1
|
Atallah NM, Makhlouf S, Nabil M, Ibrahim A, Toss MS, Mongan NP, Rakha E. Characterisation of HER2-Driven Morphometric Signature in Breast Cancer and Prediction of Risk of Recurrence. Cancer Med 2025; 14:e70852. [PMID: 40243160 PMCID: PMC12004275 DOI: 10.1002/cam4.70852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
INTRODUCTION Human epidermal growth factor receptor 2-positive (HER2-positive) breast cancer (BC) is a heterogeneous disease. In this study, we hypothesised that the degree of HER2 oncogenic activity, and hence response to anti-HER2 therapy is translated into a morphological signature that can be of prognostic/predictive value. METHODS We developed a HER2-driven signature based on a set of morphometric features identified through digital image analysis and visual assessment in a sizable cohort of BC patients. HER2-enriched molecular sub-type (HER2-E) was used for validation, and pathway enrichment analysis was performed to assess HER2 pathway activity in the signature-positive cases. The predictive utility of this signature was evaluated in post-adjuvant HER2-positive BC patients. RESULTS A total of 57 morphometric features were evaluated; of them, 22 features were significantly associated with HER2 positivity. HER2 IHC score 3+/oestrogen receptor-negative tumours were significantly associated with HER2-related morphometric features compared to other HER2 classes including HER2 IHC 2+ with gene amplification, and they showed the least intra-tumour morphological heterogeneity. Tumours displaying HER2-driven morphometric signature showed the strongest association with PAM50 HER2-E sub-type and were enriched with ERBB signalling pathway compared to signature-negative cases. BC patients with positive HER2 morphometric signature showed prolonged distant metastasis-free survival post-adjuvant anti-HER2 therapy (p = 0.007). The clinico-morphometric prognostic index demonstrated an 87% accuracy in predicting recurrence risk. CONCLUSION Our findings underscore the strong prognostic and predictive correlation between HER2 histo-morphometric features and response to targeted anti-HER2 therapy.
Collapse
Affiliation(s)
- N. M. Atallah
- Translational Medical Science, School of MedicineThe University of Nottingham and Nottingham University Hospitals NHS TrustNottinghamUK
- Department of Pathology, Faculty of MedicineMenoufia UniversityShebin El‐KomEgypt
| | - S. Makhlouf
- Translational Medical Science, School of MedicineThe University of Nottingham and Nottingham University Hospitals NHS TrustNottinghamUK
- Department of Pathology, Faculty of MedicineAssiut UniversityAssuitEgypt
| | - M. Nabil
- Department of Computer Science, Faculty of MedicineMenoufia UniversityShebin El‐KomEgypt
| | - A. Ibrahim
- Translational Medical Science, School of MedicineThe University of Nottingham and Nottingham University Hospitals NHS TrustNottinghamUK
- Department of PathologySuez Canal UniversityIsmailiaEgypt
| | - M. S. Toss
- Translational Medical Science, School of MedicineThe University of Nottingham and Nottingham University Hospitals NHS TrustNottinghamUK
- Histopathology DepartmentRoyal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation TrustSheffieldUK
| | - N. P. Mongan
- School of Veterinary Medicine and SciencesUniversity of NottinghamSutton BoningtonUK
- Department of PharmacologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - E. Rakha
- Translational Medical Science, School of MedicineThe University of Nottingham and Nottingham University Hospitals NHS TrustNottinghamUK
- Department of Pathology, Faculty of MedicineMenoufia UniversityShebin El‐KomEgypt
- Pathology DepartmentHamad Medical CorporationDohaQatar
| |
Collapse
|
2
|
Luo QY, Yang J, Di T, Xia ZF, Zhang L, Pan WT, Shi S, Yang LQ, Sun J, Qiu MZ, Yang DJ. The novel BCL-2/BCL-XL inhibitor APG-1252-mediated cleavage of GSDME enhances the antitumor efficacy of HER2-targeted therapy in HER2-positive gastric cancer. Acta Pharmacol Sin 2025; 46:1082-1096. [PMID: 39592733 PMCID: PMC11950313 DOI: 10.1038/s41401-024-01414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
HER2-positive gastric cancer has a poor prognosis, with a high incidence of drug resistance and a lack of effective treatments for drug-resistant patients. The exploration of the mechanism of resistance to HER2-targeted therapy in HER2-positive gastric cancer and the identification of effective strategies to reverse it are urgently needed. In this study, we found that HER2-targeted agents upregulated the expression of GSDME and that the overexpression of GSDME attenuated the sensitivity of HER2-targeted agents. Furthermore, we observed that the BCL-2/BCL-XL inhibitor APG-1252 plus lapatinib promoted GSDME-mediated pyroptosis and exhibited remarkable antitumor activity both in vitro and in vivo. Mechanistically, APG-1252 combined with lapatinib synergistically induced GSDME-mediated pyroptosis in HER2-positive gastric cancer by activating caspase-dependent pathways and blocking the phospho-AKT/GSK-3β/MCL-1 signaling pathway. Our data indicated that the combination of lapatinib and APG-1252 had a synergistic antitumor effect on HER2-positive gastric cancer through the induction of caspase-3/GSDME-mediated apoptosis and pyroptosis.
Collapse
Affiliation(s)
- Qiu-Yun Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Clinical Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jing Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tian Di
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zeng-Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Tao Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, 215000, China
| | - Shan Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Qiong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jian Sun
- Department of Clinical Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Miao-Zhen Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Da-Jun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- Ascentage Pharma (Suzhou) Co, Ltd, Suzhou, 215000, China.
| |
Collapse
|
3
|
Atallah N, Makhlouf S, Li X, Zhang Y, Mongan NP, Rakha E. Prediction of Response to Anti-HER2 Therapy Using A Multigene Assay. Mod Pathol 2025; 38:100713. [PMID: 39826800 DOI: 10.1016/j.modpat.2025.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/22/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
HER2-positive breast cancer (BC), which constitutes 13% to 15% of cases, shows variable response to anti-HER2 therapies. HER2 positivity, defined as protein overexpression (immunohistochemistry [IHC] score 3+) or equivocal expression (IHC 2+) with evidence of HER2 gene amplification, determines the eligibility for anti-HER2 therapy. The MammaTyper assay (Cerca Biotech GmbH) is an RT-qPCR BC subtyping platform based on the micro RNA expression of ERBB2, ESR1, PGR, and MKI67. This study aimed to evaluate the accuracy of the MammaTyper assay in predicting the response of HER2-positive patients to therapy. A well-characterized HER2-positive BC cohort of 287 cases diagnosed at Nottingham University hospitals between 2006 and 2018 was included. The cohort was divided into 2 groups: a trastuzumab-treated group (n = 159) and a chemotherapy-only treated group (n = 128). Tumor clinicopathologic characteristics were matched between the 2 groups. Cases with discordant HER2 status were validated through staining of surgical excision specimens. ERBB2 micro RNA identified 251/287 (87.5%) cases as HER2-positive, 10.8% (31/287) as HER2 low and 1.7% (5/287) as HER2 negative. According to the MammaTyper assay, ERBB2-positive patients treated with anti-HER2 therapy had significantly prolonged 5-year disease-free survival and distant metastasis-free survival (hazard ratio = 0.56, P = .003 and hazard ratio = 0.62, P = .023, respectively). MammaTyper-defined HER2-enriched subtype showed a better response to anti-HER2 therapy compared with IHC-defined subtypes, with significant differences in both 5-year disease-free survival and BC-specific survival (P = .01 and < .001, respectively). Patients who were ERBB2 negative did not show a survival difference between the group of patients who were treated with trastuzumab and those who were treated with chemotherapy only (P > .05). Validation analysis revealed that 11/36 ERBB2-negative cases were IHC 2+/ISH positive with very low level of gene amplification and 25 cases were false classified as HER2-positive using current protocols. Combining the MammaTyper assay with IHC to assess HER2 status improves the identification of HER2-positive patients with BC who would benefit from anti-HER2 therapy.
Collapse
Affiliation(s)
- Nehal Atallah
- Translational Medical Science, School of Medicine, the University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; Department of Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Shorouk Makhlouf
- Translational Medical Science, School of Medicine, the University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; Department of Pathology, Faculty of Medicine, Assiut University, Egypt
| | | | | | - Nigel P Mongan
- Translational Medical Science, School of Medicine, the University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; Translational Medical Science, School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington, United Kingdom; Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Emad Rakha
- Translational Medical Science, School of Medicine, the University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; Department of Pathology, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
4
|
Abdulkareem NM, Bhat R, Castillo M, Jung SY, Vasaikar S, Nanda S, Ruiz A, Shea M, Cao W, Veeraraghavan J, Kim HY, Bawa-Khalfe T, Hussain T, Liu X, Gunaratne P, Schiff R, Trivedi MV. Interactions between ADGRF1 (GPR110) and extracellular matrix proteins govern its effects on tumorigenesis in HER2-positive breast cancer. Br J Pharmacol 2025. [PMID: 39965212 DOI: 10.1111/bph.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND PURPOSE We and others have previously shown that ADGRF1, an adhesion G protein-coupled receptor, is overexpressed and associated with poor survival in many cancers, including human epidermal growth factor receptor-2 (HER2) breast cancer (BC). Also, we have reported the tumour-promoting function of ADGRF1 using preclinical models of HER2+ BC. In this study, we investigated the effect of ADGRF1 overexpression in an orthotopic in vivo model as well as downstream signalling of ADGRF1 in HER2+ BC. EXPERIMENTAL APPROACH We utilized a doxycycline (Dox)-induced ADGRF1 overexpression system in HER2+ BC cell lines and performed various in vitro and in vivo studies. Following ADGRF1 overexpression in the presence/absence of Matrigel, laminin-111 or collagen-IV, we performed the mammosphere assay to assess the tumorigenicity of breast epithelial cells, as well as cAMP/IP1 assays and RNA-sequencing, to understand the receptor function and pharmacology. We conducted cross-linking-aided immunoprecipitation and mass spectrometry to confirm the physical interaction between ADGRF1 and the extracellular matrix proteins present in Matrigel. KEY RESULTS We found that ADGRF1 switched from a tumour-promoting to tumour-suppressive function upon interaction with laminin-111. Interaction of ADGRF1 with laminin-111 resulted in inhibition of Gαs coupling and STAT3 phosphorylation, induction of senescence, increase in HER2 expression, and improvement of sensitivity to anti-HER2 drugs in HER2+ BC. CONCLUSIONS ADGRF1 switches from a tumour-promoting to tumour-suppressive function upon interaction with laminin-111, leading to improvements in sensitivity to anti-HER2 drugs. Leveraging ADGRF1 interactions with laminin-111 may allow the design of novel therapies against ADGRF1 in HER2+ BC.
Collapse
Affiliation(s)
- Noor Mazin Abdulkareem
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Raksha Bhat
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Suhas Vasaikar
- Clinical Biomarker and Diagnostics, Seagen, Bothell, Washington, USA
| | - Sarmistha Nanda
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Alexis Ruiz
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Martin Shea
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Wangjia Cao
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Jamunarani Veeraraghavan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - Tasneem Bawa-Khalfe
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, Houston, Texas, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Meghana V Trivedi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Mahdi AF, Ashfield N, Crown J, Collins DM. Pre-Clinical Rationale for Amcenestrant Combinations in HER2+/ER+ Breast Cancer. Int J Mol Sci 2025; 26:460. [PMID: 39859174 PMCID: PMC11765389 DOI: 10.3390/ijms26020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
HER2-positive/oestrogen receptor-positive (HER2+/ER+) represents a unique breast cancer subtype. The use of individual HER2- or ER-targeting agents can lead to the acquisition of therapeutic resistance due to compensatory receptor crosstalk. New drug combinations targeting HER2 and ER could improve outcomes for patients with HER2+/ER+ breast cancer. In this study, the pre-clinical rationale is explored for combining amcenestrant (Amc), a selective oestrogen receptor degrader (SERD), with HER2-targeted therapies including trastuzumab, trastuzumab-emtansine (T-DM1) and tyrosine kinase inhibitors (TKIs). The combination of Amc and anti-HER2 therapies was investigated in a panel of four HER2+/ER+ cell lines: BT-474, MDA-MB-361, EFM-192a and a trastuzumab-resistant variant BT-474-T. Proliferation (IC50 and matrix combination assays) was determined using acid phosphatase assays. HER2/ER and intracellular signalling pathway protein levels/activity were investigated by western blot. Apoptosis was assessed using caspase 3/7 assays. Additivity and synergy were observed between Amc and the TKIs neratinib, lapatinib and tucatinib in all cell lines. Amc increased the anti-proliferative effect of trastuzumab in MDA-MB-361 and BT-474-T. Addition of Amc also increased anti-proliferative efficacy of T-DM1 in BT-474-T. TKI/Amc combinations reduced p-HER2 and ER levels and resulted in increased apoptosis. Higher ER expression in MDA-MB-361 and BT-474-T was associated with greater potential for synergy. In conclusion, the combination of Amc- and HER2-targeted treatments has potential as a therapeutic strategy for the treatment of HER2+/ER+ breast cancer and warrants further clinical investigation to validate safety and efficacy in patients.
Collapse
Affiliation(s)
- Amira F Mahdi
- Cancer Biotherapeutics Research Group, Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin 9, D09 NR58 Dublin, Ireland
- Limerick Digital Cancer Research Centre, Health Research Institute, School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland
| | - Niall Ashfield
- Cancer Biotherapeutics Research Group, Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin 9, D09 NR58 Dublin, Ireland
| | - John Crown
- Cancer Biotherapeutics Research Group, Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin 9, D09 NR58 Dublin, Ireland
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin 4, D04 T6F4 Dublin, Ireland
| | - Denis M Collins
- Cancer Biotherapeutics Research Group, Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin 9, D09 NR58 Dublin, Ireland
| |
Collapse
|
6
|
Wang S, Jin Z, Li Z, Zhu G, Liu B, Zhang D, Tang S, Yao F, Wen J, Zhao Y, Wang X, Jin F, Wang J. An exploration of the optimal combination chemotherapy regimen based on neoadjuvant therapy containing pyrotinib for HER2-positive breast cancer: A multicenter real-world study. Transl Oncol 2025; 51:102173. [PMID: 39504711 PMCID: PMC11570967 DOI: 10.1016/j.tranon.2024.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The combination of pyrotinib (Py) with cytotoxic agents proved to be effective in early human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC). However, the optimal chemotherapy regimen is unknown. This study attempts to explore it from real-world research data. METHODS Information was collected from patients with early-stage HER2-positive BC from 23 centers across the country. They were categorized into the anthracycline group (A group) and non-anthracycline group (non-A group). Patients in the non-A group were further categorized into the platinum group and non-platinum group and the short-cycle (≤4 cycles) taxane group and long-cycle (>4 cycles) taxane group. Total pathological complete response (tpCR, ypT0/is ypN0) and breast pathological complete response (bpCR, ypT0/is) rates were assessed. RESULTS A total of 107 patients were enrolled. Postoperative pathology indicated a tpCR rate of 36.8 %, a bpCR rate of 42.1 % in the A group, the non-A group had a tpCR rate of 47.8 %, and a bpCR rate of 53.6 %, with P-values of 0.273 and 0.254, respectively. In the long-cycle taxane group, the tpCR and bpCR rates were 60.8 % and 66.7 %, respectively. In the short-cycle taxane group, the tpCR and bpCR rates were 11.1 % and 16.7 %, respectively (both P<0.001). The platinum group had higher tpCR rate (62.9 % vs. 32.4 %, respectively; P = 0.011) and bpCR rate (65.7 % vs. 41.2 %, respectively; P = 0.041). CONCLUSION As for a neoadjuvant therapy regimen with Py, an anthracycline-free regimen is feasible. Besides, platinum-containing, long-cycle taxane regimens appear to achieve superior efficacy under anthracycline-removed conditions.
Collapse
Affiliation(s)
- Shan Wang
- Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhaohui Li
- Department of Ward Four of Chemotherapy, Anshan Cancer Hospital, Anshan, China
| | - Guolian Zhu
- Department of Breast Surgery, Shenyang the Fifth hospital of people, Shenyang, China
| | - Bin Liu
- Department of Breast Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Dianlong Zhang
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Shuhong Tang
- Department of Oncology, Dalian Fifth People's Hospital, Dalian, China
| | - Fan Yao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolan Wang
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jia Wang
- Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
7
|
Zhao J, Yu Y, Ren W, Ding L, Chen Y, Yuan P, Yue J, Yang Y, Zou G, Chen T, Chai J, Zhang L, Wu W, Zeng Y, Gui X, Cai Y, Luo S, Yuan Z, Zhang K, Yao H, Wang Y. Combined pyrotinib and fulvestrant for hormone receptor-positive and HER2-positive metastatic breast cancer: A multicenter, single-arm, phase II trial. MedComm (Beijing) 2025; 6:e70031. [PMID: 39712455 PMCID: PMC11661908 DOI: 10.1002/mco2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
This multicenter, single-arm, phase II clinical trial (NCT04034589) evaluated the efficacy and safety of pyrotinib combined with fulvestrant in patients with HR-positive/HER2-positive metastatic breast cancer who had experienced trastuzumab treatment failure. A total of 46 patients were enrolled, receiving pyrotinib orally once daily and fulvestrant intramuscularly on days 1 and 15 of cycle 1, followed by monthly doses on day 1. The primary endpoint was progression-free survival (PFS), while secondary endpoints included overall survival (OS), objective response rate (ORR), disease control rate (DCR), and safety. The median PFS was 18.2 months (95% CI, 11.9-31.1) overall, 19.5 months (95% CI, 10.6-NA) for those receiving the combination as first-line therapy, and 18.4 months (95% CI, 16.7-NA) for patients with brain metastases. Median OS was not reached, with a 3-year OS rate of 75.2% (95% CI, 62.8-90.2%). The ORR was 32.5%, and the DCR was 97.5%. Responses were observed in patients with low tumor mutation burden and ZNF217 mutation. Importantly, no grade 4 or higher treatment-related adverse events or deaths were reported, indicating a favorable safety profile. In conclusion, the combination of pyrotinib and fulvestrant demonstrated promising antitumor activity and acceptable safety in HR-positive/HER2-positive metastatic breast cancer patients.
Collapse
Affiliation(s)
- Jianli Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
- Faculty of MedicineMacau University of Science and TechnologyTaipaMacaoPR China
| | - Wei Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Linxiaoxiao Ding
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yongjian Chen
- Dermatology and Venereology DivisionDepartment of Medicine SolnaCenter for Molecular MedicineKarolinska InstituteStockholmStockholmSweden
| | - Peng Yuan
- Department of VIP Medical ServicesNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jian Yue
- Department of VIP Medical ServicesNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaping Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Guorong Zou
- Department of Medical Oncologythe Affiliated Panyu Central Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Tao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jie Chai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yinduo Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Xiujuan Gui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yangyang Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Simin Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhongyu Yuan
- Department of Medical OncologySun Yat‐Sen University Cancer Centerthe State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouGuangdongChina
| | - Kang Zhang
- Faculty of MedicineMacau University of Science and TechnologyTaipaMacaoPR China
- Guangzhou National LaboratoryGuangzhouGuangdongChina
- Advanced Institute for Eye Health and DiseasesWenzhou Medical UniversityWenzhouChina
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Medical OncologyBreast Tumor CentrePhase I Clinical Trial Centre, Clinical Research Design Division, Clinical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
8
|
Veeraraghavan J, De Angelis C, Gutierrez C, Liao FT, Sabotta C, Rimawi MF, Osborne CK, Schiff R. HER2-Positive Breast Cancer Treatment and Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:495-525. [PMID: 39821040 DOI: 10.1007/978-3-031-70875-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
HER2-positive (+) breast cancer is an aggressive disease with poor prognosis, a narrative that changed drastically with the advent and approval of trastuzumab, the first humanized monoclonal antibody targeting HER2. In addition to another monoclonal antibody, more classes of HER2-targeted agents, including tyrosine kinase inhibitors, and antibody-drug conjugates were developed in the years that followed. While these potent therapies have substantially improved the outcome of patients with HER2+ breast cancer, resistance has prevailed as a clinical challenge ever since the arrival of targeted agents. Efforts to develop new treatment regimens to treat/overcome resistance is futile without a primary understanding of the mechanistic underpinnings of resistance. Resistance could be attributed to mechanisms that are either specific to the tumor epithelial cells or those that emerge through changes in the tumor microenvironment. Reactivation of the HER receptor layer due to incomplete blockade of the HER receptor layer or due to alterations in the HER receptors is one of the major mechanisms. In other instances, resistance may occur due to deregulations in key downstream signaling such as the PI3K/AKT or RAS/MEK/ERK pathways or due to the emergence of compensatory pathways such as ER, other RTKs, or metabolic pathways. Potent new targeted agents and approaches to target key actionable drivers of resistance have already been identified, many of which are in early clinical development or under preclinical evaluation. Ongoing and future translational research will continue to uncover additional therapeutic vulnerabilities, as well as new targeted agents and approaches to treat and/or overcome anti-HER2 treatment resistance.
Collapse
Affiliation(s)
- Jamunarani Veeraraghavan
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carmine De Angelis
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Fu-Tien Liao
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline Sabotta
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mothaffar F Rimawi
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - C Kent Osborne
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Schiff
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Yang L, Chen S, Wang M, Peng S, Zhao H, Yang P, Bao G, He X. Survival prediction and analysis of drug-resistance genes in HER2-positive breast cancer. Heliyon 2024; 10:e38221. [PMID: 39386771 PMCID: PMC11462380 DOI: 10.1016/j.heliyon.2024.e38221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Despite the approval of several therapeutic agents for HER2-positive breast cancer, drug resistance remains a significant challenge, hindering the patient's prognosis. Thus, our study aimed to establish a risk model to predict the prognosis of patients and identify key genes regulating drug resistance in HER2-positive breast cancer. Utilizing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), a predictive model was constructed based on 5 drug resistance-related genes, which demonstrated a notable capacity to indicate the survival rates of patients. Besides, through eccDNA and transcriptome sequencing of drug-sensitive and resistant cancer cells, 3 significant DEGs were identified: MED1, MED24, and NMD3. Among them, MED1 showed the most significant elevation in drug-resistance cells, highlighting its crucial role in mediating drug resistance. MED1 may serve as a valuable target for alleviating drug resistance in HER2-positive breast cancer.
Collapse
Affiliation(s)
| | | | - Meixue Wang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Shujia Peng
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Huadong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Ping Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Guoqiang Bao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Xianli He
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, Shaanxi, China
| |
Collapse
|
10
|
Wang X, Zhao S, Xin Q, Zhang Y, Wang K, Li M. Recent progress of CDK4/6 inhibitors' current practice in breast cancer. Cancer Gene Ther 2024; 31:1283-1291. [PMID: 38409585 PMCID: PMC11405274 DOI: 10.1038/s41417-024-00747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Dysregulated cellular proliferation represents a hallmark feature across all cancers. Aberrant activation of the cyclin-dependent kinase 4 and 6 (CDK4/6) pathway, independent of mitogenic signaling, engenders uncontrolled breast cancer cell proliferation. Consequently, the advent of CDK4/6 inhibition has constituted a pivotal milestone in the realm of targeted breast cancer therapy. The combination of CDK4/6 inhibitors (CDK4/6i) with endocrine therapy (ET) has emerged as the foremost therapeutic modality for patients afflicted with hormone receptor-positive (HR + )/HER2-negative (HER2-) advanced breast cancer. At present, the Food and Drug Administration (FDA) has sanctioned various CDK4/6i for employment as the primary treatment regimen in HR + /HER2- breast cancer. This therapeutic approach has demonstrated a substantial extension of progression-free survival (PFS), often amounting to several months, when administered alongside endocrine therapy. Within this comprehensive review, we systematically evaluate the utilization strategies of CDK4/6i across various subpopulations of breast cancer and explore potential therapeutic avenues following disease progression during application of CDK4/6i therapy.
Collapse
Affiliation(s)
- Xueqing Wang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Shanshan Zhao
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Qinghan Xin
- Department of Breast Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Yunkun Zhang
- Department of Pathology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Kainan Wang
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, China.
| | - Man Li
- Department of Oncology, the Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
11
|
Cai A, Chen Y, Wang LS, Cusick JK, Shi Y. Depicting Biomarkers for HER2-Inhibitor Resistance: Implication for Therapy in HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:2635. [PMID: 39123362 PMCID: PMC11311605 DOI: 10.3390/cancers16152635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
HER2 (human epidermal growth factor receptor 2) is highly expressed in a variety of cancers, including breast, lung, gastric, and pancreatic cancers. Its amplification is linked to poor clinical outcomes. At the genetic level, HER2 is encoded by the ERBB2 gene (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), which is frequently mutated or amplified in cancers, thus spurring extensive research into HER2 modulation and inhibition as viable anti-cancer strategies. An impressive body of FDA-approved drugs, including anti-HER2 monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and HER2-tyrosine kinase inhibitors (TKIs), have demonstrated success in enhancing overall survival (OS) and disease progression-free survival (PFS). Yet, drug resistance remains a persistent challenge and raises the risks of metastatic potential and tumor relapse. Research into alternative therapeutic options for HER2+ breast cancer therefore proves critical for adapting to this ever-evolving landscape. This review highlights current HER2-targeted therapies, discusses predictive biomarkers for drug resistance, and introduces promising emergent therapies-especially combination therapies-that are aimed at overcoming drug resistance in the context of HER2+ breast cancer.
Collapse
Affiliation(s)
- Alvan Cai
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Lily S. Wang
- University of California, Berkeley, CA 94720, USA;
| | - John K. Cusick
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
12
|
Boscolo Bielo L, Trapani D, Nicolò E, Valenza C, Guidi L, Belli C, Kotteas E, Marra A, Prat A, Fusco N, Criscitiello C, Burstein HJ, Curigliano G. The evolving landscape of metastatic HER2-positive, hormone receptor-positive Breast Cancer. Cancer Treat Rev 2024; 128:102761. [PMID: 38772169 DOI: 10.1016/j.ctrv.2024.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/05/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Therapeutic agents targeting Human Epidermal Growth Factor Receptor 2 (HER2) demonstrated to positively impact the prognosis of HER2-positive breast cancer. HER2-positive breast cancer can present either as hormone receptor-negative or positive, defining Triple-positive breast cancer (TPBC). TPBC demonstrate unique gene expression profiles, showing reduced HER2-driven gene expression, as recapitulated by a higher proportion of Luminal-type intrinsic subtypes. The different molecular landscape of TPBC dictates distinctive clinical features, including reduced chemotherapy sensitivity, different patterns of recurrence, and better overall prognosis. Cross-talk between HER2 and hormone receptor signaling seems to be critical to determine resistance to HER2-directed agents. Accordingly, superior outcomes have been achieved with the use of endocrine therapy, representing the first subtype-specific pharmacological intervention unique to this subgroup. Additional targeted agents capable to tackle resistance mechanisms to anti-HER2, hormone agents, or both might further improve the efficacy of treatments, such as PI3K/AKT/mTOR inhibitors, particularly in a biomarker-enriched setting, and CDK4/6-inhibitors, with preliminary data suggesting a role of PAM50 subtyping to predict higher benefits in luminal tumors. Finally, the distinct biology of triple-positive tumors may yield the rationale for considering combinations within antibody-drug conjugate regimens. Accordingly, in this review, we summarized the current evidence and rationale for considering TPBC as a different entity, in which distinct therapeutical approaches leveraging on the different biological profile of TPBC may result in superior anticancer regimens and improved patient-centric outcomes.
Collapse
Affiliation(s)
- Luca Boscolo Bielo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Guidi
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carmen Belli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elias Kotteas
- Oncology Unit, Sotiria General Hospital, 3rd Dept of Internal Medicine, Athens School of Medicine, Greece
| | - Antonio Marra
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
| | - Aleix Prat
- Department of Medical Oncology and Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Spain
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Harold J Burstein
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
13
|
Winter PS, Ramseier ML, Navia AW, Saksena S, Strouf H, Senhaji N, DenAdel A, Mirza M, An HH, Bilal L, Dennis P, Leahy CS, Shigemori K, Galves-Reyes J, Zhang Y, Powers F, Mulugeta N, Gupta AJ, Calistri N, Van Scoyk A, Jones K, Liu H, Stevenson KE, Ren S, Luskin MR, Couturier CP, Amini AP, Raghavan S, Kimmerling RJ, Stevens MM, Crawford L, Weinstock DM, Manalis SR, Shalek AK, Murakami MA. Mutation and cell state compatibility is required and targetable in Ph+ acute lymphoblastic leukemia minimal residual disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597767. [PMID: 38915726 PMCID: PMC11195125 DOI: 10.1101/2024.06.06.597767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Efforts to cure BCR::ABL1 B cell acute lymphoblastic leukemia (Ph+ ALL) solely through inhibition of ABL1 kinase activity have thus far been insufficient despite the availability of tyrosine kinase inhibitors (TKIs) with broad activity against resistance mutants. The mechanisms that drive persistence within minimal residual disease (MRD) remain poorly understood and therefore untargeted. Utilizing 13 patient-derived xenograft (PDX) models and clinical trial specimens of Ph+ ALL, we examined how genetic and transcriptional features co-evolve to drive progression during prolonged TKI response. Our work reveals a landscape of cooperative mutational and transcriptional escape mechanisms that differ from those causing resistance to first generation TKIs. By analyzing MRD during remission, we show that the same resistance mutation can either increase or decrease cellular fitness depending on transcriptional state. We further demonstrate that directly targeting transcriptional state-associated vulnerabilities at MRD can overcome BCR::ABL1 independence, suggesting a new paradigm for rationally eradicating MRD prior to relapse. Finally, we illustrate how cell mass measurements of leukemia cells can be used to rapidly monitor dominant transcriptional features of Ph+ ALL to help rationally guide therapeutic selection from low-input samples.
Collapse
Affiliation(s)
- Peter S. Winter
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michelle L. Ramseier
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Andrew W. Navia
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sachit Saksena
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Computational and Systems Biology Program, MIT, Cambridge, MA, USA
| | - Haley Strouf
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Nezha Senhaji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan DenAdel
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Mahnoor Mirza
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Hyun Hwan An
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura Bilal
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Peter Dennis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catharine S. Leahy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kay Shigemori
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennyfer Galves-Reyes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ye Zhang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Foster Powers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nolawit Mulugeta
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Nicholas Calistri
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Alex Van Scoyk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kristen Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Huiyun Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Siyang Ren
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA USA
| | - Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Charles P. Couturier
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Mark M. Stevens
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
- Microsoft Research, Cambridge, MA, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Current Address: Merck and Co., Rahway, NJ, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Alex K. Shalek
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mark A. Murakami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Kınıkoğlu O, Odabas H, Altıntaş YE, Yıldız A, Çakan B, Akdağ G, Yıldırım S, Bal H, Kaya T, Tünbekici S, Işık D, Başoğlu T, Yıldırım ME, Turan N. Combining Endocrine Therapy with Trastuzumab Emtansine Improves Progression-Free Survival and Overall Survival in HER2-Positive, Hormone Receptor-Positive Metastatic Breast Cancer. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:951. [PMID: 38929568 PMCID: PMC11205527 DOI: 10.3390/medicina60060951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: Patients with human epidermal growth factor receptor 2 (HER2) -positive, hormone receptor-positive (HR-positive) metastatic breast cancer (MBC) usually undergo trastuzumab emtansine (T-DM1) therapy in subsequent lines. Combining endocrine therapy (ET) with T-DM1 can improve treatment outcomes in this subtype. Therefore, this study aimed to investigate the benefits of using T-DM1 with ET in HER2-positive and HR-positive MBC. This study was the first to investigate the benefits of combining ET with T-DM1. Material and Methods: This study analyzed the medical records of patients with HER2-positive and HR-positive MBC who were treated with T-DM1 from June 2010 to December 2021. The patients were divided into groups based on whether they received concomitant ET with T-DM1. The primary endpoint was to determine the progression-free survival (PFS), while the secondary endpoints were overall survival (OS), objective response rate, and safety of the treatment. Results: Our analysis examined 88 patients, of whom 32 (36.4%) were treated with T-DM1 in combination with ET. The combination therapy showed a significant improvement in median PFS (15.4 vs. 6.4 months; p = 0.00004) and median OS (35.0 vs. 23.1 months; p = 0.026) compared to T-DM1 alone. The ORR was also higher in the combination group (65.6% vs. 29.3%; p = 0.026). Patients treated with pertuzumab priorly had reduced median PFS on T-DM1 compared to those who were not treated with pertuzumab (11.7 vs. 5.4 months, respectively; p < 0.01). T-DM1 demonstrated better median PFS in HER2 3+ patients compared to HER2 2+ patients, with an amplification ratio of >2.0 (10.8 vs 5.8 months, respectively; p = 0.049). The safety profiles were consistent with previous T-DM1 studies. Conclusions: The combination of T-DM1 with ET can significantly improve PFS and OS in patients with HER2-positive and HR-positive MBC. Our study suggests that prior pertuzumab treatment plus trastuzumab treatment might decrease T-DM1 efficacy.
Collapse
Affiliation(s)
- Oğuzcan Kınıkoğlu
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| | - Hatice Odabas
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| | - Yunus Emre Altıntaş
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| | - Anıl Yıldız
- Department of Medical Oncology, Istanbul University Oncology Institute, Istanbul 34093, Turkey;
| | - Burçin Çakan
- Department of Medical Oncology, Bağcılar Research and Training Hospital, Istanbul 34212, Turkey;
| | - Goncagül Akdağ
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| | - Sedat Yıldırım
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| | - Hamit Bal
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| | - Tuğba Kaya
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| | - Salih Tünbekici
- Department of Medical Oncology, Ege University Faculty of Medicine, Izmir 35100, Turkey;
| | - Deniz Işık
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| | - Tuğba Başoğlu
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| | - Mahmut Emre Yıldırım
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| | - Nedim Turan
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (H.O.); (Y.E.A.); (G.A.); (S.Y.); (H.B.); (T.K.); (D.I.); (T.B.); (M.E.Y.); (N.T.)
| |
Collapse
|
15
|
Joshi S, Chougle Q, Noronha J, Hawaldar R, Nair N, Vanmali V, Parmar V, Thakkar P, Chitkara G, Shet T, Badwe RA. Determinants of pathological complete response to neoadjuvant chemotherapy in breast cancer: A single-institution experience. Indian J Cancer 2024; 61:324-331. [PMID: 36861728 DOI: 10.4103/ijc.ijc_813_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/16/2021] [Indexed: 03/03/2023]
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) is routinely used in all cases of locally advanced breast cancer and some cases of early breast cancer. We previously reported a pathological complete response (pCR) rate of 8.3%. With the increasing use of taxanes and human epidermal growth factor receptor 2 (HER2)-directed NACT, we conducted this study to understand the current pCR rate and its determinants. METHODS A prospective database of breast cancer patients who underwent NACT followed by surgery between January and December 2017 was evaluated. RESULTS Of the 664 patients, 87.7% were cT3/T4, 91.6% were grade III, and 89.8% were node-positive at presentation (54.4% cN1, 35.4% cN2). The median age was 47 years; median pre-NACT clinical tumor size was 5.5 cm. Molecular subclassification was 30.3% hormone receptor positive (HR+) HER2-, 18.4% HR+HER2+, 14.9% HR-HER2+, and 31.6% triple negative (TN). Both anthracyclines and taxanes were given preoperatively in 31.2% patients whereas 58.5% of HER2 positive patients received HER2-targeted NACT. The overall pCR rate was 22.4% (149/664), 9.3% in HR+HER2-, 15.6% in HR+HER2+, 35.4% in HR-HER2+, and 33.4% in TN. On univariate analysis, duration of NACT ( P < 0.001), cN stage at presentation ( P = 0.022), HR status ( P < 0.001), and lymphovascular invasion ( P < 0.001) were associated with pCR. On logistic regression, HR negative status (Odds ratio [OR] 3.314, P < 0.001), longer duration of NACT (OR 2.332, P < 0.001), cN2 stage (OR 0.57, P = 0.012), and HER2 negativity (OR 1.583, P = 0.034) were significantly associated with pCR. CONCLUSION Response to chemotherapy depends on molecular subtype and duration of NACT. A low rate of pCR in the HR+ subgroup of patients warrants reconsideration of neoadjuvant strategies.
Collapse
Affiliation(s)
- Shalaka Joshi
- Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Qurratulain Chougle
- Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Jarin Noronha
- Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rohini Hawaldar
- Clinical Research Secreteriat, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Nita Nair
- Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vaibhav Vanmali
- Clinical Research Secreteriat, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vani Parmar
- Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Purvi Thakkar
- Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Garvit Chitkara
- Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Tanuja Shet
- Department of Pathology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rajendra A Badwe
- Department of Surgical Oncology, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
16
|
Marra A, Chandarlapaty S, Modi S. Management of patients with advanced-stage HER2-positive breast cancer: current evidence and future perspectives. Nat Rev Clin Oncol 2024; 21:185-202. [PMID: 38191924 DOI: 10.1038/s41571-023-00849-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Amplification and/or overexpression of ERBB2, the gene encoding HER2, can be found in 15-20% of invasive breast cancers and is associated with an aggressive phenotype and poor clinical outcomes. Relentless research efforts in molecular biology and drug development have led to the implementation of several HER2-targeted therapies, including monoclonal antibodies, tyrosine-kinase inhibitors and antibody-drug conjugates, constituting one of the best examples of bench-to-bedside translation in oncology. Each individual drug class has improved patient outcomes and, importantly, the combinatorial and sequential use of different HER2-targeted therapies has increased cure rates in the early stage disease setting and substantially prolonged survival for patients with advanced-stage disease. In this Review, we describe key steps in the development of the modern paradigm for the treatment of HER2-positive advanced-stage breast cancer, including selecting and sequencing new-generation HER2-targeted therapies, and summarize efficacy and safety outcomes from pivotal studies. We then outline the factors that are currently known to be related to resistance to HER2-targeted therapies, such as HER2 intratumoural heterogeneity, activation of alternative signalling pathways and immune escape mechanisms, as well as potential strategies that might be used in the future to overcome this resistance and further improve patient outcomes.
Collapse
Affiliation(s)
- Antonio Marra
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Shanu Modi
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
17
|
NOYAN S, GÜR DEDEOĞLU B. miR-770-5p-induced cellular switch to sensitize trastuzumab resistant breast cancer cells targeting HER2/EGFR/IGF1R bidirectional crosstalk. Turk J Biol 2024; 48:153-162. [PMID: 39051060 PMCID: PMC11265924 DOI: 10.55730/1300-0152.2690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/26/2024] [Accepted: 02/05/2024] [Indexed: 07/27/2024] Open
Abstract
Background/aim Studies highlighted the bidirectional crosstalk between the HER family members in breast cancer as resistance mechanism to anti-HER agents. Cross-signaling between HER2/EGFR and ER/IGF1R could play role in the development of resistance to therapeutics hence stimulating cell growth. To overcome this resistance, combined therapies targeting both pathways simultaneously have been proposed as an effective strategy. The involvement of miRNAs in resistance of targeted therapies like trastuzumab was demonstrated in recent studies. Hence the regulation of miRNAs in resistance state could reverse the cell behaviour to drugs. Previously we found that overexpression of miR-770-5p downregulated AKT and ERK expression through HER2 signaling and potentiated the effect of trastuzumab. In this study we examined the impact of miR-770-5p on trastuzumab resistance. Materials and methods Cells were treated with tamoxifen or trastuzumab to examine their role in bidirectional crosstalk. The molecule mechanism of miR-770-5p on HER2/EGFR/IGF1R bidirectional crosstalk was explored by western blot. The expression of miR-770-5p in trastuzumab resistant cells was examined by q-PCR. To investigate the effect of miR-770-5p on cancer cell proliferation in trastuzumab resistance state, resistant cells were analyzed by iCELLigence real-time cell analyzer. Results miR-770-5p expression was significantly downregulated in trastuzumab-resistant BT-474 and SK-BR-3 cells. Overexpression of miR-770-5p sensitized the resistant cells to trastuzumab, as evidenced by reduced cell proliferation and increased cell viability. Additionally, in resistant cells, increased expression and activation of EGFR and IGF1R were observed. However, miR-770-5p overexpression resulted in decreased phosphorylation of AKT and ERK, indicating its suppressive role in EGFR/HER2 signaling. Furthermore, miR-770-5p downregulated the expression of IGF1R and mTOR, suggesting its involvement in regulating the escape signaling mediated by IGF1R in resistance. Conclusion In conclusion, our findings demonstrate the critical role of miR-770-5p in regulating bidirectional crosstalk and overcoming trastuzumab resistance in breast cancer cells. These results highlight the potential of miR-770-5p as a therapeutic target to improve the efficacy of targeted therapies and address resistance mechanisms in breast cancer.
Collapse
Affiliation(s)
- Senem NOYAN
- Biotechnology Institute, Ankara University, Ankara,
Turkiye
| | | |
Collapse
|
18
|
Yang ZJ, Xin F, Chen ZJ, Yu Y, Wang X, Cao XC. Real-world data on neoadjuvant chemotherapy with dual-anti HER2 therapy in HER2 positive breast cancer. BMC Cancer 2024; 24:134. [PMID: 38273267 PMCID: PMC10811850 DOI: 10.1186/s12885-024-11871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy with dual-targeted therapy is the standard treatment for human epidermal growth factor 2 (HER2)-positive breast cancer. Although the dual-targeted therapy has significantly improved the pathological complete response (pCR) rate, further investigation is needed to identify biomarkers that predict the response to neoadjuvant therapy. METHODS This retrospective study analyzed 353 patients with HER2-positive breast invasive ductal carcinoma. The correlation between clinicopathological factors and pCR rate was evaluated. A nomogram was constructed based on the results of the multivariate logistic regression analysis to predict the probability of pCR. RESULTS The breast pCR (b-pCR) rate was 56.1% (198/353) and the total pCR (t-pCR) rate was 52.7% (186/353). Multivariate analysis identified ER status, PR status, HER2 status, Ki-67 index, and neoadjuvant chemotherapy regimens as independent indicators for both b-pCR and t-pCR. The nomogram had an area under the receiver operating characteristic curve (AUC) of 0.73 (95% CI: 0.68-0.78). According to the nomogram, the t- pCR rate was highest in the ER-PR- HER2-positive patients (131/208) and lowest in the ER + PR + HER2-positive patients (19/73). The subgroup analyses showed that there was no significant difference in pCR rate among the neoadjuvant chemotherapy regimens in ER positive, PR positive, HER2 IHC 2 + , Ki67 index < 30% population. However, for ER-PR-HER2-positive patients, the neoadjuvant chemotherapy regimen has a great influence on the pCR rates. CONCLUSIONS Patients with ER-negative, PR-negative, HER2 3 + and high KI-67 index were more likely to achieve pCR. THP may be used as an alternative to AC-THP or TCbHP in selected HER2-positive patients.
Collapse
Affiliation(s)
- Zheng-Jun Yang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fei Xin
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zu-Jin Chen
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
19
|
Liang Y, Liu X, Yun Z, Li K, Li H. Endocrine therapy plus HER2-targeted therapy, another favorable option for HR+/HER2+ advanced breast cancer patients. Ther Adv Med Oncol 2024; 16:17588359231220501. [PMID: 38188468 PMCID: PMC10771751 DOI: 10.1177/17588359231220501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Advanced breast cancer (ABC) that is positive for hormone receptors (HRs) and human epidermal growth factor receptor 2 (HER2) is a cancer subtype with distinctive characteristics. The primary treatment guidelines suggest that a combination therapy comprising anti-HER2 therapy and chemotherapy should be administered as the initial treatment for HR-positive/ HER2-positive (HR+/HER2+) ABC. However, crosstalk between the HR and HER2 pathways can partially account for the resistance of HR+/HER2+ disease to HER2-targeted therapy. This, in turn, provides a rationale for the concomitant administration of HER2-targeted therapy and endocrine therapy (ET). Many clinical studies have confirmed that the combination of HER2-targeted therapy and ET as a first-line treatment is not inferior to the combination of HER2-targeted therapy and chemotherapy, and support its use as a first-line treatment choice for HR+/HER2+ ABC. Other drugs, such as antibody-drug conjugates, cyclin-dependent kinase 4/6 inhibitors, phosphatidylinositol 3-kinase-protein kinase B (AKT)-mammalian target of rapamycin inhibitors, and programmed cell death protein 1 or programmed cell death ligand 1 inhibitors, may also improve the prognosis of patients with breast cancer by blocking signaling pathways associated with tumor proliferation and break new ground for the treatment of HR+/HER2+ ABC.
Collapse
Affiliation(s)
- Yuehua Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zehui Yun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kun Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
20
|
López-Méndez JA, Ventura-Gallegos JL, Camacho-Arroyo I, Lizano M, Cabrera-Quintero AJ, Romero-Córdoba SL, Martínez-Vázquez M, Jacobo-Herrera NJ, León-Del-Río A, Paredes-Villa AA, Zentella-Dehesa A. The inhibitory effect of trastuzumab on BT474 triple‑positive breast cancer cell viability is reversed by the combination of progesterone and estradiol. Oncol Lett 2024; 27:19. [PMID: 38034484 PMCID: PMC10688505 DOI: 10.3892/ol.2023.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023] Open
Abstract
Breast cancer expressing the estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2) is known as triple-positive (TPBC). TPBC represents 9-11% of breast cancer cases worldwide and is a heterogeneous subtype. Notably, TPBC presents a therapeutic challenge due to the crosstalk between the hormonal (ER and PR) and HER2 pathways. Patients with TPBC are treated with trastuzumab (TTZ); however, several patients treated with TTZ tend to relapse. The present study aimed to investigate the effect of the PR on inhibitory effect of TTZ on cell viability. BT474 cells (a model of TPBC) and BT474 PR-silenced cells were treated with either TTZ, progesterone (Pg), the PR antagonist mifepristone (RU486) or estradiol (E2) alone or in combination for 144 h (6 days). Cell viability assays and western blotting were subsequently performed. The results showed that Pg and E2 interfered with the inhibitory effect of TTZ on cell viability and this effect was potentiated when both hormones were combined. Pg was revealed to act through the PR, mainly activating the PR isoform B (PR-B) and inducing the protein expression levels of CDK4 and cyclin D1; however, it did not reactivate the HER2/Akt pathway. By contrast, E2 was able to increase PR isoform A (PR-A) expression, which was inhibited by Pg. Notably, in most of the experiments, RU486 did not antagonize the effects of Pg. In conclusion, Pg and E2 may interfere with the inhibitory effect of TTZ on cell viability through PR-B activation and PR-A inactivation.
Collapse
Affiliation(s)
- José A. López-Méndez
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14000 Mexico City, Mexico
| | - José L. Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14000 Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, 11000 Mexico City, Mexico
| | - Marcela Lizano
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Alberto J. Cabrera-Quintero
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14000 Mexico City, Mexico
| | - Sandra L. Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14000 Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Mariano Martínez-Vázquez
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Nadia J. Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14000 Mexico City, Mexico
| | - Alfonso León-Del-Río
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Adrian A. Paredes-Villa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14000 Mexico City, Mexico
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14000 Mexico City, Mexico
- Cancer Center, American British Cowdray Medical Center, 01120 Mexico City, Mexico
| |
Collapse
|
21
|
Atallah NM, Alsaleem M, Toss MS, Mongan NP, Rakha E. Differential response of HER2-positive breast cancer to anti-HER2 therapy based on HER2 protein expression level. Br J Cancer 2023; 129:1692-1705. [PMID: 37740038 PMCID: PMC10646129 DOI: 10.1038/s41416-023-02426-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Increasing data indicate that HER2-positive (HER2 + ) breast cancer (BC) subtypes exhibit differential responses to targeted anti-HER2 therapy. This study aims to investigate these differences and the potential underlying molecular mechanisms. METHODS A large cohort of BC patients (n = 7390) was utilised. The clinicopathological characteristics and differential gene expression (DGE) of HER2+ immunohistochemical (IHC) subtypes, specifically HER2 IHC 3+ and IHC 2 + /Amplified, were assessed and correlated with pathological complete response (pCR) and survival in the neoadjuvant and adjuvant settings, respectively. The role of oestrogen receptor (ER) status was also investigated. RESULTS Compared to HER2 IHC 3+ tumours, BC patients with IHC 2 + /Amplified showed a significantly lower pCR rate (22% versus 57%, P < 0.001), shorter survival regardless of HER2 gene copy number, were less classified as HER2 enriched, and enriched for trastuzumab resistance and ER signalling pathway genes. ER positivity significantly decreased response to anti-HER2 therapy in IHC 2 + /Amplified, but not in IHC 3 + BC patients. CONCLUSION In HER2 + BC, overexpression of HER2 protein is the driver of the oncogenic pathway, and it is the main predictor of response to anti-HER2 therapy. ER signalling pathways are more dominant in BC with equivocal HER2 expression. personalised anti-HER2 therapy based on IHC classes should be considered.
Collapse
Affiliation(s)
- N M Atallah
- Division of Cancer and Stem Cells, School of Medicine, the University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - M Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Buraydah, Saudi Arabia
| | - M S Toss
- Histopathology Department, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - N P Mongan
- School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - E Rakha
- Division of Cancer and Stem Cells, School of Medicine, the University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK.
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt.
| |
Collapse
|
22
|
Zagami P, Boscolo Bielo L, Nicolò E, Curigliano G. HER2-positive breast cancer: cotargeting to overcome treatment resistance. Curr Opin Oncol 2023; 35:461-471. [PMID: 37621172 DOI: 10.1097/cco.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW The introduction in clinical practice of anti-HER2 agents changed the prognosis of patients with HER2-positive (HER2+) breast cancer in both metastatic and early setting. Although the incomparable results obtained in the last years with the approval of new drugs targeting HER2, not all patients derive benefit from these treatments, experiencing primary or secondary resistance. The aim of this article is to review the data about cotargeting HER2 with different pathways (or epitopes of receptors) involved in its oncogenic signaling, as a mechanism to overcome resistance to anti-HER2 agents. RECENT FINDINGS Concordantly to the knowledge of the HER2+ breast cancer heterogeneity as well as new drugs, novel predictive biomarkers of response to anti-HER2 treatments are always raised helping to define target to overcome resistance. Cotargeting HER2 and hormone receptors is the most well known mechanism to improve benefit in HER2+/HR+ breast cancer. Additional HER2-cotargeting, such as, with PI3K pathway, as well as different HERs receptors or immune-checkpoints revealed promising results. SUMMARY HER2+ breast cancer is an heterogenous disease. Cotargeting HER2 with other signaling pathways involved in its mechanism of resistance may improve patient outcomes. Research efforts will continue to investigate novel targets and combinations to create more effective treatment regimes.
Collapse
Affiliation(s)
- Paola Zagami
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Lineberger comprehensive cancer center, University of North Carolina, Chapel hill, North Carolina
| | - Luca Boscolo Bielo
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Rezaei Z, Dastjerdi K, Allahyari A, ShahidSales S, Talebian S, Maharati A, Zangooie A, Zangouei AS, Sadri F, Sargazi S. Plasma microRNA-195, -34c, and - 1246 as novel biomarkers for the diagnosis of trastuzumab-resistant HER2-positive breast cancer patients. Toxicol Appl Pharmacol 2023; 475:116652. [PMID: 37557922 DOI: 10.1016/j.taap.2023.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Recently, miRNAs have been regarded as potential candidates for mediating therapeutic functions by targeting genes related to drug response. In this study, we suggested that plasma miRNAs may be correlated with response to trastuzumab in HER2-positive breast cancer patients. To determine whether miR-195, miR-23b-3p, miR-1246, and miR-34c-3p are involved in trastuzumab resistance, we screened their expressions in the BT-474 cell line, which was followed by plasma analysis from 20 trastuzumab-resistant HER2-positive breast cancer patients and 20 nonresistance subjects. Then, TargetScan, Pictar, and miRDB were applied to find the possible targets of the selected miRNAs. In addition, the expression status of admitted targets was evaluated. Our results showed that in resistant BT-474 cells, miR-1246, and miR-23b-3p were significantly upregulated, and miR-195-5p and miR-34c-3p were downregulated. In plasma analysis, we found miR-195-5p, miR-34c-3p, and miR-1246 meaningfully diminished in the resistant group, while the expression of miR-23b-3p was not statistically different. The expression levels of confirmed targets by qRT-PCR showed that the expression of RAF1, AKT3, c-MET, CCND1, PHLPP2, MYB, MAP2K1, and PTEN was significantly upregulated, while the expression of CCNG2 was significantly downregulated. The networks of miRNAs with their confirmed targets improved comprehension of miRNA-mediated therapeutic responses to trastuzumab and might be proposed for more characterization of miRNA functions. Moreover, these data indicated that miR-195-5p, miR-34c-3p, and miR-1246 could be possible biomarkers for prognosis and early detection of the trastuzumab-resistant group from the sensitive group of HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran
| | - Kazem Dastjerdi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran.
| | - Abolghasem Allahyari
- Department of Hematology-Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sahar Talebian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran; Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Sadri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjnad, Iran; Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
24
|
Castro-Guijarro AC, Sanchez AM, Flamini MI. Potential Biomarkers Associated with Prognosis and Trastuzumab Response in HER2+ Breast Cancer. Cancers (Basel) 2023; 15:4374. [PMID: 37686651 PMCID: PMC10486824 DOI: 10.3390/cancers15174374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Around 15-25% of BC overexpress the human epidermal growth factor receptor 2 (HER2), which is associated with a worse prognosis and shortened disease-free survival. Therefore, anti-HER2 therapies have been developed, such as monoclonal antibodies (trastuzumab, Tz), antibody-drug conjugates (ado-trastuzumab emtansine, T-DM1), and pharmacological inhibitors of tyrosine kinase activity (lapatinib, Lp). Although Tz, the standard treatment, has significantly improved the prognosis of patients, resistance still affects a significant population of women and is currently a major challenge in clinical oncology. Therefore, this study aims to identify potential biomarkers to predict disease progression (prognostic markers) and the efficacy of Tz treatment (predictive markers) in patients with HER2+ BC. We hypothesize that proteins involved in cell motility are implicated in Tz-resistance. We aim to identify alterations in Tz-resistant cells to guide more efficient oncologic decisions. By bioinformatics, we selected candidate proteins and determined how their expression, localization, and the process they modulate were affected by anti-HER2 treatments. Next, using HER2+ BC patients' data, we assessed these proteins as prognostic and predictive biomarkers. Finally, using Tz-resistant cells, we evaluated their roles in Tz response. We identified deregulated genes associated with cell motility in Tz/T-DM1-resistant vs. -sensitive cells. We showed that Tz, T-DM1, and Lp decrease cell viability, and their effect is enhanced in combinations. We determined synergism between Tz/T-DM1 and Lp, making possible a dose reduction of each drug to achieve the same therapeutic effect. We found that combinations (Tz/T-DM1 + Lp) efficiently inhibit cell adhesion and migration. Furthermore, we demonstrated the induction of FAK nuclear and cortactin peri-nuclear localization after T-DM1, Lp, and Tz/T-DM1 + Lp treatments. In parallel, we observed that combined treatments downregulate proteins essential for metastatic dissemination, such as SRC, FAK, and paxillin. We found that low vinculin (VCL) and cortactin (CTTN) mRNA expression predicts favorable survival rates and has diagnostic value to discriminate between Tz-sensible and Tz-resistant HER2+ BC patients. Finally, we confirmed that vinculin and cortactin are overexpressed in Tz-resistance cells, SKBR3-RTz. Moreover, we found that Tz plus FAK/paxillin/cortactin-silencing reduced cell adhesion/migration capacity in Tz-sensitive and -resistant cells. In conclusion, we demonstrate that combined therapies are encouraging since low doses of Tz/T-DM1 + Lp inhibit metastatic processes by downregulating critical protein expression and affecting its subcellular localization. We propose that vinculin and cortactin might contribute to Tz-sensibility/resistance in BC cells. Finally, we identify potential prognostic and predictive biomarkers that are promising for personalized BC management that would allow efficient patient selection in order to mitigate resistance and maximize the safety and efficacy of anti-HER2 therapies.
Collapse
Affiliation(s)
- Ana Carla Castro-Guijarro
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
| | - Angel Matias Sanchez
- Laboratorio de Transducción de Señales y Movimiento Celular, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
| | - Marina Inés Flamini
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, M5500 Mendoza, Argentina
| |
Collapse
|
25
|
Veeraraghavan J, Gutierrez C, De Angelis C, Davis R, Wang T, Pascual T, Selenica P, Sanchez K, Nitta H, Kapadia M, Pavlick AC, Galvan P, Rexer B, Forero-Torres A, Nanda R, Storniolo AM, Krop IE, Goetz MP, Nangia JR, Wolff AC, Weigelt B, Reis-Filho JS, Hilsenbeck SG, Prat A, Osborne CK, Schiff R, Rimawi MF. A Multiparameter Molecular Classifier to Predict Response to Neoadjuvant Lapatinib plus Trastuzumab without Chemotherapy in HER2+ Breast Cancer. Clin Cancer Res 2023; 29:3101-3109. [PMID: 37195235 PMCID: PMC10923553 DOI: 10.1158/1078-0432.ccr-22-3753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/22/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Clinical trials reported 25% to 30% pathologic complete response (pCR) rates in HER2+ patients with breast cancer treated with anti-HER2 therapies without chemotherapy. We hypothesize that a multiparameter classifier can identify patients with HER2-"addicted" tumors who may benefit from a chemotherapy-sparing strategy. EXPERIMENTAL DESIGN Baseline HER2+ breast cancer specimens from the TBCRC023 and PAMELA trials, which included neoadjuvant treatment with lapatinib and trastuzumab, were used. In the case of estrogen receptor-positive (ER+) tumors, endocrine therapy was also administered. HER2 protein and gene amplification (ratio), HER2-enriched (HER2-E), and PIK3CA mutation status were assessed by dual gene protein assay (GPA), research-based PAM50, and targeted DNA-sequencing. GPA cutoffs and classifier of response were constructed in TBCRC023 using a decision tree algorithm, then validated in PAMELA. RESULTS In TBCRC023, 72 breast cancer specimens had GPA, PAM50, and sequencing data, of which 15 had pCR. Recursive partitioning identified cutoffs of HER2 ratio ≥ 4.6 and %3+ IHC staining ≥ 97.5%. With PAM50 and sequencing data, the model added HER2-E and PIK3CA wild-type (WT). For clinical implementation, the classifier was locked as HER2 ratio ≥ 4.5, %3+ IHC staining ≥ 90%, and PIK3CA-WT and HER2-E, yielding 55% and 94% positive (PPV) and negative (NPV) predictive values, respectively. Independent validation using 44 PAMELA cases with all three biomarkers yielded 47% PPV and 82% NPV. Importantly, our classifier's high NPV signifies its strength in accurately identifying patients who may not be good candidates for treatment deescalation. CONCLUSIONS Our multiparameter classifier differentially identifies patients who may benefit from HER2-targeted therapy alone from those who need chemotherapy and predicts pCR to anti-HER2 therapy alone comparable with chemotherapy plus dual anti-HER2 therapy in unselected patients.
Collapse
Affiliation(s)
- Jamunarani Veeraraghavan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carolina Gutierrez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert Davis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tomas Pascual
- Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Hospital Clinic de Barcelona, Barcelona, Spain
- SOLTI Cancer Research Group
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Sanchez
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Anne C. Pavlick
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | - Ian E. Krop
- Dana Farber Cancer Institute, Boston, MA, USA
| | | | - Julie R. Nangia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - C. Kent Osborne
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Pegram M, Pietras R, Dang CT, Murthy R, Bachelot T, Janni W, Sharma P, Hamilton E, Saura C. Evolving perspectives on the treatment of HR+/HER2+ metastatic breast cancer. Ther Adv Med Oncol 2023; 15:17588359231187201. [PMID: 37576607 PMCID: PMC10422890 DOI: 10.1177/17588359231187201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/21/2023] [Indexed: 08/15/2023] Open
Abstract
Breast cancer (BC) with expression of the estrogen receptor (ER) and/or progesterone receptor (PR) protein and with overexpression/amplification of the human epidermal growth factor receptor 2 (HER2), termed hormone receptor-positive (HR+)/HER2+ BC, represents ∼10% of all BCs in the United States. HR+/HER2+ BC includes HER2+ BCs that are ER+, PR+, or both ER+ and PR+ (triple-positive BC). Although the current guideline-recommended treatment combination of anti-HER2 monoclonal antibodies plus chemotherapy is an effective first-line therapy for many patients with HER2+ advanced disease, intratumoral heterogeneity within the HR+/HER2+ subtype and differences between the HR+/HER2+ subtype and the HR-/HER2+ subtype suggest that other targeted combinations could be investigated in randomized clinical trials for patients with HR+/HER2+ BC. In addition, published data indicate that crosstalk between HRs and HER2 can lead to treatment resistance. Dual HR and HER2 pathway targeting has been shown to be a rational approach to effective and well-tolerated therapy for patients with tumors driven by HER2 and HR, as it may prevent development of resistance by blocking receptor pathway crosstalk. However, clinical trial data for such approaches are limited. Treatments to attenuate other signaling pathways involved in receptor crosstalk are also under investigation for inclusion in dual receptor targeting regimens. These include cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, based on the rationale that association of CDK4/6 with cyclin D1 may play a role in resistance to HER2-directed therapies, and others such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway inhibitors. Herein, we will review the scientific and clinical rationale for combined receptor blockade targeting HER2 and ER for patients with advanced-stage HR+/HER2+ disease.
Collapse
Affiliation(s)
- Mark Pegram
- Stanford Comprehensive Cancer Institute, Stanford University School of Medicine, Lorry Lokey Building/SIM 1, 265 Campus Drive, Ste G2103, Stanford, CA 94305-5456, USA
| | - Richard Pietras
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Chau T. Dang
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Rashmi Murthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Bachelot
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Erika Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | - Cristina Saura
- Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Medical Oncology Service, Barcelona, Spain
| |
Collapse
|
27
|
Liu H, Ruan S, Larsen ME, Tan C, Liu B, Lyu H. Trastuzumab-resistant breast cancer cells-derived tumor xenograft models exhibit distinct sensitivity to lapatinib treatment in vivo. Biol Proced Online 2023; 25:19. [PMID: 37370010 DOI: 10.1186/s12575-023-00212-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Resistance to HER2-targeted therapies, including the monoclonal antibody trastuzumab and tyrosine kinase inhibitor lapatinib, frequently occurs and currently represents a significant clinical challenge in the management of HER2-positive breast cancer. We previously showed that the trastuzumab-resistant SKBR3-pool2 and BT474-HR20 sublines were refractory to lapatinib in vitro as compared to the parental SKBR3 and BT474 cells, respectively. The in vivo efficacy of lapatinib against trastuzumab-resistant breast cancer remained unclear. RESULTS In tumor xenograft models, both SKBR3-pool2- and BT474-HR20-derived tumors retained their resistance phenotype to trastuzumab; however, those tumors responded differently to the treatment with lapatinib. While lapatinib markedly suppressed growth of SKBR3-pool2-derived tumors, it slightly attenuated BT474-HR20 tumor growth. Immunohistochemistry analyses revealed that lapatinib neither affected the expression of HER3, nor altered the levels of phosphorylated HER3 and FOXO3a in vivo. Interestingly, lapatinib treatment significantly increased the levels of phosphorylated Akt and upregulated the expression of insulin receptor substrate-1 (IRS1) in the tumors-derived from BT474-HR20, but not SKBR3-pool2 cells. CONCLUSIONS Our data indicated that SKBR3-pool2-derived tumors were highly sensitive to lapatinib treatment, whereas BT474-HR20 tumors exhibited resistance to lapatinib. It seemed that the inefficacy of lapatinib against BT474-HR20 tumors in vivo was attributed to lapatinib-induced upregulation of IRS1 and activation of Akt. Thus, the tumor xenograft models-derived from SKBR3-pool2 and BT474-HR20 cells serve as an excellent in vivo system to test the efficacy of other HER2-targeted therapies and novel agents to overcome trastuzumab resistance against HER2-positive breast cancer.
Collapse
Affiliation(s)
- Hao Liu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, 1700 Tulane Ave., New Orleans, LA, 70112, USA
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sanbao Ruan
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, 1700 Tulane Ave., New Orleans, LA, 70112, USA
| | - Margaret E Larsen
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, 1700 Tulane Ave., New Orleans, LA, 70112, USA
| | - Congcong Tan
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, 1700 Tulane Ave., New Orleans, LA, 70112, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, 1700 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Hui Lyu
- Departments of Interdisciplinary Oncology and Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, 1700 Tulane Ave., New Orleans, LA, 70112, USA.
| |
Collapse
|
28
|
Hu ZY, Yan M, Xiong H, Ran L, Zhong J, Luo T, Sun T, Xie N, Liu L, Yang X, Xiao H, Li J, Liu B, Ouyang Q. Pyrotinib in combination with letrozole for hormone receptor-positive, human epidermal growth factor receptor 2-positive metastatic breast cancer (PLEHERM): a multicenter, single-arm, phase II trial. BMC Med 2023; 21:226. [PMID: 37365596 DOI: 10.1186/s12916-023-02943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) targeted therapy combined with endocrine therapy has been recommended as an alternative treatment strategy for patients with hormone receptor (HR)-positive, HER2-positive metastatic breast cancer (MBC). This study aimed to evaluate the role of pyrotinib, an oral pan-HER irreversible tyrosine kinase inhibitor, in combination with letrozole for patients with HR-positive, HER2-positive MBC. METHODS In this multi-center, phase II trial, HR-positive and HER2-positive MBC patients who were not previously treated for metastasis disease were enrolled. Patients received daily oral pyrotinib 400 mg and letrozole 2.5 mg until disease progression, unacceptable toxicity, or withdrawal of consent. The primary endpoint was the clinical benefit rate (CBR) assessed by an investigator according to the Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS From November 2019 to December 2021, 53 patients were enrolled and received pyrotinib plus letrozole. As of August 2022, the median follow-up duration was 11.6 months (95% confidence interval [CI], 8.7-14.0 months). The CBR was 71.7% (95% CI, 57.7-83.2%), and the objective response rate was 64.2% (95% CI, 49.8-76.9%). The median progression-free survival was 13.7 months (95% CI, 10.7-18.7 months). The most common treatment-related adverse event of grade 3 or higher was diarrhea (18.9%). No treatment-related deaths were reported, and one patient experienced treatment discontinuation due to adverse event. CONCLUSIONS Our preliminary results suggested that pyrotinib plus letrozole is feasible for the first-line treatment of patients with HR-positive and HER2-positive MBC, with manageable toxicities. TRIAL REGISTRATION ClinicalTrials.gov, NCT04407988.
Collapse
Affiliation(s)
- Zhe-Yu Hu
- Medical Department of Breast Cancer, Hunan Cancer Hospital, No. 283, Tongzipo Road, Changsha, 410013, China
- Medical Department of Breast Cancer, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Yan
- Department of Breast Cancer, Henan Cancer Hospital, Zhengzhou, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Li Ran
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jincai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Luo
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Sun
- Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, China
| | - Ning Xie
- Medical Department of Breast Cancer, Hunan Cancer Hospital, No. 283, Tongzipo Road, Changsha, 410013, China
- Medical Department of Breast Cancer, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liping Liu
- Medical Department of Breast Cancer, Hunan Cancer Hospital, No. 283, Tongzipo Road, Changsha, 410013, China
- Medical Department of Breast Cancer, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaohong Yang
- Medical Department of Breast Cancer, Hunan Cancer Hospital, No. 283, Tongzipo Road, Changsha, 410013, China
- Medical Department of Breast Cancer, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Huawu Xiao
- Medical Department of Breast Cancer, Hunan Cancer Hospital, No. 283, Tongzipo Road, Changsha, 410013, China
- Medical Department of Breast Cancer, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing Li
- Medical Department of Breast Cancer, Hunan Cancer Hospital, No. 283, Tongzipo Road, Changsha, 410013, China
- Medical Department of Breast Cancer, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Binliang Liu
- Medical Department of Breast Cancer, Hunan Cancer Hospital, No. 283, Tongzipo Road, Changsha, 410013, China
- Medical Department of Breast Cancer, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Quchang Ouyang
- Medical Department of Breast Cancer, Hunan Cancer Hospital, No. 283, Tongzipo Road, Changsha, 410013, China.
- Medical Department of Breast Cancer, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
29
|
Dechsri K, Suwanchawalit C, Chitropas P, Ngawhirunpat T, Rojanarata T, Opanasopit P, Pengnam S. Rapid Microwave-Assisted Synthesis of pH-Sensitive Carbon-Based Nanoparticles for the Controlled Release of Doxorubicin to Cancer Cells. AAPS PharmSciTech 2023; 24:135. [PMID: 37308690 DOI: 10.1208/s12249-023-02593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Carbon-based nanoparticles (CNPs) are a new type of interesting nanomaterials applied in various pharmaceutical fields due to their outstanding biocompatible properties. Novel pH-sensitive CNPs were rapidly synthesized within 1 min by microwave-assisted technique for doxorubicin (DOX) delivery into five cancer cell lines, including breast cancer (BT-474 and MDA-MB-231 cell lines), colon cancer (HCT and HT29 cell lines), and cervical cancer (HeLa cell lines). CNPs and DOX-loaded CNPs (CNPs-DOX) had nano-size of 11.66 ± 2.32 nm and 43.24 ± 13.25 nm, respectively. DOX could be self-assembled with CNPs in phosphate buffer solution at pH 7.4 through electrostatic interaction, exhibiting high loading efficiency at 85.82%. The release of DOX from CNPs-DOX at pH 5.0, often observed in the tumor, was nearly two times greater than the release at physiological condition pH 7.4. Furthermore, the anticancer activity of CNPs-DOX was significantly enhanced compared to free DOX in five cancer cell lines. CNPs-DOX could induce cell death through apoptosis induction in MDA-MB-231 cells. The findings revealed that CNPs-DOX exhibited a promising pH-sensitive nano-system as a drug delivery carrier for cancer treatment.
Collapse
Affiliation(s)
- Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Cheewita Suwanchawalit
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Padungkwan Chitropas
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen, 40000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Supusson Pengnam
- Department of Biomedicine and Health Informatics, Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
30
|
Pegram M, Jackisch C, Johnston SRD. Estrogen/HER2 receptor crosstalk in breast cancer: combination therapies to improve outcomes for patients with hormone receptor-positive/HER2-positive breast cancer. NPJ Breast Cancer 2023; 9:45. [PMID: 37258523 DOI: 10.1038/s41523-023-00533-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2023] [Indexed: 06/02/2023] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is overexpressed in 13-22% of breast cancers (BC). Approximately 60-70% of HER2+ BC co-express hormone receptors (HRs). HR/HER2 co-expression modulates response to both anti-HER2-directed and endocrine therapy due to "crosstalk" between the estrogen receptor (ER) and HER2 pathways. Combined HER2/ER blockade may be an effective treatment strategy for patients with HR+/HER2+ BC in the appropriate clinical setting(s). In this review, we provide an overview of crosstalk between the ER and HER2 pathways, summarize data from recently published and ongoing clinical trials, and discuss clinical implications for targeted treatment of HR+/HER2+ BC.
Collapse
Affiliation(s)
- Mark Pegram
- Stanford Cancer Institute, Stanford, CA, USA.
| | - Christian Jackisch
- Obstetrics and Gynaecology and Breast Cancer Center, Klinikum Offenbach GmbH, Offenbach, Germany
| | | |
Collapse
|
31
|
Optimizing treatment for HER2-positive HR-positive breast cancer. Cancer Treat Rev 2023; 115:102529. [PMID: 36921556 DOI: 10.1016/j.ctrv.2023.102529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Triple-positive breast tumors overexpress human epidermal growth factor receptor 2 (HER2) and are positive for hormone receptor (HR) expression. Data from real-life and clinical trials show that estrogen receptor (ER) expression affects the response to combinations of anti-HER2 and associated systemic therapies. Despite triple-positive tumors having decreased response rates compared to HR-negative/HER2-positive breast cancers, optimizing anti-HER2 treatment with dual anti-HER2 blockade remains important for optimal disease control. Preclinical data on the cross-talk between ER and growth factor receptor pathways show the efficacy of combinations of endocrine therapy and anti-HER2 drugs, which is confirmed in the clinic. Molecular dissection of triple-positive breast cancer might provide the rational for additional therapeutic strategies and the identification of promising biomarkers. This review summarizes data on systemic treatment efficacy from major clinical trials and perspectives for future clinical research in triple-positive breast cancer.
Collapse
|
32
|
Bu J, Zhang Y, Niu N, Bi K, Sun L, Qiao X, Wang Y, Zhang Y, Jiang X, Wang D, Ma Q, Li H, Liu C. Dalpiciclib partially abrogates ER signaling activation induced by pyrotinib in HER2 +HR + breast cancer. eLife 2023; 12:85246. [PMID: 36602226 PMCID: PMC9822241 DOI: 10.7554/elife.85246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Recent evidences from clinical trials (NCT04486911) revealed that the combination of pyrotinib, letrozole, and dalpiciclib exerted optimistic therapeutic effect in treating HER2+HR+ breast cancer; however, the underlying molecular mechanism remained elusive. Through the drug sensitivity test, the drug combination efficacy of pyrotinib, tamoxifen, and dalpiciclib to BT474 cells was tested. The underlying molecular mechanisms were investigated using immunofluorescence, Western blot analysis, immunohistochemical staining, and cell cycle analysis. Potential risk factor that may indicate the responsiveness to drug treatment in HER2+/HR+ breast cancer was identified using RNA-sequence and evaluated using immunohistochemical staining and in vivo drug susceptibility test. We found that pyrotinib combined with dalpiciclib exerted better cytotoxic efficacy than pyrotinib combined with tamoxifen in BT474 cells. Degradation of HER2 could enhance ER nuclear transportation, activating ER signaling pathway in BT474 cells, whereas dalpiciclib could partially abrogate this process. This may be the underlying mechanism by which combination of pyrotinib, tamoxifen, and dalpiciclib exerted best cytotoxic effect. Furthermore, CALML5 was revealed to be a risk factor in the treatment of HER2+/HR+ breast cancer and the usage of dalpiciclib might overcome the drug resistance to pyrotinib + tamoxifen due to CALML5 expression. Our study provided evidence that the usage of dalpiciclib in the treatment of HER2+/HR+ breast cancer could partially abrogate the estrogen signaling pathway activation caused by anti-HER2 therapy and revealed that CALML5 could serve as a risk factor in the treatment of HER2+/HR+ breast cancer.
Collapse
Affiliation(s)
- Jiawen Bu
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Yixiao Zhang
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina,Department of Urology Surgery, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Nan Niu
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Kewei Bi
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Lisha Sun
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Xinbo Qiao
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Yimin Wang
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Yinan Zhang
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Xiaofan Jiang
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Dan Wang
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Qingtian Ma
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| | - Huajun Li
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co LtdShanghaiChina
| | - Caigang Liu
- Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Department of Oncology, Shengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
33
|
Ran R, Ma Y, Wang H, Yang J, Yang J. Treatment strategies for hormone receptor-positive, human epidermal growth factor receptor 2-positive (HR+/HER2+) metastatic breast cancer: A review. Front Oncol 2022; 12:975463. [PMID: 36620573 PMCID: PMC9822772 DOI: 10.3389/fonc.2022.975463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hormone receptor-positive HER2-positive (HR+/HER2+) metastatic breast cancer (MBC) is a unique subtype of breast cancer. Most current guidelines recommend that combination regimens based on anti-HER2 therapy should be used as first-line treatment for HER2+ MBC, irrespective of HR status. Endocrine therapy can be applied as maintenance therapy for patients who are intolerant to chemotherapy or post-chemotherapy. Increasing evidence suggests that complex molecular crosstalk between HR and HER2 pathways may affect the sensitivity to both HER2-targeted and endocrine therapy in patients with HR+/HER2+ breast cancer. Recent research and clinical trials have revealed that a combination of endocrine therapy and anti-HER2 approaches without chemotherapy provides along-term disease control for some patients, but the challenge lies in how to accurately identify the subsets of patients who can benefit from such a de-chemotherapy treatment strategy. In this review, we aim to summarize the results of preclinical and clinical studies in HR+/HER2+ MBC and discuss the possibility of sparing chemotherapy in this subgroup of patients.
Collapse
Affiliation(s)
| | | | | | - Jin Yang
- *Correspondence: Jin Yang, ; Jiao Yang,
| | - Jiao Yang
- *Correspondence: Jin Yang, ; Jiao Yang,
| |
Collapse
|
34
|
Crocamo S, Binato R, dos Santos EC, de Paula B, Abdelhay E. Translational Results of Zo-NAnTax: A Phase II Trial of Neoadjuvant Zoledronic Acid in HER2-Positive Breast Cancer. Int J Mol Sci 2022; 23:ijms232415515. [PMID: 36555156 PMCID: PMC9779412 DOI: 10.3390/ijms232415515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a heterogeneous disease with distinct clinical and molecular characteristics. Scientific advances in molecular subtype differentiation support the understanding of cellular signaling, crosstalk, proliferation, survival, migration, and invasion mechanisms, allowing the development of new molecular drug targets. The breast cancer subtype with super expression and/or amplification of human growth factor receptor 2 (HER2) is clinically aggressive, but prognosis significantly shifted with the advent of anti-HER2 targeted therapy. Zoledronic-acid (ZOL) combined with a neoadjuvant Trastuzumab-containing chemotherapy regimen (Doxorubicin, Cyclophosphamide followed by Docetaxel, Trastuzumab) increased the pCR rate in a RH-positive/ HER2-positive subgroup, according to the phase II Zo-NAnTax trial. To verify genes that could be related to this response, a microarray assay was performed finding 164 differentially expressed genes. Silico analysis of these genes showed signaling pathways related to growth factors, apoptosis, invasion, and metabolism, as well as differentially expressed genes related to estrogen response. In addition, the RAC3 gene was found to interact with the MVD gene, a member of the mevalonate pathway. Taken together, these results indicate that RH-positive/ HER2-positive patients present gene alterations before treatment, and these could be related to the improvement of pCR.
Collapse
Affiliation(s)
- Susanne Crocamo
- Núcleo de Pesquisa Clínica, Hospital de Câncer III, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20560-121, Brazil
- Correspondence:
| | - Renata Binato
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, Brazil
| | - Everton Cruz dos Santos
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, Brazil
| | - Bruno de Paula
- Núcleo de Pesquisa Clínica, Hospital de Câncer III, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20560-121, Brazil
| | - Eliana Abdelhay
- Laboratório de Célula-Tronco, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, Brazil
| |
Collapse
|
35
|
Abdulkareem NM, Bhat R, Powell RT, Chikermane S, Yande S, Trinh L, Abdelnasser HY, Tabassum M, Ruiz A, Sobieski M, Nguyen ND, Park JH, Johnson CA, Kaipparettu BA, Bond RA, Johnson M, Stephan C, Trivedi MV. Screening of GPCR drugs for repurposing in breast cancer. Front Pharmacol 2022; 13:1049640. [PMID: 36561339 PMCID: PMC9763283 DOI: 10.3389/fphar.2022.1049640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Drug repurposing can overcome both substantial costs and the lengthy process of new drug discovery and development in cancer treatment. Some Food and Drug Administration (FDA)-approved drugs have been found to have the potential to be repurposed as anti-cancer drugs. However, the progress is slow due to only a handful of strategies employed to identify drugs with repurposing potential. In this study, we evaluated GPCR-targeting drugs by high throughput screening (HTS) for their repurposing potential in triple-negative breast cancer (TNBC) and drug-resistant human epidermal growth factor receptor-2-positive (HER2+) breast cancer (BC), due to the dire need to discover novel targets and drugs in these subtypes. We assessed the efficacy and potency of drugs/compounds targeting different GPCRs for the growth rate inhibition in the following models: two TNBC cell lines (MDA-MB-231 and MDA-MB-468) and two HER2+ BC cell lines (BT474 and SKBR3), sensitive or resistant to lapatinib + trastuzumab, an effective combination of HER2-targeting therapies. We identified six drugs/compounds as potential hits, of which 4 were FDA-approved drugs. We focused on β-adrenergic receptor-targeting nebivolol as a candidate, primarily because of the potential role of these receptors in BC and its excellent long-term safety profile. The effects of nebivolol were validated in an independent assay in all the cell line models. The effects of nebivolol were independent of its activation of β3 receptors and nitric oxide production. Nebivolol reduced invasion and migration potentials which also suggests its inhibitory role in metastasis. Analysis of the Surveillance, Epidemiology and End Results (SEER)-Medicare dataset found numerically but not statistically significant reduced risk of all-cause mortality in the nebivolol group. In-depth future analyses, including detailed in vivo studies and real-world data analysis with more patients, are needed to further investigate the potential of nebivolol as a repurposed therapy for BC.
Collapse
Affiliation(s)
- Noor Mazin Abdulkareem
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Raksha Bhat
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Reid T. Powell
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Soumya Chikermane
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, United states
| | - Soham Yande
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, United states
| | - Lisa Trinh
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Hala Y. Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Mantasha Tabassum
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Alexis Ruiz
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Mary Sobieski
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Nghi D. Nguyen
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United states
| | - Camille A. Johnson
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Benny A. Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United states
| | - Richard A. Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Michael Johnson
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, United states
| | - Clifford Stephan
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Meghana V. Trivedi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states,Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states,*Correspondence: Meghana V. Trivedi,
| |
Collapse
|
36
|
Wang X, Jiang W, Du Y, Zhu D, Zhang J, Fang C, Yan F, Chen ZS. Targeting feedback activation of signaling transduction pathways to overcome drug resistance in cancer. Drug Resist Updat 2022; 65:100884. [DOI: 10.1016/j.drup.2022.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/03/2022]
|
37
|
Shahrivari S, Aminoroaya N, Ghods R, Latifi H, Afjei SA, Saraygord-Afshari N, Bagheri Z. Toxicity of trastuzumab for breast cancer spheroids: Application of a novel on-a-chip concentration gradient generator. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Resistance to Trastuzumab. Cancers (Basel) 2022; 14:cancers14205115. [PMID: 36291900 PMCID: PMC9600208 DOI: 10.3390/cancers14205115] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Trastuzumab is a humanized antibody that has significantly improved the management and treatment outcomes of patients with cancers that overexpress HER2. Many research groups, both in academia and industry, have contributed towards understanding the various mechanisms engaged by trastuzumab to mediate its anti-tumor effects. Nevertheless, data from several clinical studies have indicated that a significant proportion of patients exhibit primary or acquired resistance to trastuzumab therapy. In this article, we discuss underlying mechanisms that contribute towards to resistance. Furthermore, we discuss the potential strategies to overcome some of the mechanisms of resistance to enhance the therapeutic efficacy of trastuzumab and other therapies based on it. Abstract One of the most impactful biologics for the treatment of breast cancer is the humanized monoclonal antibody, trastuzumab, which specifically recognizes the HER2/neu (HER2) protein encoded by the ERBB2 gene. Useful for both advanced and early breast cancers, trastuzumab has multiple mechanisms of action. Classical mechanisms attributed to trastuzumab action include cell cycle arrest, induction of apoptosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). Recent studies have identified the role of the adaptive immune system in the clinical actions of trastuzumab. Despite the multiple mechanisms of action, many patients demonstrate resistance, primary or adaptive. Newly identified molecular and cellular mechanisms of trastuzumab resistance include induction of immune suppression, vascular mimicry, generation of breast cancer stem cells, deregulation of long non-coding RNAs, and metabolic escape. These newly identified mechanisms of resistance are discussed in detail in this review, particularly considering how they may lead to the development of well-rationalized, patient-tailored combinations that improve patient survival.
Collapse
|
39
|
Park S, Lee ER, Zhao H. Low-rank regression models for multiple binary responses and their applications to cancer cell-line encyclopedia data. J Am Stat Assoc 2022; 119:202-216. [PMID: 38481466 PMCID: PMC10928550 DOI: 10.1080/01621459.2022.2105704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2022] [Indexed: 10/16/2022]
Abstract
In this paper, we study high-dimensional multivariate logistic regression models in which a common set of covariates is used to predict multiple binary outcomes simultaneously. Our work is primarily motivated from many biomedical studies with correlated multiple responses such as the cancer cell-line encyclopedia project. We assume that the underlying regression coefficient matrix is simultaneously low-rank and row-wise sparse. We propose an intuitively appealing selection and estimation framework based on marginal model likelihood, and we develop an efficient computational algorithm for inference. We establish a novel high-dimensional theory for this nonlinear multivariate regression. Our theory is general, allowing for potential correlations between the binary responses. We propose a new type of nuclear norm penalty using the smooth clipped absolute deviation, filling the gap in the related non-convex penalization literature. We theoretically demonstrate that the proposed approach improves estimation accuracy by considering multiple responses jointly through the proposed estimator when the underlying coefficient matrix is low-rank and row-wise sparse. In particular, we establish the non-asymptotic error bounds, and both rank and row support consistency of the proposed method. Moreover, we develop a consistent rule to simultaneously select the rank and row dimension of the coefficient matrix. Furthermore, we extend the proposed methods and theory to a joint Ising model, which accounts for the dependence relationships. In our analysis of both simulated data and the cancer cell line encyclopedia data, the proposed methods outperform the existing methods in better predicting responses.
Collapse
Affiliation(s)
- Seyoung Park
- Department of Statistics, Sungkyunkwan University, Seoul, 03063, Korea
| | - Eun Ryung Lee
- Department of Statistics, Sungkyunkwan University, Seoul, 03063, Korea
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
40
|
Gámez-Chiachio M, Sarrió D, Moreno-Bueno G. Novel Therapies and Strategies to Overcome Resistance to Anti-HER2-Targeted Drugs. Cancers (Basel) 2022; 14:4543. [PMID: 36139701 PMCID: PMC9496705 DOI: 10.3390/cancers14184543] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The prognosis and quality of life of HER2 breast cancer patients have significantly improved due to the crucial clinical benefit of various anti-HER2 targeted therapies. However, HER2 tumors can possess or develop several resistance mechanisms to these treatments, thus leaving patients with a limited set of additional therapeutic options. Fortunately, to overcome this problem, in recent years, multiple different and complementary approaches have been developed (such as antibody-drug conjugates (ADCs)) that are in clinical or preclinical stages. In this review, we focus on emerging strategies other than on ADCs that are either aimed at directly target the HER2 receptor (i.e., novel tyrosine kinase inhibitors) or subsequent intracellular signaling (e.g., PI3K/AKT/mTOR, CDK4/6 inhibitors, etc.), as well as on innovative approaches designed to attack other potential tumor weaknesses (such as immunotherapy, autophagy blockade, or targeting of other genes within the HER2 amplicon). Moreover, relevant technical advances such as anti-HER2 nanotherapies and immunotoxins are also discussed. In brief, this review summarizes the impact of novel therapeutic approaches on current and future clinical management of aggressive HER2 breast tumors.
Collapse
Affiliation(s)
- Manuel Gámez-Chiachio
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
| | - David Sarrió
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
| | - Gema Moreno-Bueno
- Biochemistry Department, Medicine Faculty, Universidad Autónoma Madrid-CSIC, IdiPaz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), 28029 Madrid, Spain
- MD Anderson International Foundation, 28033 Madrid, Spain
| |
Collapse
|
41
|
Targeted Therapeutic Options and Future Perspectives for HER2-Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14143305. [PMID: 35884366 PMCID: PMC9320771 DOI: 10.3390/cancers14143305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The development of several antiHuman Epidermal Growth Factor Receptor 2 (HER2) treatments over the last few years has improved the landscape of HER2-positive breast cancer. Despite this, relapse is still the main issue in HER2-positive breast cancer. The reasons for therapeutic failure lie in the heterogeneity of the disease itself, as well as in the drug resistance mechanisms. In this review, we intended to understand the milestones that have had an impact on this disease up to their implementation in clinical practice. In addition, understanding the underlying molecular biology of HER2-positive disease is essential for the optimization and personalization of the different treatment options. For this reason, we focused on two relevant aspects, which are triple-positive disease and the role that modulation of the immune response might play in treatment and prognosis. Abstract Despite the improvement achieved by the introduction of HER2-targeted therapy, up to 25% of early human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC) patients will relapse. Beyond trastuzumab, other agents approved for early HER2+ BC include the monoclonal antibody pertuzumab, the antibody-drug conjugate (ADC) trastuzumab-emtansine (T-DM1) and the reversible HER2 inhibitor lapatinib. New agents, such as trastuzumab-deruxtecan or tucatinib in combination with capecitabine and trastuzumab, have also shown a significant improvement in the metastatic setting. Other therapeutic strategies to overcome treatment resistance have been explored in HER2+ BC, mainly in HER2+ that also overexpress estrogen receptors (ER+). In ER+ HER2+ patients, target therapies such as phosphoinositide-3-kinase (PI3K) pathway inhibition or cyclin-dependent kinases 4/6 blocking may be effective in controlling downstream of HER2 and many of the cellular pathways associated with resistance to HER2-targeted therapies. Multiple trials have explored these strategies with some promising results, and probably, in the next years conclusive results will succeed. In addition, HER2+ BC is known to be more immunogenic than other BC subgroups, with high variability between tumors. Different immunotherapeutic agents such as HER-2 therapy plus checkpoint inhibitors, or new vaccines approaches have been investigated in this setting, with promising but controversial results obtained to date.
Collapse
|
42
|
ErbB3-Targeting Oncolytic Adenovirus Causes Potent Tumor Suppression by Induction of Apoptosis in Cancer Cells. Int J Mol Sci 2022; 23:ijms23137127. [PMID: 35806132 PMCID: PMC9266575 DOI: 10.3390/ijms23137127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer is a multifactorial and deadly disease. Despite major advancements in cancer therapy in the last two decades, cancer incidence is on the rise and disease prognosis still remains poor. Furthermore, molecular mechanisms of cancer invasiveness, metastasis, and drug resistance remain largely elusive. Targeted cancer therapy involving the silencing of specific cancer-enriched proteins by small interfering RNA (siRNA) offers a powerful tool. However, its application in clinic is limited by the short half-life of siRNA and warrants the development of efficient and stable siRNA delivery systems. Oncolytic adenovirus-mediated therapy offers an attractive alternative to the chemical drugs that often suffer from innate and acquired drug resistance. In continuation to our reports on the development of oncolytic adenovirus-mediated delivery of shRNA, we report here the replication-incompetent (dAd/shErbB3) and replication-competent (oAd/shErbB3) oncolytic adenovirus systems that caused efficient and persistent targeting of ErbB3. We demonstrate that the E1A coded by oAd/shErbB, in contrast to dAd/shErbB, caused downregulation of ErbB2 and ErbB3, yielding stronger downregulation of the ErbB3-oncogenic signaling axis in in vitro models of lung and breast cancer. These results were validated by in vivo antitumor efficacy of dAd/shErbB3 and oAd/shErbB3.
Collapse
|
43
|
Viganò L, Locatelli A, Ulisse A, Galbardi B, Dugo M, Tosi D, Tacchetti C, Daniele T, Győrffy B, Sica L, Macchini M, Zambetti M, Zambelli S, Bianchini G, Gianni L. Modulation of the Estrogen/erbB2 Receptors Cross-talk by CDK4/6 Inhibition Triggers Sustained Senescence in Estrogen Receptor- and ErbB2-positive Breast Cancer. Clin Cancer Res 2022; 28:2167-2179. [PMID: 35254385 PMCID: PMC9595107 DOI: 10.1158/1078-0432.ccr-21-3185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE The interplay between estrogen receptor (ER) and erbB tyrosine-kinase receptors (RTK) impacts growth and progression of ER-positive (ER+)/HER2-positive (HER2+) breast cancer and generates mitogenic signals converging onto the Cyclin-D1/CDK4/6 complex. We probed this cross-talk combining endocrine-therapy (fulvestrant), dual HER2-blockade (trastuzumab and pertuzumab), and CDK4/6-inhibition (palbociclib; PFHPert). EXPERIMENTAL DESIGN Cytotoxic drug effects, interactions, and pharmacodynamics were studied after 72 hours of treatment and over 6 more days of culture after drug wash-out in three ER+/HER2+, two HER2low, and two ER-negative (ER-)/HER2+ breast cancer cell lines. We assessed gene-expression dynamic and association with Ki67 downregulation in 28 patients with ER+/HER2+ breast cancer treated with neoadjuvant PFHPert in NA-PHER2 trial (NCT02530424). RESULTS In vitro, palbociclib and/or fulvestrant induced a functional activation of RTKs signalling. PFHPert had additive or synergistic antiproliferative activity, interfered with resistance mechanisms linked to the RTKs/Akt/MTORC1 axis and induced sustained senescence. Unexpected synergism was found in HER2low cells. In patients, Ki67 downregulation at week 2 and surgery were significantly associated to upregulation of senescence-related genes (P = 7.7E-4 and P = 1.8E-4, respectively). Activation of MTORC1 pathway was associated with high Ki67 at surgery (P = 0.019). CONCLUSIONS Resistance associated with the combination of drugs targeting ER and HER2 can be bypassed by cotargeting Rb, enhancing transition from quiescence to sustained senescence. MTORC1 pathway activation is a potential mechanism of escape and RTKs functional activation may be an alternative pathway for survival also in ER+/HER2low tumor. PFHPert combination is an effective chemotherapy-free regimen for ER+/HER2+ breast cancer, and the mechanistic elucidation of sensitivity/resistance patterns may provide insights for further treatment refinement.
Collapse
Affiliation(s)
- Lucia Viganò
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberta Locatelli
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adele Ulisse
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Galbardi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diego Tosi
- Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Carlo Tacchetti
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tiziana Daniele
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Balázs Győrffy
- Department of Bioinformatics, Faculty of General Medicine, Semmelweis University, Budapest, Hungary
- 2nd Dept. of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- TTK Oncology Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Lorenzo Sica
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Milvia Zambetti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Zambelli
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giampaolo Bianchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
44
|
Pal P, Millner A, Semina SE, Huggins RJ, Running L, Aga DS, Tonetti DA, Schiff R, Greene GL, Atilla-Gokcumen GE, Frasor J. Endocrine Therapy-Resistant Breast Cancer Cells Are More Sensitive to Ceramide Kinase Inhibition and Elevated Ceramide Levels Than Therapy-Sensitive Breast Cancer Cells. Cancers (Basel) 2022; 14:2380. [PMID: 35625985 PMCID: PMC9140186 DOI: 10.3390/cancers14102380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
ET resistance is a critical problem for estrogen receptor-positive (ER+) breast cancer. In this study, we have investigated how alterations in sphingolipids promote cell survival in ET-resistant breast cancer. We have performed LC-MS-based targeted sphingolipidomics of tamoxifen-sensitive and -resistant MCF-7 breast cancer cell lines. Follow-up studies included treatments of cell lines and patient-derived xenograft organoids (PDxO) with small molecule inhibitors; cytometric analyses to measure cell death, proliferation, and apoptosis; siRNA-mediated knockdown; RT-qPCR and Western blot for gene and protein expression; targeted lipid analysis; and lipid addback experiments. We found that tamoxifen-resistant cells have lower levels of ceramides and hexosylceramides compared to their tamoxifen-sensitive counterpart. Upon perturbing the sphingolipid pathway with small molecule inhibitors of key enzymes, we identified that CERK is essential for tamoxifen-resistant breast cancer cell survival, as well as a fulvestrant-resistant PDxO. CERK inhibition induces ceramide-mediated cell death in tamoxifen-resistant cells. Ceramide-1-phosphate (C1P) partially reverses CERK inhibition-induced cell death in tamoxifen-resistant cells, likely through lowering endogenous ceramide levels. Our findings suggest that ET-resistant breast cancer cells maintain lower ceramide levels as an essential pro-survival mechanism. Consequently, ET-resistant breast cancer models have a unique dependence on CERK as its activity can inhibit de novo ceramide production.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.P.); (S.E.S.)
| | - Alec Millner
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Svetlana E. Semina
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.P.); (S.E.S.)
| | - Rosemary J. Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.J.H.); (G.L.G.)
| | - Logan Running
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Diana S. Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Debra A. Tonetti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; (R.J.H.); (G.L.G.)
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260, USA; (A.M.); (L.R.); (D.S.A.)
| | - Jonna Frasor
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (P.P.); (S.E.S.)
| |
Collapse
|
45
|
Majorini MT, Colombo MP, Lecis D. Few, but Efficient: The Role of Mast Cells in Breast Cancer and Other Solid Tumors. Cancer Res 2022; 82:1439-1447. [PMID: 35045983 PMCID: PMC9306341 DOI: 10.1158/0008-5472.can-21-3424] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023]
Abstract
Tumor outcome is determined not only by cancer cell-intrinsic features but also by the interaction between cancer cells and their microenvironment. There is great interest in tumor-infiltrating immune cells, yet mast cells have been less studied. Recent work has highlighted the impact of mast cells on the features and aggressiveness of cancer cells, but the eventual effect of mast cell infiltration is still controversial. Here, we review multifaceted findings regarding the role of mast cells in cancer, with a particular focus on breast cancer, which is further complicated because of its classification into subtypes characterized by different biological features, outcome, and therapeutic strategies.
Collapse
Affiliation(s)
| | - Mario Paolo Colombo
- Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.,Corresponding Authors: Daniele Lecis, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano 20133, Italy. Phone: 022-390-2212; E-mail: ; and Mario Paolo Colombo,
| |
Collapse
|
46
|
Due SL, Watson DI, Bastian I, Eichelmann AK, Hussey DJ. Oestrogen Receptor Isoforms May Represent a Therapeutic Target in Oesophageal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14081891. [PMID: 35454796 PMCID: PMC9032750 DOI: 10.3390/cancers14081891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Oesophageal adenocarcinoma is a lethal malignancy with limited treatment options. Recent studies have identified oestrogen receptors (ERs) in this cancer, which could represent a new target for therapy. In this study, we used laboratory models of oesophageal adenocarcinoma to look for the presence of variant forms of ERs. We also assessed the response to treatment with a drug that acts through these ERs. We found that variant forms of ERs do exist in this malignancy and that some of the variants appear to be important in order for the cells to respond to treatment. This could be due to interactions between different ERs, or between ERs and other molecules that are known to be important in cancer growth. Our findings are encouraging in that drugs that act through ERs might be useful for patients with oesophageal adenocarcinoma in the future. Abstract Oesophageal adenocarcinoma is a rapidly increasing problem in which treatment options are limited. Previous studies have shown that oesophageal adenocarcinoma cells and tissues express oestrogen receptors (ERs) and show growth suppression and apoptosis in response to ER modulator agents such as tamoxifen. ERs are known to be expressed in a number of isoforms that act together to regulate cell growth and cell death. In this study, we used western blotting to profile the expression of ERα and ERβ isoforms, and expression of the oncologically related molecules p53, HER2, and EGFR, in a panel of oesophageal adenocarcinoma cell lines. The cytotoxicity of tamoxifen in the cell lines was determined with Annexin V-FITC flow cytometry, and correlations between cytotoxicity and receptor expression were assessed using Spearman’s rank-order correlation. Oesophageal adenocarcinoma cell lines showed varying cytotoxicity in response to tamoxifen. The ER species ERα90, ERα50, and ERα46, as well as p53, were positively associated with a cytotoxic response. Conversely, ERα74, ERα70, and ERβ54 were associated with a lack of cytotoxic response. The ER species detected in oesophageal adenocarcinoma cells may work together to confer sensitivity to ER modulators in this disease, which could open up a new avenue for therapy in selected patients.
Collapse
Affiliation(s)
- Steven L Due
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
- Flinders Health and Medical Research Institute-Cancer Program, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - David I Watson
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
- Flinders Health and Medical Research Institute-Cancer Program, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Isabell Bastian
- Flinders Health and Medical Research Institute-Cancer Program, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Ann-Kathrin Eichelmann
- Flinders Health and Medical Research Institute-Cancer Program, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Damian J Hussey
- Department of Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
- Flinders Health and Medical Research Institute-Cancer Program, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
47
|
Yang Y, Kozlovskaya V, Zhang Z, Xing C, Zaharias S, Dolmat M, Qian S, Zhang J, Warram JM, Yang ES, Kharlampieva E. Poly( N-vinylpyrrolidone)- block-Poly(dimethylsiloxane)- block-Poly( N-vinylpyrrolidone) Triblock Copolymer Polymersomes for Delivery of PARP1 siRNA to Breast Cancers. ACS APPLIED BIO MATERIALS 2022; 5:1670-1682. [PMID: 35294185 DOI: 10.1021/acsabm.2c00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nearly 20% of HER2-positive breast cancers develop resistance to HER2-targeted therapies requiring the use of advanced therapies. Silencing RNA therapy may be a powerful modality for treating resistant HER2 cancers due to its high specificity and low toxicity. However, the systemic administration of siRNAs requires a safe and efficient delivery platform because of siRNA's low stability in physiological fluids, inefficient cellular uptake, immunoreactivity, and rapid clearance. We have developed theranostic polymeric vesicles to overcome these hurdles for encapsulation and delivery of small functional molecules and PARP1 siRNA for in vivo delivery to breast cancer tumors. The 100 nm polymer vesicles were assembled from biodegradable and non-ionic poly(N-vinylpyrrolidone)14-block-poly(dimethylsiloxane)47-block-poly(N-vinylpyrrolidone)14 triblock copolymer PVPON14-PDMS47-PVPON14 using nanoprecipitation and thin-film hydration. We demonstrated that the vesicles assembled from the copolymer covalently tagged with the Cy5.5 fluorescent dye for in vivo imaging could also encapsulate the model drug with high loading efficiency (40%). The dye-loaded vesicles were accumulated in tumors after 18 h circulation in 4TR breast tumor-bearing mice via passive targeting. We found that PARP1 siRNA encapsulated into the vesicles was released intact (13%) into solution by the therapeutic ultrasound treatment as quantified by gel electrophoresis. The PARP1 siRNA-loaded polymersomes inhibited the proliferation of MDA-MB-361TR cells by 34% after 6 days of treatment by suppressing the NF-kB signaling pathway, unlike their scrambled siRNA-loaded counterparts. Finally, the treatment by PARP1 siRNA-loaded vesicles prolonged the survival of the mice bearing 4T1 breast cancer xenografts, with the 4-fold survival increase, unlike the untreated mice after 3 weeks following the treatment. These biodegradable, non-ionic PVPON14-PDMS47-PVPON14 polymeric nanovesicles capable of the efficient encapsulation and delivery of PARP1 siRNA to successfully knock down PARP1 in vivo can provide an advanced platform for the development of precision-targeted therapeutic carriers, which could help develop highly effective drug delivery nanovehicles for breast cancer gene therapy.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Veronika Kozlovskaya
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Zhuo Zhang
- Department of Radiation Oncology, The University of Alabama at Birmingham, Hazelrig Salter Radiation Oncology Center, Birmingham, Alabama 35294, United States.,The O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Chuan Xing
- Department of Radiation Oncology, The University of Alabama at Birmingham, Hazelrig Salter Radiation Oncology Center, Birmingham, Alabama 35294, United States.,The O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Steve Zaharias
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maksim Dolmat
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Shuo Qian
- Neutron Scattering Division and Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jun Zhang
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Jason M Warram
- The O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,Departments of Otolaryngology, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eddy S Yang
- Department of Radiation Oncology, The University of Alabama at Birmingham, Hazelrig Salter Radiation Oncology Center, Birmingham, Alabama 35294, United States.,The O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,The O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,Center for Nanoscale Materials and Biointegration, The University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
48
|
Normann LS, Haugen MH, Aure MR, Kristensen VN, Mælandsmo GM, Sahlberg KK. miR-101-5p Acts as a Tumor Suppressor in HER2-Positive Breast Cancer Cells and Improves Targeted Therapy. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:25-39. [PMID: 35256859 PMCID: PMC8898020 DOI: 10.2147/bctt.s338404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Purpose Human epidermal growth factor receptor 2 positive (HER2+) breast cancers responding poorly to targeted therapy need improved treatment options. miR-101-5p has shown tumor-suppressive properties in multiple cancer forms, and we assessed the effect and mechanism of action of this miRNA in HER2+ breast cancer. Methods Expression levels of miR-101-5p in two clinical datasets, TCGA and METABRIC, were compared between tumor and normal adjacent samples, and across molecular subtypes and HER2 status. The ability of miR-101-5p to sensitize for treatment with lapatinib, tucatinib and trastuzumab was explored in HER2+ breast cancer cells responding poorly to such targeted drugs. Proliferation and apoptosis assays and downstream protein analysis were performed. Results Expression levels of miR-101-5p were significantly lower in tumor compared to normal adjacent tissue (p < 0.001), and particularly low in HER2+ tumors, both the HER2-enriched subtype (p ≤ 0.037) and clinical HER2-status (p < 0.001). In a HER2+ cell line (KPL4) responding poorly to targeted drugs, miR-101-5p overexpression inhibited proliferation (p < 0.001), and combinatorial treatment with lapatinib and trastuzumab significantly further decreased this inhibition (p = 0.004). Proteomic data and in silico analyses revealed PI3K/Akt- and HER2-pathways among the predicted regulated pathways. miR-101-5p alone (p = 0.018) and in combination with lapatinib and trastuzumab (p < 0.001) induced apoptosis, while the targeted drugs alone did not exert any significant effect neither on proliferation nor apoptosis. Conclusion miR-101-5p acts as a tumor suppressor by inducing apoptosis in HER2+ breast cancer and sensitizes cells with initially poor response to lapatinib and trastuzumab.
Collapse
Affiliation(s)
- Lisa Svartdal Normann
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mads Haugland Haugen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Miriam Ragle Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Gunhild Mari Mælandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kristine Kleivi Sahlberg
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
49
|
Oliveira ID, Nicolau-Neto P, Fernandes P, Lavigne T, Neves P, Tobar J, Soares-Lima S, Simão T, Pinto LR. The potential of mRNA expression evaluation in predicting HER2 positivity in gastroesophageal cancer. Braz J Med Biol Res 2022; 55:e12428. [DOI: 10.1590/1414-431x2022e12428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - T.A. Simão
- Universidade do Estado do Rio de Janeiro, Brasil
| | - L.F. Ribeiro Pinto
- Instituto Nacional de Câncer, Brasil; Universidade do Estado do Rio de Janeiro, Brasil
| |
Collapse
|
50
|
Perrone M, Talarico G, Chiodoni C, Sangaletti S. Impact of Immune Cell Heterogeneity on HER2+ Breast Cancer Prognosis and Response to Therapy. Cancers (Basel) 2021; 13:6352. [PMID: 34944971 PMCID: PMC8699132 DOI: 10.3390/cancers13246352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer is a heterogeneous disease with a high degree of diversity among and within tumors, and in relation to its different tumor microenvironment. Compared to other oncotypes, such as melanoma or lung cancer, breast cancer is considered a "cold" tumor, characterized by low T lymphocyte infiltration and low tumor mutational burden. However, more recent evidence argues against this idea and indicates that, at least for specific molecular breast cancer subtypes, the immune infiltrate may be clinically relevant and heterogeneous, with significant variations in its stromal cell/protein composition across patients and tumor stages. High numbers of tumor-infiltrating T cells are most frequent in HER2-positive and basal-like molecular subtypes and are generally associated with a good prognosis and response to therapies. However, effector immune infiltrates show protective immunity in some cancers but not in others. This could depend on one or more immunosuppressive mechanisms acting alone or in concert. Some of them might include, in addition to immune cells, other tumor microenvironment determinants such as the extracellular matrix composition and stiffness as well as stromal cells, like fibroblasts and adipocytes, that may prevent cytotoxic T cells from infiltrating the tumor microenvironment or may inactivate their antitumor functions. This review will summarize the state of the different immune tumor microenvironment determinants affecting HER2+ breast tumor progression, their response to treatment, and how they are modified by different therapeutic approaches. Potential targets within the immune tumor microenvironment will also be discussed.
Collapse
|