1
|
Pancrazi F, De Bei O, Lavecchia di Tocco F, Marchetti M, Campanini B, Cannistraro S, Bettati S, Bizzarri AR. Proline isomerization modulates the bacterial IsdB/hemoglobin interaction: an atomic force spectroscopy study. DISCOVER NANO 2025; 20:20. [PMID: 39918647 PMCID: PMC11805746 DOI: 10.1186/s11671-025-04182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Iron surface determinant B (IsdB), a Staphylococcus aureus (SA) surface protein involved in both heme iron acquisition from host hemoglobin (Hb) and bacterial adhesion, is a proven virulence factor that can be targeted for the design of antibacterial molecules or vaccines. Recent single-molecule experiments on IsdB interaction with cell adhesion factors revealed an increase of the complex lifetime upon applying a stronger force (catch bond); this was suggested to favor host invasion under shear stress. An increased bond strength under mechanical stress was also detected by Atomic Force Spectroscopy (AFS) for the interaction between IsdB and Hb. Structural information on the underlying molecular mechanisms at the basis of this behaviour in IsdB-based complexes is missing. Here, we show that the single point mutation of Pro173 in the IsdB domain responsible for Hb binding, which weakens the IsdB:Hb interaction without hampering heme extraction, totally abolishes the previously observed behavior. Remarkably, Pro173 does not directly interact with Hb, but undergoes cis-trans isomerization upon IsdB:Hb complex formation, coupled to folding-upon binding of the corresponding protein loop. Our results suggest that these events might represent the molecular basis for the stress-dependence of bond strength observed for wild type IsdB, shedding light on the mechanisms that govern the capability of SA to infect host cells.
Collapse
Affiliation(s)
- Francesca Pancrazi
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Omar De Bei
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | | | - Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
- Institute of Biophysics, National Research Council, via G. Moruzzi, 56124, Pisa, Italy.
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
2
|
Mahoney BJ, Lyman LR, Ford J, Soule J, Cheung NA, Goring AK, Ellis-Guardiola K, Collazo MJ, Cascio D, Ton-That H, Schmitt MP, Clubb RT. Molecular basis of hemoglobin binding and heme removal in Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 2025; 122:e2411833122. [PMID: 39739808 PMCID: PMC11725911 DOI: 10.1073/pnas.2411833122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. Corynebacterium diphtheriae causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that C. diphtheriae selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits. Quantitative growth and heme release measurements are compatible with C. diphtheriae acquiring heme passively released from hemoglobin's β subunits. We propose a model in which HbpA and heme-binding receptors collectively function on the C. diphtheriae surface to capture hemoglobin and its spontaneously released heme. Acquisition mechanisms that exploit the propensity of hemoglobin's β subunit to release heme likely represent a common strategy used by bacterial pathogens to obtain iron during infections.
Collapse
Affiliation(s)
- Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Lindsey R. Lyman
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD20903
| | - Jordan Ford
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jess Soule
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Nicole A. Cheung
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Kat Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Michael J. Collazo
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD20903
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
3
|
Mahoney BJ, Goring AK, Wang Y, Dasika P, Zhou A, Grossbard E, Cascio D, Loo JA, Clubb RT. Development and atomic structure of a new fluorescence-based sensor to probe heme transfer in bacterial pathogens. J Inorg Biochem 2023; 249:112368. [PMID: 37729854 DOI: 10.1016/j.jinorgbio.2023.112368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Heme is the most abundant source of iron in the human body and is actively scavenged by bacterial pathogens during infections. Corynebacterium diphtheriae and other species of actinobacteria scavenge heme using cell wall associated and secreted proteins that contain Conserved Region (CR) domains. Here we report the development of a fluorescent sensor to measure heme transfer from the C-terminal CR domain within the HtaA protein (CR2) to other hemoproteins within the heme-uptake system. The sensor contains the CR2 domain inserted into the β2 to β3 turn of the Enhanced Green Fluorescent Protein (EGFP). A 2.45 Å crystal structure reveals the basis of heme binding to the CR2 domain via iron-tyrosyl coordination and shares conserved structural features with CR domains present in Corynebacterium glutamicum. The structure and small angle X-ray scattering experiments are consistent with the sensor adopting a V-shaped structure that exhibits only small fluctuations in inter-domain positioning. We demonstrate heme transfer from the sensor to the CR domains located within the HtaA or HtaB proteins in the heme-uptake system as measured by a ∼ 60% increase in sensor fluorescence and native mass spectrometry.
Collapse
Affiliation(s)
- Brendan J Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Andrew K Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Yueying Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Poojita Dasika
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Anqi Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Emmitt Grossbard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Wang M, Wang Y, Wang M, Liu M, Cheng A. Heme acquisition and tolerance in Gram-positive model bacteria: An orchestrated balance. Heliyon 2023; 9:e18233. [PMID: 37501967 PMCID: PMC10368836 DOI: 10.1016/j.heliyon.2023.e18233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
As a nutrient, heme is important for various cellular processes of organism. Bacteria can obtain heme via heme biosynthesis or/and uptake of exogenous heme from the host. On the other side, absorption of excess heme is cytotoxic to bacteria. Thus, bacteria have developed systems to relieve heme toxicity and contribute to the maintenance of heme homeostasis. In the past decades, the mechanisms underlying heme acquisition and tolerance have been well studied in Gram-positive model bacteria, such as Staphylococcus, Streptococcus and other Gram-positive bacteria. Here, we review the elaborate mechanisms by which these bacteria acquire heme and resist heme toxicity. Since both the heme utilization system and the heme tolerance system contribute to bacterial virulence, this review is not only helpful for a comprehensive understanding of the heme homeostasis mechanism in Gram-positive bacteria but also provides a theoretical basis for the development of antimicrobial agents.
Collapse
Affiliation(s)
- Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Institute of Livestock Research, Mianyang 621023, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Clayton J, Ellis-Guardiola K, Mahoney BJ, Soule J, Clubb RT, Wereszczynski J. Directed inter-domain motions enable the IsdH Staphylococcus aureus receptor to rapidly extract heme from human hemoglobin. J Mol Biol 2022; 434:167623. [DOI: 10.1016/j.jmb.2022.167623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/07/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022]
|
6
|
Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev 2022; 46:6506450. [PMID: 35026033 DOI: 10.1093/femsre/fuac002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.
Collapse
Affiliation(s)
- Aileen Krüger
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Marc Keppel
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| |
Collapse
|
7
|
Traore ES, Li J, Chiura T, Geng J, Sachla AJ, Yoshimoto F, Eichenbaum Z, Davis I, Mak PJ, Liu A. Heme Binding to HupZ with a C-Terminal Tag from Group A Streptococcus. Molecules 2021; 26:549. [PMID: 33494451 PMCID: PMC7865249 DOI: 10.3390/molecules26030549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022] Open
Abstract
HupZ is an expected heme degrading enzyme in the heme acquisition and utilization pathway in Group A Streptococcus. The isolated HupZ protein containing a C-terminal V5-His6 tag exhibits a weak heme degradation activity. Here, we revisited and characterized the HupZ-V5-His6 protein via biochemical, mutagenesis, protein quaternary structure, UV-vis, EPR, and resonance Raman spectroscopies. The results show that the ferric heme-protein complex did not display an expected ferric EPR signal and that heme binding to HupZ triggered the formation of higher oligomeric states. We found that heme binding to HupZ was an O2-dependent process. The single histidine residue in the HupZ sequence, His111, did not bind to the ferric heme, nor was it involved with the weak heme-degradation activity. Our results do not favor the heme oxygenase assignment because of the slow binding of heme and the newly discovered association of the weak heme degradation activity with the His6-tag. Altogether, the data suggest that the protein binds heme by its His6-tag, resulting in a heme-induced higher-order oligomeric structure and heme stacking. This work emphasizes the importance of considering exogenous tags when interpreting experimental observations during the study of heme utilization proteins.
Collapse
Affiliation(s)
- Ephrahime S. Traore
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Jiasong Li
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Tapiwa Chiura
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA;
| | - Jiafeng Geng
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| | - Ankita J. Sachla
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; (A.J.S.); (Z.E.)
| | - Francis Yoshimoto
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; (A.J.S.); (Z.E.)
| | - Ian Davis
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| | - Piotr J. Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO 63103, USA;
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (E.S.T.); (J.L.); (F.Y.); (I.D.)
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA;
| |
Collapse
|
8
|
Ellis-Guardiola K, Mahoney BJ, Clubb RT. NEAr Transporter (NEAT) Domains: Unique Surface Displayed Heme Chaperones That Enable Gram-Positive Bacteria to Capture Heme-Iron From Hemoglobin. Front Microbiol 2021; 11:607679. [PMID: 33488548 PMCID: PMC7815599 DOI: 10.3389/fmicb.2020.607679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Iron is an important micronutrient that is required by bacteria to proliferate and to cause disease. Many bacterial pathogens forage iron from human hemoglobin (Hb) during infections, which contains this metal within heme (iron-protoporphyrin IX). Several clinically important pathogenic species within the Firmicutes phylum scavenge heme using surface-displayed or secreted NEAr Transporter (NEAT) domains. In this review, we discuss how these versatile proteins function in the Staphylococcus aureus Iron-regulated surface determinant system that scavenges heme-iron from Hb. S. aureus NEAT domains function as either Hb receptors or as heme-binding chaperones. In vitro studies have shown that heme-binding NEAT domains can rapidly exchange heme amongst one another via transiently forming transfer complexes, leading to the interesting hypothesis that they may form a protein-wire within the peptidoglycan layer through which heme flows from the microbial surface to the membrane. In Hb receptors, recent studies have revealed how dedicated heme- and Hb-binding NEAT domains function synergistically to extract Hb's heme molecules, and how receptor binding to the Hb-haptoglobin complex may block its clearance by macrophages, prolonging microbial access to Hb's iron. The functions of NEAT domains in other Gram-positive bacteria are also reviewed.
Collapse
Affiliation(s)
- Ken Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Progress towards the Development of a NEAT Vaccine for Anthrax II: Immunogen Specificity and Alum Effectiveness in an Inhalational Model. Infect Immun 2020; 88:IAI.00082-20. [PMID: 32393506 DOI: 10.1128/iai.00082-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Bacillus anthracis is the causative agent of anthrax disease, presents with high mortality, and has been at the center of bioweapon efforts. The only currently U.S. FDA-approved vaccine to prevent anthrax in humans is anthrax vaccine adsorbed (AVA), which is protective in several animal models and induces neutralizing antibodies against protective antigen (PA), the cell-binding component of anthrax toxin. However, AVA requires a five-course regimen to induce immunity, along with an annual booster, and is composed of undefined culture supernatants from a PA-secreting strain. In addition, it appears to be ineffective against strains that lack anthrax toxin. Here, we investigated a vaccine formulation consisting of recombinant proteins from a surface-localized heme transport system containing near-iron transporter (NEAT) domains and its efficacy as a vaccine for anthrax disease. The cocktail of five NEAT domains was protective against a lethal challenge of inhaled bacillus spores at 3 and 28 weeks after vaccination. The reduction of the formulation to three NEATs (IsdX1, IsdX2, and Bslk) was as effective as a five-NEAT domain cocktail. The adjuvant alum, approved for use in humans, was as protective as Freund's Adjuvant, and protective vaccination correlated with increased anti-NEAT antibody reactivity and reduced bacterial levels in organs. Finally, the passive transfer of anti-NEAT antisera reduced mortality and disease severity, suggesting the protective component is comprised of antibodies. Collectively, these results provide evidence that a vaccine based upon recombinant NEAT proteins should be considered in the development of a next-generation anthrax vaccine.
Collapse
|
10
|
Pietrocola G, Pellegrini A, Alfeo MJ, Marchese L, Foster TJ, Speziale P. The iron-regulated surface determinant B (IsdB) protein from Staphylococcus aureus acts as a receptor for the host protein vitronectin. J Biol Chem 2020; 295:10008-10022. [PMID: 32499371 DOI: 10.1074/jbc.ra120.013510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is an important bacterial pathogen that can cause a wide spectrum of diseases in humans and other animals. S. aureus expresses a variety of virulence factors that promote infection with this pathogen. These include cell-surface proteins that mediate adherence of the bacterial cells to host extracellular matrix components, such as fibronectin and fibrinogen. Here, using immunoblotting, ELISA, and surface plasmon resonance analysis, we report that the iron-regulated surface determinant B (IsdB) protein, besides being involved in heme transport, plays a novel role as a receptor for the plasma and extracellular matrix protein vitronectin (Vn). Vn-binding activity was expressed by staphylococcal strains grown under iron starvation conditions when Isd proteins are expressed. Recombinant IsdB bound Vn dose dependently and specifically. Both near-iron transporter motifs NEAT1 and NEAT2 of IsdB individually bound Vn in a saturable manner, with KD values in the range of 16-18 nm Binding of Vn to IsdB was specifically blocked by heparin and reduced at high ionic strength. Furthermore, IsdB-expressing bacterial cells bound significantly higher amounts of Vn from human plasma than did an isdB mutant. Adherence to and invasion of epithelial and endothelial cells by IsdB-expressing S. aureus cells was promoted by Vn, and an αvβ3 integrin-blocking mAb or cilengitide inhibited adherence and invasion by staphylococci, suggesting that Vn acts as a bridge between IsdB and host αvβ3 integrin.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Angelica Pellegrini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Mariangela J Alfeo
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Loredana Marchese
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Timothy J Foster
- Department of Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Marchetti M, De Bei O, Bettati S, Campanini B, Kovachka S, Gianquinto E, Spyrakis F, Ronda L. Iron Metabolism at the Interface between Host and Pathogen: From Nutritional Immunity to Antibacterial Development. Int J Mol Sci 2020; 21:E2145. [PMID: 32245010 PMCID: PMC7139808 DOI: 10.3390/ijms21062145] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
| | - Omar De Bei
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Stefano Bettati
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.D.B.); (B.C.)
| | - Sandra Kovachka
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.K.); (E.G.); (F.S.)
| | - Luca Ronda
- Interdepartmental Center Biopharmanet-TEC, University of Parma, 43124 Parma, Italy; (M.M.); (S.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Institute of Biophysics, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
12
|
Ellis-Guardiola K, Clayton J, Pham C, Mahoney BJ, Wereszczynski J, Clubb RT. The Staphylococcus aureus IsdH Receptor Forms a Dynamic Complex with Human Hemoglobin that Triggers Heme Release via Two Distinct Hot Spots. J Mol Biol 2020; 432:1064-1082. [PMID: 31881209 PMCID: PMC7309296 DOI: 10.1016/j.jmb.2019.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 02/02/2023]
Abstract
Iron is an essential nutrient that is actively acquired by bacterial pathogens during infections. Clinically important Staphylococcus aureus obtains iron by extracting heme from hemoglobin (Hb) using the closely related IsdB and IsdH surface receptors. In IsdH, extraction is mediated by a conserved tridomain unit that contains its second (N2) and third (N3) NEAT domains joined by a helical linker, called IsdHN2N3. Leveraging the crystal structure of the IsdHN2N3:Hb complex, we have probed the mechanism of heme capture using NMR, stopped-flow transfer kinetics measurements, and molecular dynamics (MD) simulations. NMR studies of the 220 kDa IsdHN2N3:Hb complex reveal that it is dynamic, with persistent interdomain motions enabling the linker and N3 domains in the receptor to transiently engage Hb to remove its heme. An alanine mutagenesis analysis reveals that two receptor subsites positioned ~20 Å apart trigger heme release by contacting Hb's F-helix. These subsites are located within the N3 and linker domains and appear to play distinct roles in stabilizing the heme transfer transition state. Linker domain contacts primarily function to destabilize Hb-heme interactions, thereby lowering ΔH‡, while contacts from the N3 subsite play a similar destabilizing role, but also form a bridge through which heme moves from Hb to the receptor. Interestingly, MD simulations suggest that within the transiently forming interface, both the F-helix and receptor bridge are in motion, dynamically sampling conformations that are suitable for heme transfer. Thus, IsdH triggers heme release from Hb via a flexible, low-affinity interface that forms fleetingly in solution.
Collapse
Affiliation(s)
- Ken Ellis-Guardiola
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph Clayton
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Clarissa Pham
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Brendan J. Mahoney
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Robert T. Clubb
- UCLA Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Gianquinto E, Moscetti I, De Bei O, Campanini B, Marchetti M, Luque FJ, Cannistraro S, Ronda L, Bizzarri AR, Spyrakis F, Bettati S. Interaction of human hemoglobin and semi-hemoglobins with the Staphylococcus aureus hemophore IsdB: a kinetic and mechanistic insight. Sci Rep 2019; 9:18629. [PMID: 31819099 PMCID: PMC6901573 DOI: 10.1038/s41598-019-54970-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
Among multidrug-resistant bacteria, methicillin-resistant Staphylococcus aureus is emerging as one of the most threatening pathogens. S. aureus exploits different mechanisms for its iron supply, but the preferred one is acquisition of organic iron through the expression of hemoglobin (Hb) receptors. One of these, IsdB, belonging to the Isd (Iron-Regulated Surface Determinant) system, was shown to be essential for bacterial growth and virulence. Therefore, interaction of IsdB with Hb represents a promising target for the rational design of a new class of antibacterial molecules. However, despite recent investigations, many structural and mechanistic details of complex formation and heme extraction process are still elusive. By combining site-directed mutagenesis, absorption spectroscopy, surface plasmon resonance and molecular dynamics simulations, we tackled most of the so far unanswered questions: (i) the exact complex stoichiometry, (ii) the microscopic kinetic rates of complex formation, (iii) the IsdB selectivity for binding to, and extracting heme from, α and β subunits of Hb, iv) the role of specific amino acid residues and structural regions in driving complex formation and heme transfer, and (v) the structural/dynamic effect played by the hemophore on Hb.
Collapse
Affiliation(s)
- Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy
| | - Ilaria Moscetti
- Department of Environmental and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Omar De Bei
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parma, 43124, Italy.,Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy
| | - Marialaura Marchetti
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy.,Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Santa Coloma de Gramenet, 08921, Spain
| | - Salvatore Cannistraro
- Department of Environmental and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy
| | - Luca Ronda
- Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy.,Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy.,Institute of Biophysics, National Research Council, Pisa, 56124, Italy
| | - Anna Rita Bizzarri
- Department of Environmental and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Turin, 10125, Italy.
| | - Stefano Bettati
- Interdepartment Center Biopharmanet-TEC, University of Parma, Parma, 43124, Italy. .,Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy. .,Institute of Biophysics, National Research Council, Pisa, 56124, Italy.
| |
Collapse
|
14
|
Mikkelsen JH, Runager K, Andersen CBF. The human protein haptoglobin inhibits IsdH-mediated heme-sequestering by Staphylococcus aureus. J Biol Chem 2019; 295:1781-1791. [PMID: 31819010 DOI: 10.1074/jbc.ra119.011612] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
Iron is an essential nutrient for all living organisms. To acquire iron, many pathogens have developed elaborate systems to steal it from their hosts. The iron acquisition system in the opportunistic pathogen Staphylococcus aureus comprises nine proteins, called iron-regulated surface determinants (Isds). The Isd components enable S. aureus to extract heme from hemoglobin (Hb), transport it into the bacterial cytoplasm, and ultimately release iron from the porphyrin ring. IsdB and IsdH act as hemoglobin receptors and are known to actively extract heme from extracellular Hb. To limit microbial pathogenicity during infection, host organisms attempt to restrict the availability of nutrient metals at the host-pathogen interface. The human acute phase protein haptoglobin (Hp) protects the host from oxidative damage by clearing hemoglobin that has leaked from red blood cells and also restricts the availability of extracellular Hb-bound iron to invading pathogens. To investigate whether Hp serves an additional role in nutritional immunity through a direct inhibition of IsdH-mediated iron acquisition, here we measured heme extraction from the Hp-Hb complex by UV-visible spectroscopy and determined the crystal structure of the Hp-Hb-IsdH complex at 2.9 Å resolution. We found that Hp strongly inhibits IsdH-mediated heme extraction and that Hp binding prevents local unfolding of the Hb heme pocket, leaving IsdH unable to wrest the heme from Hb. Furthermore, we noted that the Hp-Hb binding appears to trap IsdH in an initial state before heme transfer. Our findings provide insights into Hp-mediated IsdH inhibition and the dynamics of IsdH-mediated heme extraction.
Collapse
Affiliation(s)
- Jakob H Mikkelsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Kasper Runager
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
15
|
Latham RD, Torrado M, Atto B, Walshe JL, Wilson R, Guss JM, Mackay JP, Tristram S, Gell DA. A heme-binding protein produced by Haemophilus haemolyticus inhibits non-typeable Haemophilus influenzae. Mol Microbiol 2019; 113:381-398. [PMID: 31742788 DOI: 10.1111/mmi.14426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023]
Abstract
Commensal bacteria serve as an important line of defense against colonisation by opportunisitic pathogens, but the underlying molecular mechanisms remain poorly explored. Here, we show that strains of a commensal bacterium, Haemophilus haemolyticus, make hemophilin, a heme-binding protein that inhibits growth of the opportunistic pathogen, non-typeable Haemophilus influenzae (NTHi) in culture. We purified the NTHi-inhibitory protein from H. haemolyticus and identified the hemophilin gene using proteomics and a gene knockout. An x-ray crystal structure of recombinant hemophilin shows that the protein does not belong to any of the known heme-binding protein folds, suggesting that it evolved independently. Biochemical characterisation shows that heme can be captured in the ferrous or ferric state, and with a variety of small heme-ligands bound, suggesting that hemophilin could function under a range of physiological conditions. Hemophilin knockout bacteria show a limited capacity to utilise free heme for growth. Our data suggest that hemophilin is a hemophore and that inhibition of NTHi occurs by heme starvation, raising the possibility that competition from hemophilin-producing H. haemolyticus could antagonise NTHi colonisation in the respiratory tract.
Collapse
Affiliation(s)
- Roger D Latham
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - James L Walshe
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - J Mitchell Guss
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | - David A Gell
- School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
16
|
Conroy BS, Grigg JC, Kolesnikov M, Morales LD, Murphy MEP. Staphylococcus aureus heme and siderophore-iron acquisition pathways. Biometals 2019; 32:409-424. [PMID: 30911924 DOI: 10.1007/s10534-019-00188-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 11/24/2022]
Abstract
Staphylococcus aureus is a versatile opportunistic human pathogen. Infection by this bacterium requires uptake of iron from the human host, but iron is highly restricted in this environment. Staphylococcus aureus iron sufficiency is achieved primarily through uptake of heme and high-affinity iron chelators, known as siderophores. Two siderophores (staphyloferrins) are produced and secreted by S. aureus into the extracellular environment to capture iron. Staphylococcus aureus expresses specific uptake systems for staphyloferrins and more general uptake systems for siderophores produced by other microorganisms. The S. aureus heme uptake system uses highly-specific cell surface receptors to extract heme from hemoglobin and hemoglobin-haptoglobin complexes for transport into the cytoplasm where it is degraded to liberate iron. Initially thought to be independent systems, recent findings indicate that these iron uptake pathways intersect. IruO is a reductase that releases iron from heme and some ferric-siderophores. Moreover, multifunctional SbnI produces a precursor for staphyloferrin B biosynthesis, and also binds heme to regulate expression of the staphyloferrin B biosynthesis pathway. Intersection of the S. aureus iron uptake pathways is hypothesized to be important for rapid adaptation to available iron sources. Components of the heme and siderophore uptake systems are currently being targeted in the development of therapeutics against S. aureus.
Collapse
Affiliation(s)
- Brigid S Conroy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - Maxim Kolesnikov
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - L Daniela Morales
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
17
|
Macdonald R, Cascio D, Collazo MJ, Phillips M, Clubb RT. The Streptococcus pyogenes Shr protein captures human hemoglobin using two structurally unique binding domains. J Biol Chem 2018; 293:18365-18377. [PMID: 30301765 DOI: 10.1074/jbc.ra118.005261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
In order to proliferate and mount an infection, many bacterial pathogens need to acquire iron from their host. The most abundant iron source in the body is the oxygen transporter hemoglobin (Hb). Streptococcus pyogenes, a potentially lethal human pathogen, uses the Shr protein to capture Hb on the cell surface. Shr is an important virulence factor, yet the mechanism by which it captures Hb and acquires its heme is not well-understood. Here, we show using NMR and biochemical methods that Shr binds Hb using two related modules that were previously defined as domains of unknown function (DUF1533). These hemoglobin-interacting domains (HIDs), called HID1 and HID2, are autonomously folded and independently bind Hb. The 1.5 Å resolution crystal structure of HID2 revealed that it is a structurally unique Hb-binding domain. Mutagenesis studies revealed a conserved tyrosine in both HIDs that is essential for Hb binding. Our biochemical studies indicate that HID2 binds Hb with higher affinity than HID1 and that the Hb tetramer is engaged by two Shr receptors. NMR studies reveal the presence of a third autonomously folded domain between HID2 and a heme-binding NEAT1 domain, suggesting that this linker domain may position NEAT1 near Hb for heme capture.
Collapse
Affiliation(s)
- Ramsay Macdonald
- From the Department of Chemistry and Biochemistry,; UCLA-DOE Institute of Genomics and Proteomics and
| | | | | | | | - Robert T Clubb
- From the Department of Chemistry and Biochemistry,; UCLA-DOE Institute of Genomics and Proteomics and; Molecular Biology Institute, UCLA, Los Angeles, California 90095.
| |
Collapse
|
18
|
Mozzi A, Forni D, Clerici M, Cagliani R, Sironi M. The Diversity of Mammalian Hemoproteins and Microbial Heme Scavengers Is Shaped by an Arms Race for Iron Piracy. Front Immunol 2018; 9:2086. [PMID: 30271410 PMCID: PMC6142043 DOI: 10.3389/fimmu.2018.02086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
Iron is an essential micronutrient for most living species. In mammals, hemoglobin (Hb) stores more than two thirds of the body's iron content. In the bloodstream, haptoglobin (Hp) and hemopexin (Hpx) sequester free Hb or heme. Pathogenic microorganisms usually acquire iron from their hosts and have evolved complex systems of iron piracy to circumvent nutritional immunity. Herein, we performed an evolutionary analysis of genes coding for mammalian heme-binding proteins and heme-scavengers in pathogen species. The underlying hypothesis is that these molecules are engaged in a molecular arms race. We show that positive selection drove the evolution of mammalian Hb and Hpx. Positively selected sites in Hb are located at the interaction surface with Neisseria meningitidis heme scavenger HpuA and with Staphylococcus aureus iron-regulated surface determinant B (IsdB). In turn, positively selected sites in HpuA and IsdB are located in the flexible protein regions that contact Hb. A residue in Hb (S45H) was also selected on the Caprinae branch. This site stabilizes the interaction with Trypanosoma brucei hemoglobin-haptoglobin (HbHp) receptor (TbHpHbR), a molecule that also mediates trypanosome lytic factor (TLF) entry. In TbHpHbR, positive selection drove the evolution of a variant (L210S) which allows evasion from TLF but reduces affinity for HbHp. Finally, selected sites in Hpx are located at the interaction surface with the Haemophilus influenzae hemophore HxuA, which in turn displays fast evolving sites at the Hpx-binding interface. These results shed light into host-pathogens conflicts and establish the importance of nutritional immunity as an evolutionary force.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Diego Forni
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| |
Collapse
|
19
|
Sjodt M, Macdonald R, Marshall JD, Clayton J, Olson JS, Phillips M, Gell DA, Wereszczynski J, Clubb RT. Energetics underlying hemin extraction from human hemoglobin by Staphylococcus aureus. J Biol Chem 2018. [PMID: 29540481 DOI: 10.1074/jbc.ra117.000803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It actively acquires the essential nutrient iron from human hemoglobin (Hb) using the iron-regulated surface-determinant (Isd) system. This process is initiated when the closely related bacterial IsdB and IsdH receptors bind to Hb and extract its hemin through a conserved tri-domain unit that contains two NEAr iron Transporter (NEAT) domains that are connected by a helical linker domain. Previously, we demonstrated that the tri-domain unit within IsdH (IsdHN2N3) triggers hemin release by distorting Hb's F-helix. Here, we report that IsdHN2N3 promotes hemin release from both the α- and β-subunits. Using a receptor mutant that only binds to the α-subunit of Hb and a stopped-flow transfer assay, we determined the energetics and micro-rate constants of hemin extraction from tetrameric Hb. We found that at 37 °C, the receptor accelerates hemin release from Hb up to 13,400-fold, with an activation enthalpy of 19.5 ± 1.1 kcal/mol. We propose that hemin removal requires the rate-limiting hydrolytic cleavage of the axial HisF8 Nϵ-Fe3+ bond, which, based on molecular dynamics simulations, may be facilitated by receptor-induced bond hydration. Isothermal titration calorimetry experiments revealed that two distinct IsdHN2N3·Hb protein·protein interfaces promote hemin release. A high-affinity receptor·Hb(A-helix) interface contributed ∼95% of the total binding standard free energy, enabling much weaker receptor interactions with Hb's F-helix that distort its hemin pocket and cause unfavorable changes in the binding enthalpy. We present a model indicating that receptor-introduced structural distortions and increased solvation underlie the IsdH-mediated hemin extraction mechanism.
Collapse
Affiliation(s)
- Megan Sjodt
- From the Department of Chemistry and Biochemistry.,UCLA-DOE Institute of Genomics and Proteomics, and
| | - Ramsay Macdonald
- From the Department of Chemistry and Biochemistry.,UCLA-DOE Institute of Genomics and Proteomics, and
| | | | - Joseph Clayton
- the Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616
| | - John S Olson
- the Department of BioSciences, Rice University, Houston, Texas 77251, and
| | | | - David A Gell
- the School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Jeff Wereszczynski
- the Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Robert T Clubb
- From the Department of Chemistry and Biochemistry, .,UCLA-DOE Institute of Genomics and Proteomics, and.,Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
20
|
Bowden CFM, Chan ACK, Li EJW, Arrieta AL, Eltis LD, Murphy MEP. Structure-function analyses reveal key features in Staphylococcus aureus IsdB-associated unfolding of the heme-binding pocket of human hemoglobin. J Biol Chem 2017; 293:177-190. [PMID: 29109153 DOI: 10.1074/jbc.m117.806562] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/19/2017] [Indexed: 11/06/2022] Open
Abstract
IsdB is a receptor on the surface of the bacterial pathogen Staphylococcus aureus that extracts heme from hemoglobin (Hb) to enable growth on Hb as a sole iron source. IsdB is critically important both for in vitro growth on Hb and in infection models and is also highly up-regulated in blood, serum, and tissue infection models, indicating a key role of this receptor in bacterial virulence. However, structural information for IsdB is limited. We present here a crystal structure of a complex between human Hb and IsdB. In this complex, the α subunits of Hb are refolded with the heme displaced to the interface with IsdB. We also observe that atypical residues of Hb, His58 and His89 of αHb, coordinate to the heme iron, which is poised for transfer into the heme-binding pocket of IsdB. Moreover, the porphyrin ring interacts with IsdB residues Tyr440 and Tyr444 Previously, Tyr440 was observed to coordinate heme iron in an IsdB·heme complex structure. A Y440F/Y444F IsdB variant we produced was defective in heme transfer yet formed a stable complex with Hb (Kd = 6 ± 2 μm) in solution with spectroscopic features of the bis-His species observed in the crystal structure. Haptoglobin binds to a distinct site on Hb to inhibit heme transfer to IsdB and growth of S. aureus, and a ternary complex of IsdB·Hb·Hp was observed. We propose a model for IsdB heme transfer from Hb that involves unfolding of Hb and heme iron ligand exchange.
Collapse
Affiliation(s)
- Catherine F M Bowden
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Emily J W Li
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Angelé L Arrieta
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
21
|
Abstract
Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.
Collapse
|
22
|
Abstract
Iron is essential for the survival of most bacteria but presents a significant challenge given its limited bioavailability. Furthermore, the toxicity of iron combined with the need to maintain physiological iron levels within a narrow concentration range requires sophisticated systems to sense, regulate, and transport iron. Most bacteria have evolved mechanisms to chelate and transport ferric iron (Fe3+) via siderophore receptor systems, and pathogenic bacteria have further lowered this barrier by employing mechanisms to utilize the host's hemoproteins. Once internalized, heme is cleaved by both oxidative and nonoxidative mechanisms to release iron. Heme, itself a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such, pathogenic bacteria have evolved sophisticated cell surface signaling and transport systems to obtain heme from the host. In this review, we summarize the structure and function of the heme-sensing and transport systems of pathogenic bacteria and the potential of these systems as antimicrobial targets.
Collapse
Affiliation(s)
- Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201;
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|
23
|
Uluisik RC, Akbas N, Lukat-Rodgers GS, Adrian SA, Allen CE, Schmitt MP, Rodgers KR, Dixon DW. Characterization of the second conserved domain in the heme uptake protein HtaA from Corynebacterium diphtheriae. J Inorg Biochem 2017; 167:124-133. [PMID: 27974280 PMCID: PMC5199035 DOI: 10.1016/j.jinorgbio.2016.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 11/22/2016] [Indexed: 11/20/2022]
Abstract
HtaA is a heme-binding protein that is part of the heme uptake system in Corynebacterium diphtheriae. HtaA contains two conserved regions (CR1 and CR2). It has been previously reported that both domains can bind heme; the CR2 domain binds hemoglobin more strongly than the CR1 domain. In this study, we report the biophysical characteristics of HtaA-CR2. UV-visible spectroscopy and resonance Raman experiments are consistent with this domain containing a single heme that is bound to the protein through an axial tyrosine ligand. Mutants of conserved tyrosine and histidine residues (Y361, H412, and Y490) have been studied. These mutants are isolated with very little heme (≤5%) in comparison to the wild-type protein (~20%). Reconstitution after removal of the heme with butanone gave an alternative form of the protein. The HtaA-CR2 fold is very stable; it was necessary to perform thermal denaturation experiments in the presence of guanidinium hydrochloride. HtaA-CR2 unfolds extremely slowly; even in 6.8M GdnHCl at 37°C, the half-life was 5h. In contrast, the apo forms of WT HtaA-CR2 and the aforementioned mutants unfolded at much lower concentrations of GdnHCl, indicating the role of heme in stabilizing the structure and implying that heme transfer is effected only to a partner protein in vivo.
Collapse
Affiliation(s)
- Rizvan C Uluisik
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Seth A Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Courtni E Allen
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Michael P Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States.
| | - Dabney W Dixon
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States.
| |
Collapse
|
24
|
Progress toward the Development of a NEAT Protein Vaccine for Anthrax Disease. Infect Immun 2016; 84:3408-3422. [PMID: 27647868 DOI: 10.1128/iai.00755-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/10/2016] [Indexed: 01/05/2023] Open
Abstract
Bacillus anthracis is a sporulating Gram-positive bacterium that is the causative agent of anthrax and a potential weapon of bioterrorism. The U.S.-licensed anthrax vaccine is made from an incompletely characterized culture supernatant of a nonencapsulated, toxigenic strain (anthrax vaccine absorbed [AVA]) whose primary protective component is thought to be protective antigen (PA). AVA is effective in protecting animals and elicits toxin-neutralizing antibodies in humans, but enthusiasm is dampened by its undefined composition, multishot regimen, recommended boosters, and potential for adverse reactions. Improving next-generation anthrax vaccines is important to safeguard citizens and the military. Here, we report that vaccination with recombinant forms of a conserved domain (near-iron transporter [NEAT]), common in Gram-positive pathogens, elicits protection in a murine model of B. anthracis infection. Protection was observed with both Freund's and alum adjuvants, given subcutaneously and intramuscularly, respectively, with a mixed composite of NEATs. Protection correlated with an antibody response against the NEAT domains and a decrease in the numbers of bacteria in major organs. Anti-NEAT antibodies promote opsonophagocytosis of bacilli by alveolar macrophages. To guide the development of inactive and safe NEAT antigens, we also report the crystal structure of one of the NEAT domains (Hal) and identify critical residues mediating its heme-binding and acquisition activity. These results indicate that we should consider NEAT proteins in the development of an improved antianthrax vaccine.
Collapse
|
25
|
Germline-encoded neutralization of a Staphylococcus aureus virulence factor by the human antibody repertoire. Nat Commun 2016; 7:13376. [PMID: 27857134 PMCID: PMC5120205 DOI: 10.1038/ncomms13376] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022] Open
Abstract
Staphylococcus aureus is both an important pathogen and a human commensal. To explore this ambivalent relationship between host and microbe, we analysed the memory humoral response against IsdB, a protein involved in iron acquisition, in four healthy donors. Here we show that in all donors a heavily biased use of two immunoglobulin heavy chain germlines generated high affinity (pM) antibodies that neutralize the two IsdB NEAT domains, IGHV4-39 for NEAT1 and IGHV1-69 for NEAT2. In contrast to the typical antibody/antigen interactions, the binding is primarily driven by the germline-encoded hydrophobic CDRH-2 motifs of IGHV1-69 and IGHV4-39, with a binding mechanism nearly identical for each antibody derived from different donors. Our results suggest that IGHV1-69 and IGHV4-39, while part of the adaptive immune system, may have evolved under selection pressure to encode a binding motif innately capable of recognizing and neutralizing a structurally conserved protein domain involved in pathogen iron acquisition.
Collapse
|
26
|
Choo JM, Cheung JK, Wisniewski JA, Steer DL, Bulach DM, Hiscox TJ, Chakravorty A, Smith AI, Gell DA, Rood JI, Awad MM. The NEAT Domain-Containing Proteins of Clostridium perfringens Bind Heme. PLoS One 2016; 11:e0162981. [PMID: 27637108 PMCID: PMC5026354 DOI: 10.1371/journal.pone.0162981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/31/2016] [Indexed: 12/27/2022] Open
Abstract
The ability of a pathogenic bacterium to scavenge iron from its host is important for its growth and survival during an infection. Our studies on C. perfringens gas gangrene strain JIR325, a derivative of strain 13, showed that it is capable of utilizing both human hemoglobin and ferric chloride, but not human holo-transferrin, as an iron source for in vitro growth. Analysis of the C. perfringens strain 13 genome sequence identified a putative heme acquisition system encoded by an iron-regulated surface gene region that we have named the Cht (Clostridium perfringensheme transport) locus. This locus comprises eight genes that are co-transcribed and includes genes that encode NEAT domain-containing proteins (ChtD and ChtE) and a putative sortase (Srt). The ChtD, ChtE and Srt proteins were shown to be expressed in JIR325 cells grown under iron-limited conditions and were localized to the cell envelope. Moreover, the NEAT proteins, ChtD and ChtE, were found to bind heme. Both chtDE and srt mutants were constructed, but these mutants were not defective in hemoglobin or ferric chloride utilization. They were, however, attenuated for virulence when tested in a mouse myonecrosis model, although the virulence phenotype could not be restored via complementation and, as is common with such systems, secondary mutations were identified in these strains. In summary, this study provides evidence for the functional redundancies that occur in the heme transport pathways of this life threatening pathogen.
Collapse
Affiliation(s)
- Jocelyn M. Choo
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jackie K. Cheung
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Jessica A. Wisniewski
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - David L. Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dieter M. Bulach
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Thomas J. Hiscox
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Anjana Chakravorty
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - A. Ian Smith
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - David A. Gell
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Julian I. Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Milena M. Awad
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- * E-mail:
| |
Collapse
|
27
|
Structural Characterization of Heme Environmental Mutants of CgHmuT that Shuttles Heme Molecules to Heme Transporters. Int J Mol Sci 2016; 17:ijms17060829. [PMID: 27240352 PMCID: PMC4926363 DOI: 10.3390/ijms17060829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/19/2023] Open
Abstract
Corynebacteria contain a heme uptake system encoded in hmuTUV genes, in which HmuT protein acts as a heme binding protein to transport heme to the cognate transporter HmuUV. The crystal structure of HmuT from Corynebacterium glutamicum (CgHmuT) reveals that heme is accommodated in the central cleft with His141 and Tyr240 as the axial ligands and that Tyr240 forms a hydrogen bond with Arg242. In this work, the crystal structures of H141A, Y240A, and R242A mutants were determined to understand the role of these residues for the heme binding of CgHmuT. Overall and heme environmental structures of these mutants were similar to those of the wild type, suggesting that there is little conformational change in the heme-binding cleft during heme transport reaction with binding and the dissociation of heme. A loss of one axial ligand or the hydrogen bonding interaction with Tyr240 resulted in an increase in the redox potential of the heme for CgHmuT to be reduced by dithionite, though the wild type was not reduced under physiological conditions. These results suggest that the heme environmental structure stabilizes the ferric heme binding in CgHmuT, which will be responsible for efficient heme uptake under aerobic conditions where Corynebacteria grow.
Collapse
|
28
|
Bennett EH, Akbas N, Adrian SA, Lukat-Rodgers GS, Collins DP, Dawson JH, Allen CE, Schmitt MP, Rodgers KR, Dixon DW. Heme Binding by Corynebacterium diphtheriae HmuT: Function and Heme Environment. Biochemistry 2015; 54:6598-609. [PMID: 26478504 PMCID: PMC4943319 DOI: 10.1021/acs.biochem.5b00666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The heme uptake pathway (hmu) of Corynebacterium diphtheriae utilizes multiple proteins to bind and transport heme into the cell. One of these proteins, HmuT, delivers heme to the ABC transporter HmuUV. In this study, the axial ligation of the heme in ferric HmuT is probed by examination of wild-type (WT) HmuT and a series of conserved heme pocket residue mutants, H136A, Y235A, and M292A. Characterization by UV-visible, resonance Raman, and magnetic circular dichroism spectroscopies indicates that H136 and Y235 are the axial ligands in ferric HmuT. Consistent with this assignment of axial ligands, ferric WT and H136A HmuT are difficult to reduce while Y235A is reduced readily in the presence of dithionite. The FeCO Raman shifts in WT, H136A, and Y235A HmuT-CO complexes provide further evidence of the axial ligand assignments. Additionally, these frequencies provide insight into the nonbonding environment of the heme pocket. Ferrous Y235A and the Y235A-CO complex reveal that the imidazole of H136 exists in two forms, one neutral and one with imidazolate character, consistent with a hydrogen bond acceptor on the H136 side of the heme. The ferric fluoride complex of Y235A reveals the presence of at least one hydrogen bond donor on the Y235 side of the heme. Hemoglobin utilization assays showed that the axial Y235 ligand is required for heme uptake in HmuT.
Collapse
Affiliation(s)
| | - Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| | - Seth A. Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Gudrun S. Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Daniel P. Collins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Courtni E. Allen
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050
| | - Dabney W. Dixon
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965
| |
Collapse
|
29
|
Bradshaw WJ, Davies AH, Chambers CJ, Roberts AK, Shone CC, Acharya KR. Molecular features of the sortase enzyme family. FEBS J 2015; 282:2097-114. [PMID: 25845800 DOI: 10.1111/febs.13288] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/28/2015] [Indexed: 01/31/2023]
Abstract
Bacteria possess complex and varying cell walls with many surface exposed proteins. Sortases are responsible for the covalent attachment of specific proteins to the peptidoglycan of the cell wall of Gram-positive bacteria. Sortase A of Staphylococcus aureus, which is seen as the archetypal sortase, has been shown to be essential for pathogenesis and has therefore received much attention as a potential target for novel therapeutics. Being widely present in Gram-positive bacteria, it is likely that other Gram-positive pathogens also require sortases for their pathogenesis. Sortases have also been shown to be of significant use in a range of industrial applications. We review current knowledge of the sortase family in terms of their structures, functions and mechanisms and summarize work towards their use as antibacterial targets and microbiological tools.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Porton Down, Salisbury, UK
| | | | - Christopher J Chambers
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Porton Down, Salisbury, UK
| | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
30
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
31
|
Sjodt M, Macdonald R, Spirig T, Chan AH, Dickson CF, Fabian M, Olson JS, Gell DA, Clubb RT. The PRE-Derived NMR Model of the 38.8-kDa Tri-Domain IsdH Protein from Staphylococcus aureus Suggests That It Adaptively Recognizes Human Hemoglobin. J Mol Biol 2015; 428:1107-1129. [PMID: 25687963 DOI: 10.1016/j.jmb.2015.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/31/2015] [Accepted: 02/07/2015] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus is a medically important bacterial pathogen that, during infections, acquires iron from human hemoglobin (Hb). It uses two closely related iron-regulated surface determinant (Isd) proteins to capture and extract the oxidized form of heme (hemin) from Hb, IsdH and IsdB. Both receptors rapidly extract hemin using a conserved tri-domain unit consisting of two NEAT (near iron transporter) domains connected by a helical linker domain. To gain insight into the mechanism of extraction, we used NMR to investigate the structure and dynamics of the 38.8-kDa tri-domain IsdH protein (IsdH(N2N3), A326-D660 with a Y642A mutation that prevents hemin binding). The structure was modeled using long-range paramagnetic relaxation enhancement (PRE) distance restraints, dihedral angle, small-angle X-ray scattering, residual dipolar coupling and inter-domain NOE nuclear Overhauser effect data. The receptor adopts an extended conformation wherein the linker and N3 domains pack against each other via a hydrophobic interface. In contrast, the N2 domain contacts the linker domain via a hydrophilic interface and, based on NMR relaxation data, undergoes inter-domain motions enabling it to reorient with respect to the body of the protein. Ensemble calculations were used to estimate the range of N2 domain positions compatible with the PRE data. A comparison of the Hb-free and Hb-bound forms reveals that Hb binding alters the positioning of the N2 domain. We propose that binding occurs through a combination of conformational selection and induced-fit mechanisms that may promote hemin release from Hb by altering the position of its F helix.
Collapse
Affiliation(s)
- Megan Sjodt
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Ramsay Macdonald
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Thomas Spirig
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Albert H Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Claire F Dickson
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Marian Fabian
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - John S Olson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| | - David A Gell
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; University of California, Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Ascenzi P, di Masi A, Leboffe L, Frangipani E, Nardini M, Verde C, Visca P. Structural Biology of Bacterial Haemophores. Adv Microb Physiol 2015; 67:127-76. [PMID: 26616517 DOI: 10.1016/bs.ampbs.2015.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron plays a key role in a wide range of metabolic and signalling functions representing an essential nutrient for almost all forms of life. However, the ferric form is hardly soluble, whereas the ferrous form is highly toxic. Thus, in biological fluids, most of the iron is sequestered in iron- or haem-binding proteins and the level of free iron is low, making haem and iron acquisition a challenge for pathogenic bacteria during infections. Although toxic to the host, free haem is a major and readily available source of iron for several pathogenic microorganisms. Both Gram-positive and Gram-negative bacteria have developed several strategies to acquire free haem-Fe and protein-bound haem-Fe. Haemophores are a class of secreted and cell surface-exposed proteins promoting free-haem uptake, haem extraction from host haem proteins, and haem presentation to specific outer-membrane receptors that internalize the metal-porphyrins. Here, structural biology of bacterial haemophores is reviewed focusing on haem acquisition, haem internalization, and haem-degrading systems.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Roma, Italy; Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy.
| | | | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | | | - Marco Nardini
- Dipartimento di Bioscienze, Università di Milano, Milano, Italy
| | - Cinzia Verde
- Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Napoli, Italy; Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| | - Paolo Visca
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
| |
Collapse
|
33
|
Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin-haptoglobin complex. J Bacteriol 2014; 197:553-62. [PMID: 25404705 DOI: 10.1128/jb.02413-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The use of hemin iron by Corynebacterium diphtheriae requires the DtxR- and iron-regulated ABC hemin transporter HmuTUV and the secreted Hb-binding protein HtaA. We recently described two surface anchored proteins, ChtA and ChtC, which also bind hemin and Hb. ChtA and ChtC share structural similarities to HtaA; however, a function for ChtA and ChtC was not determined. In this study, we identified additional host iron sources that are utilized by C. diphtheriae. We show that several C. diphtheriae strains use the hemoglobin-haptoglobin (Hb-Hp) complex as an iron source. We report that an htaA deletion mutant of C. diphtheriae strain 1737 is unable to use the Hb-Hp complex as an iron source, and we further demonstrate that a chtA-chtC double mutant is also unable to use Hb-Hp iron. Single-deletion mutants of chtA or chtC use Hb-Hp iron in a manner similar to that of the wild type. These findings suggest that both HtaA and either ChtA or ChtC are essential for the use of Hb-Hp iron. Enzyme-linked immunosorbent assay (ELISA) studies show that HtaA binds the Hb-Hp complex, and the substitution of a conserved tyrosine (Y361) for alanine in HtaA results in significantly reduced binding. C. diphtheriae was also able to use human serum albumin (HSA) and myoglobin (Mb) but not hemopexin as iron sources. These studies identify a biological function for the ChtA and ChtC proteins and demonstrate that the use of the Hb-Hp complex as an iron source by C. diphtheriae requires multiple iron-regulated surface components.
Collapse
|
34
|
Molecular and evolutionary analysis of NEAr-iron Transporter (NEAT) domains. PLoS One 2014; 9:e104794. [PMID: 25153520 PMCID: PMC4143258 DOI: 10.1371/journal.pone.0104794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
Iron is essential for bacterial survival, being required for numerous biological processes. NEAr-iron Transporter (NEAT) domains have been studied in pathogenic Gram-positive bacteria to understand how their proteins obtain heme as an iron source during infection. While a 2002 study initially discovered and annotated the NEAT domain encoded by the genomes of several Gram-positive bacteria, there remains a scarcity of information regarding the conservation and distribution of NEAT domains throughout the bacterial kingdom, and whether these domains are restricted to pathogenic bacteria. This study aims to expand upon initial bioinformatics analysis of predicted NEAT domains, by exploring their evolution and conserved function. This information was used to identify new candidate domains in both pathogenic and nonpathogenic organisms. We also searched metagenomic datasets, specifically sequence from the Human Microbiome Project. Here, we report a comprehensive phylogenetic analysis of 343 NEAT domains, encoded by Gram-positive bacteria, mostly within the phylum Firmicutes, with the exception of Eggerthella sp. (Actinobacteria) and an unclassified Mollicutes bacterium (Tenericutes). No new NEAT sequences were identified in the HMP dataset. We detected specific groups of NEAT domains based on phylogeny of protein sequences, including a cluster of novel clostridial NEAT domains. We also identified environmental and soil organisms that encode putative NEAT proteins. Biochemical analysis of heme binding by a NEAT domain from a protein encoded by the soil-dwelling organism Paenibacillus polymyxa demonstrated that the domain is homologous in function to NEAT domains encoded by pathogenic bacteria. Together, this study provides the first global bioinformatics analysis and phylogenetic evidence that NEAT domains have a strong conservation of function, despite group-specific differences at the amino acid level. These findings will provide information useful for future projects concerning the structure and function of NEAT domains, particularly in pathogens where they have yet to be studied.
Collapse
|
35
|
Non-heme-binding domains and segments of the Staphylococcus aureus IsdB protein critically contribute to the kinetics and equilibrium of heme acquisition from methemoglobin. PLoS One 2014; 9:e100744. [PMID: 24959723 PMCID: PMC4069089 DOI: 10.1371/journal.pone.0100744] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
The hemoglobin receptor IsdB rapidly acquires heme from methemoglobin (metHb) in the heme acquisition pathway of Staphylococcus aureus. IsdB consists of N-terminal segment (NS), NEAT1 (N1), middle (MD), and heme binding NEAT2 (N2) domains, and C-terminal segment (CS). This study aims to elucidate the roles of these domains or segments in the metHb/IsdB reaction. Deletion of CS does not alter the kinetics and equilibrium of the reaction. Sequential deletions of NS and N1 in NS-N1-MD-N2 progressively reduce heme transfer rates and change the kinetic pattern from one to two phases, but have no effect on the equilibrium of the heme transfer reaction, whereas further deletion of MD reduces the percentage of transferred metHb heme. MD-N2 has higher affinity for heme than N2. MD in trans reduces rates of heme dissociation from holo-N2 and increases the percentage of metHb heme captured by N2 by 4.5 fold. NS-N1-MD and N2, but not NS-N1, MD, and N2, reconstitute the rapid metHb/IsdB reaction. NS-N1-MD-NIsdC, a fusion protein of NS-N1-MD and the NEAT domain of IsdC, slowly acquires heme from metHb by itself but together with N2 results in rapid heme loss from metHb. Thus, NS-N1 and MD domains specifically and critically contribute to the kinetics and equilibrium of the metHb/IsdB reaction, respectively. These findings support a mechanism of direct heme acquisition by IsdB in which MD enhances the affinity of N2 for heme to thermodynamically drive heme transfer from metHb to IsdB and in which NS is required for the rapid and single phase kinetics of the metHb/IsdB reaction.
Collapse
|
36
|
Fonner BA, Tripet BP, Eilers BJ, Stanisich J, Sullivan-Springhetti RK, Moore R, Liu M, Lei B, Copié V. Solution structure and molecular determinants of hemoglobin binding of the first NEAT domain of IsdB in Staphylococcus aureus. Biochemistry 2014; 53:3922-33. [PMID: 24871270 PMCID: PMC4072347 DOI: 10.1021/bi5005188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
The
human pathogen Staphylococcus aureus acquires heme iron from hemoglobin (Hb) via the action of a series
of iron-regulated surface determinant (Isd) proteins. The cell wall
anchored IsdB protein is recognized as the predominant Hb receptor,
and is comprised of two NEAr transporter (NEAT) domains that act in
concert to bind, extract, and transfer heme from Hb to downstream
Isd proteins. Structural details of the NEAT 2 domain of IsdB have
been investigated, but the molecular coordination between NEAT 2 and
NEAT 1 to extract heme from hemoglobin has yet to be characterized.
To obtain a more complete understanding of IsdB structure and function,
we have solved the 3D solution structure of the NEAT 1 domain of IsdB
(IsdBN1) spanning residues 125–272 of the full-length
protein by NMR. The structure reveals a canonical NEAT domain fold
and has particular structural similarity to the NEAT 1 and NEAT 2
domains of IsdH, which also interact with Hb. IsdBN1 is
also comprised of a short N-terminal helix, which has not been previously
observed in other NEAT domain structures. Interestingly, the Hb binding
region (loop 2 of IsdBN1) is disordered in solution. Analysis
of Hb binding demonstrates that IsdBN1 can bind metHb weakly
and the affinity of this interaction is further increased by the presence
of IsdB linker domain. IsdBN1 loop 2 variants reveal that
phenylalanine 164 (F164) of IsdB is necessary for Hb binding and rapid
heme transfer from metHb to IsdB. Together, these findings provide
a structural role for IsdBN1 in enhancing the rate of extraction
of metHb heme by the IsdB NEAT 2 domain.
Collapse
Affiliation(s)
- Brittany A Fonner
- Department of Chemistry and Biochemistry, Montana State University , 103 Chemistry and Biochemistry Building, PO Box 173400, Bozeman, Montana 59717-3400, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fonner BA, Tripet BP, Lui M, Zhu H, Lei B, Copié V. ¹H, ¹³C, ¹⁵N backbone and side chain NMR resonance assignments of the N-terminal NEAr iron transporter domain 1 (NEAT 1) of the hemoglobin receptor IsdB of Staphylococcus aureus. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:201-205. [PMID: 23686822 PMCID: PMC3796148 DOI: 10.1007/s12104-013-9483-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/02/2013] [Indexed: 06/02/2023]
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes skin and severe infections in mammals. Critical to S. aureus growth is its ability to scavenge iron from host cells. To this effect, S. aureus has evolved a sophisticated pathway to acquire heme from hemoglobin (Hb) as a preferred iron source. The pathway is comprised of nine iron-regulated surface determinant (Isd) proteins involved in heme capture, transport, and degradation. A key protein of the heme acquisition pathway is the surface-anchored hemoglobin receptor protein IsdB, which is comprised of two NEAr transporter (NEAT) domains that act in concert to bind Hb and extract heme for subsequent transfer to downstream acquisition pathway proteins. Despite significant advances in the structural knowledge of other Isd proteins, the structural mechanisms and molecular basis of the IsdB-mediated heme acquisition process are not well understood. In order to provide more insights into the mode of function of IsdB, we have initiated NMR structural studies of the first NEAT domain of IsdB (IsdB(N1)). Herein, we report the near complete (1)H, (13)C and (15)N resonance assignments of backbone and side chain atoms, and the secondary structural topology of the 148-residue IsdB NEAT 1 domain. The NMR results are consistent with the presence of eight β-strands and one α-helix characteristic of an immunoglobulin-like fold observed in other NEAT domain family proteins. This work provides a solid framework to obtain atomic-level insights toward understanding how IsdB mediates IsdB-Hb protein-protein interactions critical for heme capture and transfer.
Collapse
Affiliation(s)
- Brittany A. Fonner
- Department of Chemistry and Biochemistry, Montana State University, Montana State University, Bozeman MT 59717
| | - Brian P. Tripet
- Department of Chemistry and Biochemistry, Montana State University, Montana State University, Bozeman MT 59717
| | - Mengyao Lui
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman MT 59717
| | - Hui Zhu
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman MT 59717
| | - Benfang Lei
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman MT 59717
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Montana State University, Bozeman MT 59717
| |
Collapse
|
38
|
Bowden CFM, Verstraete MM, Eltis LD, Murphy MEP. Hemoglobin binding and catalytic heme extraction by IsdB near iron transporter domains. Biochemistry 2014; 53:2286-94. [PMID: 24645787 DOI: 10.1021/bi500230f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Isd (iron-regulated surface determinant) system is a multiprotein transporter that allows bacterium Staphylococcus aureus to take up iron from hemoglobin (Hb) during human infection. In this system, IsdB is a cell wall-anchored surface protein that contains two near iron transporter (NEAT) domains, one of which binds heme. IsdB rapidly extracts heme from Hb and transfers it to IsdA for relay into the bacterial cell. Using a series of recombinant IsdB constructs that included at least one NEAT domain, we demonstrated that both domains are required to bind Hb with high affinity (KD = 0.42 ± 0.05 μM) and to extract heme from Hb. Moreover, IsdB extracted heme only from oxidized metHb, although it also bound oxyHb and the Hb-CO complex. In a reconstituted model of the biological heme relay pathway, IsdB catalyzed the transfer of heme from metHb to IsdA with a Km for metHb of 0.75 ± 0.07 μN and a kcat of 0.22 ± 0.01 s(-1). The latter is consistent with the transfer of heme from metHb to IsdB being the rate-limiting step. With both NEAT domains and the linker region present in a single contiguous polypeptide, high-affinity Hb binding was achieved, rapid heme uptake was observed, and multiple turnovers of heme extraction from metHb and transfer to IsdA were conducted, representing all known Hb-heme uptake functions of the full-length IsdB protein.
Collapse
Affiliation(s)
- Catherine F M Bowden
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia , Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
39
|
Zhang BC, Zhang J, Sun L. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens. PLoS One 2014; 9:e91324. [PMID: 24621602 PMCID: PMC3951389 DOI: 10.1371/journal.pone.0091324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023] Open
Abstract
Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control.
Collapse
Affiliation(s)
- Bao-cun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Collaborative Innovation Center of Deep Sea Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
40
|
Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 2013; 3:80. [PMID: 24312900 PMCID: PMC3832793 DOI: 10.3389/fcimb.2013.00080] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/30/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense.
Collapse
Affiliation(s)
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
41
|
Ouattara M, Pennati A, Devlin DJ, Huang YS, Gadda G, Eichenbaum Z. Kinetics of heme transfer by the Shr NEAT domains of Group A Streptococcus. Arch Biochem Biophys 2013; 538:71-9. [PMID: 23993953 DOI: 10.1016/j.abb.2013.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/06/2013] [Accepted: 08/14/2013] [Indexed: 01/07/2023]
Abstract
The hemolytic Group A Streptococcus (GAS) is a notorious human pathogen. Shr protein of GAS participates in iron acquisition by obtaining heme from host hemoglobin and delivering it to the adjacent receptor on the surface, Shp. Heme is then conveyed to the SiaABC proteins for transport across the membrane. Using rapid kinetic studies, we investigated the role of the two heme binding NEAT modules of Shr. Stopped-flow analysis showed that holoNEAT1 quickly delivered heme to apoShp. HoloNEAT2 did not exhibit such activity; only little and slow transfer of heme from NEAT2 to apoShp was seen, suggesting that Shr NEAT domains have distinctive roles in heme transport. HoloNEAT1 also provided heme to apoNEAT2, by a fast and reversible process. To the best of our knowledge this is the first transfer observed between isolated NEAT domains of the same receptor. Sequence alignment revealed that Shr NEAT domains belong to two families of NEAT domains that are conserved in Shr orthologs from several species. Based on the heme transfer kinetics, we propose that Shr proteins modulate heme uptake according to heme availability by a mechanism where NEAT1 facilitates fast heme delivery to Shp, whereas NEAT2 serves as a temporary storage for heme on the bacterial surface.
Collapse
Affiliation(s)
- Mahamoudou Ouattara
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The proliferative capability of many invasive pathogens is limited by the bioavailability of iron. Pathogens have thus developed strategies to obtain iron from their host organisms. In turn, host defense strategies have evolved to sequester iron from invasive pathogens. This review explores the mechanisms employed by bacterial pathogens to gain access to host iron sources, the role of iron in bacterial virulence, and iron-related genes required for the establishment or maintenance of infection. Host defenses to limit iron availability for bacterial growth during the acute-phase response and the consequences of iron overload conditions on susceptibility to bacterial infection are also examined. The evidence summarized herein demonstrates the importance of iron bioavailability in influencing the risk of infection and the ability of the host to clear the pathogen.
Collapse
|
43
|
Analysis of novel iron-regulated, surface-anchored hemin-binding proteins in Corynebacterium diphtheriae. J Bacteriol 2013; 195:2852-63. [PMID: 23585541 DOI: 10.1128/jb.00244-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Corynebacterium diphtheriae utilizes hemin and hemoglobin (Hb) as iron sources during growth in iron-depleted environments, and recent studies have shown that the surface-exposed HtaA protein binds both hemin and Hb and also contributes to the utilization of hemin iron. Conserved (CR) domains within HtaA and in the associated hemin-binding protein, HtaB, are required for the ability to bind hemin and Hb. In this study, we identified and characterized two novel genetic loci in C. diphtheriae that encode factors that bind hemin and Hb. Both genetic systems contain two-gene operons that are transcriptionally regulated by DtxR and iron. The gene products of these operons are ChtA-ChtB and ChtC-CirA (previously DIP0522-DIP0523). The chtA and chtB genes are carried on a putative composite transposon associated with C. diphtheriae isolates that dominated the diphtheria outbreak in the former Soviet Union in the 1990s. ChtA and ChtC each contain a single N-terminal CR domain and exhibit significant sequence similarity to each other but only limited similarity with HtaA. The chtB and htaB gene products exhibited a high level of sequence similarity throughout their sequences, and both proteins contain a single CR domain. Whole-cell binding studies as well as protease analysis indicated that all four of the proteins encoded by these two operons are surface exposed, which is consistent with the presence of a transmembrane segment in their C-terminal regions. ChtA, ChtB, and ChtC are able to bind hemin and Hb, with ChtA showing the highest affinity. Site-directed mutagenesis showed that specific tyrosine residues within the ChtA CR domain were critical for hemin and Hb binding. Hemin iron utilization assays using various C. diphtheriae mutants indicate that deletion of the chtA-chtB region and the chtC gene has no affect on the ability of C. diphtheriae to use hemin or Hb as iron sources; however, a chtB htaB double mutant exhibits a significant decrease in hemin iron use, indicating a role in hemin transport for HtaB and ChtB.
Collapse
|
44
|
Gruss A, Borezée-Durant E, Lechardeur D. Environmental heme utilization by heme-auxotrophic bacteria. Adv Microb Physiol 2013; 61:69-124. [PMID: 23046952 DOI: 10.1016/b978-0-12-394423-8.00003-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme, an iron-containing porphyrin, is the prosthetic group for numerous key cellular enzymatic and regulatory processes. Many bacteria encode the biosynthetic enzymes needed for autonomous heme production. Remarkably, however, numerous other bacteria lack a complete heme biosynthesis pathway, yet encode heme-requiring functions. For such heme-auxotrophic bacteria (HAB), heme or porphyrins must be captured from the environment. Functional studies, aided by genomic analyses, provide insight into the HAB lifestyle, how they acquire and manage heme, and the uses of heme that make it worthwhile, and sometimes necessary, to capture this bioactive molecule.
Collapse
Affiliation(s)
- Alexandra Gruss
- INRA, UMR1319 Micalis and AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | | |
Collapse
|
45
|
Honsa ES, Owens CP, Goulding CW, Maresso AW. The near-iron transporter (NEAT) domains of the anthrax hemophore IsdX2 require a critical glutamine to extract heme from methemoglobin. J Biol Chem 2013; 288:8479-8490. [PMID: 23364793 DOI: 10.1074/jbc.m112.430009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several gram-positive pathogenic bacteria employ near-iron transporter (NEAT) domains to acquire heme from hemoglobin during infection. However, the structural requirements and mechanism of action for NEAT-mediated heme extraction remains unknown. Bacillus anthracis exhibits a rapid growth rate during systemic infection, suggesting that the bacterium expresses efficient iron acquisition systems. To understand how B. anthracis acquires iron from heme sources, which account for 80% of mammalian iron stores, we investigated the properties of the five-NEAT domain hemophore IsdX2. Using a combination of bioinformatics and site-directed mutagenesis, we determined that the heme extraction properties of IsdX2 are dependent on an amino acid with an amide side chain within the 310-helix of the NEAT domain. Additionally, we used a spectroscopic analysis to show that IsdX2 NEAT domains only scavenge heme from methemoglobin (metHb) and that autoxidation of oxyhemoglobin to metHb must occur prior to extraction. We also report the crystal structures of NEAT5 wild type and a Q29T mutant and present surface plasmon resonance data that indicate that the loss of this amide side chain reduces the affinity of the NEAT domain for metHb. We propose a model whereby the amide side chain is first required to drive an interaction with metHb that destabilizes heme, which is subsequently extracted and coordinated in the aliphatic heme-binding environment of the NEAT domain. Because an amino acid with an amide side chain in this position is observed in NEAT domains of several genera of gram-positive pathogenic bacteria, these results suggest that specific targeting of this or nearby residues may be an entry point for inhibitor development aimed at blocking bacterial iron acquisition during infection.
Collapse
Affiliation(s)
- Erin S Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Cedric P Owens
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92617
| | - Celia W Goulding
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92617
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
46
|
Cadieux B, Lian T, Hu G, Wang J, Biondo C, Teti G, Liu V, Murphy MEP, Creagh AL, Kronstad JW. The Mannoprotein Cig1 supports iron acquisition from heme and virulence in the pathogenic fungus Cryptococcus neoformans. J Infect Dis 2013; 207:1339-47. [PMID: 23322859 DOI: 10.1093/infdis/jit029] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Iron acquisition is critical for virulence of the human pathogenic fungus Cryptococcus neoformans. The cryptococcal transcript for the extracellular mannoprotein Cig1 is highly regulated by iron and abundant in iron-starved cells, suggesting a role in iron acquisition. Indeed, loss of Cig1 resulted in delayed growth on heme at physiological pH. Expression of CIG1 is regulated by the pH-responsive transcription factor Rim101, and loss of Rim101 also impaired growth on heme. A cig1Δ mutant was less susceptible than the wild-type strain to noniron metalloporphyrins, further indicating a role for Cig1 in heme uptake. Recombinant Cig1 exhibited the absorbance spectrum of a heme-binding protein upon heme titration, and Cig1 may therefore function as a hemophore at the cell surface. Cig1 contributed to virulence in a mouse model of cryptococcosis but only in a mutant that also lacked the high-affinity iron uptake system. Overall, Cig1-mediated heme uptake is a potential therapeutic target in C. neoformans.
Collapse
Affiliation(s)
- Brigitte Cadieux
- Michael Smith Laboratories and Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
All but a few bacterial species have an absolute need for heme, and most are able to synthesize it via a pathway that is highly conserved among all life domains. Because heme is a rich source for iron, many pathogenic bacteria have also evolved processes for sequestering heme from their hosts. The heme biosynthesis pathways are well understood at the genetic and structural biology levels. In comparison, much less is known about the heme acquisition, trafficking, and degradation processes in bacteria. Gram-positive and Gram-negative bacteria have evolved similar strategies but different tactics for importing and degrading heme, likely as a consequence of their different cellular architectures. The differences are manifested in distinct structures for molecules that perform similar functions. Consequently, the aim of this chapter is to provide an overview of the structural biology of proteins and protein-protein interactions that enable Gram-positive and Gram-negative bacteria to sequester heme from the extracellular milieu, import it to the cytosol, and degrade it to mine iron.
Collapse
Affiliation(s)
- David R Benson
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS, 66047, USA,
| | | |
Collapse
|
48
|
Eichenbaum Z. The streptococcal hemoprotein receptor: a moonlighting protein or a virulence factor? Virulence 2012; 3:553-5. [PMID: 23154285 DOI: 10.4161/viru.22440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The β-hemolytic group A streptococcus (GAS) is a major pathogen that readily uses hemoglobin to satisfy its requirements for iron. The streptococcal hemoprotein receptor in GAS plays a central role in heme utilization and binds fibronectin and laminin in vitro. Shr inactivation attenuates the virulent M1T1 GAS strain in two murine infection models and reduces bacterial growth in blood and binding to laminin. Shr impact on the globally disseminated M1T1 strain underscores the importance of heme uptake in GAS pathogenesis and raises the possibility of targeting heme-uptake proteins in the development of new methods to combat GAS infections.
Collapse
|
49
|
Spirig T, Malmirchegini GR, Zhang J, Robson SA, Sjodt M, Liu M, Krishna Kumar K, Dickson CF, Gell DA, Lei B, Loo JA, Clubb RT. Staphylococcus aureus uses a novel multidomain receptor to break apart human hemoglobin and steal its heme. J Biol Chem 2012; 288:1065-78. [PMID: 23132864 DOI: 10.1074/jbc.m112.419119] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It requires iron to grow, which must be actively procured from its host to successfully mount an infection. Heme-iron within hemoglobin (Hb) is the most abundant source of iron in the human body and is captured by S. aureus using two closely related receptors, IsdH and IsdB. Here we demonstrate that each receptor captures heme using two conserved near iron transporter (NEAT) domains that function synergistically. NMR studies of the 39-kDa conserved unit from IsdH (IsdH(N2N3), Ala(326)-Asp(660)) reveals that it adopts an elongated dumbbell-shaped structure in which its NEAT domains are properly positioned by a helical linker domain, whose three-dimensional structure is determined here in detail. Electrospray ionization mass spectrometry and heme transfer measurements indicate that IsdH(N2N3) extracts heme from Hb via an ordered process in which the receptor promotes heme release by inducing steric strain that dissociates the Hb tetramer. Other clinically significant Gram-positive pathogens capture Hb using receptors that contain multiple NEAT domains, suggesting that they use a conserved mechanism.
Collapse
Affiliation(s)
- Thomas Spirig
- Department of Chemistry and Biochemistry and the UCLA-Department of Energy Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Spirig T, Clubb RT. Backbone 1H, 13C and 15N resonance assignments of the 39 kDa staphylococcal hemoglobin receptor IsdH. BIOMOLECULAR NMR ASSIGNMENTS 2012; 6:169-172. [PMID: 22101872 PMCID: PMC3590065 DOI: 10.1007/s12104-011-9348-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/09/2011] [Indexed: 05/31/2023]
Abstract
During infections Stahpylococcus aureus preferentially uses heme as an iron source, which it captures from human hemoglobin using the Iron regulated surface determinant (Isd) system. On the cell surface two related staphylococcal surface receptors called IsdH and IsdB bind to hemoglobin and extract its heme. Both receptors contain multiple NEAr iron Transporter (NEAT) domains that either bind to hemoglobin, or to heme. All previous structural studies have investigated individual NEAT domains and have not explored how the domains might interact with one another to synergistically extract heme from hemoglobin. Here, we report the near complete (1)H, (13)C and (15)N backbone resonance assignments of a bi-domain unit from IsdH that contains the N2 and N3 NEAT domains, which bind to hemoglobin and heme, respectively (IsdH(N2N3), residues 326-660, 39 kDa). The assigned backbone resonances lay the foundation for future NMR studies that will explore the molecular basis of IsdH function.
Collapse
|