1
|
Huang Z, Zhang W, Shu Q, Guo XC, Zheng X, Lu YJ. Synergistic Anti-Inflammatory Effects of Dibenzoylmethane and Silibinin: Insights From LPS-Induced RAW 264.7 Cells and TPA-Induced Mouse Model. Chem Biodivers 2025:e202402567. [PMID: 39743480 DOI: 10.1002/cbdv.202402567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Inflammation is an important predisposing factor for many chronic diseases. The dietary flavonoid silibinin (SB) has excellent anti-inflammatory properties in cells, but its low bioavailability in the blood compromises its therapeutic potential. This study aims to investigate the potential of dibenzoylmethane (DBM) to synergistically enhance the anti-inflammatory benefits of SB. The synergistic effects of DBM and SB in combination were evaluated in lipopolysaccharide (LPS)-induced RAW264.7 cells and 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced mice. In addition, a network pharmacology approach and molecular docking were used to explore the key targets and signaling pathways of DBM and SB in combination. The results showed that DBM and SB synergistically inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in a 1:1 concentration ratio. These two compounds may exert their synergistic effects by modulating the nuclear factor kappa-B (NF-κB) and HIF-1 signaling pathways, among others. Molecular docking revealed that both compounds exhibited high binding affinities to inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Compared with single-compound use, the two compounds in combination significantly reduced ear edema and inflammatory cell infiltration and inhibited the protein expression of iNOS and COX-2 in TPA-induced mice. This research provides a rationale for the combination of DBM and SB as an effective anti-inflammatory agent.
Collapse
Affiliation(s)
- Zebin Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wanying Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Qi Shu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xiao-Chun Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xi Zheng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
- Guangdong Xianlingtong Biopharmaceutical Technology Co., Ltd, Meizhou, China
| |
Collapse
|
2
|
Singh MT, Thaggikuppe Krishnamurthy P, Magham SV. Harnessing the synergistic potential of NK1R antagonists and selective COX-2 inhibitors for simultaneous targeting of TNBC cells and cancer stem cells. J Drug Target 2024; 32:258-269. [PMID: 38252517 DOI: 10.1080/1061186x.2024.2309568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), rendering it unresponsive to endocrine therapy and HER2 targeted treatments. Though certain chemotherapeutics targeting the cell cycle have shown efficacy to a certain extent, the presence of chemotherapy-resistant cancer stem cells (CSCs) presents a significant challenge in tackling TNBC. Multiple lines of evidence suggest the upregulation of neuropeptide Substance P (SP), its NK-1 receptor (NK1R) and the Cyclooxygenase-2 (COX-2) enzyme in TNBC patients. Upregulation of the SP/NK1R system and COX-2 influences major signalling pathways involved in cell proliferation, growth, survival, angiogenesis, inflammation, metastasis and stem cell activity. The simultaneous activation and crosstalk between the pathways activated by SP/NK1R and COX-2 consequently increase the levels of key regulators of self-renewal pathways in CSCs, promoting stemness. The combination therapy with NK1R antagonists and COX-2 inhibitors can simultaneously target TNBC cells and CSCs, thereby enhancing treatment efficacy and reducing the risk of recurrence and relapse. This review discusses the rationale for combining NK1R antagonists and COX-2 inhibitors for the better management of TNBC and a novel strategy to deliver drug cargo precisely to the tumour site to address the challenges associated with off-target binding.
Collapse
Affiliation(s)
- Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Sai Varshini Magham
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
3
|
Hajirahimkhan A, Bartom ET, Chung CH, Guo X, Berkley K, Lee O, Chen R, Cho W, Chandrasekaran S, Clare SE, Khan SA. Reprogramming SREBP1-dependent lipogenesis and inflammation in high-risk breast with licochalcone A: a novel path to cancer prevention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595011. [PMID: 39651211 PMCID: PMC11623508 DOI: 10.1101/2024.05.20.595011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Anti-estrogens have had limited impact on breast cancer (BC) prevention. Novel agents with better tolerability, and efficacy beyond estrogen receptor (ER) positive BC are needed. We studied licochalcone A (LicA) for ER-agnostic BC prevention. Methods We evaluated antiproliferative effects of LicA in seven breast cell lines and its suppression of ER+ and ER- xenograft tumors in mice. High-risk human breast tissue was treated with LicA ex vivo , followed by RNA sequencing and metabolism flux modeling. Confirmatory testing was performed in an independent specimen set and ER+/- BC cell lines using NanoString metabolic panel, proteomics, western blots, and spatiotemporally resolved cholesterol quantification in single cells. Results LicA suppressed proliferation in vitro and xenograft tumor growth in vivo . It downregulated pivotal steps in PI3K-AKT-SREBP1-dependent lipogenesis, suppressed PI3K and AKT phosphorylation, SREBP1 protein expression, and cholesterol levels in the plasma membrane inner leaflet, to the levels in normal breast cells. LicA also suppressed prostaglandin E2 synthesis and PRPS1-catalyzed de novo nucleotide biosynthesis, stalling proliferation; further evident by reduced MKI67 and BCL2 proteins. Conclusions LicA targets SREBP1, a central regulator of lipogenesis and immune response, reducing pro-tumorigenic aberrations in lipid homeostasis and inflammation. It is a promising non-endocrine candidate for BC prevention.
Collapse
|
4
|
Cheng L, Hu Z, Gu J, Li Q, Liu J, Liu M, Li J, Bi X. Exploring COX-Independent Pathways: A Novel Approach for Meloxicam and Other NSAIDs in Cancer and Cardiovascular Disease Treatment. Pharmaceuticals (Basel) 2024; 17:1488. [PMID: 39598398 PMCID: PMC11597362 DOI: 10.3390/ph17111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
As a fundamental process of innate immunity, inflammation is associated with the pathologic process of various diseases and constitutes a prevalent risk factor for both cancer and cardiovascular disease (CVD). Studies have indicated that several non-steroidal anti-inflammatory drugs (NSAIDs), including Meloxicam, may prevent tumorigenesis, reduce the risk of carcinogenesis, improve the efficacy of anticancer therapies, and reduce the risk of CVD, in addition to controlling the body's inflammatory imbalances. Traditionally, most NSAIDs work by inhibiting cyclooxygenase (COX) activity, thereby blocking the synthesis of prostaglandins (PGs), which play a role in inflammation, cancer, and various cardiovascular conditions. However, long-term COX inhibition and reduced PGs synthesis can result in serious side effects. Recent studies have increasingly shown that some selective COX-2 inhibitors and NSAIDs, such as Meloxicam, may exert effects beyond COX inhibition. This emerging understanding prompts a re-evaluation of the mechanisms by which NSAIDs operate, suggesting that their benefits in cancer and CVD treatment may not solely depend on COX targeting. In this review, we will explore the potential COX-independent mechanisms of Meloxicam and other NSAIDs in addressing oncology and cardiovascular health.
Collapse
Affiliation(s)
- Lixia Cheng
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Zhenghui Hu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jiawei Gu
- Department of Precision Genomics, Intermountain Healthcare, 5121 Cottonwood St., Murray, UT 84107, USA;
| | - Qian Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jiahao Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Meiling Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Jie Li
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (L.C.); (Z.H.); (Q.L.); (J.L.); (M.L.); (J.L.)
| |
Collapse
|
5
|
Lin Y, Sun N, Liu D, Yang X, Dong Y, Jiang C. COX-2/PTGS2-targeted herbal-derived oligonucleotide drug HQi-sRNA-2 was effective in spontaneous mouse lung cancer model. IUBMB Life 2024; 76:937-950. [PMID: 39051847 DOI: 10.1002/iub.2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/13/2024] [Indexed: 07/27/2024]
Abstract
In 2020, the number of deaths caused by lung cancer worldwide reached 1,796,144, making it the leading cause of cancer-related deaths. Cyclooxygenase-2/prostaglandin endoperoxide synthase 2 (COX-2/PTGS2) is overexpressed in lung cancer, which promotes tumor proliferation, invasion, angiogenesis, and resistance to apoptosis. Here, we report that the oligonucleotide drug HQi-sRNA-2 from Traditional Chinese Medicine Huangqin targeting COX-2/PTGS2 significantly inhibited proliferation, migration, and invasion and induced apoptosis in the human lung cancer cell line NCI-H460. Oral delivery of HQi-sRNA-2 bencaosomes prolonged survival, reduced tumor burden, and maintained weight in a spontaneous mouse lung cancer model. Compared with paclitaxel, HQi-sRNA-2 may be less toxic and have approximately equal efficacy in reducing tumor burden. Our previous studies reported that herbal small RNAs (sRNAs) are functional medical components. Our data suggest that sphingosine (d18:1)-HQi-sRNA-2 bencaosomes, targeting COX-2/PTGS2 and downregulating the PI3K and AKT signaling pathways, may provide novel therapeutics for lung cancer.
Collapse
Affiliation(s)
- Yexuan Lin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Sun
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dengyuan Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmeng Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Dong
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengyu Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Chun KS, Kim EH, Kim DH, Song NY, Kim W, Na HK, Surh YJ. Targeting cyclooxygenase-2 for chemoprevention of inflammation-associated intestinal carcinogenesis: An update. Biochem Pharmacol 2024; 228:116259. [PMID: 38705538 DOI: 10.1016/j.bcp.2024.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. Cyclooxygenase-2 (COX-2) is a key enzyme involved in inflammatory signaling. While being transiently upregulated upon inflammatory stimuli, COX-2 has been found to be consistently overexpressed in human colorectal cancer and several other malignancies. The association between chronic inflammation and cancer has been revisited: cancer can arise when inflammation fails to resolve. Besides its proinflammatory functions, COX-2 also catalyzes the production of pro-resolving as well as anti-inflammatory metabolites from polyunsaturated fatty acids. This may account for the side effects caused by long term use of some COX-2 inhibitory drugs during the cancer chemopreventive trials. This review summarizes the latest findings highlighting the dual functions of COX-2 in the context of its implications in the development, maintenance, and progression of cancer.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, South Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, South Korea
| | - Na-Young Song
- Department of Oral Biology, BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, South Korea
| | - Wonki Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, South Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
7
|
Dong Y, Zhang J, Xie A, Yue X, Li M, Zhou Q. Garlic peel extract as an antioxidant inhibits triple-negative breast tumor growth and angiogenesis by inhibiting cyclooxygenase-2 expression. Food Sci Nutr 2024; 12:6886-6895. [PMID: 39554336 PMCID: PMC11561839 DOI: 10.1002/fsn3.4320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 11/19/2024] Open
Abstract
Garlic peels are frequently disposed of as agro-waste; their bioactivity and physiological activity for health benefits and disease protection are neglected. This study aims to examine the potential inhibitory effects of garlic peel extract as an antioxidant on 4 T1 triple-negative breast cancer (TNBC) tumors in mice. The bioactive constituents of garlic peel were identified through HPLC-MS/MS analysis, while the antioxidant properties of garlic peel extract were assessed using peroxyl radical scavenging capacity (PSC) and cellular antioxidant activity (CAA) assays. Subsequently, the inhibitory effects of garlic peel extract on 4T1 tumor growth were evaluated using a 4T1 model. The results showed that 433 polyphenol compounds were found in garlic peel extract; among them, flavonoids and phenolic acid are the primary polyphenols with natural antioxidant activity, and both high and low concentrations of the extract exhibited tumor-suppressive effects. Immunohistochemistry was employed to assess the expression levels of COX-2, CD31, VEGFA, MMP2, and MMP9 in tumor tissues in order to investigate the antioxidant properties of garlic peel extract, specifically its ability to suppress COX-2 expression. The findings of this study offer a foundation for the advancement of garlic peel-based functional products and contribute to the identification of potential anti-cancer agents and therapeutic targets.
Collapse
Affiliation(s)
- Yushi Dong
- College of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Jiyue Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural SciencesWanningChina
| | - Aijun Xie
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore
| | - Xiqing Yue
- College of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Mohan Li
- College of Food ScienceShenyang Agricultural UniversityShenyangChina
| | - Qian Zhou
- College of Food ScienceShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
8
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
9
|
Shams A, Alzahrani AA, Ayash TA, Tamur S, AL-Mourgi M. The Multifaceted Roles of Myrrha in the Treatment of Breast Cancer: Potential Therapeutic Targets and Promises. Integr Cancer Ther 2024; 23:15347354241309659. [PMID: 39707884 PMCID: PMC11663268 DOI: 10.1177/15347354241309659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Breast cancer is a critical threat to human health, and effective targeted agents showing lower systemic toxicity are still lacking. Therefore, exploring new potent therapeutic candidates with a broader safety margin is warranted. Alternative medicine, which has historically been used in traditional Chinese medicine, has played an increasingly prominent role in this area of research. This study introduces Commiphora myrrha (or myrrh) as a potential therapeutic candidate for treating breast cancer patients. Myrrh bioactive extracts have been used traditionally for decades to treat numerous medical disorders, including cancers, specifically breast cancer. Nonetheless, myrrh's precise rudimentary mechanisms of action in regulating genes involved in breast cancer evolution and progression remain elusive. PURPOSE Herein, we use a network pharmacology platform to identify the potential genes targeted by myrrh-active molecules in breast cancer. METHOD The identified targets' expression profiles were determined at the mRNA and protein levels using The Breast Cancer Gene-Expression Miner v5.0 (bcGen-ExMiner v5.0) and The Human Protein Atlas datasets, respectively. A gene signature composed of the specifically designated genes was constructed, and its association with different breast cancer molecular subtypes was investigated through the Gene expression-based Outcome for Breast Cancer (GOBO) online tool. The protein mapping relationship between potential myrrh targets and their partner proteins during breast cancer development was screened and constructed through the STRING and ShinyGO databases. In addition, the Kaplan-Meier plots (KM-plot) prognostic tool was applied to assess the survival rate associated with the expression of the current gene signature in different human cancers, including breast cancer. RESULTS Combining the results of network pharmacology with other bioinformatics databases suggests that myrrh's active components exert anti-cancer effects by regulating genes involved in breast cancer pathogenesis, particularly PTGS2, EGFR, ESR2, MMP2, and JUN. An individual evaluation of the expression profiles of these genes at both mRNA and protein levels reveals that a high expression profile of each gene is associated with breast cancer advancement. Moreover, the GOBO analysis shows an elevated expression profile of the PTGS2/ESR2/EGFR/JUN/MMP2 genes' signature in the most aggressive breast cancer subtype (Basal) in breast tumor samples and breast cancer cell lines. Furthermore, the STRING protein interaction network and the KEGG analyses indicate that myrrh exerts therapeutic effects on breast cancer by regulating several biological processes such as cell proliferation, cell migration, apoptosis, and various signaling pathways, including TNF, PI3K-Akt, NF-κB, and MAPK. Consistently, breast cancer patients with high expression of this genes' signature display poor survival outcomes. CONCLUSIONS The present study is the first attempt to explore the biological involvement of myrrh-targeted genes during breast cancer development. Therefore, suppressing the effects of the intended genes' signature using myrrh extracts would provide encouraging results in blocking breast cancer tumorigenesis. Thus, our findings provide conclusive evidence and deepen the current understanding of the molecular role of myrrh in the treatment of breast cancer, further supporting its clinical application.
Collapse
Affiliation(s)
- Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Taif, Saudi Arabia
- Research Center for Health Sciences, Deanship of Graduate Studies and Scientific Research, Taif University, Taif, Saudi Arabia
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
| | | | - Taghreed A Ayash
- Department of General Science, Ibnsina International Medical College, Jeddah, Saudi Arabia
- Research and Innovation Central lab, Chair of Research and Innovation Central Lab, Ibnsina International Medical College, Jeddah, Saudi Arabia
| | - Shadi Tamur
- Department of Pediatric, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Majed AL-Mourgi
- Department of Surgery, College of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
10
|
Sahu A, Pradhan D, Veer B, Kumar S, Singh R, Raza K, Rizvi MA, Jain AK, Verma S. In silico screening, synthesis, characterization and biological evaluation of novel anticancer agents as potential COX-2 inhibitors. Daru 2023; 31:119-133. [PMID: 37454036 PMCID: PMC10624798 DOI: 10.1007/s40199-023-00467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Cyclooxygenase enzyme is frequently overexpressed in various types of cancer and found to play a crucial role in poor prognosis in cancer patients. In current research, we have reported the new COX-2 inhibitors for cancer treatment using computer-aided drug design and experimental validation. METHODS A total of 12,795 compounds from the different databases were used to screen against the COX-2 enzyme. It perceived three new compounds with better binding affinity to the enzyme. Afterwards, physicochemical properties and in silico bioactivity were assessed for efficacy, safety, and structural features required for binding. The molecules were synthesized and confirmed by spectroscopic techniques. Later on, molecules were evaluated for their anti-cancer activity using MCF-7, MDA-MB-231 and SiHa cancer cell lines. RESULTS Compound ZINC5921547 and ZINC48442590 (4a, and 4b) reduced the MCF-7, MDA-MB-231, and SiHa cells proliferation potently than parent compounds. The PG-E2 estimation shown, both compounds act through the COX-2 PGE2 axis. Compound 4a and 4b block the cell cycle at G1-S phase and induce cancer cell death. CONCLUSIONS We concluded that compounds 4a and 4b effectively promotes cancer cell death via COX-2 PGE2 axis, and further in vivo studies can be evaluated for development in both compounds as anticancer agents. The compilation of this information will help us to generate better outcome through robust computational methods. The high-quality experimental results may pave the way for identifying effective drug candidates for cancer treatment.
Collapse
Affiliation(s)
- Ankita Sahu
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Dibyabhaba Pradhan
- Indian Biological Data Center, Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Babita Veer
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Sumit Kumar
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Moshahid A Rizvi
- Department of Bioscience, Jamia Millia Islamia, New Delhi, 110025, India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | - Saurabh Verma
- Tumor Biology, ICMR-National Institute of Pathology, New Delhi, 110029, India.
| |
Collapse
|
11
|
Kothapalli KSD, Park HG, Kothapalli NSL, Brenna JT. FADS2 function at the major cancer hotspot 11q13 locus alters fatty acid metabolism in cancer. Prog Lipid Res 2023; 92:101242. [PMID: 37597812 DOI: 10.1016/j.plipres.2023.101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | | | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
12
|
Buchholz A, Vattai A, Fürst S, Vilsmaier T, Zati Zehni A, Steger A, Kuhn C, Schmoeckel E, Dannecker C, Mahner S, Jeschke U, Heidegger HH. Prostaglandin E2 receptor EP1 expression in vulvar cancer. J Cancer Res Clin Oncol 2023; 149:5369-5376. [PMID: 36436093 PMCID: PMC10349743 DOI: 10.1007/s00432-022-04487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE In recent years, incidence of vulvar cancer has been on the rise, whereas therapeutic options are still restricted. Therefore, new prognosticators and therapeutic targets are essential. Chronic inflammation plays an important role in carcinogenesis and COX-2, and its product prostaglandin E2 and its receptors EP1-4 are known to be important mediators in cancer initiation and progression. METHODS EP1 expression in vulvar cancer specimens (n = 129) was investigated via immunohistochemistry and evaluated using the well-established immunoreactive score (IRS). Subsequently, the values were correlated with clinicopathological parameters. RESULTS Our analysis did not reveal EP1 expression as a negative prognostic factor in overall and disease-free survival. However, in the subgroup of patients with lymph-node metastasis, overall survival was significantly shorter in tumors with high EP1 expression. Moreover, EP1 expression correlated positively with good differentiation of the tumor, but not with p16 status or COX-2 expression. CONCLUSIONS This study shed first light on EP1 expression in vulvar carcinoma. EP1 expression correlated significantly with the grading of the tumor, suggesting that it influences cell differentiation. Further research on EP1 signaling may lead to a deeper understanding of the molecular mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Anna Buchholz
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sophie Fürst
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Alaleh Zati Zehni
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Alexander Steger
- Klinik und Poliklinik für Innere Medizin I, University Hospital, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Thalkirchner Str. 142, 80337, Munich, Germany
| | - Christian Dannecker
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany.
| | - Helene H Heidegger
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
13
|
Papp KA, Melosky B, Sehdev S, Hotte SJ, Beecker JR, Kirchhof MG, Turchin I, Dutz JP, Gooderham MJ, Gniadecki R, Hong CH, Lambert J, Lynde CW, Prajapati VH, Vender RB. Use of Systemic Therapies for Treatment of Psoriasis in Patients with a History of Treated Solid Tumours: Inference-Based Guidance from a Multidisciplinary Expert Panel. Dermatol Ther (Heidelb) 2023; 13:867-889. [PMID: 36929121 PMCID: PMC10060504 DOI: 10.1007/s13555-023-00905-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Patients with treated solid tumours (TSTs) are a highly heterogeneous population at an increased risk for malignancy compared with the general population. When treating psoriasis in patients with a history of TSTs, clinicians are concerned about the immunosuppressive nature of psoriasis therapies, the possibility of augmenting cancer recurrence/progression, and infectious complications. No direct, high-level evidence exists to address these concerns. OBJECTIVES We aim to provide a structured framework supporting healthcare professional and patient discussions on the risks and benefits of systemic psoriasis therapy in patients with previously TSTs. Our goal was to address the clinically important question, "In patients with TSTs, does therapy with systemic agents used for psoriasis increase the risk of malignancy or malignancy recurrence?" METHODS We implemented an inference-based approach relying on indirect evidence when direct clinical trial and real-world data were absent. We reviewed indirect evidence supporting inferences on the status of immune function in patients with TSTs. Recommendations on systemic psoriasis therapies in patients with TSTs were derived using an inferential heuristic. RESULTS We identified five indirect indicators of iatrogenic immunosuppression informed by largely independent bodies of evidence: (1) overall survival, (2) rate of malignancies with psoriasis and systemic psoriasis therapies, (3) rate of infections with psoriasis and systemic psoriasis therapies, (4) common disease biochemical pathways for solid tumours and systemic psoriasis therapies, and (5) solid organ transplant outcomes. On the basis of review of the totality of this data, we provided inference-based conclusions and ascribed level of support for each statement. CONCLUSIONS Prior to considering new therapies for psoriasis, an understanding of cancer prognosis should be addressed. Patients with TSTs and a good cancer prognosis will have similar outcomes to non-TST patients when treated with systemic psoriasis therapies. For patients with TSTs and a poor cancer prognosis, the quality-of-life benefits of treating psoriasis may outweigh the theoretical risks.
Collapse
Affiliation(s)
- Kim A Papp
- Probity Medical Research Inc., Waterloo, ON, Canada.
- Alliance Clinical Research, Waterloo, ON, Canada.
| | - Barbara Melosky
- Medical Oncology, BC Cancer Vancouver Centre, Vancouver, BC, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sandeep Sehdev
- Division of Medical Oncology, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Sebastien J Hotte
- Juravinski Cancer Centre, Hamilton, ON, Canada
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | - Jennifer R Beecker
- Probity Medical Research Inc., Waterloo, ON, Canada
- University of Ottawa, Ottawa, ON, Canada
- Division of Dermatology, The Ottawa Hospital, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mark G Kirchhof
- University of Ottawa, Ottawa, ON, Canada
- Division of Dermatology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Irina Turchin
- Probity Medical Research Inc., Waterloo, ON, Canada
- Brunswick Dermatology Centre, Fredericton, NB, Canada
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jan P Dutz
- Skin Care Centre, Vancouver, BC, Canada
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Melinda J Gooderham
- Probity Medical Research Inc., Waterloo, ON, Canada
- SKiN Centre for Dermatology, Peterborough, ON, Canada
| | - Robert Gniadecki
- Division of Dermatology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Chih-Ho Hong
- Probity Medical Research Inc., Waterloo, ON, Canada
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
- Dr. Chih-ho Hong Medical Inc., Surrey, BC, Canada
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
- Dermatology Research Unit, Ghent University, Ghent, Belgium
| | - Charles W Lynde
- Probity Medical Research Inc., Waterloo, ON, Canada
- Lynde Institute for Dermatology, Markham, ON, Canada
- Division of Dermatology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vimal H Prajapati
- Probity Medical Research Inc., Waterloo, ON, Canada
- Division of Dermatology, Department of Medicine, University of Calgary, Calgary, AB, Canada
- Section of Community Pediatrics, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Section of Pediatric Rheumatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
- Dermatology Research Institute, Calgary, AB, Canada
- Skin Health & Wellness Centre, Calgary, AB, Canada
| | - Ronald B Vender
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Dermatrials Research Inc., Hamilton, ON, Canada
| |
Collapse
|
14
|
Vitale S, Palumbo E, Polesel J, Hebert JR, Shivappa N, Montagnese C, Porciello G, Calabrese I, Luongo A, Prete M, Pica R, Grimaldi M, Crispo A, Esindi N, Falzone L, Mattioli V, Martinuzzo V, Poletto L, Cubisino S, Dainotta P, De Laurentiis M, Pacilio C, Rinaldo M, Thomas G, D'Aiuto M, Serraino D, Massarut S, Ferraù F, Rossello R, Catalano F, Banna GL, Messina F, Gatti D, Riccardi G, Libra M, Celentano E, Jenkins DJA, Augustin LSA. One-year nutrition counselling in the context of a Mediterranean diet reduced the dietary inflammatory index in women with breast cancer: a role for the dietary glycemic index. Food Funct 2023; 14:1560-1572. [PMID: 36655860 DOI: 10.1039/d2fo02198f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: the Mediterranean diet, the low dietary glycemic index (GI) and the dietary inflammation index (DII®) have been associated with lower risk of breast cancer (BC) incidence and mortality. Objective: to investigate whether one-year nutrition counselling in the context of a Mediterranean diet, with or without low-GI carbohydrates counselling, may influence the DII in women with BC. Methods: data were obtained from participants of DEDiCa trial randomized to a Mediterranean diet (MD, n = 112) or a Mediterranean diet with low-GI carbohydrates (MDLGI, n = 111). The diet-derived DII and GI were calculated from 7-day food records while Mediterranean diet adherence from PREDIMED questionnaire. Differences between study arms were evaluated through Fisher's exact test or Mann-Whitney test and associations with multivariable regression analyses. Results: Mediterranean diet adherence significantly increased by 15% in MD and 20% in MDLGI with no difference between arms (p < 0.326). Dietary GI significantly decreased from 55.5 to 52.4 in MD and 55.1 to 47.6 in MDLGI with significant difference between arms (p < 0.001). DII significantly decreased by 28% in MD and 49% in MDLGI with no difference between arms (p < 0.360). Adjusting for energy intake (E-DII) did not change the results. Higher Mediterranean diet adherence and lower dietary GI independently contributed to DII lowering (β-coefficient -0.203, p < 0.001; 0.046, p = 0.003, respectively). Conclusions: DII and E-DII scores decreased significantly after one-year with 4 nutrition counselling sessions on the Mediterranean diet and low GI. Increased adherence to the Mediterranean diet and low GI independently contributed to the DII changes. These results are relevant given that lowering the inflammatory potential of the diet may have implications in cancer prognosis and overall survival.
Collapse
Affiliation(s)
- Sara Vitale
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.
| | - Elvira Palumbo
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCSS, Aviano, Italy
| | - James R Hebert
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.,Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, 29201, USA
| | - Nitin Shivappa
- Cancer Prevention and Control Program and Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.,Department of Nutrition, Connecting Health Innovations LLC, Columbia, SC, 29201, USA
| | | | - Giuseppe Porciello
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.
| | - Ilaria Calabrese
- Healtcare Direction, "A. Cardarelli" Hospital, 80131 Naples, Italy
| | - Assunta Luongo
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.
| | - Melania Prete
- Division of Radiotherapy, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Rosa Pica
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.
| | - Maria Grimaldi
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.
| | - Anna Crispo
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.
| | - Nadia Esindi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.
| | - Veronica Mattioli
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCSS, Aviano, Italy
| | - Valentina Martinuzzo
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCSS, Aviano, Italy
| | - Luigina Poletto
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCSS, Aviano, Italy
| | - Serena Cubisino
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Patrizia Dainotta
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Michelino De Laurentiis
- Division of Breast Oncology, Istituto Nazionale Tumori - IRCCS "Fondazione Giovanni Pascale", Naples, Italy
| | - Carmen Pacilio
- Division of Breast Oncology, Istituto Nazionale Tumori - IRCCS "Fondazione Giovanni Pascale", Naples, Italy
| | | | | | | | - Diego Serraino
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCSS, Aviano, Italy
| | - Samuele Massarut
- Chirurgia Oncologica del Seno - Centro di Riferimento Oncologico (CRO) IRCCS, Aviano, Italy
| | | | | | | | | | | | | | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Egidio Celentano
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.
| | - David J A Jenkins
- Department of Nutritional Sciences and Medicine, Temerty, Faculty of Medicine, University of Toronto, Toronto, Canada.,Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Canada.,Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Canada.,Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Livia S A Augustin
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|
15
|
Thangam C, Cyril R, Sekar R, Jayasree R, Ramachandran V, Langeswaran K, Asir AB, Subbaraj GK. Role of phospholipase A2 in squamous cell carcinoma and breast cancer. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:315-335. [DOI: 10.1016/b978-0-323-95697-0.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
16
|
Castellanos G, Valbuena DS, Pérez E, Villegas VE, Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:189-211. [PMID: 36923397 PMCID: PMC10010144 DOI: 10.2147/bctt.s383759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 03/11/2023]
Abstract
Chromosomal instability (CIN) has become a topic of great interest in recent years, not only for its implications in cancer diagnosis and prognosis but also for its role as an enabling feature and central hallmark of cancer. CIN describes cell-to-cell variation in the number or structure of chromosomes in a tumor population. Although extensive research in recent decades has identified some associations between CIN with response to therapy, specific associations with other hallmarks of cancer have not been fully evidenced. Such associations place CIN as an enabling feature of the other hallmarks of cancer and highlight the importance of deepening its knowledge to improve the outcome in cancer. In addition, studies conducted to date have shown paradoxical findings about the implications of CIN for therapeutic response, with some studies showing associations between high CIN and better therapeutic response, and others showing the opposite: associations between high CIN and therapeutic resistance. This evidences the complex relationships between CIN with the prognosis and response to treatment in cancer. Considering the above, this review focuses on recent studies on the role of CIN in cancer, the cellular mechanisms leading to CIN, its relationship with other hallmarks of cancer, and the emerging therapeutic approaches that are being developed to target such instability, with a primary focus on breast cancer. Further understanding of the complexity of CIN and its association with other hallmarks of cancer could provide a better understanding of the cellular and molecular mechanisms involved in prognosis and response to treatment in cancer and potentially lead to new drug targets.
Collapse
Affiliation(s)
- Giovanny Castellanos
- Maestría en Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.,School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Erika Pérez
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Victoria E Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
17
|
Crump LS, Kines KT, Richer JK, Lyons TR. Breast cancers co-opt normal mechanisms of tolerance to promote immune evasion and metastasis. Am J Physiol Cell Physiol 2022; 323:C1475-C1495. [PMID: 36189970 PMCID: PMC9662806 DOI: 10.1152/ajpcell.00189.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development. The postpartum mammary microenvironment also exhibits immunosuppressive mechanisms accompanying the massive cell death and tissue remodeling that occurs during mammary gland involution. These normal immunosuppressive mechanisms are paralleled during malignant transformation, where tumors can develop neoantigens that may be recognized as foreign by the immune system. To circumvent this, tumors can dedifferentiate and co-opt immune-suppressive mechanisms normally utilized during fetal tolerance and postpartum mammary involution. In this review, we discuss those similarities and how they can inform our understanding of cancer progression and metastasis.
Collapse
Affiliation(s)
- Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
18
|
Vieira TC, Oliveira EA, dos Santos BJ, Souza FR, Veloso ES, Nunes CB, Del Puerto HL, Cassali GD. COX-2 expression in mammary invasive micropapillary carcinoma is associated with prognostic factors and acts as a potential therapeutic target in comparative oncology. Front Vet Sci 2022; 9:983110. [PMID: 36172611 PMCID: PMC9510711 DOI: 10.3389/fvets.2022.983110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Pure human and canine mammary invasive micropapillary carcinoma is a rare malignant epithelial tumor accounting for 0.9 to 2% of all invasive mammary carcinomas and present a high rate of lymphatic invasion and metastasis, with unfavorable prognosis. Surgery and chemotherapy are standard treatments for almost all mammary cancer in both species, as well as hormonal and target therapies available for human patients. However, depending on the patient's clinical staging, satisfactory therapeutic results for invasive micropapillary carcinoma are a challenge due to its high capacity of invasion and metastasis. Cyclooxygenase-2 (COX-2) isoform is an important enzyme stimulated by cytokines, growth factors and oncogenes activation to synthetizes prostaglandins in inflammatory process. COX-2 overexpression is associated with angiogenesis and invasion and contributes to cancer development, disease progression, tumor recurrence and regional lymph node metastasis in human and canine mammary carcinomas. This enzyme can be targeted by non-steroidal anti-inflammatory drugs and its inhibition can reduce tumor growth and metastasis in several cancer types. Given the similarity between both species, the present study aims to elucidate the involvement of COX-2 mRNA and protein expression in canine (cIMPC) and human (hIMPC) pure invasive mammary micropapillary carcinoma, with clinicopathological and survival data. Twenty-nine cases of cIMPC and 17 cases of hIMPC were analyzed regarding histologic type, grade, age, tumor size, lymph node condition, extracapsular extension, inflammatory infiltrate and immunophenotype. When available, information on adjuvant treatment, recurrence, metastasis and overall survival were collected. The present study demonstrated COX-2 protein expression in 65.5% of cIMPC and 92.3% of hIMPC, and an association with more advanced histological grades in bitches and higher Ki67 in women. COX-2 mRNA expression was significantly higher in cIMPC than in hIMPC, and its expression was not associated with COX-2 protein expression in both species. COX-2 mRNA expression was associated with negative-ER hIMPC as well as higher Ki67. cIMPC demonstrated proportional early development, more regional metastasis, and a prevalence of negative estrogen receptor, than hIMPC. This is the first time COX-2 expression is associated with negative prognostic factors in both cIMPC and hIMPC, besides the overexpression of COX-2 protein in such unfavorable histological type, which suggests that COX-2 can act as a potential target in IMPC.
Collapse
Affiliation(s)
- Thaynan Cunha Vieira
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Evelyn Ane Oliveira
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bárbara Jaime dos Santos
- Laboratory of Breast Pathology, Medical School, Department of Pathological Anatomy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Rezende Souza
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Emerson Soares Veloso
- Laboratory of Cellular Behavior, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana Buzelin Nunes
- Laboratory of Breast Pathology, Medical School, Department of Pathological Anatomy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helen Lima Del Puerto
- Laboratory of Cellular Behavior, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Geovanni Dantas Cassali
| |
Collapse
|
19
|
Ramachandran RV, Barman A, Modak P, Bhat R, Ghosh A, Saini DK. How safe are magnetic nanomotors: From cells to animals. BIOMATERIALS ADVANCES 2022; 140:213048. [PMID: 35939957 PMCID: PMC7614616 DOI: 10.1016/j.bioadv.2022.213048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 06/06/2023]
Abstract
Helical magnetic nanomotors can be actuated using an external magnetic field and have potential applications in drug delivery, colloidal manipulation, and bio-microrheology. Recently, they have been maneuvered in biological environments such as vitreous humour, dentinal tubules, peritoneal fluid, stromal matrix, and blood, which are promising developments for clinical applications. However, their biocompatibility and biodistribution are vital parameters that must be assessed before further use. An extensive quantitative evaluation has been performed for these parameters for the first time through in vitro and in vivo experiments. Investigations of cell death, proliferation, and DNA damage ascertain that the motors are non-toxic. Also, an unbiased transcriptomic analysis affirms that the motors are not genotoxic till 20 motors/ cell. Toxicity studies in mice reveal that the motors show no signs of toxicity up to a dose of 55 mg/ kg body weight. Further, the biodistribution studies show that they remain in the blood circulation after injection and at later stages possibly adhere to the walls of the blood vessel because of adsorption. However, perfusion with physiological saline decreases this adsorption/adhesion. Overall, we demonstrate the biocompatibility of nanomotors in live cellular and organismal systems, and a systemic biodistribution analysis reveals organ-specific retention of motors.
Collapse
Affiliation(s)
| | - Anaxee Barman
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Paramita Modak
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ramray Bhat
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Ambarish Ghosh
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Kumar Saini
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
20
|
Liu X, Wang Q. Application of Anesthetics in Cancer Patients: Reviewing Current Existing Link With Tumor Recurrence. Front Oncol 2022; 12:759057. [PMID: 35296017 PMCID: PMC8919187 DOI: 10.3389/fonc.2022.759057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Surgery remains the most effective cancer treatment, but residual disease in the form of scattered micro-metastases and tumor cells is usually unavoidable. Whether minimal residual disease results in clinical metastases is a function of host defense and tumor survival and growth. The much interesting intersection of anesthesiology and immunology has drawn increasing clinical interest, particularly, the existing concern of the possibility that the perioperative and intraoperative anesthetic care of the surgical oncology patient could meaningfully influence tumor recurrence. This paper examines current data, including recent large clinical trials to determine whether the current level of evidence warrants a change in practice. Available pieces of evidence from clinical studies are particularly limited, largely retrospective, smaller sample size, and often contradictory, causing several questions and providing few answers. Recent randomized controlled clinical trials, including the largest study (NCT00418457), report no difference in cancer recurrence between regional and general anesthesia after potentially curative surgery. Until further evidence strongly implicates anesthesia in future clinical trials, clinicians may continue to choose the optimum anesthetic-analgesic agents and techniques in consultation with their cancer patients, based on their expertise and current best practice.
Collapse
|
21
|
Walker OL, Dahn ML, Power Coombs MR, Marcato P. The Prostaglandin E2 Pathway and Breast Cancer Stem Cells: Evidence of Increased Signaling and Potential Targeting. Front Oncol 2022; 11:791696. [PMID: 35127497 PMCID: PMC8807694 DOI: 10.3389/fonc.2021.791696] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Culprits of cancer development, metastasis, and drug resistance, cancer stem cells (CSCs) are characterized by specific markers, active developmental signaling pathways, metabolic plasticity, increased motility, invasiveness, and epithelial-mesenchymal transition. In breast cancer, these cells are often more prominent in aggressive disease, are amplified in drug-resistant tumors, and contribute to recurrence. For breast cancer, two distinct CSC populations exist and are typically defined by CD44+/CD24- cell surface marker expression or increased aldehyde dehydrogenase (ALDH) activity. These CSC populations share many of the same properties but also exhibit signaling pathways that are more active in CD44+/CD24- or ALDH+ populations. Understanding these CSC populations and their shared or specific signaling pathways may lead to the development of novel therapeutic strategies that will improve breast cancer patient outcomes. Herein, we review the current evidence and assess published patient tumor datasets of sorted breast CSC populations for evidence of heightened prostaglandin E2 (PGE2) signaling and activity in these breast CSC populations. PGE2 is a biologically active lipid mediator and in cancer PGE2 promotes tumor progression and poor patient prognosis. Overall, the data suggests that PGE2 signaling is important in propagating breast CSCs by enhancing inherent tumor-initiating capacities. Development of anti-PGE2 signaling therapeutics may be beneficial in inhibiting tumor growth and limiting breast CSC populations.
Collapse
Affiliation(s)
| | | | - Melanie R. Power Coombs
- Pathology, Dalhousie University, Halifax, NS, Canada
- Biology, Acadia University, Wolfville, NS, Canada
| | - Paola Marcato
- Pathology, Dalhousie University, Halifax, NS, Canada
- Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Paola Marcato,
| |
Collapse
|
22
|
Deciphering the pharmacological potentials of Aganosma cymosa (Roxb.) G. Don using in vitro and computational methods. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Salimi A, Ghasempour M, Farzaneh S, Khodaparast F, Naserzadeh P, Zarghi A, Pourahmad J. Evaluation of Cytotoxic Potentials of Novel Synthesized Chalconeferrocenyl Derivative against Melanoma and Normal Fibroblast and Its Anticancer Effect through Mitochondrial Pathway. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:241-253. [PMID: 34567159 PMCID: PMC8457721 DOI: 10.22037/ijpr.2020.113949.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The treatment of melanoma is still challenging and therefore identification of novel agents is needed for its better management. Our previous study suggested that cyclooxygenase-2 (COX-2) would be a novel target for treatment of several cancers. In the present study, we searched selective cytotoxicity and mitochondria mediated apoptosis of novel synthesized chalconeferrocenyl derivative (1-Ferrocenyl-3-(dimethylamino)-3-(4-methylsulfonylphenyl) propan-1-one) (FDMPO) as a COX-2 inhibitor on normal and melanoma cells and their mitochondria. For this purpose, we evaluated the cellar parameters such as cytotoxicity, apoptosis% versus necrosis%, activation of caspase-3 and ATP content, and also mitochondrial parameters such as reactive oxygen species formation, mitochondrial swelling, mitochondrial membrane potential decline, mitochondrial membrane integrity, and cytochrome C release. Our results showed FDMPO could selectively induce cellular and mitochondrial toxicity (up to 50 µM) on melanoma cells and mitochondria without any toxic effects on normal fibroblast and their mitochondria. Taken together, the results of this study suggest that mitochondria are a potential target for the melanoma. Selective inhibition of mitochondrial COX-2 could be an attractive therapeutic option for the effective clinical management of therapy-resistant melanoma.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Ghasempour
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Farzaneh
- Department of Medicinal Chemistry and Nuclear Medicine, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Khodaparast
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parvaneh Naserzadeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry and Nuclear Medicine, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Mongiovi JM, Hong CC, Zirpoli GR, Khoury T, Omilian AR, Qin B, Bandera EV, Yao S, Ambrosone CB, Gong Z. Genetic Variants in COX2 and ALOX Genes and Breast Cancer Risk in White and Black Women. Front Oncol 2021; 11:679998. [PMID: 34249719 PMCID: PMC8263909 DOI: 10.3389/fonc.2021.679998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
COX and ALOX genes are involved in inflammatory processes and that may be related to breast cancer risk differentially between White and Black women. We evaluated distributions of genetic variants involved in COX2 and ALOX-related pathways and examined their associations with breast cancer risk among 1,275 White and 1,299 Black cases and controls who participated in the Women's Circle of Health Study. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable-adjusted logistic regression models. Our results showed differential associations of certain genetic variants with breast cancer according to menopausal and ER status in either White or Black women. In White women, an increased risk of breast cancer was observed for COX2-rs689470 (OR: 2.02, P = 0.01) in the dominant model, and was strongest among postmenopausal women (OR: 2.72, P = 0.02) and for estrogen receptor positive (ER+) breast cancers (OR: 2.60, P = 0.001). A reduced risk was observed for ALOX5-rs7099874 (OR: 0.75, P = 0.01) in the dominant model, and was stronger among postmenopausal women (OR: 0.68, P = 0.03) and for ER+ cancer (OR: 0.66, P = 0.001). Four SNPs (rs3840880, rs1126667, rs434473, rs1042357) in the ALOX12 gene were found in high LD (r2 >0.98) in White women and were similarly associated with reduced risk of breast cancer, with a stronger association among postmenopausal women and for ER- cancer. Among Black women, increased risk was observed for ALOX5-rs1369214 (OR: 1.44, P = 0.003) in the recessive model and was stronger among premenopausal women (OR: 1.57, P = 0.03) and for ER+ cancer (OR: 1.53, P = 0.003). Our study suggests that genetic variants of COX2 and ALOX genes are associated with breast cancer, and that these associations and genotype distributions differ in subgroups defined by menopausal and ER status between White and Black women. Findings may provide insights into the etiology of breast cancer and areas for further research into reasons for breast cancer differences between races.
Collapse
Affiliation(s)
- Jennifer M. Mongiovi
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States
| | - Chi-Chen Hong
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Gary R. Zirpoli
- Slone Epidemiology Center, Boston University, Boston, NY, United States
| | - Thaer Khoury
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Angela R. Omilian
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bo Qin
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Elisa V. Bandera
- Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Song Yao
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Christine B. Ambrosone
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Zhihong Gong
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
25
|
Ciummo SL, D’Antonio L, Sorrentino C, Fieni C, Lanuti P, Stassi G, Todaro M, Di Carlo E. The C-X-C Motif Chemokine Ligand 1 Sustains Breast Cancer Stem Cell Self-Renewal and Promotes Tumor Progression and Immune Escape Programs. Front Cell Dev Biol 2021; 9:689286. [PMID: 34195201 PMCID: PMC8237942 DOI: 10.3389/fcell.2021.689286] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer (BC) mortality is mainly due to metastatic disease, which is primarily driven by cancer stem cells (CSC). The chemokine C-X-C motif ligand-1 (CXCL1) is involved in BC metastasis, but the question of whether it regulates breast cancer stem cell (BCSC) behavior is yet to be explored. Here, we demonstrate that BCSCs express CXCR2 and produce CXCL1, which stimulates their proliferation and self-renewal, and that CXCL1 blockade inhibits both BCSC proliferation and mammosphere formation efficiency. CXCL1 amplifies its own production and remarkably induces both tumor-promoting and immunosuppressive factors, including SPP1/OPN, ACKR3/CXCR7, TLR4, TNFSF10/TRAIL and CCL18 and, to a lesser extent, immunostimulatory cytokines, including IL15, while it downregulates CCL2, CCL28, and CXCR4. CXCL1 downregulates TWIST2 and SNAI2, while it boosts TWIST1 expression in association with the loss of E-Cadherin, ultimately promoting BCSC epithelial-mesenchymal transition. Bioinformatic analyses of transcriptional data obtained from BC samples of 1,084 patients, reveals that CXCL1 expressing BCs mostly belong to the Triple-Negative (TN) subtype, and that BC expression of CXCL1 strongly correlates with that of pro-angiogenic and cancer promoting genes, such as CXCL2-3-5-6, FGFBP1, BCL11A, PI3, B3GNT5, BBOX1, and PTX3, suggesting that the CXCL1 signaling cascade is part of a broader tumor-promoting signaling network. Our findings reveal that CXCL1 functions as an autocrine growth factor for BCSCs and elicits primarily tumor progression and immune escape programs. Targeting the CXCL1/CXCR2 axis could restrain the BCSC compartment and improve the treatment of aggressive BC.
Collapse
Affiliation(s)
- Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Luigi D’Antonio
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University, Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
| |
Collapse
|
26
|
EP4 as a Negative Prognostic Factor in Patients with Vulvar Cancer. Cancers (Basel) 2021; 13:cancers13061410. [PMID: 33808776 DOI: 10.3390/cancers13061410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
New prognostic factors and targeted therapies are urgently needed to improve therapeutic outcomes in vulvar cancer patients and to reduce therapy related morbidity. Previous studies demonstrated the important role of prostaglandin receptors in inflammation and carcinogenesis in a variety of tumor entities. In this study, we aimed to investigate the expression of EP4 in vulvar cancer tissue and its association with clinicopathological data and its prognostic relevance on survival. Immunohistochemistry was performed on tumor specimens of 157 patients with vulvar cancer treated in the Department of Obstetrics and Gynecology, Ludwig-Maximilian-University of Munich, Germany, between 1990 and 2008. The expression of EP4 was analyzed using the well-established semiquantitative immunoreactivity score (IRS) and EP4 expression levels were correlated with clinicopathological data and patients' survival. To specify the tumor-associated immune cells, immunofluorescence double staining was performed on tissue samples. In vitro experiments including 5-Bromo-2'-Deoxyuridine (BrdU) proliferation assay and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid (MTT) viability assay were conducted in order to examine the effect of EP4 antagonist L-161,982 on vulvar carcinoma cells. EP4 expression was a common finding in in the analyzed vulvar cancer tissue. EP4 expression correlated significantly with tumor size and FIGO classification and differed significantly between keratinizing vulvar carcinoma and nonkeratinizing carcinoma. Survival analysis showed a significant correlation of high EP4 expression with poorer overall survival (p = 0.001) and a trending correlation between high EP4 expression and shorter disease-free survival (p = 0.069). Cox regression revealed EP4 as an independent prognostic factor for overall survival when other factors were taken into account. We could show in vitro that EP4 antagonism attenuates both viability and proliferation of vulvar cancer cells. In order to evaluate EP4 as a prognostic marker and possible target for endocrinological therapy, more research is needed on the influence of EP4 in the tumor environment and its impact in vulvar carcinoma.
Collapse
|
27
|
Xing L, Yang CX, Zhao D, Shen LJ, Zhou TJ, Bi YY, Huang ZJ, Wei Q, Li L, Li F, Jiang HL. A carrier-free anti-inflammatory platinum (II) self-delivered nanoprodrug for enhanced breast cancer therapy. J Control Release 2021; 331:460-471. [PMID: 33545218 DOI: 10.1016/j.jconrel.2021.01.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Cisplatin is one of the most used first-line anticancer drugs for various solid tumor therapies. However, cisplatin-based chemotherapy can induce tumor cells to secrete excessive prostaglandin E2 (PGE2) catalyzed by cyclooxygenase-2 (COX-2), which, in turn, counteracts its chemotherapeutic effect and further accelerates tumor metastasis. Here, we report a carrier-free self-delivered nanoprodrug based on platinum (II) coordination bonding coupled with tolfenamic acid (Tolf) (named Tolfplatin). Tolfplatin can spontaneously assemble into uniformly sized nanoparticles (NPs) with a high drug-loading capacity. Compared with cisplatin, Tolfplatin NPs can facilitate cellular uptake, significantly decrease PGE2 secretion by COX-2 inhibition, which further downregulate tumorous anti-apoptotic and metastasis-associated proteins, thereby efficiently inducing apoptotic cell death and significantly inhibit tumor metastasis in vitro and in vivo. Therefore, as the carrier-free nanoprodrug, Tolfplatin NPs are promising anti-tumoral agents to inhibit tumor proliferation and metastasis by enriching the function and promoting the anti-tumor activity of cisplatin.
Collapse
Affiliation(s)
- Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Prevention and Treatment of High Incidence Diseases in Central Asia, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Chen-Xi Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li-Jun Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Yang Bi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Prevention and Treatment of High Incidence Diseases in Central Asia, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Prevention and Treatment of High Incidence Diseases in Central Asia, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
28
|
Combined COX-2/PPARγ Expression as Independent Negative Prognosticator for Vulvar Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11030491. [PMID: 33802010 PMCID: PMC8001561 DOI: 10.3390/diagnostics11030491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Vulvar cancer incidence numbers have been rising steadily over the past decades. Especially the number of young patients with vulvar cancer increased recently. Therefore, the need to identify new prognostic factors for vulvar carcinoma is more apparent. Cyclooxygenase-2 (COX-2) has long been an object of scientific interest in the context of carcinogenesis. This enzyme is involved in prostaglandin synthesis and the latter binds to nuclear receptors like PPARγ. Therefore, the aim of this study was to investigate COX-2- and PPARγ- expression in tissues of vulvar carcinomas and to analyze their relevance as prognostic factors. The cytoplasmatic expression of COX-2 as well as PPARγ is associated with a significantly reduced survival, whereas nuclear expression of PPARγ results in a better survival. Especially the combined expression of both COX-2 and PPARγ in the cytoplasm is an independent negative prognosticator for vulvar cancer patients.
Collapse
|
29
|
Tabana Y, Okoye IS, Siraki A, Elahi S, Barakat KH. Tackling Immune Targets for Breast Cancer: Beyond PD-1/PD-L1 Axis. Front Oncol 2021; 11:628138. [PMID: 33747948 PMCID: PMC7973280 DOI: 10.3389/fonc.2021.628138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The burden of breast cancer is imposing a huge global problem. Drug discovery research and novel approaches to treat breast cancer have been carried out extensively over the last decades. Although immune checkpoint inhibitors are showing promising preclinical and clinical results in treating breast cancer, they are facing multiple limitations. From an immunological perspective, a recent report highlighted breast cancer as an "inflamed tumor" with an immunosuppressive microenvironment. Consequently, researchers have been focusing on identifying novel immunological targets that can tune up the tumor immune microenvironment. In this context, several novel non-classical immune targets have been targeted to determine their ability to uncouple immunoregulatory pathways at play in the tumor microenvironment. This article will highlight strategies designed to increase the immunogenicity of the breast tumor microenvironment. It also addresses the latest studies on targets which can enhance immune responses to breast cancer and discusses examples of preclinical and clinical trial landscapes that utilize these targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Isobel S. Okoye
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
30
|
Prostaglandin E2 Receptor 4 (EP4) as a Therapeutic Target to Impede Breast Cancer-Associated Angiogenesis and Lymphangiogenesis. Cancers (Basel) 2021; 13:cancers13050942. [PMID: 33668160 PMCID: PMC7956318 DOI: 10.3390/cancers13050942] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels are major events associated with most epithelial malignancies, including breast cancer. Angiogenesis is essential for cancer cell survival. Lymphangiogenesis is critical in maintaining tumoral interstitial fluid balance and importing tumor-facilitatory immune cells. Both vascular routes also serve as conduits for cancer metastasis. Intratumoral hypoxia promotes both events by stimulating multiple angiogenic/lymphangiogenic growth factors. Studies on tumor-associated lymphangiogenesis and its exploitation for therapy have received less attention from the research community than those on angiogenesis. Inflammation is a key mediator of both processes, hijacked by many cancers by the aberrant expression of the inflammation-associated enzyme cyclo-oxygenase (COX)-2. In this review, we focus on breast cancer and showed that COX-2 is a major promoter of both events, primarily resulting from the activation of prostaglandin (PG) E receptor EP4 on tumor cells, tumor-infiltrating immune cells, and endothelial cells; and the induction of oncogenic microRNAs. The COX-2/EP4 pathway also promotes additional events in breast cancer progression, such as cancer cell migration, invasion, and the stimulation of stem-like cells. Based on a combination of studies using multiple breast cancer models, we show that EP4 antagonists hold a major promise in breast cancer therapy in combination with other modalities including immune check-point inhibitors.
Collapse
|
31
|
Ma S, Guo C, Sun C, Han T, Zhang H, Qu G, Jiang Y, Zhou Q, Sun Y. Aspirin Use and Risk of Breast Cancer: A Meta-analysis of Observational Studies from 1989 to 2019. Clin Breast Cancer 2021; 21:552-565. [PMID: 33741292 DOI: 10.1016/j.clbc.2021.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/15/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Some evidence shows that aspirin can reduce the morbidity and mortality of different cancers, including breast cancer. Aspirin has become a new focus of cancer prevention and treatment research at present, however, clinical studies found conflicting conclusions of its anticancer characteristics. MATERIALS AND METHODS A systematic literature search was performed in 8 electronic databases. The pooled relative risk (RR) with 95% confidence interval (CI) was calculated using the random effects model to estimate the effect of aspirin on breast cancer. RESULTS Forty-two published articles with 99,769 patients were identified. The meta-analysis showed a significant decrease in breast cancer risk with aspirin use (RR, 0.92; 95% CI, 0.89-0.96; I2 = 72%). Aspirin use decreased the risk of hormone receptor-positive tumors (estrogen receptor [ER]-positive RR, 0.89; 95% CI, 0.82-0.97; I2=54%; progesterone receptor [PR]-positive RR, 0.86; 95% CI, 0.78-0.95; I2=32%; ER- and PR-positive RR, 0.92; 95% CI, 0.85-1.00; I2=45%) and reduced the risk of breast cancer in postmenopausal women (RR, 0.92; 95% CI, 0.86-0.98; I2=59%). Further analysis showed that for the in situ breast cancer, regular-dose and more than 3 years use of aspirin were associated with the reduced risk of breast cancer. CONCLUSION This meta-analysis suggested that aspirin may reduce the overall risk of breast cancer, reduce the risk of breast cancer in postmenopausal women, hormone receptor-positive tumors, and in situ breast cancer. Larger, multicenter clinical studies are needed to find the optimal dose range, frequency, and duration of the aspirin use to explore the best benefit-risk ratio.
Collapse
Affiliation(s)
- Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Cijuan Guo
- Nursing Department, First People's Hospital of Suzhou, Anhui, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, Chicago, IL, USA
| | - Tiantian Han
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Huimei Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Yuemeng Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Qin Zhou
- Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Anhui, China; Center for Evidence-Based Practice, Anhui Medical University, Anhui, China.
| |
Collapse
|
32
|
Vleeshouwers W, van den Dries K, de Keijzer S, Joosten B, Lidke DS, Cambi A. Characterization of the Signaling Modalities of Prostaglandin E2 Receptors EP2 and EP4 Reveals Crosstalk and a Role for Microtubules. Front Immunol 2021; 11:613286. [PMID: 33643295 PMCID: PMC7907432 DOI: 10.3389/fimmu.2020.613286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator that modulates the function of myeloid immune cells such as macrophages and dendritic cells (DCs) through the activation of the G protein-coupled receptors EP2 and EP4. While both EP2 and EP4 signaling leads to an elevation of intracellular cyclic adenosine monophosphate (cAMP) levels through the stimulating Gαs protein, EP4 also couples to the inhibitory Gαi protein to decrease the production of cAMP. The receptor-specific contributions to downstream immune modulatory functions are still poorly defined. Here, we employed quantitative imaging methods to characterize the early EP2 and EP4 signaling events in myeloid cells and their contribution to the dissolution of adhesion structures called podosomes, which is a first and essential step in DC maturation. We first show that podosome loss in DCs is primarily mediated by EP4. Next, we demonstrate that EP2 and EP4 signaling leads to distinct cAMP production profiles, with EP4 inducing a transient cAMP response and EP2 inducing a sustained cAMP response only at high PGE2 levels. We further find that simultaneous EP2 and EP4 stimulation attenuates cAMP production, suggesting a reciprocal control of EP2 and EP4 signaling. Finally, we demonstrate that efficient signaling of both EP2 and EP4 relies on an intact microtubule network. Together, these results enhance our understanding of early EP2 and EP4 signaling in myeloid cells. Considering that modulation of PGE2 signaling is regarded as an important therapeutic possibility in anti-tumor immunotherapy, our findings may facilitate the development of efficient and specific immune modulators of PGE2 receptors.
Collapse
Affiliation(s)
- Ward Vleeshouwers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sandra de Keijzer
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ben Joosten
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Diane S Lidke
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
33
|
Transcriptomic Analyses Reveal Gene Expression Profiles and Networks in Nasopharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8890176. [PMID: 33564686 PMCID: PMC7850831 DOI: 10.1155/2021/8890176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Background Nasopharyngeal carcinoma (NPC) is a rare but highly aggressive tumor that is predominantly encountered in Southeast Asia and China in particular. Aside from radiotherapy, no effective therapy that specifically treats NPC is available, including targeted drugs. Finding more sensitive biomarkers is important for new drug discovery and for evaluating patient prognosis. Methods mRNA expression datasets from the Gene Expression Omnibus database (GSE53819, GSE64634, and GSE40290) were selected. After all samples in each dataset were subjected to quality control using principal component analyses, the qualified samples were used for additional analyses. The genes that were significantly expressed in each dataset were intersected to identify the most significant of these. Gene functional enrichment analyses were performed on these genes, using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. The protein–protein interaction network of selected genes was analyzed using the Search Tool for the Retrieval of Interacting Genes database. Significantly, differentially expressed genes were further verified with two RNA-seq datasets (GSE68799 and GSE12452), as well as in clinical samples. Results In all, 34 (8 upregulated genes and 26 downregulated) genes were identified as significantly differentially expressed. The immune response and the regulation of cell proliferation were the most enriched biological GO terms. Using reverse transcription quantitative real-time PCR (RT-qPCR), the genes MMP1, AQP9, and TNFAIP6 were detected to be upregulated, and FAM3D, CR2, and LTF were downregulated in NPC tissue samples. Conclusion This study provides information on the genes that may be involved in the development of NPC and suggests possible druggable targets and biomarkers for diagnosing and evaluating the prognosis of NPC.
Collapse
|
34
|
He S, Cai T, Yuan J, Zheng X, Yang W. Lipid Metabolism in Tumor-Infiltrating T Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:149-167. [PMID: 33740249 DOI: 10.1007/978-981-33-6785-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cells recognize "foreign" antigens and induce durable humoral and cellular immune responses, which are indispensable for defending pathogens, as well as maintaining the integrity and homeostasis of tissues and organs. T cells are the major immune cell population in the tumor microenvironment which play a critical role in the antitumor immune response and cancer immune surveillance. Defective immune response of tumor-infiltrating T cells is the main cause of cancer immune evasion. The antitumor response of T cells is affected by multiple factors in the tumor microenvironment, including immunosuppressive cells, immune inhibitory cytokines, tumor-derived suppressive signals like PD-L1, immnuogenicity of tumor cells, as well as metabolic factors like hypoxia and nutrient deprivation. Abundant studies in past decades have proved the metabolic regulations of the immune response of T cells and the tumor-infiltrating T cells. In this chapter, we will discuss the regulations of the antitumor response of tumor-infiltrating T cells by lipid metabolism, which is one of the main components of metabolic regulation.
Collapse
Affiliation(s)
- Shangwen He
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Cai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Juanjuan Yuan
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojun Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Adhikari N, Baidya SK, Jha T. Effective anti-aromatase therapy to battle against estrogen-mediated breast cancer: Comparative SAR/QSAR assessment on steroidal aromatase inhibitors. Eur J Med Chem 2020; 208:112845. [DOI: 10.1016/j.ejmech.2020.112845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
|
36
|
Taidi L, Maurady A, Britel MR. Molecular docking study and molecular dynamic simulation of human cyclooxygenase-2 (COX-2) with selected eutypoids. J Biomol Struct Dyn 2020; 40:1189-1204. [PMID: 32990169 DOI: 10.1080/07391102.2020.1823884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inflammation is a key factor linked to almost all chronic and degenerative diseases implicit with certain levels of pain. In studies, over the past few years, it has been discovered that prostaglandins are the main cause of this inflammation and therefore could be blocked. Although no steroidal medications can be effective, natural compounds may offer a safer and often an effective alternative treatment for pain relief, especially for long-term use. Hence to find out natural anti-inflammatory compounds, we have highlighted five important butenolides that are eutypoid A, B, C, D and E with structure similar to that of rofecoxib, by ADMET and druglikeness analysis, followed by molecular docking with human COX-2 enzyme. Molecular docking studies revealed the importance of hydrophobic and hydrophilic amino acid residues for the stability of the ligands and that eutypoids C and E are the best candidates for the synthetic drugs with binding energy of -10.39 kcal/mol and -9.87 kcal/mol, respectively. The resulting complexes were then subject to 50 ns molecular dynamics (MD) simulation studies with the GROMACS package to analyze the stability of docked protein-ligand complexes and to assess the fluctuation and conformational changes during protein-ligand interaction. From the RMSD, RMSF, number of hydrogen bonds, SASA, PCA and MM/PBSA binding free energy analysis, we have found that out of five selected compounds eutypoid E showed good binding free energy of -174.45 kJ/mol, which is also good in other structural analyses. This compound displayed excellent pharmacological and structural properties to be drug candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Loubna Taidi
- Laboratory of Innovative Technology, University Abdelmalek Essaadi, Tangier, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technology, University Abdelmalek Essaadi, Tangier, Morocco.,Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tangier, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technology, University Abdelmalek Essaadi, Tangier, Morocco
| |
Collapse
|
37
|
Abstract
BACKGROUND Many epidemiologic studies were performed to clarify the protective effect of regular aspirin use on breast cancer risks, but the results remain inconsistent. Here, we conducted an updated meta-analysis of 38 studies to quantitatively assess the association of regular aspirin use with risk of breast cancer. METHOD We performed a bibliographic database search in PubMed, Embase, Web of Science, Cochrane library, Scopus, and Google Scholar from January 1939 to December 2019. Relative risk (RR) estimates were extracted from eligible case-control and cohort studies and pooled using a random effects model. Subgroup analysis was conducted based on study design, aspirin exposure assessment, hormone receptor status, menopausal status, cancer stage as well as aspirin use duration or frequency. Furthermore, sensitivity and publication bias analyses were performed. RESULTS Thirty eight studies of 1,926,742 participants involving 97,099 breast cancer cases contributed to this meta-analysis. Compared with nonusers, the aspirin users had a reduced risk of breast cancer (RR = 0.91, 95% confidence interval [CI]: 0.87-0.95, P value of significance [Psig] < .001) with heterogeneity (P value of heterogeneity [Phet] < .001, I = 82.6%). Subgroup analysis revealed a reduced risk in case-control studies (RR = 0.83, 95% CI: 0.78-0.89, Psig < .001), in hormone receptor positive tumors (RR = 0.91, 95% CI: 0.88-0.94, Psig < .001), in situ breast tumors (RR = 0.79, 95% CI: 0.71-0.88, Psig < .001), and in postmenopausal women (RR = 0.89, 95% CI: 0.83-0.96, Psig = .002). Furthermore, participants who use aspirin for >4 times/wk (RR = 0.88, 95% CI: 0.82-0.96, Psig = .003) or for >10 years (RR = 0.94, 95% CI: 0.89-0.99, Psig = .025) appeared to benefit more from the reduction in breast cancer caused by aspirin. CONCLUSIONS Our study suggested that aspirin use might be associated with a reduced risk of breast cancer, particularly for reducing the risk of hormone receptor positive tumors or in situ breast tumors, and the risk of breast cancer in postmenopausal women.
Collapse
|
38
|
Bertrand KA, Bethea TN, Gerlovin H, Coogan PF, Barber L, Rosenberg L, Palmer JR. Aspirin use and risk of breast cancer in African American women. Breast Cancer Res 2020; 22:96. [PMID: 32887656 PMCID: PMC7650295 DOI: 10.1186/s13058-020-01335-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/19/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been hypothesized to be associated with reduced risk of breast cancer; however, results of epidemiological studies have been mixed. Few studies have investigated these associations among African American women. METHODS To assess the relation of aspirin use to risk of breast cancer in African American women, we conducted a prospective analysis within the Black Women's Health Study, an ongoing nationwide cohort study of 59,000 African American women. On baseline and follow-up questionnaires, women reported regular use of aspirin (defined as use at least 3 days per week) and years of use. During follow-up from 1995 through 2017, 1919 invasive breast cancers occurred, including 1112 ER+, 569 ER-, and 284 triple-negative (TN) tumors. We used age-stratified Cox proportional hazards regression models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for associations of aspirin use with risk of ER+, ER-, and TN breast cancer, adjusted for established breast cancer risk factors. RESULTS Overall, the HR for current regular use of aspirin relative to non-use was 0.92 (95% CI 0.81, 1.04). For ER+, ER-, and TN breast cancer, corresponding HRs were 0.98 (0.84, 1.15), 0.81 (0.64, 1.04), and 0.70 (0.49, 0.99), respectively. CONCLUSIONS Our findings with regard to ER- and TN breast cancer are consistent with hypothesized inflammatory mechanisms of ER- and TN breast cancer, rather than hormone-dependent pathways. Aspirin may represent a potential opportunity for chemoprevention of ER- and TN breast cancer.
Collapse
Affiliation(s)
- Kimberly A Bertrand
- Slone Epidemiology Center at Boston University, 72 East Concord Street, L-7, Boston, MA, 02118, USA.
| | - Traci N Bethea
- Slone Epidemiology Center at Boston University, 72 East Concord Street, L-7, Boston, MA, 02118, USA.,Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Hanna Gerlovin
- Slone Epidemiology Center at Boston University, 72 East Concord Street, L-7, Boston, MA, 02118, USA.,Massachusetts Veterans Epidemiology and Research Information Center, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Patricia F Coogan
- Slone Epidemiology Center at Boston University, 72 East Concord Street, L-7, Boston, MA, 02118, USA
| | - Lauren Barber
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Lynn Rosenberg
- Slone Epidemiology Center at Boston University, 72 East Concord Street, L-7, Boston, MA, 02118, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, 72 East Concord Street, L-7, Boston, MA, 02118, USA
| |
Collapse
|
39
|
Salimi A, Aghvami M, Azami Movahed M, Zarei MH, Eshghi P, Zarghi A, Pourahmad J. Evaluation of Cytotoxic Potentials of Novel Cyclooxygenase-2 Inhibitor against ALL Lymphocytes and Normal Lymphocytes and Its Anticancer Effect through Mitochondrial Pathway. Cancer Invest 2020; 38:463-475. [PMID: 32772580 DOI: 10.1080/07357907.2020.1808898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
In the present study, we searched selective cytotoxicity and mitochondria mediated apoptosis of novel COX-2 inhibitor 2-(4-(Methylsulfonyl)phenyl)imidazo[1,2-a] pyridine-8-carboxylic acid on B-lymphocytes and their mitochondria isolated from normal subjects and acute lymphoblastic leukemia (ALL) patients' blood. Our results showed this compound can selectively induce cellular and mitochondrial toxicity on ALL B-lymphocytes and mitochondria without any toxic effects on normal B-lymphocytes and their mitochondria. Taken together, the results of this study suggest that cancerous mitochondria are a potential target for the ALL B-lymphocytes. Selective toxicity of COX-2 inhibitor in cancerous mitochondria could be an attractive therapeutic option for the effective clinical management of therapy-resistant ALL.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Marjan Aghvami
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food and Drug Control Laboratories, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mahsa Azami Movahed
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Zarei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Zárate LV, Pontillo CA, Español A, Miret NV, Chiappini F, Cocca C, Álvarez L, de Pisarev DK, Sales ME, Randi AS. Angiogenesis signaling in breast cancer models is induced by hexachlorobenzene and chlorpyrifos, pesticide ligands of the aryl hydrocarbon receptor. Toxicol Appl Pharmacol 2020; 401:115093. [PMID: 32526215 DOI: 10.1016/j.taap.2020.115093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/26/2022]
Abstract
Breast cancer incidence is increasing globally and pesticides exposure may impact risk of developing this disease. Hexachlorobenzene (HCB) and chlorpyrifos (CPF) act as endocrine disruptors, inducing proliferation in breast cancer cells. Vascular endothelial growth factor-A (VEGF-A), cyclooxygenase-2 (COX-2) and nitric oxide (NO) are associated with angiogenesis. Our aim was to evaluate HCB and CPF action, both weak aryl hydrocarbon receptor (AhR) ligands, on angiogenesis in breast cancer models. We used: (1) in vivo xenograft model with MCF-7 cells, (2) in vitro breast cancer model with MCF-7, and (3) in vitro neovasculogenesis model with endothelial cells exposed to conditioned medium from MCF-7. Results show that HCB (3 mg/kg) and CPF (0.1 mg/kg) stimulated vascular density in the in vivo model. HCB and CPF low doses enhanced VEGF-A and COX-2 expression, accompanied by increased levels of nitric oxide synthases (NOS), and NO release in MCF-7. HCB and CPF high doses intensified VEGF-A and COX-2 levels but rendered different effects on NOS, however, both pesticides reduced NO production. Moreover, our data indicate that HCB and CPF-induced VEGF-A expression is mediated by estrogen receptor and NO, while the increase in COX-2 is through AhR and NO pathways in MCF-7. In conclusion, we demonstrate that HCB and CPF environmental concentrations stimulate angiogenic switch in vivo. Besides, pesticides induce VEGF-A and COX-2 expression, as well as NO production in MCF-7, promoting tubulogenesis in endothelial cells. These findings show that pesticide exposure could stimulate angiogenesis, a process that has been demonstrated to contribute to breast cancer progression.
Collapse
Affiliation(s)
- Lorena V Zárate
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Alejandro Español
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Paraguay 2155, 16 piso, (CP1121), Buenos Aires, Argentina.
| | - Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Junín 954, subsuelo, (CP1113), Buenos Aires, Argentina.
| | - Laura Álvarez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| | - María E Sales
- Universidad de Buenos Aires, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Paraguay 2155, 16 piso, (CP1121), Buenos Aires, Argentina.
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, 5to piso, (CP1121), Buenos Aires, Argentina.
| |
Collapse
|
41
|
Lappano R, Talia M, Cirillo F, Rigiracciolo DC, Scordamaglia D, Guzzi R, Miglietta AM, De Francesco EM, Belfiore A, Sims AH, Maggiolini M. The IL1β-IL1R signaling is involved in the stimulatory effects triggered by hypoxia in breast cancer cells and cancer-associated fibroblasts (CAFs). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:153. [PMID: 32778144 PMCID: PMC7418191 DOI: 10.1186/s13046-020-01667-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022]
Abstract
Background Hypoxia plays a relevant role in tumor-related inflammation toward the metastatic spread and cancer aggressiveness. The pro-inflammatory cytokine interleukin-1β (IL-β) and its cognate receptor IL1R1 contribute to the initiation and progression of breast cancer determining pro-tumorigenic inflammatory responses. The transcriptional target of the hypoxia inducible factor-1α (HIF-1α) namely the G protein estrogen receptor (GPER) mediates a feedforward loop coupling IL-1β induction by breast cancer-associated fibroblasts (CAFs) to IL1R1 expression by breast cancer cells toward the regulation of target genes and relevant biological responses. Methods In order to ascertain the correlation of IL-β with HIF-1α and further hypoxia-related genes in triple-negative breast cancer (TNBC) patients, a bioinformatics analysis was performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets. Gene expression correlation, statistical analysis and gene set enrichment analysis (GSEA) were carried out with R studio packages. Pathway enrichment analysis was evaluated with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. TNBC cells and primary CAFs were used as model system. The molecular mechanisms implicated in the regulation of IL-1β by hypoxia toward a metastatic gene expression profile and invasive properties were assessed performing gene and protein expression studies, PCR arrays, gene silencing and immunofluorescence analysis, co-immunoprecipitation and ChiP assays, ELISA, cell spreading, invasion and spheroid formation. Results We first determined that IL-1β expression correlates with the levels of HIF-1α as well as with a hypoxia-related gene signature in TNBC patients. Next, we demonstrated that hypoxia triggers a functional liaison among HIF-1α, GPER and the IL-1β/IL1R1 signaling toward a metastatic gene signature and a feed-forward loop of IL-1β that leads to proliferative and invasive responses in TNBC cells. Furthermore, we found that the IL-1β released in the conditioned medium of TNBC cells exposed to hypoxic conditions promotes an invasive phenotype of CAFs. Conclusions Our data shed new light on the role of hypoxia in the activation of the IL-1β/IL1R1 signaling, which in turn triggers aggressive features in both TNBC cells and CAFs. Hence, our findings provide novel evidence regarding the mechanisms through which the hypoxic tumor microenvironment may contribute to breast cancer progression and suggest further targets useful in more comprehensive therapeutic strategies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Rita Guzzi
- Department of Physics, University of Calabria, 87036, Rende, Italy
| | | | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Andrew H Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
42
|
Sannasimuthu A, Ramani M, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, Arshad A, Mala K, Arockiaraj J. Peroxiredoxin of Arthrospira platensis derived short molecule YT12 influences antioxidant and anticancer activity. Cell Biol Int 2020; 44:2231-2242. [PMID: 32716104 DOI: 10.1002/cbin.11431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
This study demonstrates both the antioxidant and anticancer potential of the novel short molecule YT12 derived from peroxiredoxin (Prx) of spirulina, Arthrospira platensis (Ap). ApPrx showed significant reduction in reactive oxygen species (ROS) against hydrogen peroxide (H2 O2 ) stress. The complementary DNA sequence of ApPrx contained 706 nucleotides and its coding region possessed 546 nucleotides between position 115 and 660. Real-time quantitative reverse transcription polymerase chain reaction analysis confirmed the messenger RNA expression of ApPrx due to H2 O2 exposure in spirulina cells at regular intervals, in which the highest expression was noticed on Day 20. Cytotoxicity assay was performed using human peripheral blood mononuclear cells, and revealed that at 10 μM, the YT12 did not exhibit any notable toxicity. Furthermore, ROS scavenging activity of YT12 was performed using DCF-DA assay, in which YT12 scavenged a significant amount of ROS at 25 μM in H2 O2 -treated blood leukocytes. The intracellular ROS in human colon adenocarcinoma cells (HT-29) was regulated by oxidative stress, where the YT12 scavenges ROS in HT-29 cells at 12.5 μM. Findings show that YT12 peptide has anticancer activity, when treated against HT-29 cells. Through the MTT assay, YT12 showed vital cytotoxicity against HT-29 cells. These finding suggested that YT12 is a potent antioxidant molecule which defends ROS against oxidative stress and plays a role in redox balance.
Collapse
Affiliation(s)
- Anbazahan Sannasimuthu
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Madhura Ramani
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Nambiappan T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naif Abdulla Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kanchana Mala
- Department of Medical Research, Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
43
|
Chen YC, Chan CH, Lim YB, Yang SF, Yeh LT, Wang YH, Chou MC, Yeh CB. Risk of Breast Cancer in Women with Mastitis: A Retrospective Population-Based Cohort Study. ACTA ACUST UNITED AC 2020; 56:medicina56080372. [PMID: 32722165 PMCID: PMC7466309 DOI: 10.3390/medicina56080372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Background and objectives: Breast cancer is a common cancer in women and has been the fourth leading cause of death in Taiwanese women. Risk factors for breast cancer include family history of breast cancer, genetic factors, and not breastfeeding. Several studies have reported an association between repeated inflammation at a young age, especially among lactating women, and cancer; however, the number of studies about the association of mastitis and breast cancer in nonlactating women is still limited. Therefore, the aim of this study was to determine the relationship between mastitis in women aged ≥40 years and breast cancer. Materials and Methods: This was a retrospective cohort study design. The data source was the Longitudinal Health Insurance Database 2010 (LHID 2010), comprising data collected by Taiwan’s National Health Insurance program. Cases of newly diagnosed mastitis in women aged ≥40 years (ICD-9-CM code = 611.0) were selected from the years 2010 to 2012. Women not diagnosed with mastitis were selected as the control group, and their data for the years 2009 to 2013 were obtained through the database. In addition, the non-mastitis group was matched 1:10 by age. Results: A total of 8634 participants were selected from the LHID 2010, which included 734 cases with mastitis and 7900 cases without mastitis. After adjustment for age, hypertension, hyperlipidemia, diabetes, hypothyroidism, and autoimmune diseases, the Cox proportional hazard model showed that patients with mastitis had a higher risk of breast cancer (aHR = 3.71, 95% CI = 1.9–7.02) compared with the non-mastitis group. The Kaplan–Meier curve also showed that women with mastitis had a higher risk of developing breast cancer. Conclusions: This study confirmed that women with mastitis have a higher risk of developing breast cancer. Therefore, women aged ≥40 years could reduce breast cancer risk by taking precautions to prevent mammary gland infection and mastitis.
Collapse
Affiliation(s)
- Ying-Cheng Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chi-Ho Chan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Yu-Bing Lim
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Liang-Tsai Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Anesthesiology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (M.-C.C.); (C.-B.Y.)
| | - Chao-Bin Yeh
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-B.L.); (S.-F.Y.); (L.-T.Y.)
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (M.-C.C.); (C.-B.Y.)
| |
Collapse
|
44
|
Rajesh Kumar M, Violet Dhayabaran V, Sudhapriya N, Manikandan A, Gideon DA, Annapoorani S. p-TSA.H 2O mediated one-pot, multi-component synthesis of isatin derived imidazoles as dual-purpose drugs against inflammation and cancer. Bioorg Chem 2020; 102:104046. [PMID: 32688115 DOI: 10.1016/j.bioorg.2020.104046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/24/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023]
Abstract
A novel one-pot multicomponent reaction was performed to synthesize different imidazole and benzotriazole (BTA) isatin-based medicinally important compounds using (p-TSA·H2O) as an economical and operative acid catalyst. The yield of the products was found to be up to a maximum of 92% when using this catalyst. Antioxidant, anti-breast cancer and anti-inflammatory activities of these 13 isatin-based derivatives (named as 5a-m) were assessed. The inhibitory effects of these compounds were tested in vitro against cyclooxygenase-2 (COX-2, an enzyme responsible for inflammation) and phosphoinositide-3 kinase (PI3K, a key enzyme in breast cancer). "Among the 13 isatin-based Imidazole derivatives, five compounds (5a, 5d, 5f, 5 k and 5l) were found to exhibit anti-inflammatory as well as anti-cancer activity, which was validated using HRBC stabilization assay (to show anti-inflammatory activity) and cytotoxicity in MCF-7 (breast cancer cell line) to provide proof for anti-cancer property of the compounds". The molecular interactions between the two enzymes were probed using molecular docking. Structure-Activity Relationship (SAR) and ADMET prediction results were also useful to screen the most effective imidazole derivatives and to establish them as putative COX-2 inhibitors/anti-inflammatory drugs. These selected compounds which showed appreciable activity against COX-2 and PI3K are promising drug candidates for the treatment of breast cancer and inflammation which is often associated with breast cancer pathophysiology.
Collapse
Affiliation(s)
- M Rajesh Kumar
- Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli 17, India
| | - V Violet Dhayabaran
- Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli 17, India.
| | - N Sudhapriya
- Department of Textile Chemistry, The South India Textile Research Association, Coimbatore 641014, India
| | - A Manikandan
- School of Bio-Sciences and Technology, VIT University, Vellore 632014, India; Division of BioSciences and Biomedical Engineering, IIT Indore, Simrol 453552, India.
| | - Daniel A Gideon
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli 17, India
| | - S Annapoorani
- Dr. Umayal Ramanathan College for Women, Karaikudi, India
| |
Collapse
|
45
|
Zati Zehni A, Jeschke U, Hester A, Kolben T, Ditsch N, Jacob SN, Mumm JN, Heidegger HH, Mahner S, Vilsmaier T. EP3 Is an Independent Prognostic Marker Only for Unifocal Breast Cancer Cases. Int J Mol Sci 2020; 21:ijms21124418. [PMID: 32580276 PMCID: PMC7352354 DOI: 10.3390/ijms21124418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to evaluate the prognostic impact of prostaglandin E2 receptor 3 (EP3) receptor expression might have on the two different breast cancer entities: multifocal/multicentric versus unifocal. As the prognosis determining aspects, we investigated the overall- and disease-free survival by uni-and multivariate analysis. To underline the study’s conclusion, we additionally considered the histopathological grading and the tumor node metastasis (TNM) staging system. A retrospective statistical analysis was performed on survival related events in a series of 289 sporadic breast cancer (BC) patients treated at the Department of Obstetrics and Gynecology at the Ludwig–Maximillian’s University in Munich between 2000 and 2002. The EP3 receptor expression was analyzed by immunohistochemistry and showed to have a significantly positive association with breast cancer prognosis for both entities, although with major differences. Patients with unifocal BC with EP3 receptor expression showed a significant improved overall survival, in contrast to the patient cohort with multifocal/multicentric BC. In this group, EP3 expression revealed its positive impact merely five years after initial diagnosis. Underlining the positive influence of EP3 as a positive prognosticator notably for unifocal breast cancer, only this patient cohort showed favorable outcomes in staging and grading. Especially EP3 expression in unifocal breast cancer was identified as an independent prognostic marker for the overall survival, when adjusted for age, grading, and staging. Altogether, our results strengthen the need to further investigate the behavior of EP3 in breast cancer and understand why markers linked to inflammation show different effects on prognosis and clinicopathological parameters on each focality type.
Collapse
Affiliation(s)
- Alaleh Zati Zehni
- Department of Obstetrics and Gynecology & Breast Center, University Hospital, Ludwig Maximilian University of Munich, Marchioninistraße 15, 81377 Munich, Germany; (A.Z.Z.); (A.H.); (T.K.); (N.D.); (S.M.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology & Breast Center, University Hospital, Ludwig Maximilian University of Munich, Marchioninistraße 15, 81377 Munich, Germany; (A.Z.Z.); (A.H.); (T.K.); (N.D.); (S.M.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Universität Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
- Correspondence: ; Tel.: +49-8214-0016-5505
| | - Anna Hester
- Department of Obstetrics and Gynecology & Breast Center, University Hospital, Ludwig Maximilian University of Munich, Marchioninistraße 15, 81377 Munich, Germany; (A.Z.Z.); (A.H.); (T.K.); (N.D.); (S.M.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology & Breast Center, University Hospital, Ludwig Maximilian University of Munich, Marchioninistraße 15, 81377 Munich, Germany; (A.Z.Z.); (A.H.); (T.K.); (N.D.); (S.M.)
| | - Nina Ditsch
- Department of Obstetrics and Gynecology & Breast Center, University Hospital, Ludwig Maximilian University of Munich, Marchioninistraße 15, 81377 Munich, Germany; (A.Z.Z.); (A.H.); (T.K.); (N.D.); (S.M.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Universität Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Sven-Niclas Jacob
- Department of General, Visceral, Transplant, Vascular and Thoracic Surgery, Ludwig Maximilian University of Munich, Marchioninistraße 15, 81377 Munich, Germany;
| | - Jan-Niclas Mumm
- Department of Urology, Ludwig Maximilian University of Munich, Marchioninistraße 15, 81377 Munich, Germany;
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology & Breast Center, University Hospital, Ludwig Maximilian University of Munich, Maistraße 11, 80337 Munich, Germany; (H.H.H.); (T.V.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology & Breast Center, University Hospital, Ludwig Maximilian University of Munich, Marchioninistraße 15, 81377 Munich, Germany; (A.Z.Z.); (A.H.); (T.K.); (N.D.); (S.M.)
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology & Breast Center, University Hospital, Ludwig Maximilian University of Munich, Maistraße 11, 80337 Munich, Germany; (H.H.H.); (T.V.)
| |
Collapse
|
46
|
Abstract
Objective: The objective of this review was to systematically review and synthesize evidence regarding benefits of using nonsteroidal anti-inflammatory drugs (NSAIDs) for the treatment of colorectal cancer (CRC). Data Sources: The data sources were MEDLINE, PubMed, NEJM, Google Scholar, and Google searches of references from relevant and eligible trials. Review Methods: We screened abstracts and full-text articles of identified references for eligibility and reviewed randomized controlled trials, cohort studies, and meta-analysis for evidence on benefits of using NSAIDs in CRC treatments. For all extracted data, completeness and relevance were checked. Results: The risk of any adenoma among frequent NSAID users was 26.8% vs 39.9% among placebo subjects who later used NSAIDs sporadically (adjusted relative risk = 0.62, 95% confidence interval [CI] = 0.39-0.98; P trend with NSAID use frequency = .03). Long-term use of aspirin reduces the risk of CRC. Aspirin also reduces the incidence of colon adenomas and mortality, especially when used for >10 years. Rofecoxib is associated with the reduction of CRC; however, it was associated with cardiovascular risk (with an overall unadjusted relative risk of 1.50 [95% CI = 0.76-2.94; P = .24]). Adenoma Prevention with Celecoxib trial shows that, for patients of all genotypes, the estimated cumulative incidence of one or more adenomas by year 3 was 59.8% for those randomized to placebo as compared with 43.3% for those randomized to low-dose (200 mg, twice daily) celecoxib (relative risk [RR] = 0.68; 95% CI = 0.59-0.79; P < .001) and 36.8% for those randomized to high-dose (400 mg, twice daily) celecoxib and 60.7% in placebo group (RR = 0.54; 95% CI = 0.46-0.64; P < .001). Conclusions: The use of COX-2 inhibitors both prior to and after diagnosis of CRC seemed to be mildly associated with the reduction in mortality of patients with CRC. Some literatures state that COX-2 inhibitors might play a synergistic role in adjuvant chemotherapy of FOLFOX regimen. Celecoxib was found to increase the radiosensitization of colon cancer cells.
Collapse
Affiliation(s)
| | | | | | - Mensur Shafi
- St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| |
Collapse
|
47
|
de Souza CP, Alves B, Waisberg J, Fonseca F, Carmo ADO, Gehrke F. Detection of COX-2 in liquid biopsy in patients with breast cancer. J Clin Pathol 2020; 73:826-829. [DOI: 10.1136/jclinpath-2020-206576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 11/04/2022]
Abstract
AimsTo determine the expression of the cyclooxygenase-2 (COX-2) gene in patients with breast cancer attended at the Centro Universitário Saúde ABC/Faculdade de Medicina do ABC (CUS-ABC/FMABC) outpatient clinic. Breast cancer is the most common cancer in women worldwide. More than two million new cases are reported annually. An overexpression of COX-2 has been observed in many cancers. COX-2 is related to parameters of cancer aggressiveness, including tumour size, positive nodal state and lower survival, and to angiogenesis and resistance to apoptosis.Methods15 mL of peripheral blood was obtained from 34 patients and 21 healthy women. The extracellular RNA of QIAamp RNA was submitted to an RNA sequestration kit for RNA reverse transcriptase. Quantitative real-time PCR was performed using COX-2-specific oligonucleotides and the endogenous Glyceraldehyde-3-Phosphate Dehydrogenase gene.ResultsThe mean remission time was 53 years. The mean progression time was 33 months. The difference observed between the patient and control groups in median COX-2 expression (p<0.001) was significant.ConclusionsPatients with breast cancer showed a higher mean COX-2 expression in peripheral blood samples at diagnosis than the control group. Since this information could prove important in the diagnosis and prognosis of breast cancer, further research is required on larger patient samples.
Collapse
|
48
|
Abstract
PURPOSE Nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors (COXibs) inhibit the progression of endometrial cancer, ovarian cancer and cervical cancer. However, concerning the adverse effects of NSAIDs and COXibs, it is still urgent and necessary to explore novel and specific anti-inflammation targets for potential chemoprevention. The signaling of cyclooxygenase 2-prostaglandin E2-prostaglandin E2 receptors (COX-2-PGE2-EPs) is the central inflammatory pathway involved in the gynecological carcinogenesis. METHODS Literature searches were performed to the function of COX-2-PGE2-EPs in gynecological malignancies. RESULTS This review provides an overview of the current knowledge of COX-2-PGE2-EPs signaling in endometrial cancer, ovarian cancer and cervical cancer. Many studies demonstrated the upregulated expression of the whole signaling pathway in gynecological malignancies and some focused on the function of COX-2 and cAMP-linked EP2/EP4 and EP3 signaling pathway in gynecological cancer. By contrast, roles of EP1 and the exact pathological mechanisms have not been completely clarified. The studies concerning EP receptors in gynecological cancers highlight the potential advantage of combining COX enzyme inhibitors with EP receptor antagonists as therapeutic agents in gynecological cancers. CONCLUSION EPs represent promising anti-inflammation biomarkers for gynecological cancer and may be novel treatment targets in the near future.
Collapse
|
49
|
Liu Z, Cheng S, Fu G, Ji F, Wang C, Cao M. Postoperative administration of ketorolac averts morphine-induced angiogenesis and metastasis in triple-negative breast cancer. Life Sci 2020; 251:117604. [PMID: 32243929 DOI: 10.1016/j.lfs.2020.117604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 01/07/2023]
Abstract
AIMS Opioids (i.e. morphine) were found to induce triple negative breast cancer (TNBC) metastasis while nonsteroidal anti-inflammatory drugs (i.e. ketolorac) were associated with decreased metastasis in TNBC. These contradictory findings demand clarification on the effect of postoperative morphine and ketorolac on TNBC metastasis. MATERIALS AND METHODS TNBC xenograft mice were established using MDA-MB-231 cells. When tumors reached ~100 mm3, the primary tumor was resected. Mice were then randomly assigned to four groups (n = 14): (i) saline, (ii) morphine (10 mg kg-1) (iii) morphine + ketorolac (10 mg kg-1 of morphine and 20 mg kg-1 of ketorolac) (iv) ketorolac (20 mg kg-1); administrated for three consecutive days after resection. Three weeks after resection, the number of lung metastases was measured. Microvessel density, thrombospondin-1 (TSP-1) and c-Myc expression in recurrent tumors were determined. To elucidate the above phenomenon in vitro, MDA-MB-231 cells were treated according to the regiment above; with or without supplementation of an AKT inhibitor to determine the activation of PI3K/AKT/c-Myc pathway. KEY FINDINGS In mice, morphine promoted TNBC metastasis and angiogenesis, decreased TSP-1 expression and increased c-Myc expression, while co-administration of ketorolac significantly reversed the phenotypes above (p < .05). Mechanistically, morphine inhibited TSP-1 secretion by activating PI3K/AKT/c-Myc pathway (p < .05), while ketorolac promoted TSP-1 secretion (p < .05) by suppressing PI3K/AKT/c-Myc pathway. SIGNIFICANCE Our study indicated that morphine enhanced TNBC metastasis and angiogenesis while ketorolac suppressed this effect. Mechanistically, this may be related to the enhancement of TSP-1 synthesis after ketorolac administration which further de-activated PI3K/AKT/c-Myc pathway.
Collapse
Affiliation(s)
- Zhongqi Liu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shi Cheng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ganglan Fu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Fengtao Ji
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chengli Wang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Minghui Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
50
|
Watanabe Y, Imanishi Y, Ozawa H, Sakamoto K, Fujii R, Shigetomi S, Habu N, Otsuka K, Sato Y, Sekimizu M, Ito F, Ikari Y, Saito S, Kameyama K, Ogawa K. Selective EP2 and Cox-2 inhibition suppresses cell migration by reversing epithelial-to-mesenchymal transition and Cox-2 overexpression and E-cadherin downregulation are implicated in neck metastasis of hypopharyngeal cancer. Am J Transl Res 2020; 12:1096-1113. [PMID: 32269737 PMCID: PMC7137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/01/2020] [Indexed: 06/11/2023]
Abstract
Cyclooxygenase-2 (Cox-2) has been shown to promote cancer initiation and progression through pleiotropic functions including induction of epithelial-to-mesenchymal transition (EMT) via its predominant product prostaglandin E2 that binds to the cognate receptor EP2. Hence, pharmacological inhibition at the level of EP2 is assumed to be a more selective alternative with less risk to Cox-2 inhibition. However, little is known regarding the anti-cancer effect of an EP2 antagonist on the malignant properties of cancers including hypopharyngeal squamous cell carcinoma (HPSCC). The present study found that both the Cox-2 inhibitor celecoxib and the EP2 antagonist PF-04418948 upregulated CDH-1 expression, restored membranous localization of E-cadherin, and reduced vimentin expression, by downregulating the transcriptional repressors of E-cadherin in BICR6 and FaDu cells. Such Cox-2 or EP2 inhibition-induced EMT reversal led to repressed migration ability in both cells. Immunohistochemical analysis of surgical HPSCC specimens demonstrated an inverse relationship in expression between Cox-2 and E-cadherin both in the context of statistics (P = 0.028) and of reciprocal immunolocalization in situ. Multivariate logistic regression revealed that overexpression of Cox-2 (P < 0.001) and downregulation of E-cadherin (P = 0.016) were both independently predictive of neck metastasis. These results suggest that suppression of cell migration ability via reversing EMT by inhibiting the Cox-2/EP2 signaling may contribute to preventing the development and progression of lymphatic metastasis. Collectively, targeting Cox-2/EP2, especially using EP2 antagonist, can be a promising therapeutic strategy by exerting an anti-metastatic effect via EMT reversal for improving the treatment outcomes of patients with various cancers including HPSCC.
Collapse
Affiliation(s)
- Yoshihiro Watanabe
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
- Department of Otorhinolaryngology, Tokyo Saiseikai Central HospitalTokyo, Japan
| | - Yorihisa Imanishi
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kawasaki Municipal Kawasaki HospitalKawasaki, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Koji Sakamoto
- Department of Otorhinolaryngology-Head and Neck Surgery, Saiseikai Utsunomiya HospitalUtsunomiya, Japan
| | - Ryoichi Fujii
- Department of Otorhinolaryngology, Saiseikai Yokohamashi Tobu HospitalYokohama, Japan
| | - Seiji Shigetomi
- Department of Otorhinolaryngology, Yokohama Municipal Citizen’s HospitalYokohama, Japan
| | - Noboru Habu
- Department of Otorhinolaryngology, Kyosai Tachikawa HospitalTokyo, Japan
| | - Kuninori Otsuka
- Department of Otorhinolaryngology, Shin-Yurigaoka General HospitalKawasaki, Japan
| | - Yoichiro Sato
- Department of Otorhinolaryngology-Head and Neck Surgery, Kawasaki Municipal Kawasaki HospitalKawasaki, Japan
| | - Mariko Sekimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Fumihiro Ito
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Yuichi Ikari
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Shin Saito
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| | - Kaori Kameyama
- Department of Pathology, Keio University School of MedicineTokyo, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of MedicineTokyo, Japan
| |
Collapse
|