1
|
Nuño-Cabanes C, Rodríguez-Navarro S. The promiscuity of the SAGA complex subunits: Multifunctional or moonlighting proteins? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194607. [PMID: 32712338 DOI: 10.1016/j.bbagrm.2020.194607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Gene expression, the decoding of DNA information into accessible instructions for protein synthesis, is a complex process in which multiple steps, including transcription, mRNA processing and mRNA export, are regulated by different factors. One of the first steps in this process involves chemical and structural changes in chromatin to allow transcription. For such changes to occur, histone tail and DNA epigenetic modifications foster the binding of transcription factors to promoter regions. The SAGA coactivator complex plays a crucial role in this process by mediating histone acetylation through Gcn5, and histone deubiquitination through Ubp8 enzymes. However, most SAGA subunits interact physically with other proteins beyond the SAGA complex. These interactions could represent SAGA-independent functions or a mechanism to widen SAGA multifunctionality. Among the different mechanisms to perform more than one function, protein moonlighting defines unrelated molecular activities for the same polypeptide sequence. Unlike pleiotropy, where a single gene can affect different phenotypes, moonlighting necessarily involves separate functions of a protein at the molecular level. In this review we describe in detail some of the alternative physical interactions of several SAGA subunits. In some cases, the alternative role constitutes a clear moonlighting function, whereas in most of them the lack of molecular evidence means that we can only define these interactions as promiscuous that require further work to verify if these are moonlighting functions.
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain.
| |
Collapse
|
2
|
Schäffer DE, Iyer LM, Burroughs AM, Aravind L. Functional Innovation in the Evolution of the Calcium-Dependent System of the Eukaryotic Endoplasmic Reticulum. Front Genet 2020; 11:34. [PMID: 32117448 PMCID: PMC7016017 DOI: 10.3389/fgene.2020.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 01/30/2023] Open
Abstract
The origin of eukaryotes was marked by the emergence of several novel subcellular systems. One such is the calcium (Ca2+)-stores system of the endoplasmic reticulum, which profoundly influences diverse aspects of cellular function including signal transduction, motility, division, and biomineralization. We use comparative genomics and sensitive sequence and structure analyses to investigate the evolution of this system. Our findings reconstruct the core form of the Ca2+-stores system in the last eukaryotic common ancestor as having at least 15 proteins that constituted a basic system for facilitating both Ca2+ flux across endomembranes and Ca2+-dependent signaling. We present evidence that the key EF-hand Ca2+-binding components had their origins in a likely bacterial symbiont other than the mitochondrial progenitor, whereas the protein phosphatase subunit of the ancestral calcineurin complex was likely inherited from the asgard archaeal progenitor of the stem eukaryote. This further points to the potential origin of the eukaryotes in a Ca2+-rich biomineralized environment such as stromatolites. We further show that throughout eukaryotic evolution there were several acquisitions from bacteria of key components of the Ca2+-stores system, even though no prokaryotic lineage possesses a comparable system. Further, using quantitative measures derived from comparative genomics we show that there were several rounds of lineage-specific gene expansions, innovations of novel gene families, and gene losses correlated with biological innovation such as the biomineralized molluscan shells, coccolithophores, and animal motility. The burst of innovation of new genes in animals included the wolframin protein associated with Wolfram syndrome in humans. We show for the first time that it contains previously unidentified Sel1, EF-hand, and OB-fold domains, which might have key roles in its biochemistry.
Collapse
Affiliation(s)
- Daniel E Schäffer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States.,Science, Mathematics, and Computer Science Magnet Program, Montgomery Blair High School, Silver Spring, MD, United States
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Manohar S, Jacob S, Wang J, Wiechecki KA, Koh HW, Simões V, Choi H, Vogel C, Silva GM. Polyubiquitin Chains Linked by Lysine Residue 48 (K48) Selectively Target Oxidized Proteins In Vivo. Antioxid Redox Signal 2019; 31:1133-1149. [PMID: 31482721 PMCID: PMC6798811 DOI: 10.1089/ars.2019.7826] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/11/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Aims: Ubiquitin is a highly conserved protein modifier that heavily accumulates during the oxidative stress response. Here, we investigated the role of the ubiquitination system, particularly at the linkage level, in the degradation of oxidized proteins. The function of ubiquitin in the removal of oxidized proteins remains elusive because of the wide range of potential targets and different roles that polyubiquitin chains play. Therefore, we describe in detail the dynamics of the K48 ubiquitin response as the canonical signal for protein degradation. We identified ubiquitin targets and defined the relationship between protein ubiquitination and oxidation during the stress response. Results: Combining oxidized protein isolation, linkage-specific ubiquitination screens, and quantitative proteomics, we found that K48 ubiquitin accumulated at both the early and late phases of the stress response. We further showed that a fraction of oxidized proteins are conjugated with K48 ubiquitin. We identified ∼750 ubiquitinated proteins and ∼400 oxidized proteins that were modified during oxidative stress, and around half of which contain both modifications. These proteins were highly abundant and function in translation and energy metabolism. Innovation and Conclusion: Our work showed for the first time that K48 ubiquitin modifies a large fraction of oxidized proteins, demonstrating that oxidized proteins can be targeted by the ubiquitin/proteasome system. We suggest that oxidized proteins that rapidly accumulate during stress are subsequently ubiquitinated and degraded during the late phase of the response. This delay between oxidation and ubiquitination may be necessary for reprogramming protein dynamics, restoring proteostasis, and resuming cell growth.
Collapse
Affiliation(s)
- Sandhya Manohar
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Samson Jacob
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Jade Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Keira A. Wiechecki
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Hiromi W.L. Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vanessa Simões
- Department of Biology, Duke University, Durham, North Carolina
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | | |
Collapse
|
4
|
Gundogdu M, Walden H. Structural basis of generic versus specific E2-RING E3 interactions in protein ubiquitination. Protein Sci 2019; 28:1758-1770. [PMID: 31340062 DOI: 10.1002/pro.3690] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/21/2022]
Abstract
Protein ubiquitination is a fundamental regulatory component in eukaryotic cell biology, where a cascade of ubiquitin activating (E1), conjugating (E2), and ligating (E3) enzymes assemble distinct ubiquitin signals on target proteins. E2s specify the type of ubiquitin signal generated, while E3s associate with the E2~Ub conjugate and select the substrate for ubiquitination. Thus, producing the right ubiquitin signal on the right target requires the right E2-E3 pair. The question of how over 600 E3s evolved to discriminate between 38 structurally related E2s has therefore been an area of intensive research, and with over 50 E2-E3 complex structures generated to date, the answer is beginning to emerge. The following review discusses the structural basis of generic E2-RING E3 interactions, contrasted with emerging themes that reveal how specificity can be achieved.
Collapse
Affiliation(s)
- Mehmet Gundogdu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Helen Walden
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Bozaquel-Morais BL, Madeira JB, Venâncio TM, Pacheco-Rosa T, Masuda CA, Montero-Lomeli M. A Chemogenomic Screen Reveals Novel Snf1p/AMPK Independent Regulators of Acetyl-CoA Carboxylase. PLoS One 2017; 12:e0169682. [PMID: 28076367 PMCID: PMC5226726 DOI: 10.1371/journal.pone.0169682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/20/2016] [Indexed: 12/26/2022] Open
Abstract
Acetyl-CoA carboxylase (Acc1p) is a key enzyme in fatty acid biosynthesis and is essential for cell viability. To discover new regulators of its activity, we screened a Saccharomyces cerevisiae deletion library for increased sensitivity to soraphen A, a potent Acc1p inhibitor. The hits identified in the screen (118 hits) were filtered using a chemical-phenotype map to exclude those associated with pleiotropic drug resistance. This enabled the identification of 82 ORFs that are genetic interactors of Acc1p. The main functional clusters represented by these hits were “transcriptional regulation”, “protein post-translational modifications” and “lipid metabolism”. Further investigation of the “transcriptional regulation” cluster revealed that soraphen A sensitivity is poorly correlated with ACC1 transcript levels. We also studied the three top unknown ORFs that affected soraphen A sensitivity: SOR1 (YDL129W), SOR2 (YIL092W) and SOR3 (YJR039W). Since the C18/C16 ratio of lipid acyl lengths reflects Acc1p activity levels, we evaluated this ratio in the three mutants. Deletion of SOR2 and SOR3 led to reduced acyl lengths, suggesting that Acc1p is indeed down-regulated in these strains. Also, these mutants showed no differences in Snf1p/AMPK activation status and deletion of SNF1 in these backgrounds did not revert soraphen A sensitivity completely. Furthermore, plasmid maintenance was reduced in sor2Δ strain and this trait was shared with 18 other soraphen A sensitive hits. In summary, our screen uncovered novel Acc1p Snf1p/AMPK-independent regulators.
Collapse
Affiliation(s)
- Bruno L. Bozaquel-Morais
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana B. Madeira
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago M. Venâncio
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Thiago Pacheco-Rosa
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio A. Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Monica Montero-Lomeli
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
6
|
Burroughs AM, Aravind L. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Res 2016; 44:8525-8555. [PMID: 27536007 PMCID: PMC5062991 DOI: 10.1093/nar/gkw722] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022] Open
Abstract
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
7
|
Aravind L, Burroughs AM, Zhang D, Iyer LM. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. Cold Spring Harb Perspect Biol 2014; 6:a016063. [PMID: 24984775 DOI: 10.1101/cshperspect.a016063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetic information, which plays a major role in eukaryotic biology, is transmitted by covalent modifications of nuclear proteins (e.g., histones) and DNA, along with poorly understood processes involving cytoplasmic/secreted proteins and RNAs. The origin of eukaryotes was accompanied by emergence of a highly developed biochemical apparatus for encoding, resetting, and reading covalent epigenetic marks in proteins such as histones and tubulins. The provenance of this apparatus remained unclear until recently. Developments in comparative genomics show that key components of eukaryotic epigenetics emerged as part of the extensive biochemical innovation of secondary metabolism and intergenomic/interorganismal conflict systems in prokaryotes, particularly bacteria. These supplied not only enzymatic components for encoding and removing epigenetic modifications, but also readers of some of these marks. Diversification of these prokaryotic systems and subsequently eukaryotic epigenetics appear to have been considerably influenced by the great oxygenation event in the Earth's history.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| |
Collapse
|
8
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
9
|
Miguel-Rojas C, Hera C. Proteomic identification of potential target proteins regulated by the SCF(F) (bp1) -mediated proteolysis pathway in Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2013; 14:934-945. [PMID: 23855991 PMCID: PMC6638928 DOI: 10.1111/mpp.12060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
F-box proteins function in the recruitment of proteins for SCF ubiquitination and proteasome degradation. Here, we studied the role of Fbp1, a nonessential F-box protein of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. The Δfbp1 mutant showed a significant delay in the production of wilt symptoms on tomato plants and was impaired in invasive growth on cellophane membranes and on living plant tissue. To search for target proteins recruited by Fbp1, a combination of sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) was used to compare proteins in mycelia of the wild-type and Δfbp1 mutant. The proteomic approach identified 41 proteins differing significantly in abundance between the two strains, 17 of which were more abundant in the Δfbp1 mutant, suggesting a possible regulation by proteasome degradation. Interestingly, several of the identified proteins were related to vesicle trafficking. Microscopic analysis revealed an impairment of the Δfbp1 strain in directional growth and in the structure of the Spitzenkörper, suggesting a role of Fbp1 in hyphal orientation. Our results indicate that Fbp1 regulates protein turnover and pathogenicity in F. oxysporum.
Collapse
Affiliation(s)
- Cristina Miguel-Rojas
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, 14071, Córdoba, Spain; Campus de Excelencia Internacional Agroalimentario, ceiA3, 14071, Córdoba, Spain
| | | |
Collapse
|
10
|
Klapa MI, Tsafou K, Theodoridis E, Tsakalidis A, Moschonas NK. Reconstruction of the experimentally supported human protein interactome: what can we learn? BMC SYSTEMS BIOLOGY 2013; 7:96. [PMID: 24088582 PMCID: PMC4015887 DOI: 10.1186/1752-0509-7-96] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/25/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Understanding the topology and dynamics of the human protein-protein interaction (PPI) network will significantly contribute to biomedical research, therefore its systematic reconstruction is required. Several meta-databases integrate source PPI datasets, but the protein node sets of their networks vary depending on the PPI data combined. Due to this inherent heterogeneity, the way in which the human PPI network expands via multiple dataset integration has not been comprehensively analyzed. We aim at assembling the human interactome in a global structured way and exploring it to gain insights of biological relevance. RESULTS First, we defined the UniProtKB manually reviewed human "complete" proteome as the reference protein-node set and then we mined five major source PPI datasets for direct PPIs exclusively between the reference proteins. We updated the protein and publication identifiers and normalized all PPIs to the UniProt identifier level. The reconstructed interactome covers approximately 60% of the human proteome and has a scale-free structure. No apparent differentiating gene functional classification characteristics were identified for the unrepresented proteins. The source dataset integration augments the network mainly in PPIs. Polyubiquitin emerged as the highest-degree node, but the inclusion of most of its identified PPIs may be reconsidered. The high number (>300) of connections of the subsequent fifteen proteins correlates well with their essential biological role. According to the power-law network structure, the unrepresented proteins should mainly have up to four connections with equally poorly-connected interactors. CONCLUSIONS Reconstructing the human interactome based on the a priori definition of the protein nodes enabled us to identify the currently included part of the human "complete" proteome, and discuss the role of the proteins within the network topology with respect to their function. As the network expansion has to comply with the scale-free theory, we suggest that the core of the human interactome has essentially emerged. Thus, it could be employed in systems biology and biomedical research, despite the considerable number of currently unrepresented proteins. The latter are probably involved in specialized physiological conditions, justifying the scarcity of related PPI information, and their identification can assist in designing relevant functional experiments and targeted text mining algorithms.
Collapse
Affiliation(s)
- Maria I Klapa
- Department of General Biology, School of Medicine, University of Patras, Rio, Patras, Greece.
| | | | | | | | | |
Collapse
|
11
|
Bellieny-Rabelo D, Oliveira AEA, Venancio TM. Impact of whole-genome and tandem duplications in the expansion and functional diversification of the F-box family in legumes (Fabaceae). PLoS One 2013; 8:e55127. [PMID: 23390519 PMCID: PMC3563651 DOI: 10.1371/journal.pone.0055127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022] Open
Abstract
F-box proteins constitute a large gene family that regulates processes from hormone signaling to stress response. F-box proteins are the substrate recognition modules of SCF E3 ubiquitin ligases. Here we report very distinct trends in family size, duplication, synteny and transcription of F-box genes in two nitrogen-fixing legumes, Glycine max (soybean) and Medicago truncatula (alfafa). While the soybean FBX genes emerged mainly through segmental duplications (including whole-genome duplications), M. truncatula genome is dominated by locally-duplicated (tandem) F-box genes. Many of these young FBX genes evolved complex transcriptional patterns, including preferential transcription in different tissues, suggesting that they have probably been recruited to important biochemical pathways (e.g. nodulation and seed development).
Collapse
Affiliation(s)
- Daniel Bellieny-Rabelo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Antônia Elenir Amâncio Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Galán A, Rodríguez-Navarro S. Sus1/ENY2: a multitasking protein in eukaryotic gene expression. Crit Rev Biochem Mol Biol 2012; 47:556-68. [PMID: 23057668 DOI: 10.3109/10409238.2012.730498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this review is to provide a complete overview on the functions of the transcription/export factor Sus1. Sus1 is a tiny conserved factor in sequence and functions through the eukaryotic kingdom. Although it was discovered recently, research done to address the role of Sus1/ENY2 has provided in deep description of different mechanisms influencing gene expression. Initially found to interact with the transcription and mRNA export machinery in yeast, it is now clear that it has a broad role in mRNA biogenesis. Sus1 is necessary for histone H2B deubiquitination, mRNA export and gene gating. Moreover, interesting observations also suggest a link with the cytoplasmatic mRNP fate. Although the role of Sus1 in human cells is largely unknown, preliminary results suggest interesting links to pathological states that range from rare diseases to diabetes. We will describe what is known about Sus1/ENY2 in yeast and other eukaryotes and discuss some exciting open questions to be solved in the future.
Collapse
Affiliation(s)
- Amparo Galán
- Centro de Investigación Príncipe Felipe, CIPF. Gene Expression coupled to RNA Transport Laboratory, Eduardo Primo Yúfera, Valencia, Spain
| | | |
Collapse
|
13
|
Lee Y, Mick J, Furdui C, Beamer LJ. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family. PLoS One 2012; 7:e38114. [PMID: 22685552 PMCID: PMC3369874 DOI: 10.1371/journal.pone.0038114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/01/2012] [Indexed: 11/26/2022] Open
Abstract
Coevolution analyses identify residues that co-vary with each other during evolution, revealing sequence relationships unobservable from traditional multiple sequence alignments. Here we describe a coevolutionary analysis of phosphomannomutase/phosphoglucomutase (PMM/PGM), a widespread and diverse enzyme family involved in carbohydrate biosynthesis. Mutual information and graph theory were utilized to identify a network of highly connected residues with high significance. An examination of the most tightly connected regions of the coevolutionary network reveals that most of the involved residues are localized near an interdomain interface of this enzyme, known to be the site of a functionally important conformational change. The roles of four interface residues found in this network were examined via site-directed mutagenesis and kinetic characterization. For three of these residues, mutation to alanine reduces enzyme specificity to ∼10% or less of wild-type, while the other has ∼45% activity of wild-type enzyme. An additional mutant of an interface residue that is not densely connected in the coevolutionary network was also characterized, and shows no change in activity relative to wild-type enzyme. The results of these studies are interpreted in the context of structural and functional data on PMM/PGM. Together, they demonstrate that a network of coevolving residues links the highly conserved active site with the interdomain conformational change necessary for the multi-step catalytic reaction. This work adds to our understanding of the functional roles of coevolving residue networks, and has implications for the definition of catalytically important residues.
Collapse
Affiliation(s)
- Yingying Lee
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jacob Mick
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest University Health Sciences Winston-Salem, North Carolina, United States of America
| | - Lesa J. Beamer
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Venancio TM, Bellieny-Rabelo D, Aravind L. Evolutionary and Biochemical Aspects of Chemical Stress Resistance in Saccharomyces cerevisiae. Front Genet 2012; 3:47. [PMID: 22479268 PMCID: PMC3315702 DOI: 10.3389/fgene.2012.00047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/15/2012] [Indexed: 01/03/2023] Open
Abstract
Large-scale chemical genetics screens (chemogenomics) in yeast have been widely used to find drug targets, understand the mechanism-of-action of compounds, and unravel the biochemistry of drug resistance. Chemogenomics is based on the comparison of growth of gene deletants in the presence and absence of a chemical substance. Such studies showed that more than 90% of the yeast genes are required for growth in the presence of at least one chemical. Analysis of these data, using computational approaches, has revealed non-trivial features of the natural chemical tolerance systems. As a result two non-overlapping sets of genes are seen to respectively impart robustness and evolvability in the context of natural chemical resistance. The former is composed of multidrug-resistance genes, whereas the latter comprises genes sharing chemical genetic profiles with many others. Recent publications showing the potential applications chemogenomics in studying the pharmacological basis of various drugs are discussed, as well as the expansion of chemogenomics to other organisms. Finally, integration of chemogenomics with sensitive sequence analysis and ubiquitination/phosphorylation data led to the discovery of a new conserved domain and important post-translational modification pathways involved in stress resistance.
Collapse
Affiliation(s)
- Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro Campos dos Goytacazes, Brazil
| | | | | |
Collapse
|
15
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Since its discovery over three decades ago, it has become abundantly clear that the ubiquitin (Ub) system is a quintessential feature of all aspects of eukaryotic biology. At the heart of the system lies the conjugation and deconjugation of Ub and Ub-like (Ubls) proteins to proteins or lipids drastically altering the biochemistry of the targeted molecules. In particular, it represents the primary mechanism by which protein stability is regulated in eukaryotes. Ub/Ubls are typified by the β-grasp fold (β-GF) that has additionally been recruited for a strikingly diverse range of biochemical functions. These include catalytic roles (e.g., NUDIX phosphohydrolases), scaffolding of iron-sulfur clusters, binding of RNA and other biomolecules such as co-factors, sulfur transfer in biosynthesis of diverse metabolites, and as mediators of key protein-protein interactions in practically every conceivable cellular context. In this chapter, we present a synthetic overview of the structure, evolution, and natural classification of Ub, Ubls, and other members of the β-GF. The β-GF appears to have differentiated into at least seven clades by the time of the last universal common ancestor of all extant organisms, encompassing much of the structural diversity observed in extant versions. The β-GF appears to have first emerged in the context of translation-related RNA-interactions and subsequently exploded to occupy various functional niches. Most biochemical diversification of the fold occurred in prokaryotes, with the eukaryotic phase of its evolution mainly marked by the expansion of the Ubl clade of the β-GF. Consequently, at least 70 distinct Ubl families are distributed across eukaryotes, of which nearly 20 families were already present in the eukaryotic common ancestor. These included multiple protein and one lipid conjugated forms and versions that functions as adapter domains in multimodule polypeptides. The early diversification of the Ubl families in eukaryotes played a major role in the emergence of characteristic eukaryotic cellular substructures and systems pertaining to nucleo-cytoplasmic compartmentalization, vesicular trafficking, lysosomal targeting, protein processing in the endoplasmic reticulum, and chromatin dynamics. Recent results from comparative genomics indicate that precursors of the eukaryotic Ub-system were already present in prokaryotes. The most basic versions are those combining an Ubl and an E1-like enzyme involved in metabolic pathways related to metallopterin, thiamine, cysteine, siderophore and perhaps modified base biosynthesis. Some of these versions also appear to have given rise to simple protein-tagging systems such as Sampylation in archaea and Urmylation in eukaryotes. However, other prokaryotic systems with Ubls of the YukD and other families, including one very close to Ub itself, developed additional elements that more closely resemble the eukaryotic state in possessing an E2, a RING-type E3, or both of these components. Additionally, prokaryotes have evolved conjugation systems that are independent of Ub ligases, such as the Pup system.
Collapse
|
17
|
Burroughs AM, Iyer LM, Aravind L. The natural history of ubiquitin and ubiquitin-related domains. Front Biosci (Landmark Ed) 2012; 17:1433-60. [PMID: 22201813 DOI: 10.2741/3996] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ubiquitin (Ub) system is centered on conjugation and deconjugation of Ub and Ub-like (Ubls) proteins by a system of ligases and peptidases, respectively. Ub/Ubls contain the beta-grasp fold, also found in numerous proteins with biochemically distinct roles unrelated to the conventional Ub-system. The beta-GF underwent an early radiation spawning at least seven clades prior to the divergence of extant organisms from their last universal common ancestor, first emerging in the context of translation-related RNA-interactions and subsequently exploding to occupy various functional niches. Most beta-GF diversification occurred in prokaryotes, with the Ubl clade showing dramatic expansion in the eukaryotes. Diversification of Ubl families in eukaryotes played a major role in emergence of characteristic eukaryotic cellular sub-structures and systems. Recent comparative genomics studies indicate precursors of the eukaryotic Ub-system emerged in prokaryotes. The simplest of these combine an Ubl and an E1-like enzyme in metabolic pathways. Sampylation in archaea and Urmylation in eukaryotes appear to represent recruitment of such systems as simple protein-tagging apparatuses. However, other prokaryotic systems incorporated further components and mirror the eukaryotic condition in possessing an E2, a RING-type E3 or both of these components. Additionally, prokaryotes have evolved conjugation systems independent of Ub ligases, such as the Pup system.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- Omics Science Center (OSC), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, 230-0045 Kanagawa, Japan
| | | | | |
Collapse
|
18
|
da Cunha FM, Demasi M, Kowaltowski AJ. Aging and calorie restriction modulate yeast redox state, oxidized protein removal, and the ubiquitin-proteasome system. Free Radic Biol Med 2011; 51:664-70. [PMID: 21684330 DOI: 10.1016/j.freeradbiomed.2011.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/12/2011] [Accepted: 05/24/2011] [Indexed: 12/21/2022]
Abstract
The ubiquitin-proteasome system governs the half-life of most cellular proteins. Calorie restriction (CR) extends the maximum life span of a variety of species and prevents oxidized protein accumulation. We studied the effects of CR on the ubiquitin-proteasome system and protein turnover in aging Saccharomyces cerevisiae. CR increased chronological life span as well as proteasome activity compared to control cells. The levels of protein carbonyls, a marker of protein oxidation, and those of polyubiquitinated proteins were modulated by CR. Controls, but not CR cells, exhibited a significant increase in oxidized proteins. In keeping with decreased proteasome activity, polyubiquitinated proteins were increased in young control cells compared to time-matched CR cells, but were profoundly decreased in aged control cells despite decreased proteasomal activity. This finding is related to a decreased polyubiquitination ability due to the impairment of the ubiquitin-activating enzyme in aged control cells, probably related to a more oxidative microenvironment. CR preserves the ubiquitin-proteasome system activity. Overall, we found that aging and CR modulate many aspects of protein modification and turnover.
Collapse
Affiliation(s)
- Fernanda Marques da Cunha
- Departamento de Bioquímica, Universidade de São Paulo, 05508-900 Cidade Universitária, São Paulo, Brazil
| | | | | |
Collapse
|
19
|
Egeler EL, Urner LM, Rakhit R, Liu CW, Wandless TJ. Ligand-switchable substrates for a ubiquitin-proteasome system. J Biol Chem 2011; 286:31328-36. [PMID: 21768107 DOI: 10.1074/jbc.m111.264101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular maintenance of protein homeostasis is essential for normal cellular function. The ubiquitin-proteasome system (UPS) plays a central role in processing cellular proteins destined for degradation, but little is currently known about how misfolded cytosolic proteins are recognized by protein quality control machinery and targeted to the UPS for degradation in mammalian cells. Destabilizing domains (DDs) are small protein domains that are unstable and degraded in the absence of ligand, but whose stability is rescued by binding to a high affinity cell-permeable ligand. In the work presented here, we investigate the biophysical properties and cellular fates of a panel of FKBP12 mutants displaying a range of stabilities when expressed in mammalian cells. Our findings correlate observed cellular instability to both the propensity of the protein domain to unfold in vitro and the extent of ubiquitination of the protein in the non-permissive (ligand-free) state. We propose a model in which removal of stabilizing ligand causes the DD to unfold and be rapidly ubiquitinated by the UPS for degradation at the proteasome. The conditional nature of DD stability allows a rapid and non-perturbing switch from stable protein to unstable UPS substrate unlike other methods currently used to interrogate protein quality control, providing tunable control of degradation rates.
Collapse
Affiliation(s)
- Emily L Egeler
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
20
|
Burroughs AM, Iyer LM, Aravind L. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. MOLECULAR BIOSYSTEMS 2011; 7:2261-77. [PMID: 21547297 PMCID: PMC5938088 DOI: 10.1039/c1mb05061c] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies point to a diverse assemblage of prokaryotic cognates of the eukaryotic ubiquitin (Ub) system. These systems span an entire spectrum, ranging from those catalyzing cofactor and amino acid biosynthesis, with only adenylating E1-like enzymes and ubiquitin-like proteins (Ubls), to those that are closer to eukaryotic systems by virtue of possessing E2 enzymes. Until recently E3 enzymes were unknown in such prokaryotic systems. Using contextual information from comparative genomics, we uncover a diverse group of RING finger E3s in prokaryotes that are likely to function with E1s, E2s, JAB domain peptidases and Ubls. These E1s, E2s and RING fingers suggest that features hitherto believed to be unique to eukaryotic versions of these proteins emerged progressively in such prokaryotic systems. These include the specific configuration of residues associated with oxyanion-hole formation in E2s and the C-terminal UFD in the E1 enzyme, which presents the E2 to its active site. Our study suggests for the first time that YukD-like Ubls might be conjugated by some of these systems in a manner similar to eukaryotic Ubls. We also show that prokaryotic RING fingers possess considerable functional diversity and that not all of them are involved in Ub-related functions. In eukaryotes, other than RING fingers, a number of distinct binuclear (chelating two Zn atoms) and mononuclear (chelating one zinc atom) treble clef domains are involved in Ub-related functions. Through detailed structural analysis we delineated the higher order relationships and interaction modes of binuclear treble clef domains. This indicated that the FYVE domain acquired the binuclear state independently of the other binuclear forms and that different treble clef domains have convergently acquired Ub-related functions independently of the RING finger. Among these, we uncover evidence for notable prokaryotic radiations of the ZF-UBP, B-box, AN1 and LIM clades of treble clef domains and present contextual evidence to support their role in functions unrelated to the Ub-system in prokaryotes. In particular, we show that bacterial ZF-UBP domains are part of a novel cyclic nucleotide-dependent redox signaling system, whereas prokaryotic B-box, AN1 and LIM domains have related functions as partners of diverse membrane-associated peptidases in processing proteins. This information, in conjunction with structural analysis, suggests that these treble clef domains might have been independently recruited to the eukaryotic Ub-system due to an ancient conserved mode of interaction with peptides.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, 230-0045 Kanagawa, Japan
| | | | | |
Collapse
|
21
|
Hyduke DR, Palsson BØ. Towards genome-scale signalling network reconstructions. Nat Rev Genet 2011; 11:297-307. [PMID: 20177425 DOI: 10.1038/nrg2750] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biological signalling networks allow living organisms to issue an integrated response to current conditions and make limited predictions about future environmental changes. Small-scale dynamic models of signalling cascades, including mitogen-activated protein kinase cascades, have been developed to generate hypotheses about signal transduction. Owing to technical limitations, these models and the hypotheses they generate have focused on a limited subset of signalling molecules. Now that we can simultaneously measure a substantial portion of the molecular components of a cell, we can begin to develop and test systems-level models of cellular signalling and regulatory processes, therefore gaining insights into the 'thought' processes of a cell.
Collapse
Affiliation(s)
- Daniel R Hyduke
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, USA.
| | | |
Collapse
|
22
|
E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proc Natl Acad Sci U S A 2011; 108:5590-5. [PMID: 21422291 DOI: 10.1073/pnas.1017516108] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In ubiquitin conjugation, different combinations of E2 and E3 enzymes catalyse either monoubiquitination or ubiquitin chain formation. The E2/E3 complex Rad6/Rad18 exclusively monoubiquitinates the proliferating cell nuclear antigen (PCNA) to signal for "error prone" DNA damage tolerance, whereas a different set of conjugation enzymes is required for ubiquitin chain formation on PCNA. Here we show that human E2 enzyme Rad6b is intrinsically capable of catalyzing ubiquitin chain formation. This activity is prevented during PCNA ubiquitination by the interaction of Rad6 with E3 enzyme Rad18. Using NMR and X-ray crystallography we show that the R6BD of Rad18 inhibits this activity by competing with ubiquitin for a noncovalent "backside" binding site on Rad6. Our findings provide mechanistic insights into how E3 enzymes can regulate the ubiquitin conjugation process.
Collapse
|
23
|
Gurskiy DY, Orlova AV, Kopytova DV, Krasnov AN, Nabirochkina EN, Georgieva SG, Shidlovskii YV. Multifunctional factor ENY2 couples different stages of gene expression. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410120148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Venancio TM, Balaji S, Geetha S, Aravind L. Robustness and evolvability in natural chemical resistance: identification of novel systems properties, biochemical mechanisms and regulatory interactions. MOLECULAR BIOSYSTEMS 2010; 6:1475-91. [PMID: 20517567 PMCID: PMC3236069 DOI: 10.1039/c002567b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vast amount of data on the natural resistance of Saccharomyces cerevisiae to a diverse array of chemicals has been generated over the past decade (chemical genetics). We endeavored to use this data to better characterize the "systems" level properties of this phenomenon. By collating data from over 30 different genome-scale studies on growth of gene deletion mutants in presence of diverse chemicals, we assembled the largest currently available gene-chemical network. We also derived a second gene-gene network that links genes with significantly overlapping chemical-genetic profiles. We analyzed properties of these networks and investigated their significance by overlaying various sources of information, such as presence of TATA boxes in their promoters (which typically correlate with transcriptional noise), association with TFIID or SAGA, and propensity to function as phenotypic capacitors. We further combined these networks with ubiquitin and protein kinase-substrate networks to understand chemical tolerance in the context of major post-translational regulatory processes. Hubs in the gene-chemical network (multidrug resistance genes) are notably enriched for phenotypic capacitors (buffers against phenotypic variation), suggesting the generality of these players in buffering mechanistically unrelated deleterious forces impinging on the cell. More strikingly, analysis of the gene-gene network derived from the gene-chemical network uncovered another set of genes that appear to function in providing chemical tolerance in a cooperative manner. These appear to be enriched in lineage-specific and rapidly diverging members that also show a corresponding tendency for SAGA-dependent regulation, evolutionary divergence and noisy expression patterns. This set represents a previously underappreciated component of the chemical response that enables cells to explore alternative survival strategies. Thus, systems robustness and evolvability are simultaneously active as general forces in tolerating environmental variation. We also recover the actual genes involved in the above-discussed network properties and predict the biochemistry of their products. Certain key components of the ubiquitin system (e.g. Rcy1, Wss1 and Ubp16), peroxisome recycling (e.g. Irs4) and phosphorylation cascades (e.g. NPR1, MCK1 and HOG) are major participants and regulators of chemical resistance. We also show that a major sub-network boosting mitochondrial protein synthesis is important for exploration of alternative survival strategies under chemical stress. Further, we find evidence that cellular exploration of survival strategies under chemical stress and secondary metabolism draw from a common pool of biochemical players (e.g. acetyltransferases and a novel NTN hydrolase).
Collapse
Affiliation(s)
- Thiago M. Venancio
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - S. Balaji
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - S. Geetha
- 1001 Rockville Pike, Rockville, Maryland 20852, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
25
|
Abstract
Phylogenomics of eukaryote supergroups suggest a highly complex last common ancestor of eukaryotes and a key role of mitochondrial endosymbiosis in the origin of eukaryotes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
26
|
Ying M, Zhan Z, Wang W, Chen D. Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid. Gene 2009; 447:72-85. [PMID: 19664694 DOI: 10.1016/j.gene.2009.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 11/19/2022]
Abstract
The origin of eukaryotic ubiquitin-conjugating enzymes (E2s) can be traced back to the Guillardia theta nucleomorph about 2500 million years ago (Mya). E2s are largely vertically inherited over eukaryotic evolution [Lespinet, O., Wolf, Y.I., Koonin, E.V., Aravind, L., 2002. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 1048-1059], while mammal E2s experienced evolution of multigene families by gene duplications which have been accompanied by the increase in the species complexity. Because of alternatively splicing, primate-specific expansions of E2s happened once again at a transcriptional level. Both of them resulted in increasing genomic complexity and diversity of primate E2 proteomic function. The evolutionary processes of human E2 gene structure during expansions were accompanied by exon duplication and exonization of intronic sequences. Exonizations of Transposable Elements (TEs) in UBE2D3, UBE2L3 and UBE2V1 genes from primates indicate that exaptation of TEs also plays important roles in the structural innovation of primate-specific E2s and may create alternative splicing isoforms at a transcriptional level. Estimates for the ratio of dN/dS suggest that a strong purifying selection had acted upon protein-coding sequences of their orthologous UBE2D2, UBE2A, UBE2N, UBE2I and Rbx1 genes from animals, plants and fungi. The similar rates of synonymous substitutions are in accordance with the neutral mutation-random drift hypothesis of molecular evolution. Systematic detection of the origin and evolution of E2s, analyzing the evolution of E2 multigene families by gene duplications and the evolutionary processes of E2s during expansions, and testing its evolutionary force using E2s from distant phylogenetic lineages may advance our distinguishing of ancestral E2s from created E2s, and reveal previously unknown relationships between E2s and metazoan complexity. Analysis of these conserved proteins provides strong support for a close relationship between social amoeba and eukaryote, choanoflagellate and metazoan, and for the central roles of social amoeba and choanoflagellate in the origin and evolution of eukaryote and metazoan. Retracing the different stages of primate E2 exonization by monitoring genomic events over 63 Myr of primate evolution will advance our understanding of how TEs dynamically modified primate transcriptome and proteome in the past, and continue to do so.
Collapse
Affiliation(s)
- Muying Ying
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
27
|
Rodríguez-Navarro S. Insights into SAGA function during gene expression. EMBO Rep 2009; 10:843-50. [PMID: 19609321 DOI: 10.1038/embor.2009.168] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/17/2009] [Indexed: 12/26/2022] Open
Abstract
Histone modifications are a crucial source of epigenetic control. SAGA (Spt-Ada-Gcn5 acetyltransferase) is a chromatin-modifying complex that contains two distinct enzymatic activities, Gcn5 and Ubp8, through which it acetylates and deubiquitinates histone residues, respectively, thereby enforcing a pattern of modifications that is decisive in regulating gene expression. Here, I discuss the latest contributions to understanding the roles of the SAGA complex, highlighting the characterization of the SAGA-deubiquitination module, and emphasizing the functions newly ascribed to SAGA during transcription elongation and messenger-RNA export. These findings suggest that a crosstalk exists between chromatin remodelling, transcription and messenger-RNA export, which could constitute a checkpoint for accurate gene expression. I focus particularly on the new components of human SAGA, which was recently discovered and confirms the conservation of the SAGA complex throughout evolution.
Collapse
|
28
|
Aravind L, Anantharaman V, Venancio TM. Apprehending multicellularity: regulatory networks, genomics, and evolution. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:143-64. [PMID: 19530132 PMCID: PMC2754411 DOI: 10.1002/bdrc.20153] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the "network view" of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of regulatory networks operating in the development and differentiation of multicellular organisms. We first introduce regulatory networks and their organizational principles as can be deduced using ideas from the graph theory. We then discuss findings from comparative genomics to illustrate the effects of lineage-specific expansions, gene-loss, and nonprotein-coding DNA on the architecture of networks. We consider the interaction between expansions of transcription factors, and cis regulatory and more general chromatin state stabilizing elements in the emergence of morphological complexity. Finally, we consider a case study of the Notch subnetwork, which is present throughout Metazoa, to examine how such a regulatory system has been pieced together in evolution from new innovations and pre-existing components that were originally functionally distinct.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|