1
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
2
|
Inducible Animal Models of Skin Fibrosis; Updated Review of the Literature. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Thuan DTB, Zayed H, Eid AH, Abou-Saleh H, Nasrallah GK, Mangoni AA, Pintus G. A Potential Link Between Oxidative Stress and Endothelial-to-Mesenchymal Transition in Systemic Sclerosis. Front Immunol 2018; 9:1985. [PMID: 30283435 PMCID: PMC6156139 DOI: 10.3389/fimmu.2018.01985] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc), an autoimmune disease that is associated with a number of genetic and environmental risk factors, is characterized by progressive fibrosis and microvasculature damage in the skin, lungs, heart, digestive system, kidneys, muscles, joints, and nervous system. These abnormalities are associated with altered secretion of growth factor and profibrotic cytokines, such as transforming growth factor-beta (TGF-β), interleukin-4 (IL-4), platelet-derived growth factor (PDGF), and connective-tissue growth factor (CTGF). Among the cellular responses to this proinflammatory environment, the endothelial cells phenotypic conversion into activated myofibroblasts, a process known as endothelial to mesenchymal transition (EndMT), has been postulated. Reactive oxygen species (ROS) might play a key role in SSs-associated fibrosis and vascular damage by mediating and/or activating TGF-β-induced EndMT, a phenomenon that has been observed in other disease models. In this review, we identified and critically appraised published studies investigating associations ROS and EndMT and the presence of EndMT in SSc, highlighting a potential link between oxidative stress and EndMT in this condition.
Collapse
Affiliation(s)
- Duong Thi Bich Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, University of Hue, Hue, Vietnam
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University, Adelaide, SA, Australia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Bei Y, Hua-Huy T, Nicco C, Duong-Quy S, Le-Dong NN, Tiev KP, Chéreau C, Batteux F, Dinh-Xuan AT. RhoA/Rho-kinase activation promotes lung fibrosis in an animal model of systemic sclerosis. Exp Lung Res 2016; 42:44-55. [PMID: 26873329 DOI: 10.3109/01902148.2016.1141263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective-tissue disease characterized by vascular injury, immune-system disorders, and excessive fibrosis of the skin and multiple internal organs. Recent reports found that RhoA/Rho-kinase (ROCK) pathway is implicated in various fibrogenic diseases. Intradermal injection of hypochlorous acid (HOCl)-generating solution induced inflammation, autoimmune activation, and fibrosis, mimicking the cutaneous diffuse form of SSc in humans. Our study aimed firstly to describe pulmonary inflammation and fibrosis induced by HOCl in mice, and secondly to determine whether fasudil, a selective inhibitor of ROCK, could prevent lung and skin fibroses in HOCl-injected mice. METHODS Female C57BL/6 mice received daily intradermal injection of hypochlorous acid (HOCl) for 6 weeks to induce SSc, with and without daily treatment with fasudil (30 mg·kg(-1)·day(-1)) by oral gavage. RESULTS HOCl intoxication induced significant lung inflammation (macrophages and neutrophils infiltration), and fibrosis. These modifications were prevented by fasudil treatment. Simultaneously, HOCl enhanced ROCK activity in lung and skin tissues. Inhibition of ROCK reduced skin fibrosis, expression of α-smooth-muscle actin and 3-nitrotyrosine, as well as the activity of ROCK in the fibrotic skin of HOCl-treated mice, through inhibition of phosphorylation of Smad2/3 and ERK1/2. Fasudil significantly decreased the serum levels of anti-DNA-topoisomerase-1 antibodies in mice with HOCl-induced SSc. CONCLUSIONS Our findings confirm HOCl-induced pulmonary inflammation and fibrosis in mice, and provide further evidence for a key role of RhoA/ROCK pathway in several pathological processes of experimental SSc. Fasudil could be a promising therapeutic approach for the treatment of SSc.
Collapse
Affiliation(s)
- Yihua Bei
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France.,b Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University , Shanghai , China
| | - Thong Hua-Huy
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France
| | - Carole Nicco
- c Laboratoire d'Immunologie Clinique, Universite Paris Descartes, Sorbonne Paris Cite, Equipe Batteux, Institut Cochin, Hopital Cochin, Assistance Publique-Hopitaux de Paris (AP-HP) , Paris , France
| | - Sy Duong-Quy
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France
| | - Nhat-Nam Le-Dong
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France.,d Department of Pneumology, St. Elisabeth Hospital , Namur , Belgium
| | - Kiet-Phong Tiev
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France.,e Department of Internal Medicine, Hospital of Vitry sur Seine , Site Pasteur , Vitry sur Seine , France
| | - Christiane Chéreau
- b Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University , Shanghai , China
| | - Frédéric Batteux
- b Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University , Shanghai , China
| | - Anh Tuan Dinh-Xuan
- a Laboratoire de Physiologie Respiratoire, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris , France
| |
Collapse
|
5
|
Alonso-Merino E, Martín Orozco R, Ruíz-Llorente L, Martínez-Iglesias OA, Velasco-Martín JP, Montero-Pedrazuela A, Fanjul-Rodríguez L, Contreras-Jurado C, Regadera J, Aranda A. Thyroid hormones inhibit TGF-β signaling and attenuate fibrotic responses. Proc Natl Acad Sci U S A 2016; 113:E3451-60. [PMID: 27247403 PMCID: PMC4914168 DOI: 10.1073/pnas.1506113113] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TGF-β, the most potent profibrogenic factor, acts by activating SMAD (mothers against decapentaplegic) transcription factors, which bind to SMAD-binding elements in target genes. Here, we show that the thyroid hormone triiodothyronine (T3), through binding to its nuclear receptors (TRs), is able to antagonize transcriptional activation by TGF-β/SMAD. This antagonism involves reduced phosphorylation of SMADs and a direct interaction of the receptors with SMAD3 and SMAD4 that is independent of T3-mediated transcriptional activity but requires residues in the receptor DNA binding domain. T3 reduces occupancy of SMAD-binding elements in response to TGF-β, reducing histone acetylation and inhibiting transcription. In agreement with this transcriptional cross-talk, T3 is able to antagonize fibrotic processes in vivo. Liver fibrosis induced by carbon tetrachloride is attenuated by thyroid hormone administration to mice, whereas aged TR knockout mice spontaneously accumulate collagen. Furthermore, skin fibrosis induced by bleomycin administration is also reduced by the thyroid hormones. These findings define an important function of the thyroid hormone receptors and suggest TR ligands could have beneficial effects to block the progression of fibrotic diseases.
Collapse
Affiliation(s)
- Elvira Alonso-Merino
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 20829 Madrid, Spain
| | - Rosa Martín Orozco
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 20829 Madrid, Spain
| | - Lidia Ruíz-Llorente
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 20829 Madrid, Spain
| | - Olaia A Martínez-Iglesias
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 20829 Madrid, Spain
| | - Juan Pedro Velasco-Martín
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, 20829 Madrid, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 20829 Madrid, Spain
| | - Luisa Fanjul-Rodríguez
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 20829 Madrid, Spain
| | - Constanza Contreras-Jurado
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 20829 Madrid, Spain
| | - Javier Regadera
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, 20829 Madrid, Spain
| | - Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 20829 Madrid, Spain;
| |
Collapse
|
6
|
Maria ATJ, Maumus M, Le Quellec A, Jorgensen C, Noël D, Guilpain P. Adipose-Derived Mesenchymal Stem Cells in Autoimmune Disorders: State of the Art and Perspectives for Systemic Sclerosis. Clin Rev Allergy Immunol 2016; 52:234-259. [DOI: 10.1007/s12016-016-8552-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Bitto A, Bagnato GL, Pizzino G, Roberts WN, Irrera N, Minutoli L, Russo G, Squadrito F, Saitta A, Bagnato GF, Altavilla D. Simvastatin prevents vascular complications in the chronic reactive oxygen species murine model of systemic sclerosis. Free Radic Res 2016; 50:514-22. [PMID: 26846205 DOI: 10.3109/10715762.2016.1149171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aims Systemic sclerosis (SSc) is characterized by vasculopathy and organ fibrosis. Although microvascular alterations are very well characterized, structural and functional abnormalities of large vessels are not well defined. Therefore, we evaluated the effect of simvastatin administration on aortic and small renal arteries thickening, and on myofibroblasts differentiation in a murine model of SSc. Methods and results SSc was induced in BALB/c mice by daily subcutaneous injections of hypochlorous acid (HOCl, 100 μl) for 6 weeks. Mice (n = 23) were randomized to receive: HOCl (n = 10); HOCl plus simvastatin (40 mg/kg; n = 8); or vehicle (n = 5). Simvastatin administration started 30 min after HOCl injection, and up to week 6. Aortic and small renal arteries intima-media thickness was evaluated by histological analysis. Immunostaining for α-smooth muscle actin (SMA), vascular endothelial growth factor receptor 2 (VEGFR2), and CD31 in aortic tissues was performed to evaluate myofibroblast differentiation and endothelial markers.In HOCl-treated mice, intima-media thickening with reduced lumen diameter was observed in the aorta and in small renal arteries and simvastatin administration prevented this increase. Aortic and renal myofibroblasts count, as expressed by α-SMA + density, was lower in the group of mice treated with simvastatin compared to HOCl-treated mice. Simvastatin prevented the reduction in VEGFR2 and CD31 expression induced by HOCl. Conclusions The administration of simvastatin regulates collagen deposition in the aortic tissues and in the small renal arteries by modulating myofibroblasts differentiation and vascular markers. Further studies are needed to better address the effect of statins in the macrovascular component of SSc.
Collapse
Affiliation(s)
- Alessandra Bitto
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Gian Luca Bagnato
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Gabriele Pizzino
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | | | - Natasha Irrera
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Letteria Minutoli
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Giuseppina Russo
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Francesco Squadrito
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Antonino Saitta
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Gian Filippo Bagnato
- a Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Domenica Altavilla
- c Department of Paediatric, Gynaecological, Microbiological and Biomedical Sciences , University of Messina , Messina , Italy
| |
Collapse
|
8
|
Oldham JM, Kumar D, Lee C, Patel SB, Takahashi-Manns S, Demchuk C, Strek ME, Noth I. Thyroid Disease Is Prevalent and Predicts Survival in Patients With Idiopathic Pulmonary Fibrosis. Chest 2015; 148:692-700. [PMID: 25811599 PMCID: PMC4556122 DOI: 10.1378/chest.14-2714] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/02/2015] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND A significant minority of patients with idiopathic pulmonary fibrosis (IPF) display features of autoimmunity without meeting the criteria for overt connective tissue disease. A link between IPF and other immune-mediated processes, such as hypothyroidism (HT), has not been reported. In this investigation, we aimed to determine whether HT is associated with IPF and if outcomes differ between patients with IPF with and without HT. METHODS A retrospective case-control analysis was conducted. Of 311 patients referred to the University of Chicago Interstitial Lung Disease Center with an initial diagnosis of IPF, 196 met the inclusion criteria and were included in the final analysis. Each case was matched 1:1 by age, sex, and race to a control subject with COPD. RESULTS HT was identified in 16.8% of cases and 7.1% of control subjects (OR, 2.7; 95% CI, 1.31-5.54; P = .01). Among patients with IPF, HT was associated with reduced survival time (P < .001) and was found to be an independent predictor of mortality in multivariable Cox regression analysis (hazard ratio, 2.12; 95% CI, 1.31-3.43; P = .002). A secondary analysis of two IPF clinical trial datasets supports these findings. CONCLUSIONS HT is common among patients with IPF, with a higher prevalence than in those with COPD and the general population. The presence of HT also predicts mortality in IPF, a finding that may improve future prognostication models. More research is needed to determine the biologic link between IPF and HT and how the presence of thyroid disease may influence disease progression.
Collapse
Affiliation(s)
- Justin M Oldham
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL.
| | - Disha Kumar
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, IL
| | - Cathryn Lee
- Department of Medicine, University of Chicago, Chicago, IL
| | - Shruti B Patel
- Division of Pulmonary and Critical Care Medicine, Loyola University Medical Center, Chicago, IL
| | | | - Carley Demchuk
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL
| | - Mary E Strek
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL
| | - Imre Noth
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
9
|
Propylthiouracil modulates aortic vasculopathy in the oxidative stress model of systemic sclerosis. Vascul Pharmacol 2015; 71:79-83. [DOI: 10.1016/j.vph.2014.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/10/2014] [Accepted: 12/07/2014] [Indexed: 11/17/2022]
|
10
|
Abstract
Without doubt, animal models have provided significant insights into our understanding of the rheumatological diseases; however, no model has accurately replicated all aspects of any autoimmune disease. Recent years have seen a plethora of knockouts and transgenics that have contributed to our knowledge of the initiating events of systemic sclerosis, an autoimmune disease. In this review, the focus is on models of systemic sclerosis and how they have progressed our understanding of fibrosis and vasculopathy, and whether they are relevant to the pathogenesis of systemic sclerosis.
Collapse
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
11
|
Rayner BS, Love DT, Hawkins CL. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radic Biol Med 2014; 71:240-255. [PMID: 24632382 DOI: 10.1016/j.freeradbiomed.2014.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/21/2022]
Abstract
Myeloperoxidase is an important heme enzyme released by activated leukocytes that catalyzes the reaction of hydrogen peroxide with halide and pseudo-halide ions to form various hypohalous acids. Hypohalous acids are chemical oxidants that have potent antibacterial, antiviral, and antifungal properties and, as such, play key roles in the human immune system. However, increasing evidence supports an alternative role for myeloperoxidase-derived oxidants in the development of disease. Excessive production of hypohalous acids, particularly during chronic inflammation, leads to the initiation and accumulation of cellular damage that has been implicated in many human pathologies including atherosclerosis, neurodegenerative disease, lung disease, arthritis, inflammatory cancers, and kidney disease. This has sparked a significant interest in developing a greater understanding of the mechanisms involved in myeloperoxidase-derived oxidant-induced mammalian cell damage. This article reviews recent developments in our understanding of the cellular reactivity of hypochlorous acid, hypobromous acid, and hypothiocyanous acid, the major oxidants produced by myeloperoxidase under physiological conditions.
Collapse
Affiliation(s)
- Benjamin S Rayner
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic T Love
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Clare L Hawkins
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
12
|
Bagnato G, Bitto A, Irrera N, Pizzino G, Sangari D, Cinquegrani M, Roberts W, Atteritano M, Altavilla D, Squadrito F, Bagnato G, Saitta A. Correction: Propylthiouracil prevents cutaneous and pulmonary fibrosis in the reactive oxygen species murine model of systemic sclerosis. Arthritis Res Ther 2014. [PMCID: PMC4060458 DOI: 10.1186/ar4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
13
|
Abstract
Fibrosis is defined as increased fibroblast proliferation and deposition of extracellular matrix components with potential clinical ramifications including organ dysfunction and failure. Fibrosis is a characteristic finding of various skin diseases which can have life-threatening consequences. These implications call for research into this topic as only a few treatments targeting fibrosis are available. In this review, we discuss oxidative stress and its role in skin fibrosis. Recent studies have implicated the importance of oxidative stress in a variety of cellular pathways directly and indirectly involved in the pathogenesis of skin fibrosis. The cellular pathways by which oxidative stress affects specific fibrotic skin disorders are also reviewed. Finally, we also describe various therapeutic approaches specifically targeting oxidative stress to prevent skin fibrosis. We believe oxidative stress is a relevant target, and understanding the role of oxidative stress in skin fibrosis will enhance knowledge of fibrotic skin diseases and potentially produce targeted therapeutic options.
Collapse
Affiliation(s)
- Anjali Shroff
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Clinical Research – Dermatology, 5 East 98th Street- 5th floor, Box 1048, New York, NY USA
| | - Andrew Mamalis
- Department of Dermatology, University of California Davis, Sacramento, CA USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA USA
| | - Jared Jagdeo
- Department of Dermatology, University of California Davis, Sacramento, CA USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA USA
- Department of Dermatology, State University of New York Downstate Medical Center, Brooklyn, NY USA
| |
Collapse
|