1
|
Guo H, Song Y, Li H, Hu H, Shi Y, Jiang J, Guo J, Cao L, Mao N, Zhang Y. A Mixture of T-Cell Epitope Peptides Derived from Human Respiratory Syncytial Virus F Protein Conferred Protection in DR1-TCR Tg Mice. Vaccines (Basel) 2024; 12:77. [PMID: 38250890 PMCID: PMC10820450 DOI: 10.3390/vaccines12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Human respiratory syncytial virus (HRSV) poses a significant disease burden on global health. To date, two vaccines that primarily induce humoral immunity to prevent HRSV infection have been approved, whereas vaccines that primarily induce T-cell immunity have not yet been well-represented. To address this gap, 25 predicted T-cell epitope peptides derived from the HRSV fusion protein with high human leukocyte antigen (HLA) binding potential were synthesized, and their ability to be recognized by PBMC from previously infected HRSV cases was assessed using an ELISpot assay. Finally, nine T-cell epitope peptides were selected, each of which was recognized by at least 20% of different donors' PBMC as potential vaccine candidates to prevent HRSV infection. The protective efficacy of F-9PV, a combination of nine peptides along with CpG-ODN and aluminum phosphate (Al) adjuvants, was validated in both HLA-humanized mice (DR1-TCR transgenic mice, Tg mice) and wild-type (WT) mice. The results show that F-9PV significantly enhanced protection against viral challenge as evidenced by reductions in viral load and pathological lesions in mice lungs. In addition, F-9PV elicits robust Th1-biased response, thereby mitigating the potential safety risk of Th2-induced respiratory disease during HRSV infection. Compared to WT mice, the F-9PV mice exhibited superior protection and immunogenicity in Tg mice, underscoring the specificity for human HLA. Overall, our results demonstrate that T-cell epitope peptides provide protection against HRSV infection in animal models even in the absence of neutralizing antibodies, indicating the feasibility of developing an HRSV T-cell epitope peptide-based vaccine.
Collapse
Affiliation(s)
- Hong Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Hai Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Hongqiao Hu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Yuqing Shi
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Jie Jiang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Jinyuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Lei Cao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Naiying Mao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (H.G.); (Y.S.); (H.L.); (H.H.); (Y.S.); (J.J.); (J.G.); (L.C.)
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
2
|
Jia X, Zhai TY, Wang B, Zhang JA, Song RH. High-throughput T cell receptor sequencing reveals differential immune repertoires in autoimmune thyroid diseases. Mol Cell Endocrinol 2022; 550:111644. [PMID: 35429598 DOI: 10.1016/j.mce.2022.111644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Autoimmune thyroid diseases (AITDs) are chronic autoimmune diseases specific to thyroid and mainly include Graves' disease (GD) and Hashimoto' thyroiditis (HT). The adaptive immunoreactivity of CD4+ T cells plays a crucial role in the pathogenesis of AITDs, but very little has been known about its changes in disease status. METHODS We collected peripheral CD4+ T cells from 12 GD patients, including 6 newly diagnosed GD (NGD) and 6 refractory GD (RGD) patients, 6 HT patients and 6 healthy controls, and examined the gene expression profiles and colon types of T cells receptor (TCR) β chain complementarity determining region 3 (CDR3) using high-throughput sequencing. RESULTS The TCR repertoire were significantly expanded in AITDs groups, and some TCR genes were expressed more preferentially in AITDs group than in the healthy control group, including TRBV15 (P = 0.001), TRBV4-2 (P = 0.003), TRBV9 (P = 0.007), TRBV3-2 (P = 0.012), TRBV7-8 (P = 0.015), TRBV25-1 (P = 0.019), TRBV12-4 (P = 0.019) and TRBV27 (P = 0.02) in GD patients as well as TRBV29-1 (P = 0.004), TRBV12-4 (P = 0.004), TRBV6-5 (P = 0.011), TRBV7-2 (P = 0.012), TRBV27 (P = 0.012), TRBV9 (P = 0.031) and TRBV4-2 (P = 0.032) in HT patients. Moreover, subgroup analysis showed that the difference in the TCR spectrum between the normal group and NGD was not obvious, but a large number of differential genes appeared in the RGD group. CONCLUSION TCR spectrum has changed in patients with AITDs with expanded repertoire and many upregulated TRBV genes. Moreover, this difference is not apparent in GD patients at the initial stage, but as the disease progresses, the differences in TCR profiles became more pronounced.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China
| | - Tian-Yu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, China
| | - Bing Wang
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China
| | - Jin-An Zhang
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China.
| | - Rong-Hua Song
- Department of Endocrinology and Rheumatology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, China.
| |
Collapse
|
3
|
Whittington KB, Prislovsky A, Beaty J, Albritton L, Radic M, Rosloniec EF. CD8 + T Cells Expressing an HLA-DR1 Chimeric Antigen Receptor Target Autoimmune CD4 + T Cells in an Antigen-Specific Manner and Inhibit the Development of Autoimmune Arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:16-26. [PMID: 34819392 PMCID: PMC8702470 DOI: 10.4049/jimmunol.2100643] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Ag-specific immunotherapy is a long-term goal for the treatment of autoimmune diseases; however developing a means of therapeutically targeting autoimmune T cells in an Ag-specific manner has been difficult. Through the engineering of an HLA-DR1 chimeric Ag receptor (CAR), we have produced CD8+ CAR T cells that target CD4+ T cells in an Ag-specific manner and tested their ability to inhibit the development of autoimmune arthritis in a mouse model. The DR1 CAR molecule was engineered to contain CD3ζ activation and CD28 signaling domains and a covalently linked autoantigenic peptide from type II collagen (CII; DR1-CII) to provide specificity for targeting the autoimmune T cells. Stimulation of the DR1-CII CAR T cells by an anti-DR Ab induced cytokine production, indicating that the DR1-CAR functions as a chimeric molecule. In vitro CTL assays using cloned CD4+ T cells as target cells demonstrated that the DR1-CII CAR T cells efficiently recognize and kill CD4+ T cells that are specific for the CII autoantigen. The CTL function was highly specific, as no killing was observed using DR1-restricted CD4+ T cells that recognize other Ags. When B6.DR1 mice, in which autoimmune arthritis had been induced, were treated with the DR1-CII CAR T cells, the CII-specific autoimmune CD4+ T cell response was significantly decreased, autoantibody production was suppressed, and the incidence and severity of the autoimmune arthritis was diminished. These data demonstrate that HLA-DR CAR T cells have the potential to provide a highly specific therapeutic approach for the treatment of autoimmune disease.
Collapse
Affiliation(s)
| | | | - Jacob Beaty
- Department of Medicine, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163
| | - Lorraine Albritton
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163
| | - Edward F. Rosloniec
- Veterans Affairs Medical Center, Memphis TN 38104,Department of Medicine, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163,Department of Pathology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis TN 38163
| |
Collapse
|
4
|
Myers LK, Winstead M, Kee JD, Park JJ, Zhang S, Li W, Yi AK, Stuart JM, Rosloniec EF, Brand DD, Tuckey RC, Slominski AT, Postlethwaite AE, Kang AH. 1,25-Dihydroxyvitamin D3 and 20-Hydroxyvitamin D3 Upregulate LAIR-1 and Attenuate Collagen Induced Arthritis. Int J Mol Sci 2021; 22:ijms222413342. [PMID: 34948139 PMCID: PMC8709360 DOI: 10.3390/ijms222413342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Vitamin D plays a crucial role in regulation of the immune response. However, treatment of autoimmune diseases with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] doses sufficient to be effective is prohibitive due to its calcemic and toxic effects. We use the collagen-induced arthritis (CIA) model to analyze the efficacy of the noncalcemic analog of vitamin D, 20S-hydroxyvitamin D3 [20S(OH)D3], as well as 1,25(OH)2D3, to attenuate arthritis and explore a potential mechanism of action. Mice fed a diet deficient in vitamin D developed a more severe arthritis characterized by enhanced secretion of T cell inflammatory cytokines, compared to mice fed a normal diet. The T cell inflammatory cytokines were effectively suppressed, however, by culture of the cells with 20S(OH)D3. Interestingly, one of the consequences of culture with 1,25(OH)2D3 or 20S(OH)D3, was upregulation of the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-1 or CD305). Polyclonal antibodies which activate LAIR-1 were also capable of attenuating arthritis. Moreover, oral therapy with active forms of vitamin D suppressed arthritis in LAIR-1 sufficient DR1 mice, but were ineffective in LAIR-1−/− deficient mice. Taken together, these data show that the effect of vitamin D on inflammation is at least, in part, mediated by LAIR-1 and that non-calcemic 20S(OH)D3 may be a promising therapeutic agent for the treatment of autoimmune diseases such as Rheumatoid Arthritis.
Collapse
Affiliation(s)
- Linda K. Myers
- Department of Pediatrics, University of Tennessee Health Science Center, 50 N. Dunlap, Rm. 461R, Memphis, TN 38103, USA
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
- Correspondence: ; Tel.: +1-(901)-448-5774; Fax: +1-(901)-448-7265
| | - Michael Winstead
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
| | - John D. Kee
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
| | - Jeoungeun J. Park
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38103, USA; (S.Z.); (W.L.)
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38103, USA; (S.Z.); (W.L.)
| | - Ae-Kyung Yi
- Department of Microbiology-Immunology-Biochemistry, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA;
| | - John M. Stuart
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
- Memphis Veterans Affairs Medical Center, 1030 Jefferson Ave., Memphis, TN 38104, USA; (E.F.R.); (D.D.B.)
| | - Edward F. Rosloniec
- Memphis Veterans Affairs Medical Center, 1030 Jefferson Ave., Memphis, TN 38104, USA; (E.F.R.); (D.D.B.)
| | - David D. Brand
- Memphis Veterans Affairs Medical Center, 1030 Jefferson Ave., Memphis, TN 38104, USA; (E.F.R.); (D.D.B.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia;
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham 500 22nd St. S, Birmingham, AL 35294, USA;
- Comprehensive Cancer Center, University of Alabama at Birmingham 1824 6th Ave., Birmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical Center, 700 19th Street S., Birmingham, AL 35233, USA
| | - Arnold E. Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
- Memphis Veterans Affairs Medical Center, 1030 Jefferson Ave., Memphis, TN 38104, USA; (E.F.R.); (D.D.B.)
| | - Andrew H. Kang
- Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Memphis, TN 38163, USA; (M.W.); (J.D.K.); (J.J.P.); (J.M.S.); (A.E.P.); (A.H.K.)
- Memphis Veterans Affairs Medical Center, 1030 Jefferson Ave., Memphis, TN 38104, USA; (E.F.R.); (D.D.B.)
| |
Collapse
|
5
|
Song R, Jia X, Zhao J, Du P, Zhang JA. T cell receptor revision and immune repertoire changes in autoimmune diseases. Int Rev Immunol 2021; 41:517-533. [PMID: 34243694 DOI: 10.1080/08830185.2021.1929954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autoimmune disease (AID) is a condition in which the immune system breaks down and starts to attack the body. Some common AIDs include systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus and so forth. The changes in T-cell receptor (TCR) repertoire have been found in several autoimmune diseases, and may be responsible for the breakdown of peripheral immune tolerance. In this review, we discussed the processes of TCR revision in peripheral immune environment, the changes in TCR repertoire that occurred in various AIDs, and the specifically expanded T cell clones. We hope our discussion can provide insights for the future studies, helping with the discovery of disease biomarkers and expanding the strategies of immune-targeted therapy. HighlightsRestricted TCR repertoire and biased TCR-usage are found in a variety of AIDs.TCR repertoire shows tissue specificity in a variety of AID diseases.The relationship between TCR repertoire diversity and disease activity is still controversial in AIDs.Dominant TCR clonotypes may help to discover new disease biomarkers and expand the strategies of immune-targeted therapy.
Collapse
Affiliation(s)
- Ronghua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jing Zhao
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Peng Du
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
6
|
Matas‐Céspedes A, Brown L, Mahbubani KT, Bareham B, Higgins J, Curran M, de Haan L, Lapointe J, Stebbings R, Saeb‐Parsy K. Use of human splenocytes in an innovative humanised mouse model for prediction of immunotherapy-induced cytokine release syndrome. Clin Transl Immunology 2020; 9:e1202. [PMID: 33173582 PMCID: PMC7641894 DOI: 10.1002/cti2.1202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Humanised mice have emerged as valuable models for pre-clinical testing of the safety and efficacy of immunotherapies. Given the variety of models available, selection of the most appropriate humanised mouse model is critical in study design. Here, we aimed to develop a model for predicting cytokine release syndrome (CRS) while minimising graft-versus-host disease (GvHD). METHODS To overcome donor-induced variation, we directly compared the in vitro and in vivo immune phenotype of immunodeficient NSG mice reconstituted with human bone marrow (BM) CD34+ haematopoietic stem cells (HSCs), peripheral blood mononuclear cells (PBMCs) or spleen mononuclear cells (SPMCs) from the same human donors. SPMC engraftment in NSG-dKO mice, which lack MHC class I and II, was also evaluated as a strategy to limit GvHD. Another group of mice was engrafted with umbilical cord blood (UCB) CD34+ HSCs. Induction of CRS in vivo was investigated upon administration of the anti-CD3 monoclonal antibody OKT3. RESULTS PBMC- and SPMC-reconstituted NSG mice showed short-term survival, with engrafted human T cells exhibiting mostly an effector memory phenotype. Survival in SPMC-reconstituted NSG-dKO mice was significantly longer. Conversely, both BM and UCB-HSC models showed longer survival, without demonstrable GvHD and a more naïve T-cell phenotype. PBMC- and SPMC-reconstituted mice, but not BM-HSC or UCB-HSC mice, experienced severe clinical signs of CRS upon administration of OKT3. CONCLUSION PBMC- and SPMC-reconstituted NSG mice better predict OKT3-mediated CRS. The SPMC model allows generation of large experimental groups, and the use of NSG-dKO mice mitigates the limitation of early GvHD.
Collapse
Affiliation(s)
- Alba Matas‐Céspedes
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Lee Brown
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
| | - Krishnaa T Mahbubani
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Bethany Bareham
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Jackie Higgins
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Michelle Curran
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| | - Lolke de Haan
- Clinical Pharmacology and Safety SciencesR&DAstraZenecaCambridgeUK
- Present address:
ADC TherapeuticsLondonUK
| | | | | | - Kourosh Saeb‐Parsy
- Department of SurgeryUniversity of Cambridge and NIHR Cambridge Biomedical CampusCambridgeUK
| |
Collapse
|
7
|
Susukida T, Aoki S, Shirayanagi T, Yamada Y, Kuwahara S, Ito K. HLA transgenic mice: application in reproducing idiosyncratic drug toxicity. Drug Metab Rev 2020; 52:540-567. [PMID: 32847422 DOI: 10.1080/03602532.2020.1800725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various types of transgenic mice carrying either class I or II human leukocyte antigen (HLA) molecules are readily available, and reports describing their use in a variety of studies have been published for more than 30 years. Examples of their use include the discovery of HLA-specific antigens against viral infection as well as the reproduction of HLA-mediated autoimmune diseases for the development of therapeutic strategies. Recently, HLA transgenic mice have been used to reproduce HLA-mediated idiosyncratic drug toxicity (IDT), a rare and unpredictable adverse drug reaction that can result in death. For example, abacavir-induced IDT has successfully been reproduced in HLA-B*57:01 transgenic mice. Several reports using HLA transgenic mice for IDT have proven the utility of this concept for the evaluation of IDT using various HLA allele combinations and drugs. It has become apparent that such models may be a valuable tool to investigate the mechanisms underlying HLA-mediated IDT. This review summarizes the latest findings in the area of HLA transgenic mouse models and discusses the current challenges that must be overcome to maximize the potential of this unique animal model.
Collapse
Affiliation(s)
- Takeshi Susukida
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Laboratory of Cancer Biology and Immunology, Section of Host Defenses, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Shirayanagi
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yushiro Yamada
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Saki Kuwahara
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
8
|
Park JE, Brand DD, Rosloniec EF, Yi AK, Stuart JM, Kang AH, Myers LK. Leukocyte-associated immunoglobulin-like receptor 1 inhibits T-cell signaling by decreasing protein phosphorylation in the T-cell signaling pathway. J Biol Chem 2020; 295:2239-2247. [PMID: 31932281 DOI: 10.1074/jbc.ra119.011150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
Multiple observations implicate T-cell dysregulation as a central event in the pathogenesis of rheumatoid arthritis. Here, we investigated mechanisms for suppressing T-cell activation via the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1). To determine how LAIR-1 affects T-cell receptor (TCR) signaling, we compared 1) T cells from LAIR-1-sufficient and -deficient mice, 2) Jurkat cells expressing either LAIR-1 mutants or C-terminal Src kinase (CSK) mutants, and 3) T cells from mice that contain a CSK transgene susceptible to chemical inhibition. Our results indicated that LAIR-1 engagement by collagen or by complement C1q (C1Q, which contains a collagen-like domain) inhibits TCR signaling by decreasing the phosphorylation of key components in the canonical T-cell signaling pathway, including LCK proto-oncogene SRC family tyrosine kinase (LCK), LYN proto-oncogene SRC family tyrosine kinase (LYN), ζ chain of T-cell receptor-associated protein kinase 70 (ZAP-70), and three mitogen-activated protein kinases (extracellular signal-regulated kinase, c-Jun N-terminal kinase 1/2, and p38). The intracellular region of LAIR-1 contains two immunoreceptor tyrosine-based inhibition motifs that are both phosphorylated by LAIR-1 activation, and immunoprecipitation experiments revealed that Tyr-251 in LAIR-1 binds CSK. Using CRISPR/Cas9-mediated genome editing, we demonstrate that CSK is essential for the LAIR-1-induced inhibition of the human TCR signal transduction. T cells from mice that expressed a PP1 analog-sensitive form of CSK (CskAS) corroborated these findings, and we also found that Tyr-251 is critical for LAIR-1's inhibitory function. We propose that LAIR-1 activation may be a strategy for controlling inflammation and may offer a potential therapeutic approach for managing autoimmune diseases.
Collapse
Affiliation(s)
- Jeoung-Eun Park
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - David D Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163; Department of MicrobiologyγÇô-ImmunologyγÇô-Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163; Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104
| | - Edward F Rosloniec
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163; Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104
| | - Ae-Kyung Yi
- Department of MicrobiologyγÇô-ImmunologyγÇô-Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - John M Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163; Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104
| | - Andrew H Kang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163; Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104
| | - Linda K Myers
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| |
Collapse
|
9
|
Curran M, Mairesse M, Matas-Céspedes A, Bareham B, Pellegrini G, Liaunardy A, Powell E, Sargeant R, Cuomo E, Stebbings R, Betts CJ, Saeb-Parsy K. Recent Advancements and Applications of Human Immune System Mice in Preclinical Immuno-Oncology. Toxicol Pathol 2019; 48:302-316. [PMID: 31847725 DOI: 10.1177/0192623319886304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.
Collapse
Affiliation(s)
- Michelle Curran
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Maelle Mairesse
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alba Matas-Céspedes
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bethany Bareham
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ardi Liaunardy
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Edward Powell
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emanuela Cuomo
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard Stebbings
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Catherine J Betts
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
10
|
Yoon TW, Kim YI, Cho H, Brand DD, Rosloniec EF, Myers LK, Postlethwaite AE, Hasty KA, Stuart JM, Yi AK. Ameliorating effects of Gö6976, a pharmacological agent that inhibits protein kinase D, on collagen-induced arthritis. PLoS One 2019; 14:e0226145. [PMID: 31809526 PMCID: PMC6897462 DOI: 10.1371/journal.pone.0226145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptor (TLR) signaling can contribute to the pathogenesis of arthritis. Disruption of TLR signaling at early stages of arthritis might thereby provide an opportunity to halt the disease progression and ameliorate outcomes. We previously found that Gö6976 inhibits TLR-mediated cytokine production in human and mouse macrophages by inhibiting TLR-dependent activation of protein kinase D1 (PKD1), and that PKD1 is essential for proinflammatory responses mediated by MyD88-dependent TLRs. In this study, we investigated whether PKD1 contributes to TLR-mediated proinflammatory responses in human synovial cells, and whether Gö6976 treatment can suppress the development and progression of type II collagen (CII)-induced arthritis (CIA) in mouse. We found that TLR/IL-1R ligands induced activation of PKD1 in human fibroblast-like synoviocytes (HFLS). TLR/IL-1R-induced expression of cytokines/chemokines was substantially inhibited in Gö6976-treated HFLS and PKD1-knockdown HFLS. In addition, serum levels of anti-CII IgG antibodies, and the incidence and severity of arthritis after CII immunization were significantly reduced in mice treated daily with Gö6976. Synergistic effects of T-cell receptor and TLR, as well as TLR alone, on spleen cell proliferation and cytokine production were significantly inhibited in the presence of Gö6976. Our results suggest a possibility that ameliorating effects of Gö6976 on CIA may be due to its ability to inhibit TLR/IL-1R-activated PKD1, which might play an important role in proinflammatory responses in arthritis, and that PKD1 could be a therapeutic target for inflammatory arthritis.
Collapse
Affiliation(s)
- Tae Won Yoon
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Young-In Kim
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Hongsik Cho
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David D. Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Edward F. Rosloniec
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Linda K. Myers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Arnold E. Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Karen A. Hasty
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - John M. Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Ae-Kyung Yi
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
11
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Jia X, Wang B, Zhai T, Yao Q, Li Q, Zhang JA. WITHDRAWN: T cell receptor revision and immune repertoire changes in autoimmune diseases. Clin Immunol 2018:S1521-6616(18)30724-1. [PMID: 30543918 DOI: 10.1016/j.clim.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Bing Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Tianyu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai 201508, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
13
|
Park JE, Majumdar S, Brand DD, Rosloniec EF, Yi AK, Stuart JM, Kang AH, Myers LK. The role of Syk in peripheral T cells. Clin Immunol 2018; 192:50-57. [PMID: 29673901 DOI: 10.1016/j.clim.2018.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/15/2022]
Abstract
The aim of this study was to understand how Syk affects peripheral T cell function. T cells from Syk-/- chimeric mice and DR1 Sykfl/fl CD4cre conditional mice gave strong CD3-induced Th1, Th2, and Th17 cytokine responses. However, an altered peptide ligand (APL) of human CII (256-276) with two substitutions (F263N, E266D), also called A12, elicited only Th2 cytokine responses from Sykfl/fl T cells but not Sykfl/fl-CD4cre T cells. Western blots revealed a marked increase in the phosphorylation of Syk, JNK and p38 upon A12/DR1 activation in WT or Sykfl/fl T cells but not in Sykfl/flCD4-cre cells. We demonstrate that Syk is required for the APL- induction of suppressive cytokines. Chemical Syk inhibitors blocked activation of GATA-3 by peptide A12/DR1. In conclusion, this study provides novel insights into the role that Syk plays in directing T cell activity, and may shape therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Jeoung-Eun Park
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Sirshendu Majumdar
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - David D Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Microbiology-Immunology-Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, United States
| | - Edward F Rosloniec
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, United States
| | - Ae-Kyung Yi
- Microbiology-Immunology-Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - John M Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, United States
| | - Andrew H Kang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, United States
| | - Linda K Myers
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, United States.
| |
Collapse
|
14
|
Isozaki T, Nishimi S, Nishimi A, Saito M, Miwa Y, Toyoshima Y, Inagaki K, Kasama T. A disintegrin and metalloproteinase (ADAM)-10 as a predictive factor for tocilizumab effectiveness in rheumatoid arthritis. Mod Rheumatol 2016; 27:782-786. [PMID: 27846745 DOI: 10.1080/14397595.2016.1256025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES A disintegrin and metalloproteinase (ADAM)-10 is expressed in rheumatoid arthritis (RA). In this study, we focused on ADAM-10 as a predictive factor for the treatment with biologics in RA. METHODS The levels of ADAM-10 and fractalkine/CX3CL1 in RA and healthy controls serum were measured using enzyme-linked immunosorbent assays. Fifteen patients were treated with adalimumab (ADA), and 20 patients were treated with tocilizumab (TCZ). RESULTS ADAM-10 positively correlated with fractalkine/CX3CL1 in the sera of RA patients and was presented at a significantly higher level compared to that in normal serum (487 ± 80 pg/ml and 85 ± 33 pg/ml, respectively, p < 0.05). ADAM-10 highly correlates with fractalkine/CX3CL1 in the sera of RA patients. The level of ADAM-10 decreased after the treatment with TCZ but not with ADA. In addition, we found that the level of ADAM-10 in TCZ responders was significantly higher than that of the TCZ nonresponders at 24 weeks (619 ± 134 pg/ml and 109 ± 25 pg/ml, respectively). Multiple regression analysis showed that ADAM-10 was only identified as independent predictive variable for the improvement of DAS28 (ESR) at 24 weeks. CONCLUSIONS ADAM-10 may be a predictor of the effectiveness of TCZ in treating RA.
Collapse
Affiliation(s)
- Takeo Isozaki
- a Division of Rheumatology, Department of Medicine , Showa University School of Medicine , Tokyo , Japan and
| | - Shinichiro Nishimi
- a Division of Rheumatology, Department of Medicine , Showa University School of Medicine , Tokyo , Japan and
| | - Airi Nishimi
- a Division of Rheumatology, Department of Medicine , Showa University School of Medicine , Tokyo , Japan and
| | - Mayu Saito
- a Division of Rheumatology, Department of Medicine , Showa University School of Medicine , Tokyo , Japan and
| | - Yusuke Miwa
- a Division of Rheumatology, Department of Medicine , Showa University School of Medicine , Tokyo , Japan and
| | - Yoichi Toyoshima
- b Department of Orthopedics , Showa University School of Medicine , Tokyo , Japan
| | - Katsunori Inagaki
- b Department of Orthopedics , Showa University School of Medicine , Tokyo , Japan
| | - Tsuyoshi Kasama
- a Division of Rheumatology, Department of Medicine , Showa University School of Medicine , Tokyo , Japan and
| |
Collapse
|
15
|
Bieber K, Witte M, Sun S, Hundt JE, Kalies K, Dräger S, Kasprick A, Twelkmeyer T, Manz RA, König P, Köhl J, Zillikens D, Ludwig RJ. T cells mediate autoantibody-induced cutaneous inflammation and blistering in epidermolysis bullosa acquisita. Sci Rep 2016; 6:38357. [PMID: 27917914 PMCID: PMC5137106 DOI: 10.1038/srep38357] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022] Open
Abstract
T cells are key players in autoimmune diseases by supporting the production of autoantibodies. However, their contribution to the effector phase of antibody-mediated autoimmune dermatoses, i.e., tissue injury and inflammation of the skin, has not been investigated. In this paper, we demonstrate that T cells amplify the development of autoantibody-induced tissue injury in a prototypical, organ-specific autoimmune disease, namely epidermolysis bullosa acquisita (EBA) – characterized and caused by autoantibodies targeting type VII collagen. Specifically, we show that immune complex (IC)-induced inflammation depends on the presence of T cells – a process facilitated by T cell receptor (TCR)γδ and NKT cells. Because tissue damage in IC-induced inflammation is neutrophil-dependent, we further analyze the interplay between T cells and neutrophils in an experimental model of EBA. We demonstrate that T cells not only enhance neutrophil recruitment into the site of inflammation but also interact with neutrophils in lymphatic organs. Collectively, this study shows that T cells amplify the effector phase of antibody-induced tissue inflammation.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Mareike Witte
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Shijie Sun
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.,Department of Immunology, Dalian Medical University, No9 West Section Lvshun S Rd, Liaoning Province, China
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Sören Dräger
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Trix Twelkmeyer
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.,Department of Dermatology, Johannes Gutenberg-University Mainz, Saarstraße 21, D-55122 Mainz, Germany
| | - Rudolf A Manz
- ISEF, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Jörg Köhl
- ISEF, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.,Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
16
|
Herlihy SE, Brown ML, Pilling D, Weeks BR, Myers LK, Gomer RH. Role of the neutrophil chemorepellent soluble dipeptidyl peptidase IV in decreasing inflammation in a murine model of arthritis. Arthritis Rheumatol 2016; 67:2634-8. [PMID: 26138693 DOI: 10.1002/art.39250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/11/2015] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine whether an intraarticular injection of the neutrophil chemorepellent dipeptidyl peptidase IV (DPPIV; CD26) can attenuate inflammation and decrease the severity of arthritis in a murine model. METHODS DBA/1 mice were immunized with type II collagen/Freund's complete adjuvant to produce collagen-induced arthritis (CIA). On day 25 postimmunization, recombinant human DPPIV (rhDPPIV) or phosphate buffered saline was injected intraarticularly, and arthritis severity scores were recorded 3 times per week. The hind legs of mice in both groups were fixed, decalcified, paraffin embedded, and sectioned. Pathologic scores for inflammation and neutrophil infiltration were recorded on a scale of 1-8, and the number of neutrophils was determined by morphometric cell counts. In addition, Mac-2-positive macrophages and articular damage were assessed using anti-Mac-2 antibodies and histologic staining, respectively. RESULTS Injection of rhDPPIV reduced the mean score of arthritis severity in mice with CIA. DPPIV treatment reduced the overall extent of inflammation and articular damage around the arthritic joint and periarticular tissue, and also decreased neutrophil and macrophage infiltration. CONCLUSION A localized injection of the neutrophil chemorepellent DPPIV reduces inflammation and the severity of the disease in a murine model of arthritis.
Collapse
Affiliation(s)
| | | | | | | | - Linda K Myers
- University of Tennessee Health Science Center, Memphis
| | | |
Collapse
|