administered in CIA, and the effects on clinical disease and joint architecture of hind foot specimens were determined. RESULTS Gene expression levels of Ang1, Ang2, and receptors Tie1 and Tie2 in whole paws were significantly increased during the progression of arthritis. Tie1-751-Fc significantly inhibited HUVEC cytoprotection and migration in response to Ang1 alone, or Ang1 in combination with VEGF. Tie1-751-Fc also significantly inhibited angiogenesis induced by a combination of Ang1 plus VEGF. Finally, Tie1-751-Fc, when administered intra-peritoneally to arthritic mice, reduced clinical signs of arthritis, damage to joint architecture and infiltration of blood vessels into the synovium. CONCLUSIONS Our data demonstrate that the Ang-Tie ligand-receptor system is dysregulated in CIA. Tie1-751, a novel splice variant of the Tie1 receptor, inhibits Ang1/VEGF signalling, suggesting that Ang inhibition may be of therapeutic benefit in inflammatory arthritis.
Collapse
Affiliation(s)
- Nasser M Malik
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, Arthritis Research Campaign Building, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Angiogenesis is the formation of new capillaries from pre-existing vessels. A number of soluble and cell-bound factors may stimulate neovascularization. The perpetuation of angiogenesis involving numerous soluble and cell surface-bound mediators has been associated with rheumatoid arthritis (RA). These angiogenic mediators, among others, include growth factors, primarily vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIFs), as well as pro-inflammatory cytokines, various chemokines, matrix components, cell adhesion molecules, proteases and others. Among the several potential angiogenesis inhibitors, targeting of VEGF, HIF-1, angiogenic chemokines, tumor necrosis factor-alpha and the alpha(V)beta(3) integrin may attenuate the action of angiogenic mediators and thus synovial angiogenesis. In addition, some naturally produced or synthetic compounds including angiostatin, endostatin, paclitaxel, fumagillin analogues, 2-methoxyestradiol and thalidomide may be included in the management of RA.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Sciences Center, Debrecen, H-4032, Hungary.
| | | | | | | |
Collapse
|
35
|
Neagoe PE, Brkovic A, Hajjar F, Sirois MG. Expression and release of angiopoietin-1 from human neutrophils: intracellular mechanisms. Growth Factors 2009; 27:335-44. [PMID: 19919521 DOI: 10.3109/08977190903155043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We recently demonstrated that Tie2 receptor activation on human neutrophils by both angiopoietins (Ang1 and Ang2) promoted platelet-activating factor synthesis, beta(2)-integrin activation, and cell migration. Herein, we wanted to assess if human neutrophils express angiopoietins and further delineate their mechanisms of release. Employing Reverse transcriptase-polymerase chain reaction, Real time quantitative transcriptase-polymerase chain reaction, FACScan analysis and ELISA approaches, we observed that neutrophils express Ang1 but not Ang2. For each condition, vascular endothelial growth factor (VEGF) detection was performed as positive control. Using nitrogen cavitation, we observed that Ang1 is localized in the cytosolic fraction whereas VEGF is found in beta-granules. Treatment of neutrophils with phorbol myristate acetate (PMA), N-Formyl-Met-Leu-Phe (fMLP) and tumor necrosis factor-alpha (TNF-alpha) induced VEGF release. Maximal effect was observed with PMA (80 nM) stimulation inducing a complete release of VEGF content (565 +/- 100 pg/ml; 6 x 10(6) neutrophils), corresponding to a 18.9-fold increase as compared to phosphate buffer saline (PBS) treated neutrophils. By contrast, only a treatment with PMA (80 nM) induced Ang1 release. PMA treatment induced also a complete release of Ang1 (661 +/- 148 pg/ml; 6 x 10(6) neutrophils), corresponding to 2.8-fold increase as compared to PBS-treated neutrophils. In both cases, PMA-mediated release of VEGF and Ang1 was nearly maximal by 15 min. Finally, we observed that the induction of Ang1 release was calcium-independent whereas VEGF release was not. These data demonstrate the capacity of human neutrophils to synthesize Ang1, which is stored and released differently as compared to VEGF. These data suggest a different cascade of events regarding the distribution of selected growth factors during inflammation and angiogenesis.
Collapse
Affiliation(s)
- Paul-Eduard Neagoe
- Montreal Heart Institute, Research Center and Department of Pharmacology, Université de Montréal, Montreal, QC, Canada
| | | | | | | |
Collapse
|
36
|
Tyrosine kinases as targets for the treatment of rheumatoid arthritis. Nat Rev Rheumatol 2009; 5:317-24. [PMID: 19491913 DOI: 10.1038/nrrheum.2009.82] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As critical regulators of numerous cell signaling pathways, tyrosine kinases are implicated in the pathogenesis of several diseases, including rheumatoid arthritis (RA). In the absence of disease, synoviocytes produce factors that provide nutrition and lubrication for the surrounding cartilage tissue; few cellular infiltrates are seen in the synovium. In RA, however, macrophages, neutrophils, T cells and B cells infiltrate the synovium and produce cytokines, chemokines and degradative enzymes that promote inflammation and joint destruction. In addition, the synovial lining expands owing to the proliferation of synoviocytes and infiltration of inflammatory cells to form a pannus, which invades the surrounding bone and cartilage. Many of these cell responses are regulated by tyrosine kinases that operate in specific signaling pathways, and inhibition of a number of these kinases might be expected to provide benefit in RA.
Collapse
|
37
|
Abstract
The expansion of the synovial lining of joints in rheumatoid arthritis (RA) necessitates an increase in the vascular supply to the synovium, to cope with the increased requirement for oxygen and nutrients. New blood vessel formation -'angiogenesis'- is recognized as a key event in the formation and maintenance of the pannus in RA, suggesting that targeting blood vessels in RA may be an effective future therapeutic strategy. Although many pro-angiogenic factors have been demonstrated to be expressed in RA synovium, vascular endothelial growth factor (VEGF) has been demonstrated to a have a central involvement in the angiogenic process in RA. Nevertheless, it is unclear whether angiogenesis - whether driven by VEGF and/or other factors - should be considered as a 'cause' or 'consequence' of disease. This ongoing 'chicken vs. egg' debate is difficult, as even the success of angiogenesis inhibition in models of RA does not provide a direct answer to the question. This review will focus on the role of the vasculature in RA, and the contribution of different angiogenic factors in promoting disease. Although no data regarding the effectiveness of anti-angiogenic therapy in RA have been reported to date, the blockade of angiogenesis nevertheless looks to be a promising therapeutic avenue.
Collapse
Affiliation(s)
- Ewa M Paleolog
- Kennedy Institute of Rheumatology and Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
38
|
Kurosaka D, Yoshida K, Yasuda J, Yasuda C, Noda K, Furuya K, Ukichi T, Kingetsu I, Joh K, Yamaguchi N, Saito S, Yamada A. The effect of endostatin evaluated in an experimental animal model of collagen‐induced arthritis. Scand J Rheumatol 2009; 36:434-41. [DOI: 10.1080/03009740701605913] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Szekanecz Z, Koch AE. Angiogenesis and its targeting in rheumatoid arthritis. Vascul Pharmacol 2009; 51:1-7. [PMID: 19217946 PMCID: PMC2917972 DOI: 10.1016/j.vph.2009.02.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 02/02/2009] [Indexed: 12/25/2022]
Abstract
Angiogenesis, the development of new capillaries, is involved in leukocyte ingress into the synovium during the development and progression of rheumatoid arthritis. Several soluble and cell surface-bound mediators including growth factors, cytokines, chemokines, proteolytic matrix-degrading enzymes, cell adhesion molecules and others may promote synovial neovascularization. On the other hand, endogenous angiostatic factors, such as angiostatin, endostatin, interleukin-4 (IL-4), IL-13, interferons and some angiostatic chemokines are also produced within the rheumatoid synovium, however, their effects are insufficient to control synovial angiogenesis and inflammation. Several specific and non-specific strategies have been developed to block the action of angiogenic mediators. The first line of angiostatic agents include vascular endothelial growth factor (VEGF), angiopoietin, alpha(V)beta(3) integrin antagonist, as well as non-specific angiogenesis inhibitors including traditional disease-modifying agents (DMARDs), anti-tumor necrosis factor biologics, angiostatin, endostatin, fumagillin analogues or thalidomide. Potentially any angiostatic compound could be introduced to studies using animal models of arthritis or even to human rheumatoid arthritis trials.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Medical and Health Sciences Center, Debrecen, H-4012 Hungary.
| | | |
Collapse
|
40
|
Figueroa-Vega N, Alfonso-Pérez M, Cuesta-Mateos C, Sánchez-Madrid F, Moreno-Otero R, González-Amaro R, Marazuela M. Tie-2 is overexpressed by monocytes in autoimmune thyroid disorders and participates in their recruitment to the thyroid gland. J Clin Endocrinol Metab 2009; 94:2626-33. [PMID: 19351722 DOI: 10.1210/jc.2009-0220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT The angiopoietin/Tie system seems to have an important role in the pathogenesis of inflammatory diseases. Although Tie-2 is mainly expressed by endothelium, it is also detected in monocytes, which participate in the development of angiogenic and inflammatory phenomena. AIM The aim was to study the expression and function of Tie-2 and their ligands, angiopoietin-1 (Ang-1) and Ang-2, in thyroid glands and monocytes from patients with autoimmune thyroid disease (AITD). DESIGN We studied the expression of Tie-2, Ang-1, and Ang-2 by immunohistochemical techniques in surgical thyroid tissues from 17 patients with Graves' disease, 8 with Hashimoto's thyroiditis, and 3 healthy glands. In addition, we explored the expression and function of Tie-2 in peripheral blood monocytes from 17 patients with Graves' disease, 11 with Hashimoto's thyroiditis, and 14 healthy controls. RESULTS We found that the expression of Ang-1, Ang-2, and Tie-2 was up-regulated in thyroid glands from AITD patients. Flow cytometry, immunofluorescence, ELISA, and RT-PCR analyses confirmed the synthesis and release of Ang-1, Ang-2, and Tie-2 by thyroid follicular cells (TFC) from AITD patients. In addition, these patients showed increased levels of Tie-2(+) monocytes in the peripheral blood, which exhibited an enhanced chemotactic response to Ang-2 or autologous TFC. CONCLUSIONS Our data suggest that the Ang/Tie-2 system, through the participation of blood vessels, inflammatory cells, and TFC, may have an important role in the recruitment of monocytes to the thyroid gland and the pathogenesis of the tissue damage seen in AITD.
Collapse
Affiliation(s)
- Nicté Figueroa-Vega
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, 78230 San Luis Potosí, México
| | | | | | | | | | | | | |
Collapse
|
41
|
De Palma M, Naldini L. Tie2-expressing monocytes (TEMs): novel targets and vehicles of anticancer therapy? Biochim Biophys Acta Rev Cancer 2009; 1796:5-10. [PMID: 19362584 DOI: 10.1016/j.bbcan.2009.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/30/2009] [Accepted: 04/05/2009] [Indexed: 10/20/2022]
Abstract
There is a growing interest in understanding the complex interactions between bone marrow-derived myeloid-lineage cells and angiogenesis in tumors. Such interest has been revived recently by the observation that tumor-infiltrating myeloid cells convey proangiogenic programs that can counteract the activity of antiangiogenic drugs in mouse tumor models. Among myeloid cells, Tie2-expressing monocytes (TEMs) appear to have nonredundant function in promoting tumor angiogenesis and growth in mouse models. The identification and functional characterization of TEMs in mice and humans may provide novel molecular targets for anticancer therapy. Moreover, TEMs may be exploited to deliver antitumor drugs specifically to the tumor microenvironment.
Collapse
Affiliation(s)
- Michele De Palma
- Angiogenesis and Tumor Targeting Research Unit, San Raffaele Scientific Institute, via Olgettina, 58, 20132 Milan, Italy; San Raffaele-Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, via Olgettina, 58, 20132 Milan, Italy.
| | | |
Collapse
|
42
|
Chan B, Sukhatme VP. Suppression of Tie-1 in endothelial cells in vitro induces a change in the genome-wide expression profile reflecting an inflammatory function. FEBS Lett 2009; 583:1023-8. [PMID: 19236867 DOI: 10.1016/j.febslet.2009.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/04/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Tie-1 is an endothelial specific receptor tyrosine kinase that is upregulated in diseases such as atherosclerosis and rheumatoid arthritis. We recently demonstrated that Tie-1 induced a proinflammatory response when overexpressed in endothelial cells. Here, we used a complementary approach and suppressed endogenous Tie-1 expression in endothelial cells to examine its function by microarray analysis. Tie-1 appeared to govern expression of many genes involved in inflammation. Expression knockdown of Tie-1 significantly reduced endothelial conditioned medium ability to stimulate MCP-1 production in U937 cells. Collectively, our results support the notion that Tie-1 has an inflammatory function in endothelial cells.
Collapse
Affiliation(s)
- Barden Chan
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
43
|
Abstract
The vasculature plays a crucial role in inflammation, angiogenesis, and atherosclerosis associated with the pathogenesis of inflammatory rheumatic diseases, hence the term 'vascular rheumatology'. The endothelium lining the blood vessels becomes activated during the inflammatory process, resulting in the production of several mediators, the expression of endothelial adhesion molecules, and increased vascular permeability (leakage). All of this enables the extravasation of inflammatory cells into the interstitial matrix. The endothelial adhesion and transendothelial migration of leukocytes is a well-regulated sequence of events that involves many adhesion molecules and chemokines. Primarily selectins, integrins, and members of the immunoglobulin family of adhesion receptors are involved in leukocyte 'tethering', 'rolling', activation, and transmigration. There is a perpetuation of angiogenesis, the formation of new capillaries from pre-existing vessels, as well as that of vasculogenesis, the generation of new blood vessels in arthritis and connective tissue diseases. Several soluble and cell-bound angiogenic mediators produced mainly by monocytes/macrophages and endothelial cells stimulate neovascularization. On the other hand, endogenous angiogenesis inhibitors and exogenously administered angiostatic compounds may downregulate the process of capillary formation. Rheumatoid arthritis as well as systemic lupus erythematosus, scleroderma, the antiphospholipid syndrome, and systemic vasculitides have been associated with accelerated atherosclerosis and high cardiovascular risk leading to increased mortality. Apart from traditional risk factors such as smoking, obesity, hypertension, dyslipidemia, and diabetes, inflammatory risk factors, including C-reactive protein, homocysteine, folate deficiency, lipoprotein (a), anti-phospholipid antibodies, antibodies to oxidized low-density lipoprotein, and heat shock proteins, are all involved in atherosclerosis underlying inflammatory rheumatic diseases. Targeting of adhesion molecules, chemokines, and angiogenesis by administering nonspecific immunosuppressive drugs as well as monoclonal antibodies or small molecular compounds inhibiting the action of a single mediator may control inflammation and prevent tissue destruction. Vasoprotective agents may help to prevent premature atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- University of Debrecen Medical Center, Institute of Medicine, Department of Rheumatology, 22 Móricz street, Debrecen, H-4032, Hungary
| | - Alisa E Koch
- Veterans' Administration Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, MI 48105, USA
- University of Michigan Health System, Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
44
|
Woolf AS, Gnudi L, Long DA. Roles of angiopoietins in kidney development and disease. J Am Soc Nephrol 2008; 20:239-44. [PMID: 18799719 DOI: 10.1681/asn.2008020243] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Angiopoietins are a family of growth factors, the best studied being angiopoietin 1 (Ang-1), which binds to and tyrosine-phosphorylates endothelial Tie-2, causing enhanced survival and cell-cell stabilization. Ang-2 and Tie-1 downregulate Ang-1-induced Tie-2 signaling, and angiopoietin actions are further modified by vascular endothelial growth factor A and integrins. Metanephric capillaries express Tie genes, whereas metanephric mesenchyme, maturing tubules, and mature podocytes express Ang-1. Ang-1 null embryos begin to form blood vessels, but subsequent vascular remodeling fails, and analyses of chimeric wild-type/Tie null mutant embryos show that Tie genes are needed for renal endothelial survival. Ang-2 is transiently expressed in renal arterial smooth muscle and mesangial cells, and tubules around adult vasa rectae express Ang-2. Ang-2 null mice have increased pericytes around kidney cortical peritubular capillaries, perhaps an indirect consequence of upregulated Tie-2 signaling. Ang-1 therapies attenuate peritubular capillary loss in adult models of tubulointerstitial disease, although, in one study, this was accompanied by enhanced inflammation and fibrosis. Podocyte-directed Ang-2 transgenic overexpression causes glomerular endothelial apoptosis, downregulated nephrin expression, and increased albuminuria, and glomerular Ang-2 is upregulated in hyperglycemic and immune-mediated glomerulopathies. Thus, angiopoietins affect podocyte as well as glomerular endothelial biology, and imbalanced angiopoietin signaling contributes to glomerular pathobiology.
Collapse
Affiliation(s)
- Adrian S Woolf
- Nephro-Urology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | | | | |
Collapse
|
45
|
Shahrara S, Huang Q, Mandelin AM, Pope RM. TH-17 cells in rheumatoid arthritis. Arthritis Res Ther 2008; 10:R93. [PMID: 18710567 PMCID: PMC2575607 DOI: 10.1186/ar2477] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/08/2008] [Accepted: 08/18/2008] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION The aim of this study was to quantify the number of T-helper (TH)-17 cells present in rheumatoid arthritis (RA) synovial fluid (SF) and to determine the level of interleukin (IL)-17 cytokine in RA, osteoarthritis (OA) and normal synovial tissue, as well as to examine SF macrophages for the presence of IL-23, IL-27 and interferon (IFN)-gamma. METHODS Peripheral blood (PB) mononuclear cells from normal and RA donors and mononuclear cells from RA SF were examined either without stimulation or after pretreatment with IL-23 followed by stimulation with phorbol myristate acetate (PMA) plus ionomycin (P/I). The abundance of TH-17 cells in RA SF was determined by flow cytometry. IL-17 levels were quantified in synovial tissue from RA, OA and normal individuals by ELISA and IL-23 was identified in SFs by ELISA. RA SF and control in vitro differentiated macrophages were either untreated or treated with the toll-like receptor (TLR) 2 ligand peptidoglycan, and then IL-23, IL-27 and IFN-gamma mRNA levels were quantified by real-time polymerase chain reaction (RT-PCR). RESULTS Treatment with P/I alone or combined with IL-23 significantly increased the number of TH-17 cells in normal, RA PB and RA SF. With or without P/I plus IL-23, the percentage of TH-17 cells was higher in RA SF compared with normal and RA PB. IL-17 levels were comparable in OA and normal synovial tissues, and these values were significantly increased in RA synovial tissue. Although IL-17 was readily detected in RA SFs, IL-23 was rarely identified in RA SF. However, IL-23 mRNA was significantly increased in RA SF macrophages compared with control macrophages, with or without TLR2 ligation. IL-27 mRNA was also significantly higher in RA SF compared with control macrophages, but there was no difference in IL-27 levels between RA and control macrophages after TLR2 ligation. IFN-gamma mRNA was also detectable in RA SF macrophages but not control macrophages and the increase of IFN-gamma mRNA following TLR2 ligation was greater in RA SF macrophages compared with control macrophages. CONCLUSION These observations support a role for TH-17 cells in RA. Our observations do not strongly support a role for IL-23 in the generation of TH-17 cells in the RA joint, however, they suggest strategies that enhance IL-27 or IFN-gamma might modulate the presence of TH-17 cells in RA.
Collapse
Affiliation(s)
- Shiva Shahrara
- Department of Medicine, Feinberg School of Medicine, Northwestern University 240 E Huron, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
46
|
Jin P, Zhang J, Sumariwalla PF, Ni I, Jorgensen B, Crawford D, Phillips S, Feldmann M, Shepard HM, Paleolog EM. Novel splice variants derived from the receptor tyrosine kinase superfamily are potential therapeutics for rheumatoid arthritis. Arthritis Res Ther 2008; 10:R73. [PMID: 18593464 PMCID: PMC2575619 DOI: 10.1186/ar2447] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/25/2008] [Accepted: 07/01/2008] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Despite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop alternative therapeutic targets for nonresponders to existing treatments. Soluble receptors occur naturally in vivo, such as the splice variant of the cell surface receptor for vascular endothelial growth factor (VEGF)--a key regulator of angiogenesis in rheumatoid arthritis. Bioinformatics analyses predict that the majority of human genes undergo alternative splicing, generating proteins--many of which may have regulatory functions. The objective of the present study was to identify alternative splice variants (ASV) from cell surface receptor genes, and to determine whether the novel proteins encoded exert therapeutic activity in an in vivo model of arthritis. METHODS To identify novel splice variants, we performed RT-PCR using an mRNA pool representing major human tissue types and tumors. Novel ASV were identified by alignment of each cloned sequence to its respective genomic sequence in comparison with full-length transcripts. To test whether these ASV have biologic activity, we characterized a subset of them for ligand binding, and for efficacy in an animal model of arthritis. The in vivo study was accomplished using adenoviruses expressing secreted ASV. RESULTS We cloned 60 novel human ASV from 21 genes, encoding cell surface receptors--many of which are known to be important in the regulation of angiogenesis. The ASV were characterized by exon extension, intron retention and alternative exon utilization. Efficient expression and secretion of selected ASV--corresponding to VEGF receptor type 1, VEGF receptor type 2, VEGF receptor type 3, angiopoietin receptor Tie1, Met (receptor for hepatocyte growth factor), colony-stimulating factor 1 receptor, platelet-derived growth factor receptor beta, fibroblast growth factor receptor 1, Kit, and RAGE--was demonstrated, together with binding to their cognate ligands. Importantly, ASV derived from VEGF receptor type 1 and Tie1, and to a lesser extent from VEGF receptor type 2 and fibroblast growth factor receptor 1, reduced clinical signs of arthritis in vivo. The reduction was paralleled by decreased joint inflammation and destruction. CONCLUSION The present study shows that unique ASV derived from receptors that play key roles in angiogenesis--namely, VEGF receptor type 1 and, for the first time, Tie1--can markedly reduce arthritis severity. More broadly, our results demonstrate that ASV are a source of novel proteins with therapeutic potential in diseases in which angiogenesis and cellular hyperplasia play a central role, such as rheumatoid arthritis.
Collapse
MESH Headings
- Angiopoietin-1/metabolism
- Animals
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Cells, Cultured
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Mice
- Mice, Inbred DBA
- Neovascularization, Physiologic/physiology
- Protein Binding/physiology
- Protein Isoforms/metabolism
- Protein Isoforms/therapeutic use
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor Protein-Tyrosine Kinases/therapeutic use
- Receptor, TIE-1/metabolism
- Receptor, TIE-1/therapeutic use
- Severity of Illness Index
- Umbilical Veins/cytology
- Umbilical Veins/metabolism
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Vascular Endothelial Growth Factor Receptor-1/therapeutic use
Collapse
Affiliation(s)
- Pei Jin
- Receptor BioLogix, Inc., Palo Alto, CA 94303, USA
| | - Juan Zhang
- Receptor BioLogix, Inc., Palo Alto, CA 94303, USA
| | - Percy F Sumariwalla
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| | - Irene Ni
- Receptor BioLogix, Inc., Palo Alto, CA 94303, USA
| | | | - Damian Crawford
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| | | | - Marc Feldmann
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| | | | - Ewa M Paleolog
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| |
Collapse
|
47
|
Long DA, Price KL, Ioffe E, Gannon CM, Gnudi L, White KE, Yancopoulos GD, Rudge JS, Woolf AS. Angiopoietin-1 therapy enhances fibrosis and inflammation following folic acid-induced acute renal injury. Kidney Int 2008; 74:300-9. [PMID: 18480750 DOI: 10.1038/ki.2008.179] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The loss of interstitial capillaries is a feature of several experimental models of renal disease and this contributes to secondary kidney injury. Angiopoietin-1 is a secreted growth factor which binds to Tie-2 present on endothelia to enhance cell survival thereby stabilizing capillary architecture in-vitro. Previous studies showed that angiopoietin-1 prevented renal capillary and interstitial lesions following experimental ureteric obstruction. We tested here the effect of angiopoietin-1 treatment on capillary loss and associated tubulointerstitial damage known to follow recovery from folic acid-induced tubular necrosis and acute renal injury. We found that delivery of angiopoietin-1 by adenoviral vectors stabilized peritubular capillaries in folic acid nephropathy but this was accompanied by profibrotic and inflammatory effects. These results suggest that the use of endothelial growth factor therapy for kidney disease may have varying outcomes that depend on the disease model tested.
Collapse
Affiliation(s)
- David A Long
- Nephro-Urology Unit, University College London, Institute of Child Health, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Volin MV, Shahrara S, Haines GK, Woods JM, Koch AE. Expression of mucin 3 and mucin 5AC in arthritic synovial tissue. ACTA ACUST UNITED AC 2008; 58:46-52. [PMID: 18163520 DOI: 10.1002/art.23174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic inflammatory disease that is characterized by hypertrophy of the synovial tissue, leukocyte infiltration, angiogenesis, and ultimately joint destruction. Mucins (MUCs) are a family of heavily glycosylated proteins that protect epithelial membranes and are used as ligands for cell adhesion. MUC gene expression has been found to be altered in many cancers and inflammatory states. This study was undertaken to examine its expression in synovial tissue (ST) and role in arthritis. METHODS We performed immunohistochemistry, Western blotting, and reverse transcriptase-polymerase chain reaction to determine expression patterns of MUC1, MUC2, MUC3, and MUC5AC in RA, osteoarthritic (OA), and normal human ST. RESULTS MUC3 was expressed in synovial lining cells, macrophages, and fibroblasts. Significantly more RA (n=12) and OA (n=13) synovial lining cells expressed MUC3 than did normal synovial lining cells (n=7) (22% and 24% versus 0.4%, respectively; P<0.05). Additionally, macrophages in RA and OA ST expressed significantly more MUC3 than did macrophages in normal ST (50% and 51% versus 10%, respectively; P<0.05). MUC5AC was expressed at low levels in synovial lining cells, macrophages, and endothelial cells in RA and OA ST, and was barely expressed in normal ST. MUC1 and MUC2 proteins were not detected in ST. Messenger RNA (mRNA) for MUC3 and MUC5AC was detected in ST, and mRNA for MUC3 was detected in cultured ST fibroblasts. CONCLUSION These data demonstrate up-regulated MUC expression by ST cells and suggest a novel role of MUC3 and MUC5AC in the pathogenesis of arthritis.
Collapse
Affiliation(s)
- Michael V Volin
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois 60515, USA.
| | | | | | | | | |
Collapse
|
49
|
Makinde T, Agrawal DK. Intra and extravascular transmembrane signalling of angiopoietin-1-Tie2 receptor in health and disease. J Cell Mol Med 2008; 12:810-28. [PMID: 18266978 PMCID: PMC4401129 DOI: 10.1111/j.1582-4934.2008.00254.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Angiopoietin-1 (Ang-1) is the primary agonist for Tie2 tyrosine kinase receptor (Tie2), and the effect of Ang-1-Tie2 signalling is context-dependent. Deficiency in either Ang-1 or Tie2 protein leads to severe microvascular defects and subsequent embryonic lethality in murine model. Tie2 receptors are expressed in several cell types, including endothelial cells, smooth muscle cells, fibroblasts, epithelial cells, monocytes, neutrophils, eosinophils and glial cells. Ang-1-Tie2 signalling induces a chemotactic effect in smooth muscle cells, neutrophils and eosinophils, and induces differentiation of mesenchymal cells to smooth muscle cells. Additionally, this signalling pathway induces the secretion of serotonin, matrix metalloproteinases (MMPs) and plasmin. Ang-1 inhibits the secretion of tissue inhibitor of matrix metalloproteinase (TIMPs). Aberrant expression and activity of Tie2 in vascular and non-vascular cells may result in the development of rheumatoid arthritis, cancer, hypertension and psoriasis. Ang-1 has an anti-inflammatory effect, when co-localized with vascular endothelial growth factor (VEGF) in the vasculature. Thus, Ang-1 could be potentially important in the therapy of various pathological conditions such as pulmonary hypertension, arteriosclerosis and diabetic retinopathy. In this article, we have summarized and critically reviewed the pathophysiological role of Ang-1-Tie2 signalling pathway.
Collapse
Affiliation(s)
- T Makinde
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | |
Collapse
|
50
|
Post S, Peeters W, Busser E, Lamers D, Sluijter JPG, Goumans MJ, de Weger RA, Moll FL, Doevendans PA, Pasterkamp G, Vink A. Balance between angiopoietin-1 and angiopoietin-2 is in favor of angiopoietin-2 in atherosclerotic plaques with high microvessel density. J Vasc Res 2008; 45:244-50. [PMID: 18182823 DOI: 10.1159/000112939] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Accepted: 10/14/2007] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Atherosclerotic plaque microvessels are associated with plaque hemorrhage and rupture. The mechanisms underlying plaque angiogenesis are largely unknown. Angiopoietin (Ang)-1 and -2 are ligands of the endothelial receptor Tie-2. Ang-1 induces formation of stable vessels, whereas Ang-2 destabilizes the interaction between endothelial cells and their support cells. We studied the expression patterns of Ang-1 and -2 in relation to plaque microvessels. METHODS AND RESULTS Carotid endarterectomy specimens were studied (n = 100). Microvessel density (MVD) was correlated with the presence of macrophages and with a (fibro)atheromatous plaque phenotype. A negative correlation was observed between Ang-1 expression and MVD. A positive correlation was observed between the ratio of Ang-2/Ang-1 and MVD. Ang-2 expression was correlated with matrix metalloproteinase-2 (MMP-2) activity. Immunohistochemical staining of Ang-1 was observed in smooth muscle cells, whereas Ang-2 was detected in endothelial cells, smooth muscle cells and macrophages. CONCLUSIONS In plaques with high MVD, the local balance between Ang-1 and Ang-2 is in favor of Ang-2. Plaque Ang-2 levels are associated with MMP-2 activity. Ang-2-induced MMP-2 activity might play a role in the development of (unstable) plaque microvessels.
Collapse
Affiliation(s)
- Simone Post
- University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|