1
|
Gatti M, Pea F. Critical reappraisal of current issues for improving the proper clinical use of the incoming beta-lactam/beta-lactamase inhibitor combinations of tomorrow. Expert Rev Anti Infect Ther 2025:1-11. [PMID: 40223340 DOI: 10.1080/14787210.2025.2493077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION Although different novel beta-lactam/beta-lactamase inhibitor combinations (BL/BLIc) were recently licensed, resistance occurrence have been reported up to 15% of Gram-negative pathogens. For this reason, novel BL/BLIc of tomorrow will be released for managing difficult-to-treat resistance (DTR) Gram-negative infections. AREAS COVERED This review provides a critical reappraisal of current issues for improving the proper clinical use of the novel BL/BLIc of tomorrow. A literature search was performed on PubMed-MEDLINE (until December 2024) for retrieving available studies on cefepime-enmetazobactam, sulbactam-durlobactam, and cefepime-taniborbactam. Four different main areas were discussed according to available evidence: 1) translating findings coming from the randomized clinical trials into the real-world clinical practice; 2) defining the optimal joint pharmacokinetic/pharmacodynamic (PK/PD) target; 3) identifying proper dosing schedules in patients with renal dysfunction; 4) attributing proper relevance to the epithelial lining fluid (ELF) penetration rate in defining optimal dosing schedule for treating pneumonia. EXPERT OPINION Overall, old habits die hard and issues retrieved with licensed beta-lactams emerged also with novel BL/BLIc of tomorrow, potentially affecting their efficacy when used in real-world practice. Adopting appropriate corrective measures for overcoming these issues might increase the likelihood of preserving their efficacy in the future by minimizing the propensity risk of resistance development.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Bova R, Griggio G, Vallicelli C, Santandrea G, Coccolini F, Ansaloni L, Sartelli M, Agnoletti V, Bravi F, Catena F. Source Control and Antibiotics in Intra-Abdominal Infections. Antibiotics (Basel) 2024; 13:776. [PMID: 39200076 PMCID: PMC11352101 DOI: 10.3390/antibiotics13080776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Intra-abdominal infections (IAIs) account for a major cause of morbidity and mortality, representing the second most common sepsis-related death with a hospital mortality of 23-38%. Prompt identification of sepsis source, appropriate resuscitation, and early treatment with the shortest delay possible are the cornerstones of management of IAIs and are associated with a more favorable clinical outcome. The aim of source control is to reduce microbial load by removing the infection source and it is achievable by using a wide range of procedures, such as definitive surgical removal of anatomic infectious foci, percutaneous drainage and toilette of infected collections, decompression, and debridement of infected and necrotic tissue or device removal, providing for the restoration of anatomy and function. Damage control surgery may be an option in selected septic patients. Intra-abdominal infections can be classified as uncomplicated or complicated causing localized or diffuse peritonitis. Early clinical evaluation is mandatory in order to optimize diagnostic testing and establish a therapeutic plan. Prognostic scores could serve as helpful tools in medical settings for evaluating both the seriousness and future outlook of a condition. The patient's conditions and the potential progression of the disease determine when to initiate source control. Patients can be classified into three groups based on disease severity, the origin of infection, and the patient's overall physical health, as well as any existing comorbidities. In recent decades, antibiotic resistance has become a global health threat caused by inappropriate antibiotic regimens, inadequate control measures, and infection prevention. The sepsis prevention and infection control protocols combined with optimizing antibiotic administration are crucial to improve outcome and should be encouraged in surgical departments. Antibiotic and antifungal regimens in patients with IAIs should be based on the resistance epidemiology, clinical conditions, and risk for multidrug resistance (MDR) and Candida spp. infections. Several challenges still exist regarding the effectiveness, timing, and patient stratification, as well as the procedures for source control. Antibiotic choice, optimal dosing, and duration of therapy are essential to achieve the best treatment. Promoting standard of care in the management of IAIs improves clinical outcomes worldwide. Further trials and stronger evidence are required to achieve optimal management with the least morbidity in the clinical care of critically ill patients with intra-abdominal sepsis.
Collapse
Affiliation(s)
- Raffaele Bova
- General, Emergency and Trauma Surgery Department, Bufalini Hospital, 47521 Cesena, Italy; (G.G.); (G.S.); (F.C.)
| | - Giulia Griggio
- General, Emergency and Trauma Surgery Department, Bufalini Hospital, 47521 Cesena, Italy; (G.G.); (G.S.); (F.C.)
| | - Carlo Vallicelli
- General, Emergency and Trauma Surgery Department, Bufalini Hospital, 47521 Cesena, Italy; (G.G.); (G.S.); (F.C.)
| | - Giorgia Santandrea
- General, Emergency and Trauma Surgery Department, Bufalini Hospital, 47521 Cesena, Italy; (G.G.); (G.S.); (F.C.)
| | - Federico Coccolini
- General, Emergency and Trauma Surgery Department, Pisa University Hospital, 56124 Pisa, Italy;
| | - Luca Ansaloni
- Department of General and Emergency Surgery, Policlinico San Matteo, 27100 Pavia, Italy;
| | - Massimo Sartelli
- Department of Surgery, Macerata Hospital, 62100 Macerata, Italy;
| | - Vanni Agnoletti
- Anesthesia, Intensive Care and Trauma Department, Bufalini Hospital, 47521 Cesena, Italy;
| | - Francesca Bravi
- Healthcare Administration, Santa Maria delle Croci Hospital, 48121 Ravenna, Italy;
| | - Fausto Catena
- General, Emergency and Trauma Surgery Department, Bufalini Hospital, 47521 Cesena, Italy; (G.G.); (G.S.); (F.C.)
| |
Collapse
|
3
|
Coloretti I, Tosi M, Biagioni E, Busani S, Girardis M. Management of Sepsis in the First 24 Hours: Bundles of Care and Individualized Approach. Semin Respir Crit Care Med 2024; 45:503-509. [PMID: 39208854 DOI: 10.1055/s-0044-1789185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Early diagnosis and prompt management are essential to enhance the outcomes of patients with sepsis and septic shock. Over the past two decades, evidence-based guidelines have guided appropriate treatment and recommended the implementation of a bundle strategy to deliver fundamental treatments within the initial hours of care. Shortly after its introduction, the implementation of a bundle strategy has led to a substantial decrease in mortality rates across various health care settings. The primary advantage of these bundles is their universality, making them applicable to all patients with sepsis. However, this same quality also represents their primary disadvantage as it fails to account for the significant heterogeneity within the septic patient population. Recently, the individualization of treatments included in the bundle has been suggested as a potential strategy for further improving the prognosis of patients with sepsis. New strategies for the early identification of microorganisms and their resistance patterns, advanced knowledge of antibiotic kinetics in critically ill patients, more conservative fluid therapy in specific patient populations, and early use of alternative vasopressors to catecholamines, as well as tailored source control based on patient conditions and site of infection, are potential approaches to personalize initial care for specific subgroups of patients. These innovative methodologies have the potential to improve the management of septic shock. However, their implementation in clinical practice should be guided by solid evidence. Therefore, it is imperative that future research evaluate the safety, efficacy, and cost-effectiveness of these strategies.
Collapse
Affiliation(s)
- Irene Coloretti
- Anaesthesia and Intensive Care Department, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Tosi
- Anaesthesia and Intensive Care Department, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Emanuela Biagioni
- Anaesthesia and Intensive Care Department, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Busani
- Anaesthesia and Intensive Care Department, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Anaesthesia and Intensive Care Department, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Biscarini S, Mangioni D, Bobbio C, Mela L, Alagna L, Baldelli S, Blasi F, Canetta C, Ceriotti F, Gori A, Grasselli G, Mariani B, Muscatello A, Cattaneo D, Bandera A. Adverse events during intravenous fosfomycin therapy in a real-life scenario. Risk factors and the potential role of therapeutic drug monitoring. BMC Infect Dis 2024; 24:650. [PMID: 38943088 PMCID: PMC11212171 DOI: 10.1186/s12879-024-09541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Intravenous fosfomycin (IVFOF) is gaining interest in severe infections. Its use may be limited by adverse events (AEs). Little experience exists on IVFOF therapeutic drug monitoring (TDM) in real-life setting. PATIENTS AND METHODS Retrospective study of patients receiving IVFOF for > 48 h at Policlinico Hospital (Milan, Italy) from 01/01/2019 to 01/01/2023. AEs associated to IVFOF graded CTCAE ≥ II were considered. Demographic and clinical risk factors for IVFOF-related AEs were analysed with simple and multivariable regression models. The determination of IVFOF TDM was made by a rapid ultraperformance liquid chromatography mass spectrometry method (LC-MS/MS) on plasma samples. The performance of TDM (trough levels (Cmin) in intermittent infusion, steady state levels (Css) in continuous infusion) in predicting AEs ≤ 5 days after its assessment was evaluated. RESULTS Two hundred and twenty-four patients were included. At IVFOF initiation, 81/224 (36.2%) patients were in ICU and 35/224 (15.7%) had septic shock. The most frequent infection site was the low respiratory tract (124/224, 55.4%). Ninety-five patients (42.4%) experienced ≥ 1AEs, with median time of 4.0 (2.0-7.0) days from IVFOF initiation. Hypernatremia was the most frequent AE (53/224, 23.7%). Therapy discontinuation due to AEs occurred in 38/224 (17.0%). ICU setting, low respiratory tract infections and septic shock resulted associated with AEs (RRadjusted 1.59 (95%CI:1.09-2.31), 1.46 (95%CI:1.03-2.07) and 1.73 (95%CI:1.27-2.37), respectively), while IVFOF daily dose did not. Of the 68 patients undergone IVFOF TDM, TDM values predicted overall AEs and hypernatremia with AUROC of 0.65 (95%CI:0.44-0.86) and 0.91 (95%CI:0.79-1.0) respectively for Cmin, 0.67 (95%CI:0.39-0.95) and 0.76 (95%CI:0.52-1.0) respectively for Css. CONCLUSIONS We provided real world data on the use of IVFOF-based regimens and associated AEs. IVFOF TDM deserves further research as it may represent a valid tool to predict AEs. KEY POINTS Real world data on intravenous fosfomycin for severe bacterial infections. AEs occurred in over 40% (therapy discontinuation in 17%) and were related to baseline clinical severity but not to fosfomycin dose. TDM showed promising results in predicting AEs.
Collapse
Affiliation(s)
- Simona Biscarini
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Davide Mangioni
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy.
| | - Chiara Bobbio
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Ludovica Mela
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Laura Alagna
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Sara Baldelli
- Pharmacology Unit, Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Francesco Blasi
- Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore, Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ciro Canetta
- Acute Medical Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ferruccio Ceriotti
- Clinical Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Gori
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Infectious Diseases, ASST-Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anaesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bianca Mariani
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Dario Cattaneo
- Department of Infectious Diseases, ASST-Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, Milan, 20122, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Gatti M, Pea F. Pharmacokinetic/pharmacodynamic issues for optimizing treatment with beta-lactams of Gram-negative infections in critically ill orthotopic liver transplant recipients: a comprehensive review. FRONTIERS IN ANTIBIOTICS 2024; 3:1426753. [PMID: 39816245 PMCID: PMC11732092 DOI: 10.3389/frabi.2024.1426753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 01/18/2025]
Abstract
Orthotopic liver transplant (OLT) represents the standard of care for managing patients affected by end-stage and life-threatening liver diseases. Although a significant improvement in surgical techniques, immunosuppressant regimens, and prompt identification of early post-transplant complications resulted in better clinical outcome and survival in OLT recipients, the occurrence of early bacterial infections still represents a remarkable cause of morbidity and mortality. In this scenario, beta-lactams are the most frequent antimicrobials used in critical OLT recipients. The aim of this narrative review was to provide a comprehensive overview of the pathophysiological issues potentially affecting the pharmacokinetics of beta-lactams and to identify potential strategies for maximizing the likelihood of attaining adequate pharmacokinetic/pharmacodynamic (PK/PD) targets of beta-lactams in critically ill OLT recipients. A literature search was carried out on PubMed-MEDLINE database (until 31st March 2024) in order to retrieve clinical trials, real-world observational evidence, and/or case series/reports evaluating the PK/PD of traditional and novel beta-lactams in settings potentially involving critically ill OLT recipients. Retrieved evidence were categorized according to the concepts of the so-called "antimicrobial therapy puzzle", specifically assessing a) beta-lactam PK/PD features, with specific regard to aggressive PK/PD target attainment; b) site of infection, with specific regard to beta-lactam penetration in the lung, ascitic fluid, and bile; and c) pathophysiological alterations, focusing mainly on those specifically associated with OLT. Overall, several research gaps still exist in assessing the PK behavior of beta-lactams in critical OLT recipients. The impact of specific OLT-associated pathophysiological alterations on the attainment of optimal PK/PD targets may represent an important field in which further studies are warranted. Assessing the relationship between aggressive beta-lactam PK/PD target attainment and clinical outcome in critical OLT recipients will represent a major challenge in the next future.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Sartelli M, Tascini C, Coccolini F, Dellai F, Ansaloni L, Antonelli M, Bartoletti M, Bassetti M, Boncagni F, Carlini M, Cattelan AM, Cavaliere A, Ceresoli M, Cipriano A, Cortegiani A, Cortese F, Cristini F, Cucinotta E, Dalfino L, De Pascale G, De Rosa FG, Falcone M, Forfori F, Fugazzola P, Gatti M, Gentile I, Ghiadoni L, Giannella M, Giarratano A, Giordano A, Girardis M, Mastroianni C, Monti G, Montori G, Palmieri M, Pani M, Paolillo C, Parini D, Parruti G, Pasero D, Pea F, Peghin M, Petrosillo N, Podda M, Rizzo C, Rossolini GM, Russo A, Scoccia L, Sganga G, Signorini L, Stefani S, Tumbarello M, Tumietto F, Valentino M, Venditti M, Viaggi B, Vivaldi F, Zaghi C, Labricciosa FM, Abu-Zidan F, Catena F, Viale P. Management of intra-abdominal infections: recommendations by the Italian council for the optimization of antimicrobial use. World J Emerg Surg 2024; 19:23. [PMID: 38851757 PMCID: PMC11162065 DOI: 10.1186/s13017-024-00551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024] Open
Abstract
Intra-abdominal infections (IAIs) are common surgical emergencies and are an important cause of morbidity and mortality in hospital settings, particularly if poorly managed. The cornerstones of effective IAIs management include early diagnosis, adequate source control, appropriate antimicrobial therapy, and early physiologic stabilization using intravenous fluids and vasopressor agents in critically ill patients. Adequate empiric antimicrobial therapy in patients with IAIs is of paramount importance because inappropriate antimicrobial therapy is associated with poor outcomes. Optimizing antimicrobial prescriptions improves treatment effectiveness, increases patients' safety, and minimizes the risk of opportunistic infections (such as Clostridioides difficile) and antimicrobial resistance selection. The growing emergence of multi-drug resistant organisms has caused an impending crisis with alarming implications, especially regarding Gram-negative bacteria. The Multidisciplinary and Intersociety Italian Council for the Optimization of Antimicrobial Use promoted a consensus conference on the antimicrobial management of IAIs, including emergency medicine specialists, radiologists, surgeons, intensivists, infectious disease specialists, clinical pharmacologists, hospital pharmacists, microbiologists and public health specialists. Relevant clinical questions were constructed by the Organizational Committee in order to investigate the topic. The expert panel produced recommendation statements based on the best scientific evidence from PubMed and EMBASE Library and experts' opinions. The statements were planned and graded according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) hierarchy of evidence. On November 10, 2023, the experts met in Mestre (Italy) to debate the statements. After the approval of the statements, the expert panel met via email and virtual meetings to prepare and revise the definitive document. This document represents the executive summary of the consensus conference and comprises three sections. The first section focuses on the general principles of diagnosis and treatment of IAIs. The second section provides twenty-three evidence-based recommendations for the antimicrobial therapy of IAIs. The third section presents eight clinical diagnostic-therapeutic pathways for the most common IAIs. The document has been endorsed by the Italian Society of Surgery.
Collapse
Affiliation(s)
- Massimo Sartelli
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62100, Macerata, Italy.
| | - Carlo Tascini
- Infectious Diseases Clinic, Santa Maria Della Misericordia University Hospital of Udine, ASUFC, Udine, Italy
- Infectious Diseases Clinic, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Federico Coccolini
- Department of General, Emergency and Trauma Surgery, Azienda Ospedaliero Universitaria Pisana, University Hospital, Pisa, Italy
| | - Fabiana Dellai
- Infectious Diseases Clinic, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Luca Ansaloni
- Division of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Dell'Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matteo Bassetti
- Division of Infectious Diseases, Department of Health Sciences, University of Genova, Genoa, Italy
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Boncagni
- Anesthesiology and Intensive Care Unit, Macerata Hospital, Macerata, Italy
| | - Massimo Carlini
- Department of General Surgery, S. Eugenio Hospital, Rome, Italy
| | - Anna Maria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, Padua, Italy
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Arturo Cavaliere
- Unit of Hospital Pharmacy, Viterbo Local Health Authority, Viterbo, Italy
| | - Marco Ceresoli
- General and Emergency Surgery, Milano-Bicocca University, School of Medicine and Surgery, Monza, Italy
| | - Alessandro Cipriano
- Department of Emergency Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical Surgical and Critical Care, University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | | | - Francesco Cristini
- Infectious Diseases Unit, AUSL Romagna, Forlì and Cesena Hospitals, Forlì, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Eugenio Cucinotta
- Department of Human Pathology of the Adult and Evolutive Age "Gaetano Barresi", Section of General Surgery, University of Messina, Messina, Italy
| | - Lidia Dalfino
- Anesthesia and Intensive Care Unit, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University of Bari, Bari, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Dell'Emergenza, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Francesco Forfori
- Anesthesia and Intensive Care, Anesthesia and Resuscitation Department, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Paola Fugazzola
- Division of General Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Ivan Gentile
- Section of Infectious Diseases, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lorenzo Ghiadoni
- Department of Emergency Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
- Department on Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonino Giarratano
- Department of Precision Medicine in Medical Surgical and Critical Care, University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Alessio Giordano
- Unit of Emergency Surgery, Careggi University Hospital, Florence, Italy
| | - Massimo Girardis
- Anesthesia and Intensive Care Medicine, Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, AOU Policlinico Umberto 1, Sapienza University of Rome, Rome, Italy
| | - Gianpaola Monti
- Department of Anesthesia and Intensive Care, ASST GOM Niguarda Ca' Granda, Milan, Italy
| | - Giulia Montori
- Unit of General and Emergency Surgery, Vittorio Veneto Hospital, Vittorio Veneto, Italy
| | - Miriam Palmieri
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, 62100, Macerata, Italy
| | - Marcello Pani
- Hospital Pharmacy Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ciro Paolillo
- Emergency Department, University of Verona, Verona, Italy
| | - Dario Parini
- General Surgery Department, Santa Maria Della Misericordia Hospital, Rovigo, Italy
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, Pescara, Italy
| | - Daniela Pasero
- Department of Emergency, Anaesthesia and Intensive Care Unit, ASL1 Sassari, Sassari, Italy
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Nicola Petrosillo
- Infection Prevention and Control Service, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Mauro Podda
- Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
- Infectious and Tropical Disease Unit, "Renato Dulbecco" Teaching Hospital, Catanzaro, Italy
| | - Loredana Scoccia
- Hospital Pharmacy Unit, Macerata Hospital, AST Macerata, Macerata, Italy
| | - Gabriele Sganga
- Emergency and Trauma Surgery Unit, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Liana Signorini
- Unit of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Infectious and Tropical Diseases Unit, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Fabio Tumietto
- UO Antimicrobial Stewardship-AUSL Bologna, Bologna, Italy
| | | | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Bruno Viaggi
- Intensive Care Department, Careggi Hospital, Florence, Italy
| | | | - Claudia Zaghi
- General, Emergency and Trauma Surgery Department, Vicenza Hospital, Vicenza, Italy
| | | | - Fikri Abu-Zidan
- Statistics and Research Methodology, The Research Office, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Fausto Catena
- Emergency and General Surgery Department, Bufalini Hospital, Cesena, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Tanzarella ES, Cutuli SL, Lombardi G, Cammarota F, Caroli A, Franchini E, Sancho Ferrando E, Grieco DL, Antonelli M, De Pascale G. Antimicrobial De-Escalation in Critically Ill Patients. Antibiotics (Basel) 2024; 13:375. [PMID: 38667051 PMCID: PMC11047373 DOI: 10.3390/antibiotics13040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobial de-escalation (ADE) is defined as the discontinuation of one or more antimicrobials in empirical therapy, or the replacement of a broad-spectrum antimicrobial with a narrower-spectrum antimicrobial. The aim of this review is to provide an overview of the available literature on the effectiveness and safety of ADE in critically ill patients, with a focus on special conditions such as anti-fungal therapy and high-risk categories. Although it is widely considered a safe strategy for antimicrobial stewardship (AMS), to date, there has been no assessment of the effect of de-escalation on the development of resistance. Conversely, some authors suggest that prolonged antibiotic treatment may be a side effect of de-escalation, especially in high-risk categories such as neutropenic critically ill patients and intra-abdominal infections (IAIs). Moreover, microbiological documentation is crucial for increasing ADE rates in critically ill patients with infections, and efforts should be focused on exploring new diagnostic tools to accelerate pathogen identification. For these reasons, ADE can be safely used in patients with infections, as confirmed by high-quality and reliable microbiological samplings, although further studies are warranted to clarify its applicability in selected populations.
Collapse
Affiliation(s)
- Eloisa Sofia Tanzarella
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.S.T.); (S.L.C.); (G.L.); (F.C.); (A.C.); (E.F.); (D.L.G.); (M.A.)
| | - Salvatore Lucio Cutuli
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.S.T.); (S.L.C.); (G.L.); (F.C.); (A.C.); (E.F.); (D.L.G.); (M.A.)
| | - Gianmarco Lombardi
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.S.T.); (S.L.C.); (G.L.); (F.C.); (A.C.); (E.F.); (D.L.G.); (M.A.)
| | - Fabiola Cammarota
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.S.T.); (S.L.C.); (G.L.); (F.C.); (A.C.); (E.F.); (D.L.G.); (M.A.)
| | - Alessandro Caroli
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.S.T.); (S.L.C.); (G.L.); (F.C.); (A.C.); (E.F.); (D.L.G.); (M.A.)
| | - Emanuele Franchini
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.S.T.); (S.L.C.); (G.L.); (F.C.); (A.C.); (E.F.); (D.L.G.); (M.A.)
| | | | - Domenico Luca Grieco
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.S.T.); (S.L.C.); (G.L.); (F.C.); (A.C.); (E.F.); (D.L.G.); (M.A.)
| | - Massimo Antonelli
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.S.T.); (S.L.C.); (G.L.); (F.C.); (A.C.); (E.F.); (D.L.G.); (M.A.)
| | - Gennaro De Pascale
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (E.S.T.); (S.L.C.); (G.L.); (F.C.); (A.C.); (E.F.); (D.L.G.); (M.A.)
| |
Collapse
|
8
|
Tao Z, Feng Y, Wang J, Zhou Y, Yang J. Global Scientific Trends in Continuous Renal Replacement Therapy from 2000 to 2023: A Bibliometric and Visual Analysis. Blood Purif 2024; 53:436-464. [PMID: 38310853 DOI: 10.1159/000536312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
INTRODUCTION Continuous renal replacement therapy (CRRT) is one of the most widely used blood purification and organ support methods in the ICU. However, the development process, the current status, hotspots, and future trends of CRRT remain unclear. METHOD The WoSCC database was used to analyze CRRT research evolution and theme trends. VOSviewer was used to construct coauthorship, co-occurrence, co-citation, and network visualizations. CiteSpace is used to detect bursts for co-occurrence items. Several important subtopics were reviewed and discussed in more detail. RESULTS Global publications increased from 56 in 2000 to 398 in 2023, a 710.71% increase. Blood Purification published the most manuscripts, followed by the International Journal of Artificial Organs. The USA, the San Bortolo Hospital, and Bellomo were the most productive and impactful institution, country, and author, respectively. Based on co-occurrence cluster analysis, five clusters emerged: (1) clinical applications and management of CRRT; (2) sepsis and CRRT; (3) CRRT anticoagulant management; (4) CRRT and antibiotic pharmacokinetics and pharmacodynamics; and (5) comparison of CRRT and intermittent hemodialysis. COVID-19, initiation, ECOMO, cefepime, guidelines, cardiogenic shock, biomarker, and outcome were the latest high-frequency keywords or strongest bursts, indicating the emerging frontiers of CRRT. CONCLUSIONS There has been widespread publication and citation of CRRT research in the past 2 decades. We provide an overview of current trends, global collaboration patterns, basic knowledge, research hotspots, and emerging frontiers.
Collapse
Affiliation(s)
- ZhongBin Tao
- Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - YanDong Feng
- Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jie Wang
- Department of Pediatrics, The Second People's Hospital of Gansu Province, Lanzhou, China
| | - YongKang Zhou
- Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - JunQiang Yang
- Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Gatti M, Campoli C, Latrofa ME, Ramirez S, Sasso T, Mancini R, Caramelli F, Viale P, Pea F. Relationship Between Real-time TDM-guided Pharmacodynamic Target Attainment of Continuous Infusion Beta-lactam Monotherapy and Microbiologic Outcome in the Treatment of Critically Ill Children With Severe Documented Gram-negative Infections. Pediatr Infect Dis J 2023; 42:975-982. [PMID: 37523585 PMCID: PMC10569676 DOI: 10.1097/inf.0000000000004054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 08/02/2023]
Abstract
OBJECTIVES To explore the relationship between real-time therapeutic drug monitoring (TDM)-guided pharmacodynamic target attainment of continuous infusion (CI) beta-lactam monotherapy and microbiological outcome in the treatment of critically ill children with severe documented Gram-negative infections. METHODS Observational, monocentric, retrospective study of critically ill patients receiving CI piperacillin-tazobactam, ceftazidime, or meropenem in monotherapy for documented Gram-negative infections optimized by means of a real-time TDM-guided strategy. Average steady-state beta-lactam concentrations (C ss ) were calculated for each patient, and the beta-lactam C ss /minimum inhibitory concentration (MIC) ratio was selected as a pharmacodynamic parameter of efficacy. The C ss /MIC ratio was defined as optimal if ≥4, quasi-optimal if between 1 and 4, and suboptimal if <1. The relationship between C ss /MIC and microbiological outcome was assessed. RESULTS Forty-six TDM assessments were carried out in 21 patients [median age 2 (interquartile range: 1-8) years]. C ss /MIC ratios were optimal in 76.2% of cases. Patients with optimal C ss /MIC ratios had both a significantly higher microbiological eradication rate (75.0% vs. 0.0%; P = 0.006) and lower resistance development rate (25.0% vs. 80.0%; P = 0.047) than those with quasi-optimal or suboptimal C ss /MIC ratios. Quasi-optimal/suboptimal C ss /MIC ratio occurred more frequently when patients had infections caused by pathogens with MIC values above the European Committee on Antimicrobial Susceptibility Testing clinical breakpoint (100.0% vs. 6.3%; P < 0.001). CONCLUSIONS Real-time TDM-guided pharmacodynamic target attainment of CI beta-lactam monotherapy allowed to maximize treatment efficacy in most critically ill children with severe Gram-negative infections. Attaining early optimal C ss /MIC ratios of CI beta-lactams could be a key determinant associated with microbiologic eradication during the treatment of Gram-negative infections. Larger prospective studies are warranted for confirming our findings.
Collapse
Affiliation(s)
- Milo Gatti
- From the Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Caterina Campoli
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Elena Latrofa
- Pediatric Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Tommaso Sasso
- Pediatric Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rita Mancini
- LUM Metropolitan Laboratory, AUSL Bologna, Bologna, Italy
| | - Fabio Caramelli
- Pediatric Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- From the Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- From the Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
10
|
Tilanus A, Drusano G. Inoculum-Based Dosing: A Novel Concept for Combining Time with Concentration-Dependent Antibiotics to Optimize Clinical and Microbiological Outcomes in Severe Gram Negative Sepsis. Antibiotics (Basel) 2023; 12:1581. [PMID: 37998783 PMCID: PMC10668771 DOI: 10.3390/antibiotics12111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Certain classes of antibiotics show "concentration dependent" antimicrobial activity; higher concentrations result in increased bacterial killing rates, in contrast to "time dependent antibiotics", which show antimicrobial activity that depends on the time that antibiotic concentrations remain above the MIC. Aminoglycosides and fluoroquinolones are still widely used concentration-dependent antibiotics. These antibiotics are not hydrolyzed by beta-lactamases and are less sensitive to the inoculum effect, which can be defined as an increased MIC for the antibiotic in the presence of a relatively higher bacterial load (inoculum). In addition, they possess a relatively long Post-Antibiotic Effect (PAE), which can be defined as the absence of bacterial growth when antibiotic concentrations fall below the MIC. These characteristics make them interesting complementary antibiotics in the management of Multi-Drug Resistant (MDR) bacteria and/or (neutropenic) patients with severe sepsis. Global surveillance studies have shown that up to 90% of MDR Gram-negative bacteria still remain susceptible to aminoglycosides, depending on the susceptibility breakpoint (e.g., CLSI or EUCAST) being applied. This percentage is notably lower for fluoroquinolones but depends on the region, type of organism, and mechanism of resistance involved. Daily (high-dose) dosing of aminoglycosides for less than one week has been associated with significantly less nephro/oto toxicity and improved target attainment. Furthermore, higher-than-conventional dosing of fluoroquinolones has been linked to improved clinical outcomes. Beta-lactam antibiotics are the recommended backbone of therapy for severe sepsis. Since these antibiotics are time-dependent, the addition of a second concentration-dependent antibiotic could serve to quickly lower the bacterial inoculum, create PAE, and reduce Penicillin-Binding Protein (PBP) expression. Inadequate antibiotic levels at the site of infection, especially in the presence of high inoculum infections, have been shown to be important risk factors for inadequate resistance suppression and therapeutic failure. Therefore, in the early phase of severe sepsis, effort should be made to optimize the dose and quickly lower the inoculum. In this article, the authors propose a novel concept of "Inoculum Based Dosing" in which the decision for antibiotic dosing regimens and/or combination therapy is not only based on the PK parameters of the patient, but also on the presumed inoculum size. Once the inoculum has been lowered, indirectly reflected by clinical improvement, treatment simplification should be considered to further treat the infection.
Collapse
Affiliation(s)
- Alwin Tilanus
- Department of Infectious Diseases, Clinica Los Nogales, Calle 95 # 23-61, Bogota 110221, Colombia
| | - George Drusano
- Institute for Therapeutic Innovation, University of Florida, 6550 Sanger Road, Orlando, FL 32827, USA;
| |
Collapse
|
11
|
Sartelli M, Barie PS, Coccolini F, Abbas M, Abbo LM, Abdukhalilova GK, Abraham Y, Abubakar S, Abu-Zidan FM, Adebisi YA, Adamou H, Afandiyeva G, Agastra E, Alfouzan WA, Al-Hasan MN, Ali S, Ali SM, Allaw F, Allwell-Brown G, Amir A, Amponsah OKO, Al Omari A, Ansaloni L, Ansari S, Arauz AB, Augustin G, Awazi B, Azfar M, Bah MSB, Bala M, Banagala ASK, Baral S, Bassetti M, Bavestrello L, Beilman G, Bekele K, Benboubker M, Beović B, Bergamasco MD, Bertagnolio S, Biffl WL, Blot S, Boermeester MA, Bonomo RA, Brink A, Brusaferro S, Butemba J, Caínzos MA, Camacho-Ortiz A, Canton R, Cascio A, Cassini A, Cástro-Sanchez E, Catarci M, Catena R, Chamani-Tabriz L, Chandy SJ, Charani E, Cheadle WG, Chebet D, Chikowe I, Chiara F, Cheng VCC, Chioti A, Cocuz ME, Coimbra R, Cortese F, Cui Y, Czepiel J, Dasic M, de Francisco Serpa N, de Jonge SW, Delibegovic S, Dellinger EP, Demetrashvili Z, De Palma A, De Silva D, De Simone B, De Waele J, Dhingra S, Diaz JJ, Dima C, Dirani N, Dodoo CC, Dorj G, Duane TM, Eckmann C, Egyir B, Elmangory MM, Enani MA, Ergonul O, Escalera-Antezana JP, Escandon K, Ettu AWOO, Fadare JO, Fantoni M, Farahbakhsh M, Faro MP, Ferreres A, Flocco G, et alSartelli M, Barie PS, Coccolini F, Abbas M, Abbo LM, Abdukhalilova GK, Abraham Y, Abubakar S, Abu-Zidan FM, Adebisi YA, Adamou H, Afandiyeva G, Agastra E, Alfouzan WA, Al-Hasan MN, Ali S, Ali SM, Allaw F, Allwell-Brown G, Amir A, Amponsah OKO, Al Omari A, Ansaloni L, Ansari S, Arauz AB, Augustin G, Awazi B, Azfar M, Bah MSB, Bala M, Banagala ASK, Baral S, Bassetti M, Bavestrello L, Beilman G, Bekele K, Benboubker M, Beović B, Bergamasco MD, Bertagnolio S, Biffl WL, Blot S, Boermeester MA, Bonomo RA, Brink A, Brusaferro S, Butemba J, Caínzos MA, Camacho-Ortiz A, Canton R, Cascio A, Cassini A, Cástro-Sanchez E, Catarci M, Catena R, Chamani-Tabriz L, Chandy SJ, Charani E, Cheadle WG, Chebet D, Chikowe I, Chiara F, Cheng VCC, Chioti A, Cocuz ME, Coimbra R, Cortese F, Cui Y, Czepiel J, Dasic M, de Francisco Serpa N, de Jonge SW, Delibegovic S, Dellinger EP, Demetrashvili Z, De Palma A, De Silva D, De Simone B, De Waele J, Dhingra S, Diaz JJ, Dima C, Dirani N, Dodoo CC, Dorj G, Duane TM, Eckmann C, Egyir B, Elmangory MM, Enani MA, Ergonul O, Escalera-Antezana JP, Escandon K, Ettu AWOO, Fadare JO, Fantoni M, Farahbakhsh M, Faro MP, Ferreres A, Flocco G, Foianini E, Fry DE, Garcia AF, Gerardi C, Ghannam W, Giamarellou H, Glushkova N, Gkiokas G, Goff DA, Gomi H, Gottfredsson M, Griffiths EA, Guerra Gronerth RI, Guirao X, Gupta YK, Halle-Ekane G, Hansen S, Haque M, Hardcastle TC, Hayman DTS, Hecker A, Hell M, Ho VP, Hodonou AM, Isik A, Islam S, Itani KMF, Jaidane N, Jammer I, Jenkins DR, Kamara IF, Kanj SS, Jumbam D, Keikha M, Khanna AK, Khanna S, Kapoor G, Kapoor G, Kariuki S, Khamis F, Khokha V, Kiggundu R, Kiguba R, Kim HB, Kim PK, Kirkpatrick AW, Kluger Y, Ko WC, Kok KYY, Kotecha V, Kouma I, Kovacevic B, Krasniqi J, Krutova M, Kryvoruchko I, Kullar R, Labi KA, Labricciosa FM, Lakoh S, Lakatos B, Lansang MAD, Laxminarayan R, Lee YR, Leone M, Leppaniemi A, Hara GL, Litvin A, Lohsiriwat V, Machain GM, Mahomoodally F, Maier RV, Majumder MAA, Malama S, Manasa J, Manchanda V, Manzano-Nunez R, Martínez-Martínez L, Martin-Loeches I, Marwah S, Maseda E, Mathewos M, Maves RC, McNamara D, Memish Z, Mertz D, Mishra SK, Montravers P, Moro ML, Mossialos E, Motta F, Mudenda S, Mugabi P, Mugisha MJM, Mylonakis E, Napolitano LM, Nathwani D, Nkamba L, Nsutebu EF, O’Connor DB, Ogunsola S, Jensen PØ, Ordoñez JM, Ordoñez CA, Ottolino P, Ouedraogo AS, Paiva JA, Palmieri M, Pan A, Pant N, Panyko A, Paolillo C, Patel J, Pea F, Petrone P, Petrosillo N, Pintar T, Plaudis H, Podda M, Ponce-de-Leon A, Powell SL, Puello-Guerrero A, Pulcini C, Rasa K, Regimbeau JM, Rello J, Retamozo-Palacios MR, Reynolds-Campbell G, Ribeiro J, Rickard J, Rocha-Pereira N, Rosenthal VD, Rossolini GM, Rwegerera GM, Rwigamba M, Sabbatucci M, Saladžinskas Ž, Salama RE, Sali T, Salile SS, Sall I, Kafil HS, Sakakushev BE, Sawyer RG, Scatizzi M, Seni J, Septimus EJ, Sganga G, Shabanzadeh DM, Shelat VG, Shibabaw A, Somville F, Souf S, Stefani S, Tacconelli E, Tan BK, Tattevin P, Rodriguez-Taveras C, Telles JP, Téllez-Almenares O, Tessier J, Thang NT, Timmermann C, Timsit JF, Tochie JN, Tolonen M, Trueba G, Tsioutis C, Tumietto F, Tuon FF, Ulrych J, Uranues S, van Dongen M, van Goor H, Velmahos GC, Vereczkei A, Viaggi B, Viale P, Vila J, Voss A, Vraneš J, Watkins RR, Wanjiru-Korir N, Waworuntu O, Wechsler-Fördös A, Yadgarova K, Yahaya M, Yahya AI, Xiao Y, Zakaria AD, Zakrison TL, Zamora Mesia V, Siquini W, Darzi A, Pagani L, Catena F. Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action. World J Emerg Surg 2023; 18:50. [PMID: 37845673 PMCID: PMC10580644 DOI: 10.1186/s13017-023-00518-3] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or "golden rules," for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice.
Collapse
|
12
|
Gatti M, Tedeschi S, Zamparini E, Pea F, Viale P. Pharmacokinetic and pharmacodynamic considerations for optimizing antimicrobial therapy used to treat bone and joint infections: an evidence-based algorithmic approach. Expert Opin Drug Metab Toxicol 2023; 19:511-535. [PMID: 37671793 DOI: 10.1080/17425255.2023.2255525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
INTRODUCTION Bone and joint infections (BJIs) are a major health concern causing remarkable morbidity and mortality. However, which antimicrobial treatment could be the best according to specific clinical scenarios and/or to the pharmacokinetic/pharmacodynamic (PK/PD) features remains an unmet clinical need. This multidisciplinary opinion article aims to develop evidence-based algorithms for empirical and targeted antibiotic therapy of patients affected by BJIs. AREAS COVERED A multidisciplinary team of four experts had several rounds of assessment for developing algorithms devoted to empirical and targeted antimicrobial therapy of BJIs. A literature search was performed on PubMed-MEDLINE (until April 2023) to provide evidence for supporting therapeutic choices. Four different clinical scenarios were structured according to specific infection types (i.e. vertebral osteomyelitis, prosthetic joint infections, infected non-unions and other chronic osteomyelitis, and infectious arthritis), need or not of surgical intervention or revision, isolation or not of clinically relevant bacterial pathogens from blood and/or tissue cultures, and PK/PD features of antibiotics. EXPERT OPINION The proposed therapeutic algorithms were based on a multifaceted approach considering the peculiar features of each antibiotic (spectrum of activity, PK/PD properties, bone penetration rate, and anti-biofilm activity), and could be hopefully helpful in improving clinical outcome of BJIs.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Sara Tedeschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Eleonora Zamparini
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
13
|
Gatti M, Pea F. The expert clinical pharmacological advice program for tailoring on real-time antimicrobial therapies with emerging TDM candidates in special populations: how the ugly duckling turned into a swan. Expert Rev Clin Pharmacol 2023; 16:1035-1051. [PMID: 37874608 DOI: 10.1080/17512433.2023.2274984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION The growing spread of infections caused by multidrug-resistant pathogens makes the need of tailoring antimicrobial therapies by means of a 'patient-centered' approach fundamental. In this scenario, therapeutic drug monitoring (TDM) of emerging antimicrobial candidates may be a valuable approach, but expert interpretation of TDM results should be granted for making them more clinically useful. The MD Clinical Pharmacologist may take over this task since this specialist may couple PK/PD expertise on drugs with a medical background and may provide expert interpretation of TDM results of antimicrobials for tailoring therapy on real-time in each single patient based on specific both drug/pathogen issues and patient issues. AREAS COVERED This article aims to highlight the main key-points and organizational aspects for implementing a successful TDM-based expert clinical pharmacological advice (ECPA) program for tailoring antimicrobial therapies on real-time in different hospitalized patient special populations. EXPERT OPINION TDM-based ECPA programs lead by the MD Clinical Pharmacologist may represent a way forward for maximizing clinical efficacy and for minimizing the risk of resistance developments and/or toxicity of antimicrobials. Stakeholders should be aware of the fact that this innovative approach may be cost-effective.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Chiriac U, Richter D, Frey OR, Röhr AC, Helbig S, Hagel S, Liebchen U, Weigand MA, Brinkmann A. Software- and TDM-Guided Dosing of Meropenem Promises High Rates of Target Attainment in Critically Ill Patients. Antibiotics (Basel) 2023; 12:1112. [PMID: 37508207 PMCID: PMC10376356 DOI: 10.3390/antibiotics12071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Various studies have reported insufficient beta-lactam concentrations in critically ill patients. The optimal dosing strategy for beta-lactams in critically ill patients, particularly in septic patients, is an ongoing matter of discussion. This retrospective study aimed to evaluate the success of software-guided empiric meropenem dosing (CADDy, Calculator to Approximate Drug-Dosing in Dialysis) with subsequent routine meropenem measurements and expert clinical pharmacological interpretations. Adequate therapeutic drug exposure was defined as concentrations of 8-16 mg/L, whereas concentrations of 16-24 mg/L were defined as moderately high and concentrations >24 mg/L as potentially harmful. A total of 91 patients received meropenem as a continuous infusion (229 serum concentrations), of whom 60% achieved 8-16 mg/L, 23% achieved 16-24 mg/L, and 10% achieved unnecessarily high and potentially harmful meropenem concentrations >24 mg/L in the first 48 h using the dosing software. No patient showed concentrations <2 mg/L using the dosing software in the first 48 h. With a subsequent TDM-guided dose adjustment, therapeutic drug exposure was significantly (p ≤ 0.05) enhanced to 70%. No patient had meropenem concentrations >24 mg/L with TDM-guided dose adjustments. The combined use of dosing software and consecutive TDM promised a high rate of adequate therapeutic drug exposures of meropenem in patients with sepsis and septic shock.
Collapse
Affiliation(s)
- Ute Chiriac
- Department of Pharmacy, Heidelberg University Hospital, Im Neuenheimer Feld 670, 69120 Heidelberg, Germany
| | - Daniel Richter
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Otto R Frey
- Department of Clinical Pharmacy, Heidenheim Hospital, Schlosshaustraße 100, 89522 Heidenheim, Germany
| | - Anka C Röhr
- Department of Clinical Pharmacy, Heidenheim Hospital, Schlosshaustraße 100, 89522 Heidenheim, Germany
| | - Sophia Helbig
- Department of Clinical Pharmacy, Heidenheim Hospital, Schlosshaustraße 100, 89522 Heidenheim, Germany
| | - Stefan Hagel
- Institute for Infectious Diseases and Infection Control, Jena University Hospital-Friedrich Schiller University Jena, 07740 Jena, Germany
| | - Uwe Liebchen
- Department of Anaesthesiology, University Hospital LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Alexander Brinkmann
- Department of Anesthesiology, Heidenheim Hospital, Schlosshaustraße 100, 89522 Heidenheim, Germany
| |
Collapse
|
15
|
Setiawan E, Cotta MO, Roberts JA, Abdul-Aziz MH. A Systematic Review on Antimicrobial Pharmacokinetic Differences between Asian and Non-Asian Adult Populations. Antibiotics (Basel) 2023; 12:antibiotics12050803. [PMID: 37237706 DOI: 10.3390/antibiotics12050803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
While the relevance of inter-ethnic differences to the pharmacokinetic variabilities of antimicrobials has been reported in studies recruiting healthy subjects, differences in antimicrobial pharmacokinetics between Asian and non-Asian patients with severe pathologic conditions require further investigation. For the purpose of describing the potential differences in antimicrobial pharmacokinetics between Asian and non-Asian populations, a systematic review was performed using six journal databases and six theses/dissertation databases (PROSPERO record CRD42018090054). The pharmacokinetic data of healthy volunteers and non-critically ill and critically ill patients were reviewed. Thirty studies on meropenem, imipenem, doripenem, linezolid, and vancomycin were included in the final descriptive summaries. In studies recruiting hospitalised patients, inconsistent differences in the volume of distribution (Vd) and drug clearance (CL) of the studied antimicrobials between Asian and non-Asian patients were observed. Additionally, factors other than ethnicity, such as demographic (e.g., age) or clinical (e.g., sepsis) factors, were suggested to better characterise these pharmacokinetic differences. Inconsistent differences in pharmacokinetic parameters between Asian and non-Asian subjects/patients may suggest that ethnicity is not an important predictor to characterise interindividual pharmacokinetic differences between meropenem, imipenem, doripenem, linezolid, and vancomycin. Therefore, the dosing regimens of these antimicrobials should be adjusted according to patients' demographic or clinical characteristics that can better describe pharmacokinetic differences.
Collapse
Affiliation(s)
- Eko Setiawan
- University of Queensland Centre for Clinical Research [UQCCR], Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
- Department of Clinical and Community Pharmacy, Center for Medicines Information and Pharmaceutical Care [CMIPC], Faculty of Pharmacy, University of Surabaya, Surabaya 60293, Indonesia
| | - Menino Osbert Cotta
- University of Queensland Centre for Clinical Research [UQCCR], Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research [UQCCR], Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, 30029 Nîmes, France
| | - Mohd Hafiz Abdul-Aziz
- University of Queensland Centre for Clinical Research [UQCCR], Faculty of Medicine, The University of Queensland, Brisbane 4006, Australia
| |
Collapse
|
16
|
Li L, Sassen SDT, Ewoldt TMJ, Abdulla A, Hunfeld NGM, Muller AE, de Winter BCM, Endeman H, Koch BCP. Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It? Antibiotics (Basel) 2023; 12:antibiotics12020383. [PMID: 36830294 PMCID: PMC9951903 DOI: 10.3390/antibiotics12020383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The number of pharmacokinetic (PK) models of meropenem is increasing. However, the daily role of these PK models in the clinic remains unclear, especially for critically ill patients. Therefore, we evaluated the published meropenem models on real-world ICU data to assess their suitability for use in clinical practice. All models were built in NONMEM and evaluated using prediction and simulation-based diagnostics for the ability to predict the subsequent meropenem concentrations without plasma concentrations (a priori), and with plasma concentrations (a posteriori), for use in therapeutic drug monitoring (TDM). Eighteen PopPK models were included for evaluation. The a priori fit of the models, without the use of plasma concentrations, was poor, with a prediction error (PE)% of the interquartile range (IQR) exceeding the ±30% threshold. The fit improved when one to three concentrations were used to improve model predictions for TDM purposes. Two models were in the acceptable range with an IQR PE% within ±30%, when two or three concentrations were used. The role of PK models to determine the starting dose of meropenem in this population seems limited. However, certain models might be suitable for TDM-based dose adjustment using two to three plasma concentrations.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sebastiaan D. T. Sassen
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| | - Tim M. J. Ewoldt
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Nicole G. M. Hunfeld
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Anouk E. Muller
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medical Centre, 2597 AX The Hague, The Netherlands
| | - Brenda C. M. de Winter
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Birgit C. P. Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
17
|
Targeted Therapy of Severe Infections Caused by Staphylococcus aureus in Critically Ill Adult Patients: A Multidisciplinary Proposal of Therapeutic Algorithms Based on Real-World Evidence. Microorganisms 2023; 11:microorganisms11020394. [PMID: 36838359 PMCID: PMC9960997 DOI: 10.3390/microorganisms11020394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
(1) Introduction: To develop evidence-based algorithms for targeted antibiotic therapy of infections caused by Staphylococcus aureus in critically ill adult patients. (2) Methods: A multidisciplinary team of four experts had several rounds of assessment for developing algorithms concerning targeted antimicrobial therapy of severe infections caused by Staphylococcus aureus in critically ill patients. The literature search was performed by a researcher on PubMed-MEDLINE (until August 2022) to provide evidence for supporting therapeutic choices. Quality and strength of evidence was established according to a hierarchical scale of the study design. Two different algorithms were created, one for methicillin-susceptible Staphylococcus aureus (MSSA) and the other for methicillin-resistant Staphylococcus aureus (MRSA). The therapeutic options were categorized for each different site of infection and were selected also on the basis of pharmacokinetic/pharmacodynamic features. (3) Results: Cefazolin or oxacillin were the agents proposed for all of the different types of severe MSSA infections. The proposed targeted therapies for severe MRSA infections were different according to the infection site: daptomycin plus fosfomycin or ceftaroline or ceftobiprole for bloodstream infections, infective endocarditis, and/or infections associated with intracardiac/intravascular devices; ceftaroline or ceftobiprole for community-acquired pneumonia; linezolid alone or plus fosfomycin for infection-related ventilator-associated complications or for central nervous system infections; daptomycin alone or plus clindamycin for necrotizing skin and soft tissue infections. (4) Conclusions: We are confident that targeted therapies based on scientific evidence and optimization of the pharmacokinetic/pharmacodynamic features of antibiotic monotherapy or combo therapy may represent valuable strategies for treating MSSA and MRSA infections.
Collapse
|
18
|
Gatti M, Pea F. Jumping into the future: overcoming pharmacokinetic/pharmacodynamic hurdles to optimize the treatment of severe difficult to treat-Gram-negative infections with novel beta-lactams. Expert Rev Anti Infect Ther 2023; 21:149-166. [PMID: 36655779 DOI: 10.1080/14787210.2023.2169131] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The choice of best therapeutic strategy for difficult-to-treat resistance (DTR) Gram-negative infections currently represents an unmet clinical need. AREAS COVERED This review provides a critical reappraisal of real-world evidence supporting the role of pharmacokinetic/pharmacodynamic (PK/PD) optimization of novel beta-lactams in the management of DTR Gram-negative infections. The aim was to focus on prolonged and/or continuous infusion administration, penetration rates into deep-seated infections, and maximization of PK/PD targets in special renal patient populations. Retrieved findings were applied to the three most critical clinical scenarios of Gram-negative resistance phenotypes (i.e. carbapenem-resistant Enterobacterales; difficult-to-treat resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii). EXPERT OPINION Several studies supported the role of PK/PD optimization of beta-lactams in the management of DTR Gram-negative infections for both maximizing clinical efficacy and preventing resistance emergence. Optimizing antimicrobial therapy with novel beta-lactams based on the so called 'antimicrobial therapy puzzle' PK/PD concepts may represent a definitive jump into the future toward a personalized patient management of DTR Gram negative infections. Establishing a dedicated and coordinated multidisciplinary team and implementing a real-time TDM-guided personalized antimicrobial exposure optimization of novel beta-lactams based on expert clinical pharmacological interpretation, could represent crucial cornerstones for the proper management of DTR Gram-negative infections.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Italy.,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Italy.,Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
19
|
Vallicelli C, Santandrea G, Sartelli M, Coccolini F, Ansaloni L, Agnoletti V, Bravi F, Catena F. Sepsis Team Organizational Model to Decrease Mortality for Intra-Abdominal Infections: Is Antibiotic Stewardship Enough? Antibiotics (Basel) 2022; 11:1460. [PMID: 36358115 PMCID: PMC9687019 DOI: 10.3390/antibiotics11111460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 09/22/2023] Open
Abstract
Introduction. Sepsis is an overwhelming reaction to infection with significant morbidity, requiring urgent interventions in order to improve outcomes. The 2016 Sepsis-3 guidelines modified the previous definitions of sepsis and septic shock, and proposed some specific diagnostic and therapeutic measures to define the use of fluid resuscitation and antibiotics. However, some open issues still exist. Methods. A literature research was performed on PubMed and Cochrane using the terms "sepsis" AND "intra-abdominal infections" AND ("antibiotic therapy" OR "antibiotic treatment"). The inclusion criteria were management of intra-abdominal infection (IAI) and effects of antibiotic stewardships programs (ASP) on the outcome of the patients. Discussion. Sepsis-3 definitions represent an added value in the understanding of sepsis mechanisms and in the management of the disease. However, some questions are still open, such as the need for an early identification of sepsis. Sepsis management in the context of IAI is particularly challenging and a prompt diagnosis is essential in order to perform a quick treatment (source control and antibiotic treatment). Antibiotic empirical therapy should be based on the kind of infection (community or hospital acquired), local resistances, and patient's characteristic and comorbidities, and should be adjusted or de-escalated as soon as microbiological information is available. Antibiotic Stewardship Programs (ASP) have demonstrated to improve antimicrobial utilization with reduction of infections, emergence of multi-drug resistant bacteria, and costs. Surgeons should not be alone in the management of IAI but ideally inserted in a sepsis team together with anaesthesiologists, medical physicians, pharmacists, and infectious diseases specialists, meeting periodically to reassess the response to the treatment. Conclusion. The cornerstones of sepsis management are accurate diagnosis, early resuscitation, effective source control, and timely initiation of appropriate antimicrobial therapy. Current evidence shows that optimizing antibiotic use across surgical specialities is imperative to improve outcomes. Ideally every hospital and every emergency surgery department should aim to provide a sepsis team in order to manage IAI.
Collapse
Affiliation(s)
- Carlo Vallicelli
- General, Emergency and Trauma Surgery Department, Bufalini Hospital, 47521 Cesena, Italy
| | - Giorgia Santandrea
- General, Emergency and Trauma Surgery Department, Bufalini Hospital, 47521 Cesena, Italy
| | | | - Federico Coccolini
- General, Emergency and Trauma Surgery Department, Pisa University Hospital, 56124 Pisa, Italy
| | - Luca Ansaloni
- Department of General and Emergency Surgery, Policlinico San Matteo, 27100 Pavia, Italy
| | - Vanni Agnoletti
- Anesthesia, Intensive Care and Trauma Department, Bufalini Hospital, 47521 Cesena, Italy
| | - Francesca Bravi
- Healthcare Administration, Santa Maria delle Croci Hospital, 48121 Ravenna, Italy
| | - Fausto Catena
- General, Emergency and Trauma Surgery Department, Bufalini Hospital, 47521 Cesena, Italy
| |
Collapse
|
20
|
A Proposal for a Classification Guiding the Selection of Appropriate Antibiotic Therapy for Intra-Abdominal Infections. Antibiotics (Basel) 2022; 11:antibiotics11101394. [PMID: 36290052 PMCID: PMC9598485 DOI: 10.3390/antibiotics11101394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Adequately controlling the source of infection and prescribing appropriately antibiotic therapy are the cornerstones of the management of patients with intra-abdominal infections (IAIs). Correctly classifying patients with IAIs is crucial to assessing the severity of their clinical condition and deciding the strategy of the treatment, including a correct empiric antibiotic therapy. Best practices in prescribing antibiotics may impact patient outcomes and the cost of treatment, as well as the risk of “opportunistic” infections such as Clostridioides difficile infection and the development and spread of antimicrobial resistance. This review aims to identify a correct classification of IAIs, guiding clinicians in the selection of the best antibiotic therapy in patients with IAIs.
Collapse
|
21
|
Pea F. Grand challenge in antibiotic pharmacology: A major step toward tailored antimicrobial treatment in very complex clinical scenarios of infectious risk management. FRONTIERS IN ANTIBIOTICS 2022; 1:1016760. [PMID: 39816408 PMCID: PMC11732037 DOI: 10.3389/frabi.2022.1016760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2025]
Affiliation(s)
- Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
22
|
Gatti M, Tedeschi S, Trapani F, Ramirez S, Mancini R, Giannella M, Viale P, Pea F. A Proof of Concept of the Usefulness of a TDM-Guided Strategy for Optimizing Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Ampicillin-Based Regimens in a Case Series of Patients with Enterococcal Bloodstream Infections and/or Endocarditis. Antibiotics (Basel) 2022; 11:antibiotics11081037. [PMID: 36009906 PMCID: PMC9404876 DOI: 10.3390/antibiotics11081037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Objective: To describe the usefulness of a real-time therapeutic drug monitoring (TDM)-based strategy for optimizing pharmacokinetic/pharmacodynamic (PK/PD) target attainment of continuous infusion (CI) ampicillin-based regimens in a case series of patients affected by suspected or documented enterococcal bloodstream infections (BSIs) and/or infective endocarditis (IE). (2) Methods: Patients treated with CI ampicillin-based regimens for documented or suspected enterococcal BSI/IE who underwent real-time therapeutic drug monitoring (TDM)-based expert clinical pharmacological advice (ECPA) between June 2021 and May 2022 were retrospectively assessed. Ampicillin concentrations were determined at steady state, and the free fraction (fCss) was calculated according to a plasma protein binding of 20%. The fCss/MIC ratio was selected as the PD parameter for ampicillin efficacy and was defined as optimal for values between 4 and 8. The requirement for TDM-guided ampicillin dosing adjustments was assessed. (3) Results: Data for 12 patients with documented (n = 10) or suspected (n = 2) enterococcal infections (7 with BSIs and 5 with IE) were retrieved. The ampicillin PK/PD target was optimal over time in all of the 10 documented infections. None of the enterococcal BSIs persisted. Following the first real-time TDM-based ECPA, ampicillin dosage was decreased by >50% in 11 out of 12 patients (91.7%). (4) Conclusions: CI may be helpful in attaining aggressive ampicillin PK/PD targets in patients affected by enterococcal BSIs and/or IE. Administration of CI ampicillin after loading coupled with real-time TDM-based ECPA could be a valuable strategy for managing enterococcal infections.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (S.T.); (M.G.); (P.V.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sara Tedeschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (S.T.); (M.G.); (P.V.)
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Filippo Trapani
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Stefania Ramirez
- LUM Metropolitan Laboratory, AUSL Bologna, 40138 Bologna, Italy; (S.R.); (R.M.)
| | - Rita Mancini
- LUM Metropolitan Laboratory, AUSL Bologna, 40138 Bologna, Italy; (S.R.); (R.M.)
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (S.T.); (M.G.); (P.V.)
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (S.T.); (M.G.); (P.V.)
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (S.T.); (M.G.); (P.V.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Correspondence:
| |
Collapse
|
23
|
Gatti M, Cojutti PG, Bartoletti M, Tonetti T, Bianchini A, Ramirez S, Pizzilli G, Ambretti S, Giannella M, Mancini R, Siniscalchi A, Viale P, Pea F. Expert clinical pharmacological advice may make an antimicrobial TDM program for emerging candidates more clinically useful in tailoring therapy of critically ill patients. Crit Care 2022; 26:178. [PMID: 35701812 PMCID: PMC9199203 DOI: 10.1186/s13054-022-04050-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
Background Therapeutic drug monitoring (TDM) may represent an invaluable tool for optimizing antimicrobial therapy in septic patients, but extensive use is burdened by barriers. The aim of this study was to assess the impact of a newly established expert clinical pharmacological advice (ECPA) program in improving the clinical usefulness of an already existing TDM program for emerging candidates in tailoring antimicrobial therapy among critically ill patients. Methods This retrospective observational study included an organizational phase (OP) and an assessment phase (AP). During the OP (January–June 2021), specific actions were organized by MD clinical pharmacologists together with bioanalytical experts, clinical engineers, and ICU clinicians. During the AP (July–December 2021), the impact of these actions in optimizing antimicrobial treatment of the critically ill patients was assessed. Four indicators of performance of the TDM-guided real-time ECPA program were identified [total TDM-guided ECPAs July–December 2021/total TDM results July–December 2020; total ECPA dosing adjustments/total delivered ECPAs both at first assessment and overall; and turnaround time (TAT) of ECPAs, defined as optimal (< 12 h), quasi-optimal (12–24 h), acceptable (24–48 h), suboptimal (> 48 h)]. Results The OP allowed to implement new organizational procedures, to create a dedicated pathway in the intranet system, to offer educational webinars on clinical pharmacology of antimicrobials, and to establish a multidisciplinary team at the morning bedside ICU meeting. In the AP, a total of 640 ECPAs were provided for optimizing 261 courses of antimicrobial therapy in 166 critically ill patients. ECPAs concerned mainly piperacillin–tazobactam (41.8%) and meropenem (24.9%), and also other antimicrobials had ≥ 10 ECPAs (ceftazidime, ciprofloxacin, fluconazole, ganciclovir, levofloxacin, and linezolid). Overall, the pre–post-increase in TDM activity was of 13.3-fold. TDM-guided dosing adjustments were recommended at first assessment in 61.7% of ECPAs (10.7% increases and 51.0% decreases), and overall in 45.0% of ECPAs (10.0% increases and 35.0% decreases). The overall median TAT was optimal (7.7 h) and that of each single agent was always optimal or quasi-optimal. Conclusions Multidisciplinary approach and timely expert interpretation of TDM results by MD Clinical Pharmacologists could represent cornerstones in improving the cost-effectiveness of an antimicrobial TDM program for emerging TDM candidates.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pier Giorgio Cojutti
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Bartoletti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Tonetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,Anesthesia and Intensive Care Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Amedeo Bianchini
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Giacinto Pizzilli
- Anesthesia and Intensive Care Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Ambretti
- Operative Unit of Microbiology, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rita Mancini
- LUM Metropolitan Laboratory, AUSL Bologna, Bologna, Italy
| | - Antonio Siniscalchi
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy.,Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy. .,Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
24
|
Abstract
The World Health Organization describes antimicrobial resistance as one of the biggest threats to global health, food security, and development with indiscriminate use of antimicrobials globally driving the emergence of multidrug-resistant bacteria, resistant to 60% of antimicrobials in some countries. Infections with multidrug-resistant organisms (MDROs) have increased in recent decades in patients with cirrhosis, who are frequently prescribed antibiotics, regularly undergo invasive procedures such as large volume paracentesis, and have recurrent hospitalizations, posing a particular risk in this already immunocompromised cohort of patients. In this review, we explore mechanisms underlying this vulnerability to MDRO infection; the effect of bacterial infections on disease course in cirrhosis; prevalence of MDROs in patients with cirrhosis; outcomes following MDRO infection; fungal infections; antibiotics and their efficacy; and management of MDRO infections in terms of detection, antimicrobial and nonantimicrobial treatments, prophylaxis, antibiotic stewardship, the gut microbiome, and technological interventions.
Collapse
Affiliation(s)
- Charles E Gallaher
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Debbie L Shawcross
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom.,Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Gorham J, Taccone FS, Hites M. Drug Regimens of Novel Antibiotics in Critically Ill Patients with Varying Renal Functions: A Rapid Review. Antibiotics (Basel) 2022; 11:antibiotics11050546. [PMID: 35625190 PMCID: PMC9137536 DOI: 10.3390/antibiotics11050546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
There is currently an increase in the emergence of multidrug-resistant bacteria (MDR) worldwide, requiring the development of novel antibiotics. However, it is not only the choice of antibiotic that is important in treating an infection; the drug regimen also deserves special attention to avoid underdosing and excessive concentrations. Critically ill patients often have marked variation in renal function, ranging from augmented renal clearance (ARC), defined as a measured creatinine clearance (CrCL) ≥ 130 mL/min*1.73 m2, to acute kidney injury (AKI), eventually requiring renal replacement therapy (RRT), which can affect antibiotic exposure. All novel beta-lactam (BLs) and/or beta-lactam/beta-lactamases inhibitors (BL/BLIs) antibiotics have specific pharmacokinetic properties, such as hydrophilicity, low plasma–protein binding, small volume of distribution, low molecular weight, and predominant renal clearance, which require adaptation of dosage regimens in the presence of abnormal renal function or RRT. However, there are limited data on the topic. The aim of this review was therefore to summarize available PK studies on these novel antibiotics performed in patients with ARC or AKI, or requiring RRT, in order to provide a practical approach to guide clinicians in the choice of the best dosage regimens in critically ill patients.
Collapse
Affiliation(s)
- Julie Gorham
- Department of Intensive Care, Hôpitaux Universitaires de Bruxelles (HUB)-Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
- Correspondence: ; Tel.: +32-473-27-60-20; Fax: +32-2-534-37-56
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpitaux Universitaires de Bruxelles (HUB)-Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Maya Hites
- Clinic of Infectious Diseases, HUB-Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| |
Collapse
|
26
|
Using a Validated Population Pharmacokinetic Model for Dosing Recommendations of Continuous Infusion Piperacillin for Critically Ill Adult Patients. Clin Pharmacokinet 2022; 61:895-906. [PMID: 35344155 DOI: 10.1007/s40262-022-01118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVE: Piperacillin is a broad-spectrum β-lactam antibiotic commonly prescribed in intensive care units. Many piperacillin population pharmacokinetic models have been published, but few underwent an external evaluation. External evaluation is an important process to determine a model's capability of being generalized to other hospitals. We aimed to assess the predictive performance of these models with an external validation dataset. METHODS Six models were evaluated with a dataset consisting of 30 critically ill patients (35 samples) receiving piperacillin by continuous infusion. Models were subject to prediction-based (bias and imprecision) and simulation-based evaluations. When a model had an acceptable evaluation, it was used for dosing simulations to evaluate the probability of target attainment. RESULTS Bias and imprecision ranged from - 35.7 to 295% and from 22.7 to 295%, respectively. The models of Klastrup et al. and of Udy et al. were acceptable according to our criteria and were used for dosing simulations. Simulations showed that a loading dose of 4 g followed by a maintenance dose of 16 g/24 h of piperacillin infused continuously was necessary to remain above a pharmacokinetic-pharmacodynamic target set as a minimal inhibitory concentration of 16 mg/L in 90% of patients, for a median patient with a creatinine clearance of 76 mL/min. CONCLUSIONS Despite the considerable variation in the predictive performance of the models with the external validation dataset, this study was able to validate two of these models and led to the elaboration of a dosing nomogram for piperacillin by continuous infusion that can be used by clinicians in intensive care units.
Collapse
|
27
|
Gatti M, Barnini S, Guarracino F, Parisio EM, Spinicci M, Viaggi B, D’Arienzo S, Forni S, Galano A, Gemmi F. Orthopaedic Implant-Associated Staphylococcal Infections: A Critical Reappraisal of Unmet Clinical Needs Associated with the Implementation of the Best Antibiotic Choice. Antibiotics (Basel) 2022; 11:antibiotics11030406. [PMID: 35326869 PMCID: PMC8944676 DOI: 10.3390/antibiotics11030406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Infections associated with orthopaedic implants represent a major health concern characterized by a remarkable incidence of morbidity and mortality. The wide variety of clinical scenarios encountered in the heterogeneous world of infections associated with orthopaedic implants makes the implementation of an optimal and standardized antimicrobial treatment challenging. Antibiotic bone penetration, anti-biofilm activity, long-term safety, and drug choice/dosage regimens favouring outpatient management (i.e., long-acting or oral agents) play a major role in regards to the chronic evolution of these infections. The aim of this multidisciplinary opinion article is to summarize evidence supporting the use of the different anti-staphylococcal agents in terms of microbiological and pharmacological optimization according to bone penetration, anti-biofilm activity, long-term safety, and feasibility for outpatient regimens, and to provide a useful guide for clinicians in the management of patients affected by staphylococcal infections associated with orthopaedic implants Novel long-acting lipoglycopeptides, and particularly dalbavancin, alone or in combination with rifampicin, could represent the best antibiotic choice according to real-world evidence and pharmacokinetic/pharmacodynamic properties. The implementation of a multidisciplinary taskforce and close cooperation between microbiologists and clinicians is crucial for providing the best care in this scenario.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
- SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Simona Barnini
- Bacteriology Unit, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy;
| | - Fabio Guarracino
- Department of Anaesthesia and Critical Care Medicine, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy;
| | - Eva Maria Parisio
- UOSD Microbiologia Arezzo PO San Donato, Azienda Usl Toscana Sud Est, 52100 Arezzo, Italy;
| | - Michele Spinicci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Infectious and Tropical Diseases Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Bruno Viaggi
- Neurointensive Care Unit, Department of Anesthesiology, Careggi University Hospital, 50134 Florence, Italy;
| | - Sara D’Arienzo
- Agenzia Regionale di Sanità della Toscana, 50141 Florence, Italy; (S.D.); (S.F.)
| | - Silvia Forni
- Agenzia Regionale di Sanità della Toscana, 50141 Florence, Italy; (S.D.); (S.F.)
| | - Angelo Galano
- SOD Microbiologia e Virologia, Careggi University Hospital, 50134 Florence, Italy;
| | - Fabrizio Gemmi
- Agenzia Regionale di Sanità della Toscana, 50141 Florence, Italy; (S.D.); (S.F.)
- Correspondence:
| |
Collapse
|
28
|
Guo T, Abdulla A, Koch BCP, van Hasselt JGC, Endeman H, Schouten JA, Elbers PWG, Brüggemann RJM, van Hest RM. Pooled Population Pharmacokinetic Analysis for Exploring Ciprofloxacin Pharmacokinetic Variability in Intensive Care Patients. Clin Pharmacokinet 2022; 61:869-879. [PMID: 35262847 PMCID: PMC9249715 DOI: 10.1007/s40262-022-01114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 12/02/2022]
Abstract
Background and Objective Previous pharmacokinetic (PK) studies of ciprofloxacin in intensive care (ICU) patients have shown large differences in estimated PK parameters, suggesting that further investigation is needed for this population. Hence, we performed a pooled population PK analysis of ciprofloxacin after intravenous administration using individual patient data from three studies. Additionally, we studied the PK differences between these studies through a post-hoc analysis. Methods Individual patient data from three studies (study 1, 2, and 3) were pooled. The pooled data set consisted of 1094 ciprofloxacin concentration–time data points from 140 ICU patients. Nonlinear mixed-effects modeling was used to develop a population PK model. Covariates were selected following a stepwise covariate modeling procedure. To analyze PK differences between the three original studies, random samples were drawn from the posterior distribution of individual PK parameters. These samples were used for a simulation study comparing PK exposure and the percentage of target attainment between patients of these studies. Results A two-compartment model with first-order elimination best described the data. Inter-individual variability was added to the clearance, central volume, and peripheral volume. Inter-occasion variability was added to clearance only. Body weight was added to all parameters allometrically. Estimated glomerular filtration rate on ciprofloxacin clearance was identified as the only covariate relationship resulting in a drop in inter-individual variability of clearance from 58.7 to 47.2%. In the post-hoc analysis, clearance showed the highest deviation between the three studies with a coefficient of variation of 14.3% for posterior mean and 24.1% for posterior inter-individual variability. The simulation study showed that following the same dose regimen of 400 mg three times daily, the area under the concentration–time curve of study 3 was the highest with a mean area under the concentration–time curve at 24 h of 58 mg·h/L compared with that of 47.7 mg·h/L for study 1 and 47.6 mg·h/L for study 2. Similar differences were also observed in the percentage of target attainment, defined as the ratio of area under the concentration–time curve at 24 h and the minimum inhibitory concentration. At the epidemiological cut-off minimum inhibitory concentration of Pseudomonas aeruginosa of 0.5 mg/L, percentage of target attainment was only 21%, 18%, and 38% for study 1, 2, and 3, respectively. Conclusions We developed a population PK model of ciprofloxacin in ICU patients using pooled data of individual patients from three studies. A simple ciprofloxacin dose recommendation for the entire ICU population remains challenging owing to the PK differences within ICU patients, hence dose individualization may be needed for the optimization of ciprofloxacin treatment.
Collapse
Affiliation(s)
- Tingjie Guo
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands.
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Johan G C van Hasselt
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A Schouten
- Department of Intensive Care, Radboudumc-CWZ Center of Expertise for Mycology, Radboud UMC, Nijmegen, The Netherlands
| | - Paul W G Elbers
- Department of Intensive Care Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud Center for Infectious Diseases, Radboud Institute for Health Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Reinier M van Hest
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Silva CM, Baptista JP, Santos I, Martins P. Recommended Antibiotic Dosage Regimens in Critically Ill Patients with Augmented Renal Clearance: A Systematic Review. Int J Antimicrob Agents 2022; 59:106569. [DOI: 10.1016/j.ijantimicag.2022.106569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 12/17/2022]
|
30
|
Sartelli M, Coccolini F, Kluger Y, Agastra E, Abu-Zidan FM, Abbas AES, Ansaloni L, Adesunkanmi AK, Augustin G, Bala M, Baraket O, Biffl WL, Ceresoli M, Cerutti E, Chiara O, Cicuttin E, Chiarugi M, Coimbra R, Corsi D, Cortese F, Cui Y, Damaskos D, de’Angelis N, Delibegovic S, Demetrashvili Z, De Simone B, de Jonge SW, Di Bella S, Di Saverio S, Duane TM, Fugazzola P, Galante JM, Ghnnam W, Gkiokas G, Gomes CA, Griffiths EA, Hardcastle TC, Hecker A, Herzog T, Karamarkovic A, Khokha V, Kim PK, Kim JI, Kirkpatrick AW, Kong V, Koshy RM, Inaba K, Isik A, Ivatury R, Labricciosa FM, Lee YY, Leppäniemi A, Litvin A, Luppi D, Maier RV, Marinis A, Marwah S, Mesina C, Moore EE, Moore FA, Negoi I, Olaoye I, Ordoñez CA, Ouadii M, Peitzman AB, Perrone G, Pintar T, Pipitone G, Podda M, Raşa K, Ribeiro J, Rodrigues G, Rubio-Perez I, Sall I, Sato N, Sawyer RG, Shelat VG, Sugrue M, Tarasconi A, Tolonen M, Viaggi B, Celotti A, Casella C, Pagani L, Dhingra S, Baiocchi GL, Catena F. WSES/GAIS/WSIS/SIS-E/AAST global clinical pathways for patients with skin and soft tissue infections. World J Emerg Surg 2022; 17:3. [PMID: 35033131 PMCID: PMC8761341 DOI: 10.1186/s13017-022-00406-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 02/08/2023] Open
Abstract
Skin and soft-tissue infections (SSTIs) encompass a variety of pathological conditions that involve the skin and underlying subcutaneous tissue, fascia, or muscle, ranging from simple superficial infections to severe necrotizing infections.Together, the World Society of Emergency Surgery, the Global Alliance for Infections in Surgery, the Surgical Infection Society-Europe, The World Surgical Infection Society, and the American Association for the Surgery of Trauma have jointly completed an international multi-society document to promote global standards of care in SSTIs guiding clinicians by describing reasonable approaches to the management of SSTIs.An extensive non-systematic review was conducted using the PubMed and MEDLINE databases, limited to the English language. The resulting evidence was shared by an international task force with different clinical backgrounds.
Collapse
Affiliation(s)
| | - Federico Coccolini
- Department of General, Emergency and Trauma Surgery, Pisa University Hospital, Pisa, Italy
| | - Yoram Kluger
- Department of General Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Ervis Agastra
- General Surgery Department, Regional Hospital of Durres, Durres, Albania
| | - Fikri M. Abu-Zidan
- Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Ashraf El Sayed Abbas
- Department of General and Emergency Surgery Faculty of Medicine, Mansoura University Hospital, Mansoura, Egypt
| | - Luca Ansaloni
- Department of Surgery, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Abdulrashid Kayode Adesunkanmi
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Osun State Nigeria
| | - Goran Augustin
- Department of Surgery, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Miklosh Bala
- Trauma and Acute Care Surgery Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Oussama Baraket
- Department of General Surgery Bizerte Hospital, Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Walter L. Biffl
- Division of Trauma/Acute Care Surgery, Scripps Clinic Medical Group, La Jolla, CA USA
| | - Marco Ceresoli
- Emergency and General Surgery Department, University of Milan-Bicocca, Milan, Italy
| | - Elisabetta Cerutti
- Anesthesia and Transplant Surgical Intensive Care Unit, Ospedali Riuniti, Ancona, Italy
| | - Osvaldo Chiara
- Department of Pathophysiology, ASST Niguarda Ca’Granda Hospital, University of Milano, Milan, Italy
| | - Enrico Cicuttin
- Department of General, Emergency and Trauma Surgery, Pisa University Hospital, Pisa, Italy
| | - Massimo Chiarugi
- Department of General, Emergency and Trauma Surgery, Pisa University Hospital, Pisa, Italy
| | - Raul Coimbra
- Riverside University Health System, CECORC Research Center, Loma Linda University, Loma Linda, USA
| | - Daniela Corsi
- General Direction, Area Vasta 3, ASUR Marche, Macerata, Italy
| | | | - Yunfeng Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | | | - Nicola de’Angelis
- Minimally Invasive and Robotic Digestive Surgery Unit, Regional General Hospital F. Miulli, Bari, Italy
- Université Paris Est, UPEC, Creteil, France
| | - Samir Delibegovic
- Department of Surgery, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Zaza Demetrashvili
- Department General Surgery, Kipshidze Central University Hospital, Tbilisi, Georgia
| | - Belinda De Simone
- Department of General, Digestive and Metabolic Minimally Invasive Surgery, Centre Hospitalier Intercommunal De Poissy/St Germain en Laye, Poissy, France
| | - Stijn W. de Jonge
- Department of Surgery, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, Trieste, Italy
| | - Salomone Di Saverio
- Department of General Surgery, “Madonna del Soccorso” San Benedetto del Tronto Hospital, San Benedetto del Tronto, Italy
| | | | - Paola Fugazzola
- Department of Surgery, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Joseph M. Galante
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of California Davis, Sacramento, CA USA
| | - Wagih Ghnnam
- Department of General Surgery, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Carlos Augusto Gomes
- Department of Surgery, Hospital Universitário Terezinha de Jesus, Faculdade de Ciências Médicas E da Saúde de Juiz de Fora, Juiz de Fora, Brazil
| | - Ewen A. Griffiths
- Department of Upper GI Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Timothy C. Hardcastle
- Trauma Service, Inkosi Albert Luthuli Central Hospital and Department of Surgery, Nelson R Mandela School of Clinical Medicine, Durban, South Africa
| | - Andreas Hecker
- Department of General and Thoracic Surgery, University Hospital Giessen, Giessen, Germany
| | - Torsten Herzog
- Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Aleksandar Karamarkovic
- Surgical Clinic “Nikola Spasic”, Faculty of Medicine University of Belgrade, Belgrade, Serbia
| | - Vladimir Khokha
- Department of Emergency Surgery, City Hospital, Mozyr, Belarus
| | - Peter K. Kim
- Department of Surgery, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY USA
| | - Jae Il Kim
- Department of Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Andrew W. Kirkpatrick
- General, Acute Care, Abdominal Wall Reconstruction, and Trauma Surgery, Foothills Medical Centre, Calgary, AB Canada
| | - Victor Kong
- Department of Surgery, Edendale Hospital, Pietermaritzburg, South Africa
| | - Renol M. Koshy
- Department of General Surgery, University Hospital of Coventry and Warwickshire, Coventry, UK
| | - Kenji Inaba
- Division of Trauma and Surgical Critical Care, Department of Surgery, University of Southern California, Los Angeles, CA USA
| | - Arda Isik
- Department of General Surgery, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Rao Ivatury
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | | | - Yeong Yeh Lee
- School of Medical Sciences, Universitiy Sains Malaysia, Kota Bharu, Kelantan Malaysia
| | - Ari Leppäniemi
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Andrey Litvin
- Department of Surgical Disciplines, Immanuel Kant Baltic Federal University, Regional Clinical Hospital, Kaliningrad, Russia
| | - Davide Luppi
- Department of General and Emergency Surgery, ASMN, Reggio Emilia, Italy
| | - Ronald V. Maier
- Department of Surgery, University of Washington, Seattle, WA USA
| | | | - Sanjay Marwah
- Department of Surgery, Post-Graduate Institute of Medical Sciences, Rohtak, India
| | - Cristian Mesina
- Second Surgical Clinic, Emergency Hospital of Craiova, Craiova, Romania
| | - Ernest E. Moore
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, USA
| | - Frederick A. Moore
- Department of Surgery, Division of Acute Care Surgery, and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL USA
| | - Ionut Negoi
- Department of Surgery, Emergency Hospital of Bucharest, Bucharest, Romania
| | - Iyiade Olaoye
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Carlos A. Ordoñez
- Division of Trauma and Acute Care Surgery, Fundacion Valle del Lili, Cali, Colombia
- Department of Surgery, Universidad del Valle, Cali, Colombia
| | - Mouaqit Ouadii
- Department of Surgery, Hassan II University Hospital, Medical School of Fez, Sidi Mohamed Benabdellah University, Fez, Morocco
| | - Andrew B. Peitzman
- Department of Surgery, University of Pittsburgh School of Medicine, UPMC-Presbyterian, Pittsburgh, USA
| | - Gennaro Perrone
- Department of Emergency Surgery, Parma Maggiore Hospital, Parma, Italy
| | - Tadeja Pintar
- Department of Surgery, UMC Ljubljana, Ljubljana, Slovenia
| | - Giuseppe Pipitone
- Department of Internal Medicine, Division of Infectious Disease, ARNAS Civico-Di Cristina Hospital, Palermo, Italy
| | - Mauro Podda
- Department of General and Emergency Surgery, Cagliari University Hospital, Cagliari, Italy
| | - Kemal Raşa
- Department of Surgery, Anadolu Medical Center, Kocaeli, Turkey
| | | | - Gabriel Rodrigues
- Department of General Surgery, Kasturba Medical College and Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Ines Rubio-Perez
- General Surgery Department, Colorectal Surgery Unit, La Paz University Hospital, Madrid, Spain
| | - Ibrahima Sall
- General Surgery Department, Military Teaching Hospital, Dakar, Senegal
| | - Norio Sato
- Department of Aeromedical Services for Emergency and Trauma Care, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Robert G. Sawyer
- Department of Surgery, Western Michigan University School of Medicine, Kalamazoo, MI USA
| | - Vishal G. Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Michael Sugrue
- Donegal Clinical Research Academy Emergency Surgery Outcome Project, Letterkenny University Hospital, Donegal, Ireland
| | - Antonio Tarasconi
- Department of Emergency Surgery, Parma Maggiore Hospital, Parma, Italy
| | - Matti Tolonen
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Bruno Viaggi
- Department of Anesthesiology, Neuro Intensive Care Unit, Florence Careggi University Hospital, Florence, Italy
| | | | - Claudio Casella
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Leonardo Pagani
- Department of Infectious Diseases, Bolzano Hospital, Bolzano, Italy
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar India
| | - Gian Luca Baiocchi
- Department of Surgery, AAST Cremona, Cremona, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fausto Catena
- Department of Surgery, “Bufalini” Hospital, Cesena, Italy
| |
Collapse
|
31
|
Gatti M, Viaggi B, Rossolini GM, Pea F, Viale P. An Evidence-Based Multidisciplinary Approach Focused on Creating Algorithms for Targeted Therapy of Infection-Related Ventilator-Associated Complications (IVACs) Caused by Pseudomonas aeruginosa and Acinetobacter baumannii in Critically Ill Adult Patients. Antibiotics (Basel) 2021; 11:antibiotics11010033. [PMID: 35052910 PMCID: PMC8773303 DOI: 10.3390/antibiotics11010033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Background: To develop evidence-based algorithms for targeted antibiotic therapy of infection-related ventilator-associated complications (IVACs) caused by non-fermenting Gram-negative pathogens. (2) Methods: A multidisciplinary team of four experts had several rounds of assessments for developing algorithms devoted to targeted antimicrobial therapy of IVACs caused by two non-fermenting Gram-negative pathogens. A literature search was performed on PubMed-MEDLINE (until September 2021) to provide evidence for supporting therapeutic choices. Quality and strength of evidence was established according to a hierarchical scale of the study design. Six different algorithms with associated recommendations in terms of therapeutic choice and dosing optimization were suggested according to the susceptibility pattern of two non-fermenting Gram-negative pathogens: multi-susceptible Pseudomonas aeruginosa (PA), multidrug-resistant (MDR) metallo-beta-lactamase (MBL)-negative-PA, MBL-positive-PA, carbapenem-susceptible Acinetobacter baumannii (AB), and carbapenem-resistant AB. (3) Results: Piperacillin–tazobactam or fourth-generation cephalosporins represent the first therapeutic choice in IVACs caused by multi-susceptible PA. A carbapenem-sparing approach favouring the administration of novel beta-lactam/beta-lactamase inhibitors should be pursued in the management of MDR-MBL-negative PA infections. Cefiderocol should be used as first-line therapy for the management of IVACs caused by MBL-producing-PA or carbapenem-resistant AB. Fosfomycin-based combination therapy, as well as inhaled colistin, could be considered as a reasonable alternative for the management of IVACs due to MDR-PA and carbapenem-resistant AB. (4) Conclusions: The implementation of algorithms focused on prompt revision of antibiotic regimens guided by results of conventional and rapid diagnostic methodologies, appropriate place in therapy of novel beta-lactams, implementation of strategies for sparing the broadest-spectrum antibiotics, and pharmacokinetic/pharmacodynamic optimization of antibiotic dosing regimens is strongly suggested.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (P.V.)
- SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Bruno Viaggi
- Neurointensive Care Unit, Department of Anesthesiology, Careggi University Hospital, 50134 Florence, Italy;
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
- Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (P.V.)
- SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Correspondence:
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (M.G.); (P.V.)
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
| |
Collapse
|
32
|
Octora M, Mertaniasih NM, Semedi BP, Koendhori EB. Predictive Score Model of Clinical Outcomes Sepsis in Intensive Care Unit Tertier Referral Hospital of Eastern Indonesia. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: This study aimed to design a predictive score model of clinical outcome sepsis and bacterial profiles of blood and sputum cultures in the intensive care unit (ICU) of a tertiary referral hospital.
METHODS: An observational retrospective study was conducted in 2017–2020 using medical record data in the ICU of Dr. Soetomo Hospital as tertiary referral hospital. The predictor of sepsis prognosis was Acute Physiology and Chronic Health Evaluation II (APACHE II), blood and sputum culture results, procalcitonin (PCT) levels, and antimicrobial resistance in blood and sputum cultures. The model was prepared by logistic regression analysis and receiver operating characteristic (ROC) curves.
RESULTS: Data from 355 subjects showed that predictor score was APACHE II, blood and sputum culture results; besides PCT levels were found to contribute significantly to predictive score of sepsis clinical output (p<0.05), while the predictor test of antimicrobial resistance in blood and sputum cultures was not significant to predictive score of sepsis clinical output (p > 0.05). The resulting scores to predict sepsis clinical outcomes include PCT level >2 ng/mL (1.61), APACHE score >20 (1), sputum culture as true pathogen (1.1), and blood culture as true pathogen (1.35). When the total score ≥3, the patient will die, while when the score <3, the patient will survive. ROC curves analysis obtained area under curve 0.859 (p < 0.05) which indicates that the equation is statistically significant in predicting the sepsis clinical outcome. Probability scores and death outcomes indicate that the higher the predictive score, the higher the probability of dying, with a score >3 the probability of dying is above 95.27%, whereas if the score is 5, the probability of dying is above 99%. The bacterial profile of blood cultures leading to mortality is predominately Gram-positive (34.4%), consisting of coagulase-negative Staphylococcus (22.9%), and Staphylococcus aureus (4.3%), while Gram-negative is only 14.7%, which consists of Enterobacteriaceae group (8.7%), Acinetobacter baumannii (4%), polymicrobial infection (2%), Burkholderia cepacia (0.8%), and Pseudomonas aeruginosa (0.4%). Sputum culture profile of patients with sepsis who died in the ICU of a tertiary referral RSUD Soetomo is dominated by Gram-negative, namely, A. baumannii (22.1%), Enterobacteriaceae group (20.6%), P. aeruginosa (11.1%), while Gram-positive is S. aureus (22.9%).
CONCLUSION: The predictive score model for sepsis clinical outcomes in the ICU of a tertiary referral hospitals can be used as a basis for determining of patient management and the profile of the bacteria that causes sepsis that results in death.
Collapse
|
33
|
A personalised approach to antibiotic pharmacokinetics and pharmacodynamics in critically ill patients. Anaesth Crit Care Pain Med 2021; 40:100970. [PMID: 34728411 DOI: 10.1016/j.accpm.2021.100970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/14/2021] [Indexed: 01/01/2023]
Abstract
Critically ill patients admitted to intensive care unit (ICU) with severe infections, or those who develop nosocomial infections, have poor outcomes with substantial morbidity and mortality. Such patients commonly have suboptimal antibiotic exposures at routinely used antibiotic doses related to an increased volume of distribution and altered clearance due to their underlying altered physiology. Furthermore, the use of extracorporeal devices such as renal replacement therapy and extracorporeal membrane oxygenation in these group of patients also has the potential to alter in vivo drug concentrations. Moreover, ICU patients are likely to be infected with less-susceptible pathogens. Therefore, one potential contributing cause to the poor outcomes observed in critically ill patients may be related to subtherapeutic antibiotic exposures. Newer concepts include the clinician considering optimised dosing based on a blood antibiotic exposure defined by pharmacokinetic modelling and therapeutic drug monitoring, combined with a knowledge of the antibiotic penetration into the site of infection, thereby achieving optimal bacterial killing. Such optimised dosing is likely to improve patient outcomes. The aim of this review is to highlight key aspects of antibiotic pharmacokinetics and pharmacodynamics (PK/PD) in critically ill patients and provide a PK/PD approach to tailor antibiotic dosing to the individual patient.
Collapse
|
34
|
Sartelli M, Coccolini F, Kluger Y, Agastra E, Abu-Zidan FM, Abbas AES, Ansaloni L, Adesunkanmi AK, Atanasov B, Augustin G, Bala M, Baraket O, Baral S, Biffl WL, Boermeester MA, Ceresoli M, Cerutti E, Chiara O, Cicuttin E, Chiarugi M, Coimbra R, Colak E, Corsi D, Cortese F, Cui Y, Damaskos D, de’ Angelis N, Delibegovic S, Demetrashvili Z, De Simone B, de Jonge SW, Dhingra S, Di Bella S, Di Marzo F, Di Saverio S, Dogjani A, Duane TM, Enani MA, Fugazzola P, Galante JM, Gachabayov M, Ghnnam W, Gkiokas G, Gomes CA, Griffiths EA, Hardcastle TC, Hecker A, Herzog T, Kabir SMU, Karamarkovic A, Khokha V, Kim PK, Kim JI, Kirkpatrick AW, Kong V, Koshy RM, Kryvoruchko IA, Inaba K, Isik A, Iskandar K, Ivatury R, Labricciosa FM, Lee YY, Leppäniemi A, Litvin A, Luppi D, Machain GM, Maier RV, Marinis A, Marmorale C, Marwah S, Mesina C, Moore EE, Moore FA, Negoi I, Olaoye I, Ordoñez CA, Ouadii M, Peitzman AB, Perrone G, Pikoulis M, Pintar T, Pipitone G, Podda M, Raşa K, Ribeiro J, Rodrigues G, Rubio-Perez I, Sall I, Sato N, Sawyer RG, Segovia Lohse H, Sganga G, Shelat VG, Stephens I, Sugrue M, Tarasconi A, Tochie JN, Tolonen M, Tomadze G, et alSartelli M, Coccolini F, Kluger Y, Agastra E, Abu-Zidan FM, Abbas AES, Ansaloni L, Adesunkanmi AK, Atanasov B, Augustin G, Bala M, Baraket O, Baral S, Biffl WL, Boermeester MA, Ceresoli M, Cerutti E, Chiara O, Cicuttin E, Chiarugi M, Coimbra R, Colak E, Corsi D, Cortese F, Cui Y, Damaskos D, de’ Angelis N, Delibegovic S, Demetrashvili Z, De Simone B, de Jonge SW, Dhingra S, Di Bella S, Di Marzo F, Di Saverio S, Dogjani A, Duane TM, Enani MA, Fugazzola P, Galante JM, Gachabayov M, Ghnnam W, Gkiokas G, Gomes CA, Griffiths EA, Hardcastle TC, Hecker A, Herzog T, Kabir SMU, Karamarkovic A, Khokha V, Kim PK, Kim JI, Kirkpatrick AW, Kong V, Koshy RM, Kryvoruchko IA, Inaba K, Isik A, Iskandar K, Ivatury R, Labricciosa FM, Lee YY, Leppäniemi A, Litvin A, Luppi D, Machain GM, Maier RV, Marinis A, Marmorale C, Marwah S, Mesina C, Moore EE, Moore FA, Negoi I, Olaoye I, Ordoñez CA, Ouadii M, Peitzman AB, Perrone G, Pikoulis M, Pintar T, Pipitone G, Podda M, Raşa K, Ribeiro J, Rodrigues G, Rubio-Perez I, Sall I, Sato N, Sawyer RG, Segovia Lohse H, Sganga G, Shelat VG, Stephens I, Sugrue M, Tarasconi A, Tochie JN, Tolonen M, Tomadze G, Ulrych J, Vereczkei A, Viaggi B, Gurioli C, Casella C, Pagani L, Baiocchi GL, Catena F. WSES/GAIS/SIS-E/WSIS/AAST global clinical pathways for patients with intra-abdominal infections. World J Emerg Surg 2021; 16:49. [PMID: 34563232 PMCID: PMC8467193 DOI: 10.1186/s13017-021-00387-8] [Show More Authors] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
Intra-abdominal infections (IAIs) are common surgical emergencies and have been reported as major contributors to non-trauma deaths in hospitals worldwide. The cornerstones of effective treatment of IAIs include early recognition, adequate source control, appropriate antimicrobial therapy, and prompt physiologic stabilization using a critical care environment, combined with an optimal surgical approach. Together, the World Society of Emergency Surgery (WSES), the Global Alliance for Infections in Surgery (GAIS), the Surgical Infection Society-Europe (SIS-E), the World Surgical Infection Society (WSIS), and the American Association for the Surgery of Trauma (AAST) have jointly completed an international multi-society document in order to facilitate clinical management of patients with IAIs worldwide building evidence-based clinical pathways for the most common IAIs. An extensive non-systematic review was conducted using the PubMed and MEDLINE databases, limited to the English language. The resulting information was shared by an international task force from 46 countries with different clinical backgrounds. The aim of the document is to promote global standards of care in IAIs providing guidance to clinicians by describing reasonable approaches to the management of IAIs.
Collapse
Affiliation(s)
- Massimo Sartelli
- Department of Surgery Department of Surgery, Macerata Hospital, Macerata, Italy
| | - Federico Coccolini
- Department of General, Emergency and Trauma Surgery, Pisa University Hospital, Pisa, Italy
| | - Yoram Kluger
- Department of General Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Ervis Agastra
- General Surgery Department, Regional Hospital of Durres, Durres, Albania
| | - Fikri M. Abu-Zidan
- Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Ashraf El Sayed Abbas
- Department of General and Emergency Surgery Faculty of Medicine, Mansoura University Hospital, Mansoura, Egypt
| | - Luca Ansaloni
- Department of Surgery, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Abdulrashid Kayode Adesunkanmi
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Obafemi Awolowo University, Osun State, Ile-Ife, Nigeria
| | - Boyko Atanasov
- Department of General Surgery, Medical University of Plovdiv, UMHAT Eurohospital, Plovdiv, Bulgaria
| | - Goran Augustin
- Department of Surgery, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Miklosh Bala
- Trauma and Acute Care Surgery Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Oussama Baraket
- Department of general surgery Bizerte hospital, Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Suman Baral
- Department of Surgery, Lumbini Medical College and Teaching Hospital Ltd., Palpa, Tansen, Nepal
| | - Walter L. Biffl
- Division of Trauma/Acute Care Surgery, Scripps Clinic Medical Group, La Jolla, CA USA
| | - Marja A. Boermeester
- Department of Surgery, Amsterdam University Medical Centers, location AMC, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam, The Netherlands
| | - Marco Ceresoli
- Emergency and General Surgery Department, University of Milan-Bicocca, Milan, Italy
| | - Elisabetta Cerutti
- Anesthesia and Transplant Surgical Intensive Care Unit, Ospedali Riuniti, Ancona, Italy
| | - Osvaldo Chiara
- Emergency Department, Niguarda Ca’Granda Hospital, Milan, Italy
| | - Enrico Cicuttin
- Department of General, Emergency and Trauma Surgery, Pisa University Hospital, Pisa, Italy
| | - Massimo Chiarugi
- Department of General, Emergency and Trauma Surgery, Pisa University Hospital, Pisa, Italy
| | - Raul Coimbra
- Riverside University Health System, CECORC Research Center, Loma Linda University, Loma Linda, USA
| | - Elif Colak
- Department of General Surgery, Health Sciences University, Samsun Training and Research Hospital, Samsun, Turkey
| | - Daniela Corsi
- General Direction, Area Vasta 3, ASUR Marche, Macerata, Italy
| | | | - Yunfeng Cui
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | | | - Nicola de’ Angelis
- Minimally Invasive and Robotic Digestive Surgery Unit, Regional General Hospital F. Miulli, Bari, Italy
- Université Paris Est, UPEC, Creteil, France
| | - Samir Delibegovic
- Department of Surgery, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Zaza Demetrashvili
- Department General Surgery, Kipshidze Central University Hospital, Tbilisi, Georgia
| | - Belinda De Simone
- Department of general, Digestive and Metabolic Minimally Invasive Surgery, Centre Hospitalier Intercommunal De Poissy/St Germain en Laye, Poissy, France
| | - Stijn W. de Jonge
- Division of Trauma/Acute Care Surgery, Scripps Clinic Medical Group, La Jolla, CA USA
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar India
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health sciences, Trieste University, Trieste, Italy
| | | | - Salomone Di Saverio
- Department of General Surgery, University of Insubria, University Hospital of Varese, ASST Sette Laghi, Regione Lombardia, Varese, Italy
| | - Agron Dogjani
- Department of Surgery, University Hospital of Trauma, Tirana, Albania
| | - Therese M. Duane
- Department of Surgery, Texas Health Resources, Fort Worth, TX USA
| | - Mushira Abdulaziz Enani
- Department of Medicine, Infectious Disease Division, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Paola Fugazzola
- Department of Surgery, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Joseph M. Galante
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of California Davis, Sacramento, CA USA
| | - Mahir Gachabayov
- Department of Abdominal Surgery, Vladimir City Clinical Hospital of Emergency Medicine, Vladimir, Russia
| | - Wagih Ghnnam
- Department of General Surgery, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Carlos Augusto Gomes
- Department of Surgery, Hospital Universitário Terezinha de Jesus, Faculdade de Ciências Médicas e da Saúde de Juiz de Fora, Juiz de Fora, Brazil
| | - Ewen A. Griffiths
- Department of Upper GI Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Timothy C. Hardcastle
- Trauma Service, Inkosi Albert Luthuli Central Hospital and Department of Surgery, Nelson R Mandela School of Clinical Medicine, Durban, South Africa
| | - Andreas Hecker
- Department of General and Thoracic Surgery, University Hospital Giessen, Giessen, Germany
| | - Torsten Herzog
- Department of Surgery, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Syed Mohammad Umar Kabir
- Donegal Clinical Research Academy Emergency Surgery Outcome Project, Letterkenny University Hospital, Donegal, Ireland
| | - Aleksandar Karamarkovic
- Surgical Clinic “Nikola Spasic”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Khokha
- Department of Emergency Surgery, City Hospital, Mozyr, Belarus
| | - Peter K. Kim
- Department of Surgery, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY USA
| | - Jae Il Kim
- Department of Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Andrew W. Kirkpatrick
- General, Acute Care, Abdominal Wall Reconstruction, and Trauma Surgery, Foothills Medical Centre, Calgary, AB Canada
| | - Victor Kong
- Department of Surgery, Edendale Hospital, Pietermaritzburg, South Africa
| | - Renol M. Koshy
- Department of General Surgery, University Hospital of Coventry & Warwickshire, Coventry, UK
| | | | - Kenji Inaba
- Division of Trauma and Surgical Critical Care, Department of Surgery, University of Southern California, Los Angeles, CA USA
| | - Arda Isik
- Department of General Surgery, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Katia Iskandar
- Department of Pharmacy, Lebanese International University, Beirut, Lebanon
| | - Rao Ivatury
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | | | - Yeong Yeh Lee
- School of Medical Sciences, Universitiy Sains Malaysia, Kota Bharu, Kelantan Malaysia
| | - Ari Leppäniemi
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Andrey Litvin
- Department of Surgical Disciplines, Immanuel Kant Baltic Federal University, Regional Clinical Hospital, Kaliningrad, Russia
| | - Davide Luppi
- Department of General and Emergency Surgery, ASMN, Reggio Emilia, Italy
| | - Gustavo M. Machain
- Department of Surgery, Universidad Nacional de Asuncion, Asuncion, Paraguay
| | - Ronald V. Maier
- Department of Surgery, University of Washington, Seattle, WA USA
| | | | - Cristina Marmorale
- Department of Surgery, Università Politecnica delle Marche, Ancona, Italy
| | - Sanjay Marwah
- Department of Surgery, Post-Graduate Institute of Medical Sciences, Rohtak, India
| | - Cristian Mesina
- Second Surgical Clinic, Emergency Hospital of Craiova, Craiova, Romania
| | - Ernest E. Moore
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, USA
| | - Frederick A. Moore
- Department of Surgery, Division of Acute Care Surgery, and Center for Sepsis and Critical Illness Research, University of Florida College of Medicine, Gainesville, FL USA
| | - Ionut Negoi
- Department of Surgery, Emergency Hospital of Bucharest, Bucharest, Romania
| | - Iyiade Olaoye
- Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Carlos A. Ordoñez
- Division of Trauma and Acute Care Surgery, Fundacion Valle del Lili, Cali, Colombia
- Department of Surgery, Universidad del Valle, Cali, Colombia
| | - Mouaqit Ouadii
- Department of Surgery, Hassan II University Hospital, Medical School of Fez, Sidi Mohamed Benabdellah University, Fez, Morocco
| | - Andrew B. Peitzman
- Department of Surgery, University of Pittsburgh School of Medicine, UPMC-Presbyterian, Pittsburgh, USA
| | - Gennaro Perrone
- Department of Emergency Surgery, Parma Maggiore Hospital, Parma, Italy
| | - Manos Pikoulis
- 3rd Department of Surgery, Attiko Hospital, MSc “Global Health-Disaster Medicine”, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Tadeja Pintar
- Department of Surgery, UMC Ljubljana, Ljubljana, Slovenia
| | - Giuseppe Pipitone
- National Institute for Infectious Diseases - INMI - Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Mauro Podda
- Department of General and Emergency Surgery, Cagliari University Hospital, Cagliari, Italy
| | - Kemal Raşa
- Department of Surgery, Anadolu Medical Center, Kocaeli, Turkey
| | | | - Gabriel Rodrigues
- Department of General Surgery, Kasturba Medical College & Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Ines Rubio-Perez
- General Surgery Department, Colorectal Surgery Unit, La Paz University Hospital, Madrid, Spain
| | - Ibrahima Sall
- General Surgery Department, Military Teaching Hospital, Dakar, Senegal
| | - Norio Sato
- Department of Aeromedical Services for Emergency and Trauma Care, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Robert G. Sawyer
- Department of Surgery, Western Michigan University School of Medicine, Kalamazoo, MI USA
| | | | - Gabriele Sganga
- Department of Medical and Surgical Sciences, Emergency Surgery & Trauma, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Vishal G. Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Ian Stephens
- Donegal Clinical Research Academy Emergency Surgery Outcome Project, Letterkenny University Hospital, Donegal, Ireland
| | - Michael Sugrue
- Donegal Clinical Research Academy Emergency Surgery Outcome Project, Letterkenny University Hospital, Donegal, Ireland
| | - Antonio Tarasconi
- Department of Emergency Surgery, Parma Maggiore Hospital, Parma, Italy
| | - Joel Noutakdie Tochie
- Department of Emergency medicine, Anesthesiology and critical care, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Matti Tolonen
- Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Gia Tomadze
- Surgery Department, Tbilisi State Medical University, Tbilisi, Georgia
| | - Jan Ulrych
- First Department of Surgery, Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Andras Vereczkei
- Department of Surgery, Clinical Center University of Pecs, Pecs, Hungary
| | - Bruno Viaggi
- Department of Anesthesiology, Neuro Intensive Care Unit, Florence Careggi University Hospital, Florence, Italy
| | - Chiara Gurioli
- Department of Surgery, Camerino Hospital, Macerata, Italy
| | - Claudio Casella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Leonardo Pagani
- Department of Infectious Diseases, Bolzano Hospital, Bolzano, Italy
| | - Gian Luca Baiocchi
- Department of Surgery, AAST Cremona, Cremona, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fausto Catena
- Department of Emergency Surgery, Parma Maggiore Hospital, Parma, Italy
| |
Collapse
|
35
|
Yuk SA, Kim H, Abutaleb NS, Dieterly AM, Taha MS, Tsifansky MD, Lyle LT, Seleem MN, Yeo Y. Nanocapsules modify membrane interaction of polymyxin B to enable safe systemic therapy of Gram-negative sepsis. SCIENCE ADVANCES 2021; 7:7/32/eabj1577. [PMID: 34362742 PMCID: PMC8346222 DOI: 10.1126/sciadv.abj1577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 05/17/2023]
Abstract
Systemic therapy of Gram-negative sepsis remains challenging. Polymyxin B (PMB) is well suited for sepsis therapy due to the endotoxin affinity and antibacterial activity. However, the dose-limiting toxicity has limited its systemic use in sepsis patients. For safe systemic use of PMB, we have developed a nanoparticulate system, called D-TZP, which selectively reduces the toxicity to mammalian cells but retains the therapeutic activities of PMB. D-TZP consists of an iron-complexed tannic acid nanocapsule containing a vitamin D core, coated with PMB and a chitosan derivative that controls the interaction of PMB with endotoxin, bacteria, and host cells. D-TZP attenuated the membrane toxicity associated with PMB but retained the ability of PMB to inactivate endotoxin and kill Gram-negative bacteria. Upon intravenous injection, D-TZP protected animals from pre-established endotoxemia and polymicrobial sepsis, showing no systemic toxicities inherent to PMB. These results support D-TZP as a safe and effective systemic intervention of sepsis.
Collapse
Affiliation(s)
- Simseok A Yuk
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Hyungjun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Applied Chemistry, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, VA 24061, USA
| | - Alexandra M Dieterly
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Maie S Taha
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Michael D Tsifansky
- Pediatric Cardiac Critical Care Medicine and Pediatric Pulmonology, Children's National Medical Center, Michigan Ave NW, Washington, DC 20310, USA
| | - L Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, VA 24061, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
36
|
Fernández J, Piano S, Bartoletti M, Wey EQ. Management of bacterial and fungal infections in cirrhosis: The MDRO challenge. J Hepatol 2021; 75 Suppl 1:S101-S117. [PMID: 34039482 DOI: 10.1016/j.jhep.2020.11.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Bacterial infections are frequent in cirrhotic patients with acute decompensation or acute-on-chronic liver failure and can complicate the clinical course. Delayed diagnosis and inappropriate empirical treatments are associated with poor prognosis and increased mortality. Fungal infections are much less frequent, usually nosocomial and associated with extremely high short-term mortality. Early diagnosis and adequate empirical treatment of infections is therefore key in the management of these patients. In recent decades, antibiotic resistance has become a major worldwide problem in patients with cirrhosis, warranting a more complex approach to antibiotic treatment that includes the use of broad-spectrum antibiotics, new administration strategies, novel drugs and de-escalation policies. Herein, we review epidemiological changes, the main types of multidrug-resistant organisms, mechanisms of resistance, new rapid diagnostic tools and currently available therapeutic options for bacterial and fungal infections in cirrhosis.
Collapse
Affiliation(s)
- Javier Fernández
- Liver ICU, Liver Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain; European Foundation of Chronic Liver Failure (EF-Clif), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHED), ISCIII, Spain.
| | - Salvatore Piano
- Unit of Internal Medicine and Hepatology, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Michele Bartoletti
- Infectious Disease Unit- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Emmanuel Q Wey
- ILDH, Division of Medicine, University College London Medical School, London, United Kingdom; Centre for Clinical Microbiology, Division of Infection & Immunity, UCL, London, United Kingdom; Department of Infection, Royal Free London NHS Trust London, United Kingdom
| |
Collapse
|
37
|
Gatti M, Viaggi B, Rossolini GM, Pea F, Viale P. An Evidence-Based Multidisciplinary Approach Focused at Creating Algorithms for Targeted Therapy of BSIs, cUTIs, and cIAIs Caused by Enterobacterales in Critically Ill Adult Patients. Infect Drug Resist 2021; 14:2461-2498. [PMID: 34234476 PMCID: PMC8256626 DOI: 10.2147/idr.s314241] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/07/2021] [Indexed: 01/04/2023] Open
Abstract
Prompt implementation of appropriate targeted antibiotic therapy represents a valuable approach in improving clinical and ecological outcome in critically septic patients. This multidisciplinary opinion article focused at developing evidence-based algorithms for targeted antibiotic therapy of bloodstream (BSIs), complicated urinary tract (cUTIs), and complicated intrabdominal infections (cIAIs) caused by Enterobacterales. The aim was to provide a guidance for intensive care physicians either in appropriately placing novel antibiotics or in considering strategies for sparing the broadest-spectrum antibiotics. A multidisciplinary team of experts (one intensive care physician, one infectious disease consultant, one clinical microbiologist and one MD clinical pharmacologist), performed several rounds of assessment to reach agreement in developing six different algorithms according to the susceptibility pattern (one each for multi-susceptible, extended-spectrum beta-lactamase-producing, AmpC beta-lactamase-producing, Klebsiella pneumoniae carbapenemase (KPC)-producing, OXA-48-producing, and Metallo-beta-lactamase (MBL)-producing Enterobacterales). Whenever multiple therapeutic options were feasible, a hierarchical scale was established. Recommendations on antibiotic dosing optimization were also provided. In order to retrieve evidence-based support for the therapeutic choices proposed in the algorithms, a comprehensive literature search was performed by a researcher on PubMed-MEDLINE from inception until March 2021. Quality and strength of evidence was established according to a hierarchical scale of the study design. Only articles published in English were included. It is expected that these algorithms, by allowing prompt revision of antibiotic regimens whenever feasible, appropriate place in therapy of novel beta-lactams, implementation of strategies for sparing the broadest-spectrum antibiotics, and pharmacokinetic/pharmacodynamic optimization of antibiotic dosing regimens, may be helpful either in improving clinical outcome or in containing the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,SSD Clinical Pharmacology, IRCCS Azienda Ospedaliero Universitaria Sant'Orsola, Bologna, Italy
| | - Bruno Viaggi
- Neurointensive Care Unit, Department of Anesthesiology, Careggi, University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,SSD Clinical Pharmacology, IRCCS Azienda Ospedaliero Universitaria Sant'Orsola, Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Infectious Diseases Unit, IRCCS Azienda Ospedaliero Universitaria Sant'Orsola, Bologna, Italy
| |
Collapse
|
38
|
Routsi C, Gkoufa A, Arvaniti K, Kokkoris S, Tourtoglou A, Theodorou V, Vemvetsou A, Kassianidis G, Amerikanou A, Paramythiotou E, Potamianou E, Ntorlis K, Kanavou A, Nakos G, Hassou E, Antoniadou H, Karaiskos I, Prekates A, Armaganidis A, Pnevmatikos I, Kyprianou M, Zakynthinos S, Poulakou G, Giamarellou H. De-escalation of antimicrobial therapy in ICU settings with high prevalence of multidrug-resistant bacteria: a multicentre prospective observational cohort study in patients with sepsis or septic shock. J Antimicrob Chemother 2021; 75:3665-3674. [PMID: 32865203 DOI: 10.1093/jac/dkaa375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 08/03/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND De-escalation of empirical antimicrobial therapy, a key component of antibiotic stewardship, is considered difficult in ICUs with high rates of antimicrobial resistance. OBJECTIVES To assess the feasibility and the impact of antimicrobial de-escalation in ICUs with high rates of antimicrobial resistance. METHODS Multicentre, prospective, observational study in septic patients with documented infections. Patients in whom de-escalation was applied were compared with patients without de-escalation by the use of a propensity score matching by SOFA score on the day of de-escalation initiation. RESULTS A total of 262 patients (mean age 62.2 ± 15.1 years) were included. Antibiotic-resistant pathogens comprised 62.9%, classified as MDR (12.5%), extensively drug-resistant (49%) and pandrug-resistant (1.2%). In 97 (37%) patients de-escalation was judged not feasible in view of the antibiotic susceptibility results. Of the remaining 165 patients, judged as patients with de-escalation possibility, de-escalation was applied in 60 (22.9%). These were matched to an equal number of patients without de-escalation. In this subset of 120 patients, de-escalation compared with no de-escalation was associated with lower all-cause 28 day mortality (13.3% versus 36.7%, OR 0.27, 95% CI 0.11-0.66, P = 0.006); ICU and hospital mortality were also lower. De-escalation was associated with a subsequent collateral decrease in the SOFA score. Cox multivariate regression analysis revealed de-escalation as a significant factor for 28 day survival (HR 0.31, 95% CI 0.14-0.70, P = 0.005). CONCLUSIONS In ICUs with high levels of antimicrobial resistance, feasibility of antimicrobial de-escalation was limited because of the multi-resistant pathogens isolated. However, when de-escalation was feasible and applied, it was associated with lower mortality.
Collapse
Affiliation(s)
- Christina Routsi
- 1st Department of Intensive Care, School of Medicine, National and Kapodistrian University of Athens, 'Evangelismos' Hospital, Athens, Greece.,Hellenic Society of Antimicrobial Chemotherapy, Greece
| | | | - Kostoula Arvaniti
- Department of Intensive Care, 'Papageorgiou' Hospital, Thessaloniki, Greece
| | - Stelios Kokkoris
- 1st Department of Intensive Care, School of Medicine, National and Kapodistrian University of Athens, 'Evangelismos' Hospital, Athens, Greece
| | | | - Vassiliki Theodorou
- Department of Intensive Care, Democritus University of Thrace, Alexandroupolis University Hospital, Alexandroupolis, Greece
| | - Anna Vemvetsou
- Department of Intensive Care, 'Papageorgiou' Hospital, Thessaloniki, Greece
| | | | | | - Elisabeth Paramythiotou
- 2nd Department of Intensive Care, School of Medicine, National and Kapodistrian University of Athens, 'Attikon' Hospital, Athens, Greece
| | - Efstathia Potamianou
- 1st Department of Respiratory Medicine, Intensive Care Unit, School of Medicine, National and Kapodistrian University of Athens, 'Sotiria' Hospital, Athens, Greece
| | - Kyriakos Ntorlis
- Department of Intensive Care, 'Konstantopouleio' Hospital, Athens, Greece
| | - Angeliki Kanavou
- Department of Intensive Care, 'Thriassio' Hospital, Elefsina, Greece
| | - Georgios Nakos
- Department of Intensive Care, 'Henry Dunant' Hospital Center, Athens, Greece
| | - Eleftheria Hassou
- Department of Intensive Care, 'Gennimatas' Hospital, Thessaloniki, Greece
| | - Helen Antoniadou
- Department of Intensive Care, 'Gennimatas' Hospital, Thessaloniki, Greece
| | - Ilias Karaiskos
- Hellenic Society of Antimicrobial Chemotherapy, Greece.,Hygeia General Hospital, Athens, Greece
| | | | - Apostolos Armaganidis
- 2nd Department of Intensive Care, School of Medicine, National and Kapodistrian University of Athens, 'Attikon' Hospital, Athens, Greece
| | - Ioannis Pnevmatikos
- Department of Intensive Care, Democritus University of Thrace, Alexandroupolis University Hospital, Alexandroupolis, Greece
| | | | - Spyros Zakynthinos
- 1st Department of Intensive Care, School of Medicine, National and Kapodistrian University of Athens, 'Evangelismos' Hospital, Athens, Greece
| | - Garyfallia Poulakou
- Hellenic Society of Antimicrobial Chemotherapy, Greece.,School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Helen Giamarellou
- Hellenic Society of Antimicrobial Chemotherapy, Greece.,Hygeia General Hospital, Athens, Greece
| |
Collapse
|
39
|
Antimicrobial Dose Reduction in Continuous Renal Replacement Therapy: Myth or Real Need? A Practical Approach for Guiding Dose Optimization of Novel Antibiotics. Clin Pharmacokinet 2021; 60:1271-1289. [PMID: 34125420 PMCID: PMC8505328 DOI: 10.1007/s40262-021-01040-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury represents a common complication in critically ill patients affected by septic shock and in many cases continuous renal replacement therapy (CRRT) may be required. In this scenario, antimicrobial dose optimization is highly challenging as the extracorporeal circuit may cause several pharmacokinetic alterations, which add up to volume of distribution and clearance variations resulting from sepsis. Variations in CRRT settings (i.e. modality of solute removal, type of filter material, blood flow rate and effluent flow rate), coupled with the presence of residual and/or recovering renal function, may cause dynamic variations in the clearance of hydrophilic antimicrobials. This means that dose reduction may not always be needed. Nowadays, the lack of pharmacokinetic data for novel antimicrobials during CRRT limits evidence-based dose recommendations for critically ill patients in this setting, thus making available evidence hardly applicable in real-world scenarios. This review aims to summarize the major determinants involved in antimicrobial clearance, and the available pharmacokinetic studies performed during CRRT involving novel antibiotics used for the management of multidrug-resistant Gram-positive and Gram-negative infections (namely ceftolozane–tazobactam, ceftazidime–avibactam, cefiderocol, imipenem–relebactam, meropenem–vaborbactam, ceftaroline, ceftobiprole, dalbavancin, and fosfomycin), providing a practical approach in guiding dose optimization in this special population.
Collapse
|
40
|
Tan WW, Watt KM, Boakye-Agyeman F, Cohen-Wolkowiez M, Mok YH, Yung CF, Chan YH. Optimal Dosing of Meropenem in a Small Cohort of Critically Ill Children Receiving Continuous Renal Replacement Therapy. J Clin Pharmacol 2021; 61:744-754. [PMID: 33314163 PMCID: PMC8089047 DOI: 10.1002/jcph.1798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 11/10/2022]
Abstract
Severe sepsis is an important cause of mortality and morbidity in critically ill children. Meropenem is a broad-spectrum antibiotic commonly used to treat sepsis. Current meropenem dosage recommendations for children on continuous renal replacement therapy are extrapolated from pharmacokinetic (PK) studies done in adults. Our study aims to determine the optimal dosing in critically ill septic children receiving continuous renal replacement therapy. A prospective single-center PK study was performed in 9 children in the intensive care unit on continuous renal replacement therapy. Meropenem concentrations were measured from blood and effluent fluid samples. A population PK model was developed using nonlinear mixed-effects modeling software (NONMEM, AstraZeneca UK Ltd, Cheshire, UK). Monte Carlo simulations were performed. The PK/pharmacodynamic target aimed for plasma concentrations above minimum inhibitory concentration of 4 mg/L for 100% of dosing interval (100%ƒT>MIC ). A 2-compartment model best characterized meropenem PK. Mean (range) clearance and elimination half-life was 0.091 L/h/kg (0.04-0.157) and 3.9 hours (2.1-7.5), respectively. Dosing of 40 mg/kg/dose every 12 hours over 30 minutes achieved PK/PD target in only 32% while 20 mg/kg every 8 hours over 4 hours or 40 mg/kg every 8 hours over 2 hours achieved 100% ƒT>MIC target for at least 90% of simulated patients.
Collapse
Affiliation(s)
- Wei Wei Tan
- Department of Pharmacy, KK Women's and Children's Hospital, Singapore, Singapore
| | - Kevin M Watt
- Pharmacometrics Center, Duke Clinical Research Institute (DCRI), Durham, North Carolina, USA
| | - Felix Boakye-Agyeman
- Integrated Drug Development, Certara Strategic Consulting, Certara USA, Inc. 100 Overlook Center, Princeton, New Jersey, USA
| | - Michael Cohen-Wolkowiez
- Pharmacometrics Center, Duke Clinical Research Institute (DCRI), Durham, North Carolina, USA
| | - Yee Hui Mok
- Department of Paediatric Subspecialties, Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore, Singapore
| | - Chee Fu Yung
- Department of Paediatric Medicine, Infectious Disease Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Yoke Hwee Chan
- Department of Paediatric Subspecialties, Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
41
|
Gatti M, Pea F. Pharmacokinetic/pharmacodynamic target attainment in critically ill renal patients on antimicrobial usage: focus on novel beta-lactams and beta lactams/beta-lactamase inhibitors. Expert Rev Clin Pharmacol 2021; 14:583-599. [PMID: 33687300 DOI: 10.1080/17512433.2021.1901574] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Several novel beta-lactams (BLs) and/or beta lactams/beta-lactamase inhibitors (BL/BLIs) have been recently developed for the management of multidrug-resistant bacterial infections. Data concerning dose optimization in critically ill patients with altered renal function are scanty. AREAS COVERED This article provides a critical reappraisal of pharmacokinetic and clinical issues emerged with novel BLs and/or BL/BLIs in renal critically ill patients. Clinical and pharmacokinetic studies published in English until December 2020 were searched on the PubMed-MEDLINE database. EXPERT OPINION Several issues emerged with the use of novel BLs and/or BL/BLIs in critically ill renal patients. Suboptimal clinical response rate with ceftazidime-avibactam and ceftolozane-tazobactam was reported in phase II-III trials in patients with moderate kidney injury; data on patients undergoing renal replacement therapy are limited to some case reports; dose adjustment in augmented renal clearance is provided only for cefiderocol. Implementation of altered dosing strategies (prolonged infusion and/or higher dosage) coupled with adaptive real-time therapeutic drug monitoring could represent the most effective approach in warranting optimal pharmacokinetic/pharmacodynamic targets with novel BLs and/or BL/BLIs in challenging scenarios, thus minimizing the risk of clinical failure and/or of resistance selection.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,SSD Clinical Pharmacology, University Hospital IRCCS Policlinico Sant'Orsola, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,SSD Clinical Pharmacology, University Hospital IRCCS Policlinico Sant'Orsola, Bologna, Italy
| |
Collapse
|
42
|
El-Haffaf I, Caissy JA, Marsot A. Piperacillin-Tazobactam in Intensive Care Units: A Review of Population Pharmacokinetic Analyses. Clin Pharmacokinet 2021; 60:855-875. [PMID: 33876381 DOI: 10.1007/s40262-021-01013-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 12/15/2022]
Abstract
Piperacillin-tazobactam is a potent β-lactam/β-lactamase inhibitor antibiotic commonly prescribed in the intensive care unit setting. Admitted patients often show large variability in treatment response due to multiple pathophysiological changes present in this population that alter the drug's pharmacokinetics. This review summarizes the population pharmacokinetic models developed for piperacillin-tazobactam and provides comprehensive data on current dosing strategies while identifying significant covariates in critically ill patients. A literature search on the PubMed database was conducted, from its inception to July 2020. Relevant articles were retained if they met the defined inclusion/exclusion criteria. A total of ten studies, published between 2009 and 2020, were eligible. One- and two-compartment models were used in two and eight studies, respectively. The lowest estimated piperacillin clearance value was 3.12 L/h, and the highest value was 19.9 L/h. The estimations for volume of distribution varied between 11.2 and 41.2 L. Tazobactam clearance values ranged between 5.1 and 6.78 L/h, and tazobactam volume of distribution values ranged between 17.5 and 76.1 L. The most frequent covariates were creatinine clearance and body weight, each present in four studies. Almost all studies used an exponential approach for the interindividual variability. The highest variability was observed in piperacillin central volume of distribution, at a value of 75.0%. Simulations showed that continuous or extended infusion methods performed better than intermittent administration to achieve appropriate pharmacodynamic targets. This review synthesizes important pharmacokinetic elements for piperacillin-tazobactam in an intensive care unit setting. This will help clinicians better understand changes in the drug's pharmacokinetic parameters in this specific population.
Collapse
Affiliation(s)
- Ibrahim El-Haffaf
- Faculty of Pharmacy, Université de Montréal, Pavillon Jean-Coutu, 2940 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada. .,Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada.
| | - Jean-Alexandre Caissy
- Faculty of Pharmacy, Université de Montréal, Pavillon Jean-Coutu, 2940 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada.,Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Amélie Marsot
- Faculty of Pharmacy, Université de Montréal, Pavillon Jean-Coutu, 2940 Chemin de Polytechnique, Montreal, QC, H3T 1J4, Canada.,Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada.,Centre de recherche, CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
43
|
[S3 Guideline Sepsis-prevention, diagnosis, therapy, and aftercare : Long version]. Med Klin Intensivmed Notfmed 2021; 115:37-109. [PMID: 32356041 DOI: 10.1007/s00063-020-00685-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Shahrami B, Sharif M, Sefidani Forough A, Najmeddin F, Arabzadeh AA, Mojtahedzadeh M. Antibiotic therapy in sepsis: No next time for a second chance! J Clin Pharm Ther 2021; 46:872-876. [PMID: 33710622 DOI: 10.1111/jcpt.13403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 12/27/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Sepsis is a life-threatening organ dysfunction associated with a high rate of morbidity and mortality. Appropriate antibiotic therapy remains the cornerstone of sepsis and septic shock management. COMMENT Although the early initiation of antimicrobial agents in the treatment of sepsis is widely acknowledged, the selection and adjustment to optimal dosage can be equally important. Since significant pathophysiological changes in the critically ill patients lead to altered pharmacokinetics of antibiotics, early consideration of pharmacokinetic/pharmacodynamic (PK/PD) properties is necessary for optimal antibiotic dosing in sepsis and should be integrated in practice. WHAT IS NEW AND CONCLUSION Where possible, an individualized antibiotic dosing approach through the application of therapeutic drug monitoring (TDM) service should replace the conventional dosing in critically ill patients with sepsis. Finally, antimicrobial stewardship can help improve clinical outcomes.
Collapse
Affiliation(s)
- Bita Shahrami
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharif
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Sefidani Forough
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Farhad Najmeddin
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Giannella M, Malosso P, Scudeller L, Bussini L, Rebuffi C, Gatti M, Bartoletti M, Ianniruberto S, Pancaldi L, Pascale R, Tedeschi S, Viale P, Paul M. Quality of care indicators in the MAnageMent of BlOOdstream infections caused by Enterobacteriaceae (MAMBOO-E study): state of the art and research agenda. Int J Antimicrob Agents 2021; 57:106320. [PMID: 33716177 DOI: 10.1016/j.ijantimicag.2021.106320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/27/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The impact on outcome of five interventions was reviewed in order to investigate the state of the art for management of Enterobacteriaceae bloodstream infection (E-BSI). METHODS We searched for randomised controlled trials (RCTs) and observational studies published from January 2008 to March 2019 in PubMed, EMBASE and Cochrane Library. Populations consisted of patients with E-BSI. Interventions were as follows: (i) performance of imaging to assess BSI source and/or complications; (ii) follow-up blood cultures (FU-BCs); (iii) use of loading dose followed by extended/continuous infusion (E/CI) of β-lactams; (iv) duration of treatment (short- versus long-term); and (v) infectious diseases (ID) consultation. Patients without intervention were considered as controls. The main outcome was 30-day mortality. RoB 2.0 and ROBINS-I tools were used for bias assessment. RESULTS No study was eligible for interventions i, iii and v. For FU-BCs, one observational study including 901 patients with E-BSI was considered. Intervention consisted of repeating BCs within 2-7 days after index BCs. All-cause 30-day mortality was 14.2% (35/247) in the intervention group versus 14.7% (96/654) in the control group. For short treatment duration, two RCTs and six observational studies were included comprising 4473 patients with E-BSI. All-cause mortality was similar in the short and long treatment groups (OR = 1.10, 95% CI 0.83-1.44). CONCLUSION Of the assessed interventions, only short treatment duration in non-immunocompromised patients with E-BSI is supported by current data. Studies investigating the use of systematic imaging, FU-BCs, E/CI β-lactams and ID consultation in patients with E-BSI are needed.
Collapse
Affiliation(s)
- Maddalena Giannella
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Pietro Malosso
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Luigia Scudeller
- Clinical Trials Team, Scientific Direction, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Linda Bussini
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Chiara Rebuffi
- Scientific documentation center - Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Milo Gatti
- Pharmacology Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Michele Bartoletti
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Stefano Ianniruberto
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Livia Pancaldi
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Renato Pascale
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy.
| | - Sara Tedeschi
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, University of Bologna, Bologna, Italy
| | - Mical Paul
- Infectious Diseases Unit, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
46
|
Russo A, Berruti M, Giacobbe DR, Vena A, Bassetti M. Recent molecules in the treatment of severe infections caused by ESBL-producing bacteria. Expert Rev Anti Infect Ther 2021; 19:983-991. [PMID: 33596162 DOI: 10.1080/14787210.2021.1874918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The widespread increase in resistance to β-lactam antibiotics in Enterobacterales currently represents one of the main threats to human health worldwide. The primary mechanisms of resistance are the production of β-lactamase enzymes that are able to hydrolyze β-lactams.Areas covered: we summarize the most recent advances regarding the main characteristics and spectrum of activity of new available antibiotics and strategies for the treatment of ESBL-producing Enterobacterales infections.Expert opinion: ESBL-producing strains are recognized as a worldwide challenge in the treatment of both hospital- and community-acquired infections. Data from the literature point out the high mortality associated with severe infections due to ESBL strains, especially in patients who developed severe sepsis or septic shock, together with the importance of the source of infection and indicators of severity, as determinants of the patient's outcome. Carbapenems are currently considered the first-line therapy, although the diffusion of resistant strains is an evolving problem and is mandatory the introduction in clinical practice of new drug regimens and treatment strategies, based on clinical data, local epidemiology, and microbiology. As a possible carbapenem-sparing strategy, ceftolozane-tazobactam and ceftazidime-avibactam appear the best-available carbapenem-sparing therapies. The definitive role of new drugs should be definitively assessed.
Collapse
Affiliation(s)
- Alessandro Russo
- Policlinico Umberto I," Sapienza"University of Rome, Rome, Italy
| | - Marco Berruti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Antonio Vena
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
47
|
Gatti M, Pea F. Should the Clinical Pharmacologist Play a Role in the Multidisciplinary Team Managing Severe Necrotizing Soft-Tissue Infections? Clin Pharmacokinet 2021; 60:403-407. [PMID: 33515203 DOI: 10.1007/s40262-021-00986-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Milo Gatti
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 48, Via Irnerio, 40126, Bologna, Italy.
| | - Federico Pea
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 48, Via Irnerio, 40126, Bologna, Italy.,University Hospital IRCCS, Policlinico Sant'Orsola, Bologna, Italy
| |
Collapse
|
48
|
Gatti M, Giannella M, Raschi E, Viale P, De Ponti F. Ceftolozane/tazobactam exposure in critically ill patients undergoing continuous renal replacement therapy: a PK/PD approach to tailor dosing. J Antimicrob Chemother 2021; 76:199-205. [PMID: 33057628 DOI: 10.1093/jac/dkaa416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES To investigate the influence of continuous renal replacement therapy (CRRT) intensity on the clearance of ceftolozane/tazobactam in critical care patients, and to evaluate if the reported doses would achieve an optimal pharmacokinetic/pharmacodynamic (PK/PD) target against Pseudomonas aeruginosa exhibiting different MICs. METHODS The MEDLINE-PubMed database was searched from inception to January 2020 to retrieve observational studies or case reports investigating the PK behaviour of ceftolozane/tazobactam during CRRT. Relevant CRRT settings and PK variables were extracted, and the influence of CRRT intensity on ceftolozane/tazobactam total clearance (CLtot) was determined by simple linear regression. The optimal PK/PD target for the reported doses was deemed to be achieved when ceftolozane trough concentrations (Cmin) were above the MIC (less intensive target) or four times the MIC (intensive target) for P. aeruginosa. RESULTS Data from six studies including 11 patients (mean age 56.6 years) were analysed. Mean blood flow rate and effluent flow rate were 161.8 mL/min and 2383.4 mL/h, respectively. Ceftolozane Cmin ranged from 25.8 to 79.4 mg/L. A significant correlation was found for ceftolozane CLtot and effluent flow rate (P = 0.027). The intensive PK/PD target was achieved by 100% and 50% of the reported doses for MIC, respectively, up to 4 and 8 mg/L. CONCLUSIONS A significant correlation between effluent flow rate and ceftolozane clearance during CRRT could be identified. Higher dosing regimens coupled with continuous/extended infusion may be required in the case of higher CRRT intensity, deep-seated infections or poorly susceptible isolates. Larger studies assessing ceftolozane PK in different CRRT settings are warranted.
Collapse
Affiliation(s)
- Milo Gatti
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Emanuel Raschi
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Policlinico Sant'Orsola Malpighi, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Fabrizio De Ponti
- Pharmacology Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
49
|
de Vroom SL, van Daalen FV, Zieck SE, Mathôt RAA, van Hest RM, Geerlings SE. Does dose reduction of renally cleared antibiotics in patients with impaired renal function lead to adequate drug exposure? A systematic review. Clin Microbiol Infect 2020; 27:352-363. [PMID: 33290864 DOI: 10.1016/j.cmi.2020.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/23/2020] [Accepted: 11/26/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is inconsistency between many guidelines in the recommended dose reduction of renally cleared antibiotics in patients with impaired renal function. OBJECTIVES This systematic review summarizes the available evidence on the adequacy of the recommended dose reduction in terms of achieving sufficient antibiotic drug exposure or pharmacokinetic/pharmacodynamic target attainment after treatment with these reduced doses. DATA SOURCES We systematically searched Ovid Medline and Embase from inception (respectively 1946 and 1947) through July 2019. STUDY ELIGIBILITY CRITERIA All studies reporting antibiotic drug exposure and/or pharmacokinetic/pharmacodynamic (PK/PD) target attainment after dose reduction of antibiotics in patients with impaired renal function. PARTICIPANTS Adult patients with or without infections. INTERVENTIONS Administration of reduced doses of antibiotics (orally, intravenously or intramuscularly). METHODS The reduced dose was considered adequate when the most relevant parameters of drug exposure or PK/PD target attainment in patients with impaired renal function were within a range of 80% to 125% of that patients with adequate renal function receiving a regular dose (reference) or when PK/PD target attainment was attained in at least 90% of the patients with impaired renal function, regardless of the lack of a reference group. RESULTS Twenty-seven of the 4202 identified studies were included. The quality of 15 of 27 studies was fair, and most studies were of β-lactams (12/27). Best evidence was available for meropenem: four studies were included, of which two studies were of good quality. Drug exposure for meropenem is 158% to 286% higher in patients with impaired renal function receiving reduced doses compared to patients with adequate renal function receiving regular doses. For all other antibiotics, a maximum of one good-quality study could be identified. CONCLUSIONS No good-quality evidence on the recommended dose reduction of renally cleared antibiotics in patients with impaired renal function is present, with the exception of meropenem.
Collapse
Affiliation(s)
- Suzanne L de Vroom
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Infection and Immunity (AI&II), Amsterdam, the Netherlands.
| | - Frederike V van Daalen
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Infection and Immunity (AI&II), Amsterdam, the Netherlands
| | - Saskia E Zieck
- Department of Hospital Pharmacy, Division of Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron A A Mathôt
- Department of Hospital Pharmacy, Division of Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Reinier M van Hest
- Department of Hospital Pharmacy, Division of Clinical Pharmacology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Suzanne E Geerlings
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Infection and Immunity (AI&II), Amsterdam, the Netherlands.
| |
Collapse
|
50
|
Pisano M, Allievi N, Gurusamy K, Borzellino G, Cimbanassi S, Boerna D, Coccolini F, Tufo A, Di Martino M, Leung J, Sartelli M, Ceresoli M, Maier RV, Poiasina E, De Angelis N, Magnone S, Fugazzola P, Paolillo C, Coimbra R, Di Saverio S, De Simone B, Weber DG, Sakakushev BE, Lucianetti A, Kirkpatrick AW, Fraga GP, Wani I, Biffl WL, Chiara O, Abu-Zidan F, Moore EE, Leppäniemi A, Kluger Y, Catena F, Ansaloni L. 2020 World Society of Emergency Surgery updated guidelines for the diagnosis and treatment of acute calculus cholecystitis. World J Emerg Surg 2020; 15:61. [PMID: 33153472 PMCID: PMC7643471 DOI: 10.1186/s13017-020-00336-x] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute calculus cholecystitis (ACC) has a high incidence in the general population. The presence of several areas of uncertainty, along with the availability of new evidence, prompted the current update of the 2016 WSES (World Society of Emergency Surgery) Guidelines on ACC. MATERIALS AND METHODS The WSES president appointed four members as a scientific secretariat, four members as an organization committee and four members as a scientific committee, choosing them from the expert affiliates of WSES. Relevant key questions were constructed, and the task force produced drafts of each section based on the best scientific evidence from PubMed and EMBASE Library; recommendations were developed in order to answer these key questions. The quality of evidence and strength of recommendations were reviewed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria (see https://www.gradeworkinggroup.org/ ). All the statements were presented, discussed and voted upon during the Consensus Conference at the 6th World Congress of the World Society of Emergency Surgery held in Nijmegen (NL) in May 2019. A revised version of the statements was voted upon via an online questionnaire until consensus was reached. RESULTS The pivotal role of surgery is confirmed, including in high-risk patients. When compared with the WSES 2016 guidelines, the role of gallbladder drainage is reduced, despite the considerable technical improvements available. Early laparoscopic cholecystectomy (ELC) should be the standard of care whenever possible, even in subgroups of patients who are considered fragile, such as the elderly; those with cardiac disease, renal disease and cirrhosis; or those who are generally at high risk for surgery. Subtotal cholecystectomy is safe and represents a valuable option in cases of difficult gallbladder removal. CONCLUSIONS, KNOWLEDGE GAPS AND RESEARCH RECOMMENDATIONS ELC has a central role in the management of patients with ACC. The value of surgical treatment for high-risk patients should lead to a distinction between high-risk patients and patients who are not suitable for surgery. Further evidence on the role of clinical judgement and the use of clinical scores as adjunctive tools to guide treatment of high-risk patients and patients who are not suitable for surgery is required. The development of local policies for safe laparoscopic cholecystectomy is recommended.
Collapse
Affiliation(s)
- Michele Pisano
- General Surgery I, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Niccolò Allievi
- General Surgery I, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Kurinchi Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
| | | | | | - Djamila Boerna
- Department of Surgery, St. Antonius Ziekenhuis, Nieuwegein, Netherlands
| | - Federico Coccolini
- General Emergency and Trauma Surgery, Pisa University Hospital, Pisa, Italy
| | - Andrea Tufo
- HPB and Liver Transplant Surgery, Royal Free Hospital, London, UK
| | | | - Jeffrey Leung
- Division of Surgery and Interventional Science, University College London, London, UK
| | | | - Marco Ceresoli
- Department of General and Emergency Surgery, University of Milano-Bicocca, Milan, Italy
| | - Ronald V. Maier
- Department of Surgery, Harborview Medical Centre, University of Washington, Seattle, USA
| | - Elia Poiasina
- General Surgery I, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Nicola De Angelis
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital and University Paris-Est, Creteil, France
| | - Stefano Magnone
- General Surgery I, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Paola Fugazzola
- General and Emergency Surgery, Bufalini Hospital, Cesena, Italy
| | - Ciro Paolillo
- Emergency Room Brescia Spedali Civili General Hospital, Brescia, Italy
| | - Raul Coimbra
- Comparative Effectiveness and Clinical Outcomes Research Center-CECORC, Riverside University Health System Medical Center, Moreno Valley, CA USA
| | | | - Belinda De Simone
- Department of General Surgery, Azienda USL-IRCSS di Reggio Emilia, Guastalla Hospital, Guastalla, Italy
| | - Dieter G. Weber
- Department of General Surgery Royal Perth Hospital, The University of Western Australia, Perth, Australia
| | - Boris E. Sakakushev
- Research Institute at Medical University Plovdiv/University Hospital St George, Plovdiv, Bulgaria
| | | | - Andrew W. Kirkpatrick
- General, Acute Care, Abdominal Wall Reconstruction, and Trauma Surgery, Foothills Medical Centre, Calgary, AB Canada
| | - Gustavo P. Fraga
- Division of Trauma Surgery, School of Medical Sciences, University of Campinas, Campinas, SP Brazil
| | - Imitaz Wani
- Department of Surgery, Sheri-Kashmir Institute of Medical Sciences, Srinagar, India
| | | | - Osvaldo Chiara
- General Surgery Trauma Team ASST-GOM Niguarda, Milan, Italy
| | - Fikri Abu-Zidan
- Department of Surgery, College of Medicine, UAE University, Al Ain, UAE
| | - Ernest E. Moore
- Ernest E Moore Shock Trauma Center at Denver Health, Denver, CO USA
| | - Ari Leppäniemi
- Abdominal Center Helsinki University Hospital, Helsinki, Finland
| | - Yoram Kluger
- Department of General Surgery, the Rambam Academic Hospital, Haifa, Israel
| | - Fausto Catena
- Emergency Surgery, University Parma Hospital, Parma, Italy
| | - Luca Ansaloni
- General and Emergency Surgery, Bufalini Hospital, Cesena, Italy
| |
Collapse
|