1
|
Novel antimicrobial activity of protein produced by Streptomyces lividans TK24 against the phytopathogen Clavibacter michiganensis. Arch Microbiol 2022; 204:687. [DOI: 10.1007/s00203-022-03290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
|
2
|
Ordóñez-Robles M, Rodríguez-García A, Martín JF. Genome-wide transcriptome response of Streptomyces tsukubaensis to N-acetylglucosamine: effect on tacrolimus biosynthesis. Microbiol Res 2018; 217:14-22. [DOI: 10.1016/j.micres.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
|
3
|
Risalde MÁ, Thomas J, Sevilla I, Serrano M, Ortíz JA, Garrido J, Domínguez M, Domínguez L, Gortázar C, Ruíz-Fons JF. Development and evaluation of an interferon gamma assay for the diagnosis of tuberculosis in red deer experimentally infected with Mycobacterium bovis. BMC Vet Res 2017; 13:341. [PMID: 29145844 PMCID: PMC5691593 DOI: 10.1186/s12917-017-1262-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 11/09/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Red deer (Cervus elaphus) is regarded as an epidemiologically relevant host for Mycobacterium bovis (M. bovis) and closely related members of the Mycobacterium tuberculosis complex that cause animal tuberculosis (TB). The standard antemortem screening test for the detection of TB in deer is the intradermal tuberculin skin test, but the detection of interferon-gamma (IFNγ) produced by white blood cells exposed to M. bovis antigens can be used as an alternative or supplemental assay in most TB eradication/control programs. This study aims to develop an in-house sandwich ELISA for deer IFNγ, based on the cross-reactivity of the antibodies to both cervid and bovine IFNγ, and to evaluate the potential of this assay to detect M. bovis-infected red deer in response to the in vitro stimulation of whole-blood cells with bovine purified protein derivative (bPPD), p22 protein complex derived from bPPD or using the specific tuberculous mycobacterial proteins ESAT-6/CFP-10, Rv3615c and Rv3020c. The positive control stimulant used in this study was pokeweed mitogen, which resulted in a consistent induction of IFNγ in samples from red deer, thus allowing the interpretation of the assay. RESULTS The percentage of animals correctly classified by this technique as M. bovis non-infected was 100%. The detection of infected animals as positive was high and ranged widely depending upon the antigen and the cut-off value applied, as well as the time after infection. Our findings indicate that this protocol may serve as a reliable assay for the antemortem diagnosis of TB from the initial stage of M. bovis-infection, and may also be adequately sensitive. CONCLUSIONS The suggested optimal antigens and cut-off are bPPD, p22 and the combination of ESAT-6/CFP-10 and Rv3020c with a 0.05 Δ optical density, which yielded a up to 100% correct classification of TB positive and negatve red deer under our experimental conditions. This technique will aid in TB testing of farmed and translocated deer. Future studies should evaluate the ability of this IFNγ assay to detect specific responses under field conditions.
Collapse
Affiliation(s)
- María Ángeles Risalde
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
- Unidad de Enfermedades Infecciosas, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Jobin Thomas
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
- Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Iker Sevilla
- NEIKER-Tecnalia, Animal Health Department, Derio, Bizkaia Spain
| | - Miriam Serrano
- NEIKER-Tecnalia, Animal Health Department, Derio, Bizkaia Spain
| | | | - Joseba Garrido
- NEIKER-Tecnalia, Animal Health Department, Derio, Bizkaia Spain
| | - Mercedes Domínguez
- Servicio de Inmunología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre. Complutense University of Madrid, Madrid, Spain
| | - Christian Gortázar
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Jose Francisco Ruíz-Fons
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM), Ciudad Real, Spain
| |
Collapse
|
4
|
Ordóñez-Robles M, Santos-Beneit F, Albillos SM, Liras P, Martín JF, Rodríguez-García A. Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources. Appl Microbiol Biotechnol 2017; 101:8181-8195. [PMID: 28983826 DOI: 10.1007/s00253-017-8545-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Abstract
In this work, we identified glucose and glycerol as tacrolimus repressing carbon sources in the important species Streptomyces tsukubaensis. A genome-wide analysis of the transcriptomic response to glucose and glycerol additions was performed using microarray technology. The transcriptional time series obtained allowed us to compare the transcriptomic profiling of S. tsukubaensis growing under tacrolimus producing and non-producing conditions. The analysis revealed important and different metabolic changes after the additions and a lack of transcriptional activation of the fkb cluster. In addition, we detected important differences in the transcriptional response to glucose between S. tsukubaensis and the model species Streptomyces coelicolor. A number of genes encoding key players of morphological and biochemical differentiation were strongly and permanently downregulated by the carbon sources. Finally, we identified several genes showing transcriptional profiles highly correlated to that of the tacrolimus biosynthetic pathway regulator FkbN that might be potential candidates for the improvement of tacrolimus production.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Silvia M Albillos
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
- Departamento de Biotecnología y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Paloma Liras
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Antonio Rodríguez-García
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain.
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain.
| |
Collapse
|
5
|
Abstract
In this article we present experimental Mycobacterium bovis infection models in domestic livestock species and how these models were applied to vaccine development, biomarker discovery, and the definition of specific antigens for the differential diagnosis of infected and vaccinated animals. In particular, we highlight synergies between human and bovine tuberculosis (TB) research approaches and data and propose that the application of bovine TB models could make a valuable contribution to human TB vaccine research and that close alignment of both research programs in a one health philosophy will lead to mutual and substantial benefits.
Collapse
|
6
|
Data Intensive Genome Level Analysis for Identifying Novel, Non-Toxic Drug Targets for Multi Drug Resistant Mycobacterium tuberculosis. Sci Rep 2017; 7:46595. [PMID: 28425478 PMCID: PMC5397868 DOI: 10.1038/srep46595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/22/2017] [Indexed: 11/08/2022] Open
Abstract
We report the construction of a novel Systems Biology based virtual drug discovery model for the prediction of non-toxic metabolic targets in Mycobacterium tuberculosis (Mtb). This is based on a data-intensive genome level analysis and the principle of conservation of the evolutionarily important genes. In the 1623 sequenced Mtb strains, 890 metabolic genes identified through a systems approach in Mtb were evaluated for non-synonymous mutations. The 33 genes showed none or one variation in the entire 1623 strains, including 1084 Russian MDR strains. These invariant targets were further evaluated for their experimental and in silico essentiality as well as availability of their crystal structure in Protein Data Bank (PDB). Along with this, targets for the common existing antibiotics and the new Tb drug candidates were also screened for their variation across 1623 strains of Mtb for understanding the drug resistance. We propose that the reduced set of these reported targets could be a more effective starting point for medicinal chemists in generating new chemical leads. This approach has the potential of fueling the dried up Tuberculosis (Tb) drug discovery pipeline.
Collapse
|
7
|
Pardeshi P, Rao KK, Balaji PV. Rv3634c from Mycobacterium tuberculosis H37Rv encodes an enzyme with UDP-Gal/Glc and UDP-GalNAc 4-epimerase activities. PLoS One 2017; 12:e0175193. [PMID: 28403215 PMCID: PMC5389812 DOI: 10.1371/journal.pone.0175193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/22/2017] [Indexed: 01/03/2023] Open
Abstract
A bioinformatics study revealed that Mycobacterium tuberculosis H37Rv (Mtb) contains sequence homologs of Campylobacter jejuni protein glycosylation enzymes. The ORF Rv3634c from Mtb was identified as a sequence homolog of C. jejuni UDP-Gal/GalNAc 4-epimerase. This study reports the cloning of Rv3634c and its expression as an N-terminal His-tagged protein. The recombinant protein was shown to have UDP-Gal/Glc 4-epimerase activity by GOD-POD assay and by reverse phase HPLC. This enzyme was shown to have UDP-GalNAc 4-epimerase activity also. Residues Ser121, Tyr146 and Lys150 were shown by site-directed mutagenesis to be important for enzyme activity. Mutation of Ser121 and Tyr146 to Ala and Phe, respectively, led to complete loss of activity whereas mutation of Lys150 to Arg led to partial loss of activity. There were no gross changes in the secondary structures of any of these three mutants. These results suggest that Ser121 and Tyr146 are essential for epimerase activity of Rv3634c. UDP-Gal/Glc 4-epimerases from other organisms also have a catalytic triad consisting of Ser, Tyr and Lys. The triad carries out proton transfer from nucleotide sugar to NAD+ and back, thus effecting the epimerization of the substrate. Addition of NAD+ to Lys150 significantly abrogates the loss of activity, suggesting that, as in other epimerases, NAD+ is associated with Rv3634c.
Collapse
Affiliation(s)
- Peehu Pardeshi
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Powai, Mumbai, India
| | - K. Krishnamurthy Rao
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Powai, Mumbai, India
- * E-mail: (KKR); (PVB)
| | - Petety V. Balaji
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay Powai, Mumbai, India
- * E-mail: (KKR); (PVB)
| |
Collapse
|
8
|
Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG, Villarreal-Ramos B. Bovine Tuberculosis in Cattle: Vaccines, DIVA Tests, and Host Biomarker Discovery. Annu Rev Anim Biosci 2016; 4:87-109. [PMID: 26884103 DOI: 10.1146/annurev-animal-021815-111311] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bovine tuberculosis remains a major economic and animal welfare concern worldwide. Cattle vaccination is being considered as part of control strategies. This approach, used alongside conventional control policies, also requires the development of vaccine-compatible diagnostic assays to distinguish vaccinated from infected animals (DIVA). We discuss progress made on optimizing the only potentially available vaccine, bacille Calmette Guérin (BCG), and on strategies to improve BCG efficacy. We also describe recent advances in DIVA development based on the detection of host cellular immune responses by blood-testing or skin-testing approaches. Finally, to accelerate vaccine development, definition of host biomarkers that provide meaningful stage-gating criteria to select vaccine candidates for further testing is highly desirable. Some progress has also been made in this area of research, and we summarize studies that defined either markers predicting vaccine success or markers that correlate with disease stage or severity.
Collapse
Affiliation(s)
- H Martin Vordermeier
- Animal and Plant Health Agency, Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom;
| | - Gareth J Jones
- Animal and Plant Health Agency, Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom;
| | - Bryce M Buddle
- AgResearch, Hopkirk Research Institute, Palmerston North 4442, New Zealand
| | - R Glyn Hewinson
- Animal and Plant Health Agency, Weybridge, Addlestone, Surrey KT15 3NB, United Kingdom;
| | | |
Collapse
|
9
|
Vordermeier HM, Jones GJ, Buddle BM, Hewinson RG. Development of immune-diagnostic reagents to diagnose bovine tuberculosis in cattle. Vet Immunol Immunopathol 2016; 181:10-14. [DOI: 10.1016/j.vetimm.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
|
10
|
Ordóñez-Robles M, Rodríguez-García A, Martín JF. Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes. Appl Microbiol Biotechnol 2016; 100:8091-103. [PMID: 27357227 DOI: 10.1007/s00253-016-7696-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023]
Abstract
Tacrolimus (FK506) is a 23-membered macrolide immunosuppressant used in current clinics. Understanding how the tacrolimus biosynthetic gene cluster is regulated is important to increase its industrial production. Here, we analysed the effect of the disruption of fkbN (encoding a LAL-type positive transcriptional regulator) on the whole transcriptome of the tacrolimus producer Streptomyces tsukubaensis using microarray technology. Transcription of fkbN in the wild type strain increases from 70 h of cultivation reaching a maximum at 89 h, prior to the onset of tacrolimus biosynthesis. Disruption of fkbN in S. tsukubaensis does not affect growth but prevents tacrolimus biosynthesis. Inactivation of fkbN reduces the transcription of most of the fkb cluster genes, including some all (for allylmalonyl-CoA biosynthesis) genes but does not affect expression of allMNPOS or fkbR (encoding a LysR-type regulator). Disruption of fkbN does not suppress transcription of the cistron tcs6-fkbQ-fkbN; thus, FkbN self-regulates only weakly its own expression. Interestingly, inactivation of FkbN downregulates the transcription of a 4'-phosphopantetheinyl transferase coding gene, which product is involved in tacrolimus biosynthesis, and upregulates the transcription of a gene cluster containing a cpkA orthologous gene, which encodes a PKS involved in coelimycin P1 biosynthesis in Streptomyces coelicolor. We propose an information theory-based model for FkbN binding sequences. The consensus FkbN binding sequence consists of 14 nucleotides with dyad symmetry containing two conserved inverted repeats of 7 nt each. This FkbN target sequence is present in the promoters of FkbN-regulated genes.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, 24071, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León, 24006, Spain
| | - Antonio Rodríguez-García
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, 24071, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León, 24006, Spain
| | - Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, 24071, Spain.
| |
Collapse
|
11
|
Li Y, Croucher NJ, Thompson CM, Trzciński K, Hanage WP, Lipsitch M. Identification of pneumococcal colonization determinants in the stringent response pathway facilitated by genomic diversity. BMC Genomics 2015; 16:369. [PMID: 25956132 PMCID: PMC4424882 DOI: 10.1186/s12864-015-1573-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/24/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Understanding genetic determinants of a microbial phenotype generally involves creating and comparing isogenic strains differing at the locus of interest, but the naturally existing genomic and phenotypic diversity of microbial populations has rarely been exploited. Here we report use of a diverse collection of 616 carriage isolates of Streptococcus pneumoniae and their genome sequences to help identify a novel determinant of pneumococcal colonization. RESULTS A spontaneously arising laboratory variant (SpnYL101) of a capsule-switched TIGR4 strain (TIGR4:19F) showed reduced ability to establish mouse nasal colonization and lower resistance to non-opsonic neutrophil-mediated killing in vitro, a phenotype correlated with in vivo success. Whole genome sequencing revealed 5 single nucleotide polymorphisms (SNPs) affecting 4 genes in SpnYL101 relative to its ancestor. To evaluate the effect of variation in each gene, we performed an in silico screen of 616 previously published genome sequences to identify pairs of closely-related, serotype-matched isolates that differ at the gene of interest, and compared their resistance to neutrophil-killing. This method allowed rapid examination of multiple candidate genes and found phenotypic differences apparently associated with variation in SP_1645, a RelA/ SpoT homolog (RSH) involved in the stringent response. To establish causality, the alleles corresponding to SP_1645 were switched between the TIGR4:19F and SpnYL101. The wild-type SP_1645 conferred higher resistance to neutrophil-killing and competitiveness in mouse colonization. Using a similar strategy, variation in another RSH gene (TIGR4 locus tag SP_1097) was found to alter resistance to neutrophil-killing. CONCLUSIONS These results indicate that analysis of naturally existing genomic diversity complements traditional genetics approaches to accelerate genotype-phenotype analysis.
Collapse
Affiliation(s)
- Yuan Li
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. .,Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA.
| | - Nicholas J Croucher
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
| | - Claudette M Thompson
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. .,Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA.
| | - Krzysztof Trzciński
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. .,Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA. .,Department of Pediatric Immunology and Infectious Diseases, UMC Utrecht, WKZ, Lundlaan 6, 3508, AB, Utrecht, The Netherlands.
| | - William P Hanage
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
| | - Marc Lipsitch
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA. .,Department of Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
12
|
Baloni P, Padiadpu J, Singh A, Gupta KR, Chandra N. Identifying feasible metabolic routes in Mycobacterium smegmatis and possible alterations under diverse nutrient conditions. BMC Microbiol 2014; 14:276. [PMID: 25403821 PMCID: PMC4248442 DOI: 10.1186/s12866-014-0276-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022] Open
Abstract
Background Many studies on M. tuberculosis have emerged from using M. smegmatis MC2155 (Msm), since they share significant similarities and yet Msm is non-pathogenic and faster growing. Although several individual molecules have been studied from Msm, many questions remain open about its metabolism as a whole and its capability to be versatile. Adaptability and versatility are emergent properties of a system, warranting a molecular systems perspective to understand them. Results We identify feasible metabolic pathways in Msm in reference condition with transcriptome, phenotypic microarray, along with functional annotation of the genome. Together with transcriptome data, specific genes from a set of alternatives have been mapped onto different pathways. About 257 metabolic pathways can be considered to be feasible in Msm. Next, we probe cellular metabolism with an array of alternative carbon and nitrogen sources and identify those that are utilized and favour growth as well as those that do not support growth. In all, about 135 points in the entire metabolic map are probed. Analyzing growth patterns under these conditions, lead us to hypothesize different pathways that can become active in various conditions and possible alternate routes that may be induced, thus explaining the observed physiological adaptations. Conclusions The study provides the first detailed analysis of feasible pathways towards adaptability. We obtain mechanistic insights that explain observed phenotypic behaviour by studying gene-expression profiles and pathways inferred from the genome sequence. Comparison of transcriptome and phenome analysis of Msm and Mtb provides a rationale for understanding commonalities in metabolic adaptability. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0276-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanka Baloni
- Molecular Biophysics Unit, IISc, Bangalore, 560012, India. .,Department of Biochemistry, IISc, Bangalore, 560012, India.
| | - Jyothi Padiadpu
- Supercomputer Education and Research Centre, IISc, Bangalore, 560012, India. .,Department of Biochemistry, IISc, Bangalore, 560012, India.
| | - Anupam Singh
- Department of Biochemistry, IISc, Bangalore, 560012, India.
| | | | | |
Collapse
|
13
|
Current ante-mortem techniques for diagnosis of bovine tuberculosis. Res Vet Sci 2014; 97 Suppl:S44-52. [PMID: 24768355 DOI: 10.1016/j.rvsc.2014.04.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/25/2014] [Accepted: 04/05/2014] [Indexed: 11/21/2022]
Abstract
Bovine tuberculosis (TB), mainly caused by Mycobacterium bovis, is a zoonotic disease with implications for Public Health and having an economic impact due to decreased production and limitations to the trade. Bovine TB is subjected to official eradication campaigns mainly based on a test and slaughter policy using diagnostic assays based on the cell-mediated immune response as the intradermal tuberculin test and the gamma-interferon (IFN-γ) assay. Moreover, several diagnostic assays based on the detection of specific antibodies (Abs) have been developed in the last few years with the aim of complementing the current diagnostic techniques in the near future. This review provides an overview of the current ante-mortem diagnostic tools for diagnosis of bovine TB regarding historical background, methodologies and sensitivity (Se) and specificity (Sp) obtained in previous studies under different epidemiological situations.
Collapse
|
14
|
Vordermeier M, Jones GJ, Whelan AO. DIVA reagents for bovine tuberculosis vaccines in cattle. Expert Rev Vaccines 2014; 10:1083-91. [DOI: 10.1586/erv.11.22] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Peñuelas-Urquides K, González-Escalante L, Villarreal-Treviño L, Silva-Ramírez B, Gutiérrez-Fuentes DJ, Mojica-Espinosa R, Rangel-Escareño C, Uribe-Figueroa L, Molina-Salinas GM, Dávila-Velderrain J, Castorena-Torres F, Bermúdez de León M, Said-Fernández S. Comparison of gene expression profiles between pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis. Curr Microbiol 2013; 67:362-71. [PMID: 23649743 DOI: 10.1007/s00284-013-0376-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/28/2013] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis has developed resistance to anti-tuberculosis first-line drugs. Multidrug-resistant strains complicate the control of tuberculosis and have converted it into a worldwide public health problem. Mutational studies of target genes have tried to envisage the resistance in clinical isolates; however, detection of these mutations in some cases is not sufficient to identify drug resistance, suggesting that other mechanisms are involved. Therefore, the identification of new markers of susceptibility or resistance to first-line drugs could contribute (1) to specifically diagnose the type of M. tuberculosis strain and prescribe an appropriate therapy, and (2) to elucidate the mechanisms of resistance in multidrug-resistant strains. In order to identify specific genes related to resistance in M. tuberculosis, we compared the gene expression profiles between the pansensitive H37Rv strain and a clinical CIBIN:UMF:15:99 multidrug-resistant isolate using microarray analysis. Quantitative real-time PCR confirmed that in the clinical multidrug-resistant isolate, the esxG, esxH, rpsA, esxI, and rpmI genes were upregulated, while the lipF, groES, and narG genes were downregulated. The modified genes could be involved in the mechanisms of resistance to first-line drugs in M. tuberculosis and could contribute to increased efficiency in molecular diagnosis approaches of infections with drug-resistant strains.
Collapse
Affiliation(s)
- K Peñuelas-Urquides
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Calle 2 de abril 501, Col. Independencia, 64720, Monterrey, Nuevo León, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cox RA, Garcia MJ. Adaptation of mycobacteria to growth conditions: a theoretical analysis of changes in gene expression revealed by microarrays. PLoS One 2013; 8:e59883. [PMID: 23593152 PMCID: PMC3625197 DOI: 10.1371/journal.pone.0059883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
Background Microarray analysis is a powerful technique for investigating changes in gene expression. Currently, results (r-values) are interpreted empirically as either unchanged or up- or down-regulated. We now present a mathematical framework, which relates r-values to the macromolecular properties of population-average cells. The theory is illustrated by the analysis of published data for two species; namely, Mycobacterium bovis BCG Pasteur and Mycobacterium smegmatis mc2 155. Each species was grown in a chemostat at two different growth rates. Application of the theory reveals the growth rate dependent changes in the mycobacterial proteomes. Principal Findings The r-value r(i) of any ORF (ORF(i)) encoding protein p(i) was shown to be equal to the ratio of the concentrations of p(i) and so directly proportional to the ratio of the numbers of copies of p(i) per population-average cells of the two cultures. The proportionality constant can be obtained from the ratios DNA: RNA: protein. Several subgroups of ORFs were identified because they shared a particular r-value. Histograms of the number of ORFs versus the expression ratio were simulated by combining the particular r-values of several subgroups of ORFs. The largest subgroup was ORF(j) (r(j) = 1.00± SD) which was estimated to comprise respectively 59% and 49% of ORFs of M. bovis BCG Pasteur and M. smegmatis mc2 155. The standard deviations reflect the properties of the cDNA preparations investigated. Significance The analysis provided a quantitative view of growth rate dependent changes in the proteomes of the mycobacteria studied. The majority of the ORFs were found to be constitutively expressed. In contrast, the protein compositions of the outer permeability barriers and cytoplasmic membranes were found to be dependent on growth rate; thus illustrating the response of bacteria to their environment. The theoretical approach applies to any cultivatable bacterium under a wide range of growth conditions.
Collapse
Affiliation(s)
- Robert Ashley Cox
- Division of Mycobacterial Research, National Institute for Medical Research, London, United Kingdom.
| | | |
Collapse
|
17
|
Fullam E, Talbot J, Abuhammed A, Westwood I, Davies SG, Russell AJ, Sim E. Design, synthesis and structure-activity relationships of 3,5-diaryl-1H-pyrazoles as inhibitors of arylamine N-acetyltransferase. Bioorg Med Chem Lett 2013; 23:2759-64. [PMID: 23518278 DOI: 10.1016/j.bmcl.2013.02.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The synthesis and inhibitory potencies of a novel series of 3,5-diaryl-1H-pyrazoles as specific inhibitors of prokaryotic arylamine N-acetyltransferase enzymes is described. The series is based on hit compound 1 3,5-diaryl-1H-pyrazole identified from a high-throughout screen that has been carried out previously and found to inhibit the growth of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Elizabeth Fullam
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | | | | | | | | | | | |
Collapse
|
18
|
Long-range transcriptional control of an operon necessary for virulence-critical ESX-1 secretion in Mycobacterium tuberculosis. J Bacteriol 2012; 194:2307-20. [PMID: 22389481 DOI: 10.1128/jb.00142-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ESX-1 secretion system of Mycobacterium tuberculosis has to be precisely regulated since the secreted proteins, although required for a successful virulent infection, are highly antigenic and their continued secretion would alert the immune system to the infection. The transcription of a five-gene operon containing espACD-Rv3613c-Rv3612c, which is required for ESX-1 secretion and is essential for virulence, was shown to be positively regulated by the EspR transcription factor. Thus, transcription from the start site, found to be located 67 bp upstream of espA, was dependent upon EspR enhancer-like sequences far upstream (between 884 and 1,004 bp), which we term the espA activating region (EAR). The EAR contains one of the known binding sites for EspR, providing the first in vivo evidence that transcriptional activation at the espA promoter occurs by EspR binding to the EAR and looping out DNA between this site and the promoter. Regulation of transcription of this operon thus takes place over long regions of the chromosome. This regulation may differ in some members of the M. tuberculosis complex, including Mycobacterium bovis, since deletions of the intergenic region have removed the upstream sequence containing the EAR, resulting in lowered espA expression. Consequent differences in expression of ESX-1 in these bacteria may contribute to their various pathologies and host ranges. The virulence-critical nature of this operon means that transcription factors controlling its expression are possible drug targets.
Collapse
|
19
|
Bukka A, Price CTD, Kernodle DS, Graham JE. Mycobacterium tuberculosis RNA Expression Patterns in Sputum Bacteria Indicate Secreted Esx Factors Contributing to Growth are Highly Expressed in Active Disease. Front Microbiol 2012; 2:266. [PMID: 22291682 PMCID: PMC3254194 DOI: 10.3389/fmicb.2011.00266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 12/15/2011] [Indexed: 01/13/2023] Open
Abstract
To identify factors contributing to the ability of tubercle bacilli to grow in the lung during active infection, we analyzed RNA expression patterns in bacteria present in patient sputum. Prominent among bacterial transcripts identified were those encoding secreted peptides of the Esat-6 subfamily that includes EsxK and EsxL (Rv1197 and Rv1198). H37Rv esxKL and esxJI transcripts were differentially expressed under different growth conditions, and disruption of these genes altered growth phase kinetics in typical laboratory batch broth cultures. These growth defects, including the reduced intracellular growth of an ΔesxKL mutant in primary human macrophages, were reversed by either low multiplicity co-infection or co-culture with wild-type bacteria, demonstrating the ability of the secreted factors to rescue isogenic mutants. Complementing either only esxL or esxI alone (Rv1198 or Rv1037c) also reduced observed growth defects, indicating these genes encode factors capable of contributing to growth. Our studies indicate that the Mycobacterium tuberculosis Mtb9.9 family secreted factors EsxL and EsxI can act in trans to modulate growth of intracellular bacteria, and are highly expressed during active human lung infection.
Collapse
Affiliation(s)
- Archana Bukka
- Department of Microbiology and Immunology, University of Louisville School of Medicine Louisville, KY, USA
| | | | | | | |
Collapse
|
20
|
Ligowska M, Cohn MT, Stabler RA, Wren BW, Brøndsted L. Effect of chicken meat environment on gene expression of Campylobacter jejuni and its relevance to survival in food. Int J Food Microbiol 2011; 145 Suppl 1:S111-5. [PMID: 20858569 DOI: 10.1016/j.ijfoodmicro.2010.08.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/18/2010] [Accepted: 08/27/2010] [Indexed: 12/21/2022]
Abstract
Poultry meat is the major food source responsible for gastrointestinal infections caused by the human pathogen Campylobacter jejuni. Even though C. jejuni does not grow below 30 °C, the bacterium survives on raw meat surfaces at refrigerated temperatures and thus poses a risk to the consumer. Previously, we have shown that chicken meat juice prolongs survival of C. jejuni at 5 °C compared to laboratory medium, suggesting that compounds present in meat juice influence adaptation to low temperatures. In the present study we have used chicken meat juice to identify C. jejuni genes that are differentially expressed in a typical chicken meat environment encountered by consumers. The analysis showed that chicken meat juice increased expression of luxS involved in quorum sensing, as well as a gene involved in O-linked flagellin glycosylation in C. jejuni, while expression of haemin uptake and the peroxide stress response genes were reduced. Furthermore, we propose that LuxS may play a key role in adaptation to the chicken meat juice environment, as lack of the luxS gene reduces the ability of C. jejuni to survive in chicken meat juice at low temperature. Finally, our data suggest that part of an ABC transport system is induced and we speculate that uptake of cryoprotectants may be important for C. jejuni to adapt to low temperature. In summary, we found that C. jejuni has a specific but limited transcriptional response to chicken meat juice and that luxS has an impact on the prolonged survival of C. jejuni in this important environment in the food chain.
Collapse
Affiliation(s)
- Małgorzata Ligowska
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
21
|
Mycobacterium bovis antigens for the differential diagnosis of vaccinated and infected cattle. Vet Microbiol 2011; 151:8-13. [PMID: 21411245 DOI: 10.1016/j.vetmic.2011.02.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The urgency for new and improved cattle vaccines and diagnostic reagents for Bovine tuberculosis (TB) has made their development a research priority in Great Britain (GB). Significant progress has been made to develop specific antigens that allow the differentiation of BCG vaccinated and Mycobacterium bovis infected cattle (DIVA test). This has been greatly facilitated by the completion of the genome sequences of M. tuberculosis, M. bovis and BCG Pasteur and the subsequent application of comparative genome and transcriptome analysis to define DIVA antigens that complemented the prototype DIVA antigens ESAT-6 and CFP-10 by increasing their test sensitivity. Finally, we present an up-date of our current approaches in this area.
Collapse
|
22
|
Screening of predicted secreted antigens from Mycobacterium bovis identifies potential novel differential diagnostic reagents. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1344-8. [PMID: 20668139 DOI: 10.1128/cvi.00261-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, the most promising vaccination strategies for the control of bovine tuberculosis (TB) focus on improving the efficacy of Mycobacterium bovis bacillus Calmette-Guérin (BCG). However, vaccination with BCG results in sensitization of animals to bovine tuberculin and compromises tests currently used for diagnosis of bovine TB infection. Thus, the development of specific diagnostic reagents capable of discriminating between infected and uninfected vaccinated animals (DIVA) is of high priority. To test the hypothesis that M. bovis-secreted proteins are likely to contain immunogenic antigens that can be used to increase the specificity of diagnostic tests, we screened 379 pools of overlapping peptides representing 119 antigens for their ability to stimulate a gamma inferferon (IFN-gamma) response in vitro using whole blood from both TB reactor and BCG-vaccinated animals. Peptide pools representing antigens Rv3020c and Rv2346c induced responses in 61% and 57% of the TB reactor animals, respectively, without inducing responses in any BCG-vaccinated animal studied. Furthermore, individual peptides contained within pools recognized by BCG vaccinates were identified that were specific and induced IFN-gamma responses in TB reactor animals. From these results, we constructed a cocktail of nine peptides representing multiple antigen targets that was recognized by 54% of TB reactor animals but also failed to induce responses in any BCG-vaccinated animal studied. In summary, we have identified three peptide cocktails for prioritization in larger trials to discriminate between M. bovis infection and BCG vaccination.
Collapse
|
23
|
Chowdhury RP, Saraswathi R, Chatterji D. Mycobacterial stress regulation: The Dps "twin sister" defense mechanism and structure-function relationship. IUBMB Life 2010; 62:67-77. [PMID: 20014234 DOI: 10.1002/iub.285] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this work, we have tried to emphasize the connection between mycobacterial growth and regulation of gene expression. Utilization of multiple carbon sources and diauxic growth helps bacteria to regulate gene expression at an optimum level so that the inhospitable conditions encountered during nutrient depletion can be circumvented. These aspects will be discussed with respect to mycobacterial growth in subsequent sections. Identification and characterization of genes induced under such conditions is helpful to understand the physiology of the bacterium. Although it is necessary to compare the total expression profile of proteins as they transit from vegetative growth to stationary phase, at times a lot of insights can be deciphered from the expression pattern of one or two proteins. We have compared the protein expression and sigma factor selectivity of two such proteins in M. smegmatis to understand the differential regulation of genes playing diverse function in the same species. Some newer insights on the structure and function of one of the Dps proteins are also explained.
Collapse
|
24
|
Deenadayalan A, Heaslip D, Rajendiran AA, Velayudham BV, Frederick S, Yang HL, Dobos K, Belisle JT, Raja A. Immunoproteomic identification of human T cell antigens of Mycobacterium tuberculosis that differentiate healthy contacts from tuberculosis patients. Mol Cell Proteomics 2009; 9:538-49. [PMID: 20031926 DOI: 10.1074/mcp.m900299-mcp200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Identification of Mycobacterium tuberculosis antigens inducing cellular immune responses is required to improve the diagnosis of and vaccine development against tuberculosis. To identify the antigens of M. tuberculosis that differentiated between tuberculosis (TB) patients and healthy contacts based on T cell reactivity, the culture filtrate of in vitro grown M. tuberculosis was fractionated by two-dimensional liquid phase electrophoresis and tested for the ability to stimulate T cells in a whole blood assay. This approach separated the culture filtrate into 350 fractions with sufficient protein quantity (at least 200 microg of protein) for mass spectrometry and immunological analyses. High levels of interferon-gamma (IFN-gamma) secretion were induced by 105 fractions in healthy contacts compared with TB patients (p < 0.05). Most interesting was the identification of 10 fractions that specifically induced strong IFN-gamma production in the healthy contact population but not in TB patients. Other immunological measurements showed 42 fractions that induced significant lymphocyte proliferative responses in the healthy contact group compared with the TB patients. The tumor necrosis factor-alpha response for most of the fractions did not significantly differ in the tested groups, and the interleukin-4 response was below the detectable range for all fractions and both study groups. Proteomic characterization of the 105 fractions that induced a significant IFN-gamma response in the healthy contacts compared with the TB patients led to the identification of 59 proteins of which 24 represented potentially novel T cell antigens. Likewise, the protein identification in the 10 healthy "contact-specific fractions" revealed 16 proteins that are key candidates as vaccine or diagnostic targets.
Collapse
Affiliation(s)
- Anbarasu Deenadayalan
- Tuberculosis Research Centre, Indian Council of Medical Research, Mayor V. R. Ramanathan Road, Chetput, Chennai 600 031, India
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shin SJ, Kim SY, Shin AR, Kim HJ, Cho SN, Park JK. Identification of Rv2041c, a novel immunogenic antigen from Mycobacterium tuberculosis with serodiagnostic potential. Scand J Immunol 2009; 70:457-64. [PMID: 19874550 DOI: 10.1111/j.1365-3083.2009.02324.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Novel immunogenic antigens are continually required for the improvement of diagnostic techniques for Mycobacterium tuberculosis infection. Some proteins with serodiagnostic value are not expressed under normal culture conditions, but may be induced under specific conditions such as gradual oxygen depletion and low pH, and from inside macrophages. Using a customized amplification library, we previously found that Rv2041c from M. tuberculosis H37Rv was highly expressed in vitro under conditions of low pH and hypoxia. In this study, recombinant (r)Rv2041c was produced in Escherichia coli to examine its role in immune responses. Increased Rv2041c expression in vitro during dormancy and during infection in human macrophages was confirmed by Western blotting and reverse transcription polymerase chain reaction, respectively. Interestingly, positive antibody responses to rRv2041c were detected only in those patients with active tuberculosis (TB) and in mice infected with M. tuberculosis H37Rv. Finally, Rv2041c was used successfully in the serodiagnosis of active M. tuberculosis infection in Korean patients in conjunction with other M. tuberculosis proteins, including Ag85 complex, 38 kDa, rESAT-6, rHSP-X and rCFP-10. Our Rv2041c-ELISA had comparable diagnostic sensitivity and equivalent specificity to the use of an M. tuberculosis H37Rv cellular extract. In addition, seven of 46 serum samples collected from TB patients (15.28%) showed positive antibody responses to Rv2041c, but not to the other proteins. These results suggest that Rv2041c can be used to increase assay sensitivity alongside well-known antigens for the serodiagnosis of M. tuberculosis infection.
Collapse
Affiliation(s)
- S J Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
A low density oligonucleotide microarray for the detection of viral and atypical bacterial respiratory pathogens. J Virol Methods 2009; 163:17-24. [PMID: 19638287 PMCID: PMC7112883 DOI: 10.1016/j.jviromet.2009.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 07/06/2009] [Accepted: 07/20/2009] [Indexed: 11/23/2022]
Abstract
Acute respiratory tract infections are a major cause of morbidity and mortality worldwide and exert a considerable economic burden on healthcare systems. Acute respiratory tract infections of the upper and lower respiratory tract are caused by a wide variety of viral and bacterial pathogens, which require comprehensive laboratory investigations. Conventional serological and immunofluorescence-based diagnostic methods for acute respiratory tract infections lack sensitivity when compared to polymerase chain reaction (PCR)-based approaches and the development of new diagnostic methodologies is required, to provide accurate, sensitive and rapid diagnoses. In the present study, a PCR-based low density oligonucleotide microarray was developed for the detection of 16 viral and two atypical bacterial pathogens. The performance of this DNA microarray-based analysis exhibited comparable sensitivities and specificities to multiplex real-time reverse transcription polymerase chain reactions (rtPCRs) confirming the potential diagnostic utility of the method. In contrast to routine multiplex PCR, the microarray incorporates an intrinsic redundancy as multiple and non-identical probes per target on the array allow direct intra-assay confirmation of positives. This study demonstrates that microarray technology provides a viable alternative to conventional serological-based approaches and multiplex PCR for pathogen identification in acute respiratory tract infections.
Collapse
|
27
|
Use of genomic DNA as an indirect reference for identifying gender-associated transcripts in morphologically identical, but chromosomally distinct, Schistosoma mansoni cercariae. PLoS Negl Trop Dis 2008; 2:e323. [PMID: 18941520 PMCID: PMC2565838 DOI: 10.1371/journal.pntd.0000323] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The use of DNA microarray technology to study global Schistosoma gene expression has led to the rapid identification of novel biological processes, pathways or associations. Implementation of standardized DNA microarray protocols across laboratories would assist maximal interpretation of generated datasets and extend productive application of this technology. METHODOLOGY/PRINCIPAL FINDINGS Utilizing a new Schistosoma mansoni oligonucleotide DNA microarray composed of 37,632 elements, we show that schistosome genomic DNA (gDNA) hybridizes with less variation compared to complex mixed pools of S. mansoni cDNA material (R = 0.993 for gDNA compared to R = 0.956 for cDNA during 'self versus self' hybridizations). Furthermore, these effects are species-specific, with S. japonicum or Mus musculus gDNA failing to bind significantly to S. mansoni oligonucleotide DNA microarrays (e.g R = 0.350 when S. mansoni gDNA is co-hybridized with S. japonicum gDNA). Increased median fluorescent intensities (209.9) were also observed for DNA microarray elements hybridized with S. mansoni gDNA compared to complex mixed pools of S. mansoni cDNA (112.2). Exploiting these valuable characteristics, S. mansoni gDNA was used in two-channel DNA microarray hybridization experiments as a common reference for indirect identification of gender-associated transcripts in cercariae, a schistosome life-stage in which there is no overt sexual dimorphism. This led to the identification of 2,648 gender-associated transcripts. When compared to the 780 gender-associated transcripts identified by hybridization experiments utilizing a two-channel direct method (co-hybridization of male and female cercariae cDNA), indirect methods using gDNA were far superior in identifying greater quantities of differentially expressed transcripts. Interestingly, both methods identified a concordant subset of 188 male-associated and 156 female-associated cercarial transcripts, respectively. Gene ontology classification of these differentially expressed transcripts revealed a greater diversity of categories in male cercariae. Quantitative real-time PCR analysis confirmed the DNA microarray results and supported the reliability of this platform for identifying gender-associated transcripts. CONCLUSIONS/SIGNIFICANCE Schistosome gDNA displays characteristics highly suitable for the comparison of two-channel DNA microarray results obtained from experiments conducted independently across laboratories. The schistosome transcripts identified here demonstrate, for the first time, that gender-associated patterns of expression are already well established in the morphologically identical, but chromosomally distinct, cercariae stage.
Collapse
|
28
|
Assessment of data processing to improve reliability of microarray experiments using genomic DNA reference. BMC Genomics 2008; 9 Suppl 2:S5. [PMID: 18831796 PMCID: PMC2559895 DOI: 10.1186/1471-2164-9-s2-s5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Using genomic DNA as common reference in microarray experiments has recently been tested by different laboratories. Conflicting results have been reported with regard to the reliability of microarray results using this method. To explain it, we hypothesize that data processing is a critical element that impacts the data quality. Results Microarray experiments were performed in a γ-proteobacterium Shewanella oneidensis. Pair-wise comparison of three experimental conditions was obtained either with two labeled cDNA samples co-hybridized to the same array, or by employing Shewanella genomic DNA as a standard reference. Various data processing techniques were exploited to reduce the amount of inconsistency between both methods and the results were assessed. We discovered that data quality was significantly improved by imposing the constraint of minimal number of replicates, logarithmic transformation and random error analyses. Conclusion These findings demonstrate that data processing significantly influences data quality, which provides an explanation for the conflicting evaluation in the literature. This work could serve as a guideline for microarray data analysis using genomic DNA as a standard reference.
Collapse
|
29
|
Screening of highly expressed mycobacterial genes identifies Rv3615c as a useful differential diagnostic antigen for the Mycobacterium tuberculosis complex. Infect Immun 2008; 76:3932-9. [PMID: 18519559 DOI: 10.1128/iai.00150-08] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculous infections caused by mycobacteria, especially tuberculosis of humans and cattle, are important both clinically and economically. Human populations can be vaccinated with Mycobacterium bovis bacille Calmette-Guérin (BCG), and control measures for cattle involving vaccination are now being actively considered. However, diagnostic tests based on tuberculin cannot distinguish between genuine infection and vaccination with BCG. Therefore, identification of differential diagnostic antigens capable of making this distinction is required, and until now sequence-based approaches have been predominant. Here we explored the link between antigenicity and mRNA expression level, as well as the possibility that we may be able to detect differential antigens by analyzing quantified global transcriptional profiles. We generated a list of 14 candidate antigens that are highly expressed in Mycobacterium tuberculosis and M. bovis under a variety of growth conditions. These candidates were screened in M. bovis-infected and naïve cattle for the ability to stimulate a gamma interferon (IFN-gamma) response. We identified one antigen, Rv3615c, which stimulated IFN-gamma responses in a significant proportion of M. bovis-infected cattle (11 of 30 cattle [37%] [P < 0.01]) but not in naïve or BCG-vaccinated animals. Importantly, the same antigen stimulated IFN-gamma responses in a significant proportion of infected cattle that did not respond to the well-characterized mycobacterial antigens ESAT-6 and CFP-10. Therefore, use of the Rv3615c epitope in combination with previously described differential tests based on ESAT-6 and CFP-10 has the potential to significantly increase diagnostic sensitivity without reducing specificity in BCG-vaccinated populations.
Collapse
|