1
|
Mwanza C, Purnamasari M, Back D, Prihatna C, Philmus B, Almabruk KH, Mahmud T, Ye L, Bolton MD, Wu X, Loper JE, Yan Q. Polyyne production is regulated by the transcriptional regulators PgnC and GacA in Pseudomonas protegens Pf-5. Appl Environ Microbiol 2025; 91:e0238824. [PMID: 40178257 PMCID: PMC12016544 DOI: 10.1128/aem.02388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Polyynes produced by bacteria have promising applications in agriculture and medicine due to their potent antimicrobial activities. Polyyne biosynthetic genes have been identified in Pseudomonas and Burkholderia. However, the molecular mechanisms underlying the regulation of polyyne biosynthesis remain largely unknown. In this study, we used a soil bacterium Pseudomonas protegens Pf-5, which was recently reported to produce polyyne called protegenin, as a model to investigate the regulation of bacterial polyyne production. Our results show that Pf-5 controls polyyne production at both the pathway-specific level and a higher global level. Mutation of pgnC, a transcriptional regulatory gene located in the polyyne biosynthetic gene cluster, abolished polyyne production. Gene expression analysis revealed that PgnC directly activates the promoter of polyyne biosynthetic genes. The production of polyyne also requires a global regulator GacA. Mutation of gacA decreased the translation of PgnC, which is consistent with the result that pgnC leader mRNA bound directly to RsmE, an RNA-binding protein negatively regulated by GacA. These results suggest that GacA induces the expression of the PgnC regulator, which in turn activates polyyne biosynthesis. Additionally, the polyyne-producing strain of Pf-5, but not the polyyne-nonproducing strain, could inhibit a broad spectrum of bacteria including both Gram-negative and Gram-positive bacteria.IMPORTANCEAntimicrobial metabolites produced by bacteria are widely used in agriculture and medicine to control plant, animal, and human pathogens. Although bacteria-derived polyynes have been identified as potent antimicrobials for decades, the molecular mechanisms by which bacteria regulate polyyne biosynthesis remain understudied. In this study, we found that polyyne biosynthesis is directly activated by a pathway-specific regulator PgnC, which is induced by a global regulator GacA through the RNA-binding protein RsmE in Pseudomonas protegens. To our knowledge, this work is the first comprehensive study of the regulatory mechanisms of bacterial polyyne biosynthesis at both pathway-specific level and global level. The discovered molecular mechanisms can help us optimize polyyne production for agricultural or medical applications.
Collapse
Affiliation(s)
- Chiseche Mwanza
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Maria Purnamasari
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Daniel Back
- Edward T. Schafer Agricultural Research Center, US Department of Agriculture, Agricultural Research Service, Fargo, North Dakota, USA
| | - Cahya Prihatna
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Khaled H. Almabruk
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Lumeng Ye
- Institute of Molecular Biology and Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Melvin D. Bolton
- Edward T. Schafer Agricultural Research Center, US Department of Agriculture, Agricultural Research Service, Fargo, North Dakota, USA
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning, China
| | - Joyce E. Loper
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, Oregon, USA
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Duret M, Wallner A, Besaury L, Aziz A. Diversity and functional features of the root-associated bacteriome are dependent on grapevine susceptibility to Plasmopara viticola. ENVIRONMENTAL MICROBIOME 2025; 20:30. [PMID: 40087775 PMCID: PMC11908067 DOI: 10.1186/s40793-025-00690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/23/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Plant health depends on beneficial interactions between the roots and their microbiomes. Despite recent progress on the role of the grapevine microbiome, the taxonomic identity and functional traits of microbial taxa specific to healthy or Plasmopara viticola-diseased plants, as well as to the susceptible or resistant cultivar are unknown. Using metabarcoding and shotgun metagenomics sequencing, we investigated the effect of downy mildew on the root-associated microbiome (rhizospheric soil, rhizoplane and endosphere) of 41B-grafted susceptible cultivar (Chardonnay) and resistant interspecific hybrid (Voltis) at flowering and veraison stages. The impact of conventional treatment on the rhizomicrobiome assembly of Chardonnay was also evaluated. RESULTS Analyses revealed a core bacteriome shared between both susceptible and resistant cultivars. This also highlighted common functional traits between the rhizosphere and rhizoplane bacteriomes in both cultivars. A dysbiosis state was also evidenced by a loss of beneficial communities in the rhizosphere of the P. viticola-infected cultivar. Microbial genome assemblies showed functional differences between healthy and diseased plants, with a loss of Pseudomonas and Phyllobacterium taxa at veraison. This state was mainly characterized by a loss of genes involved in polyamine transport and metabolism in the susceptible cultivar. It was also marked by an increase in population evenness and total bacterial diversity, and the presence of pathogenic species in susceptible plants. CONCLUSIONS This study reveals distinct and overlapping bacterial communities and functional genes in the rhizospheric soil, rhizoplane and root endosphere of both susceptible and resistant grapevine cultivars to downy mildew. Microbial diversity and abundant taxa of grapevine roots are influenced by downy mildew and cultivar susceptibility. Common bacterial functions are shared among rhizocompartments of susceptible and resistant cultivars, revealing a dysbiosis state and functional signatures related to plant immunity, especially in the infected-susceptible plants.
Collapse
Affiliation(s)
- Morgane Duret
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, Reims, 51100, France
| | - Adrian Wallner
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, Reims, 51100, France
| | - Ludovic Besaury
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, 51100, France
| | - Aziz Aziz
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, Reims, 51100, France.
| |
Collapse
|
3
|
Taylor TB, Silby MW, Jackson RW. Pseudomonas fluorescens. Trends Microbiol 2025; 33:250-251. [PMID: 39613688 DOI: 10.1016/j.tim.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024]
Affiliation(s)
- Tiffany B Taylor
- Milner Centre for Evolution and Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Mark W Silby
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Robert W Jackson
- School of Biosciences and Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
4
|
Ngan WY, Parab L, Bertels F, Gallie J. A more significant role for insertion sequences in large-scale rearrangements in bacterial genomes. mBio 2025; 16:e0305224. [PMID: 39636122 PMCID: PMC11708052 DOI: 10.1128/mbio.03052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Insertion sequences (ISs) are mobile pieces of DNA that are widespread in bacterial genomes. IS movements typically involve (i) excision of the IS element, (ii) cutting of target site DNA, and (iii) IS element insertion. This process generates a new copy of the IS element and a short duplication at the target site. It has been noted that, for some extant IS copies, no target site duplications (TSDs) are readily identifiable. TSD absence has been attributed to degeneration of the TSD after the insertion event, recombination between identical ISs, or adjacent deletions. Indeed, the latter two-recombination between ISs and adjacent deletions-are frequent causes for the absence of TSDs, which we demonstrate here in an analysis of genome sequence data from the Lenski long-term evolution experiment. Furthermore, we propose that some IS movements-namely, those that occur in association with large-scale genomic rearrangements-do not generate TSDs, and occur without evidence for recombination between ISs or adjacent deletions. In support of this hypothesis, we provide two direct, empirical observations of such IS transposition events: an IS5 movement plus a large deletion in Escherichia coli C, and an IS481 movement occurring with a large duplication in Pseudomonas fluorescens SBW25. Although unlikely, it is possible that the observed deletion and associated IS movement occurred in two successive events in one overnight culture. However, an IS at the center of a large-scale duplication is not readily explained, suggesting that IS element activity may promote both large-scale deletions and duplications. IMPORTANCE Insertion sequences are the most common mobile genetic elements found in bacterial genomes, and hence they significantly impact bacterial evolution. We observe insertion sequence movement at the center of large-scale deletions and duplications that occurred during laboratory evolution experiments with Escherichia coli and Pseudomonas fluorescens, involving three distinct types of transposase. We raise the possibility that the transposase does not mediate DNA cleavage but instead inserts into existing DNA breaks. Our research highlights the importance of insertion sequences for the generation of large-scale genomic rearrangements and raises questions concerning the mechanistic basis of these mutations.
Collapse
Affiliation(s)
- Wing Y. Ngan
- Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lavisha Parab
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Frederic Bertels
- Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
5
|
Farr AD, Vasileiou C, Lind PA, Rainey PB. An extreme mutational hotspot in nlpD depends on transcriptional induction of rpoS. PLoS Genet 2025; 21:e1011572. [PMID: 39888938 PMCID: PMC11838912 DOI: 10.1371/journal.pgen.1011572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/19/2025] [Accepted: 01/13/2025] [Indexed: 02/02/2025] Open
Abstract
Mutation rate varies within and between genomes. Within genomes, tracts of nucleotides, including short sequence repeats and palindromes, can cause localised elevation of mutation rate. Additional mechanisms remain poorly understood. Here we report an instance of extreme mutational bias in Pseudomonas fluorescens SBW25 associated with a single base-pair change in nlpD. These mutants frequently evolve in static microcosms, and have a cell-chaining (CC) phenotype. Analysis of 153 replicate populations revealed 137 independent instances of a C565T loss-of-function mutation at codon 189 (CAG to TAG (Q189*)). Fitness measures of alternative nlpD mutants did not explain the deterministic evolution of C565T mutants. Recognising that transcription can be mutagenic, and that codon 189 overlaps with a predicted promoter (rpoSp) for the adjacent stationary phase sigma factor, rpoS, transcription across this promoter region was measured. This confirmed rpoSp is induced in stationary phase and that C565T mutation caused significant elevation of transcription. The latter provided opportunity to determine the C565T mutation rate using a reporter-gene fused to rpoSp. Fluctuation assays estimate the C565T mutation rate to be ~5,000-fold higher than expected. In Pseudomonas, transcription of rpoS requires the positive activator PsrA, which we show also holds for SBW25. Fluctuation assays performed in a ∆psrA background showed a ~60-fold reduction in mutation rate confirming that the elevated rate of mutation at C565T mutation rate is dependent on induction of transcription. This hotspot suggests a generalisable phenomenon where the induction of transcription causes elevated mutation rates within defining regions of promoters.
Collapse
Affiliation(s)
- Andrew D. Farr
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Christina Vasileiou
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Peter A. Lind
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Paul B. Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
6
|
Zheng D, Wilén BM, Öberg O, Wik T, Modin O. "Metagenomics reveal the potential for geosmin and 2-methylisoborneol production across multiple bacterial phyla in recirculating aquaculture systems". Environ Microbiol 2024; 26:e16696. [PMID: 39379175 DOI: 10.1111/1462-2920.16696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 10/10/2024]
Abstract
Geosmin and 2-methylisoborneol (MIB) are known to cause taste-and-odour problems in recirculating aquaculture systems (RAS). Both geosmin and MIB are microbial metabolites belonging to terpenoids. Precursors for terpenoids are biosynthesized via the methylerythritol phosphate (MEP) and the mevalonate (MVA) pathways. We carried out a metagenomic analysis of 50 samples from five RAS to investigate terpenoid biosynthesis and metabolic potential for geosmin and MIB production in RAS microbiomes. A total of 1008 metagenome-assembled genomes (MAGs) representing 26 bacterial and three archaeal phyla were recovered. Although most archaea are thought to use the MVA pathway for terpenoid precursor biosynthesis, an Iainarchaeota archaeal MAG is shown to harbour a complete set of genes encoding the MEP pathway but lacking genes associated with the MVA pathway. In this study, a total of 16 MAGs affiliated with five bacterial phyla (Acidobacteriota, Actinobacteriota, Bacteroidota, Chloroflexota, and Myxococcota) were identified as possessing potential geosmin or MIB synthases. These putative taste and odour producers were diverse, many were taxonomically unidentified at the genus or species level, and their relative abundance differed between the investigated RAS farms. The metagenomic study of the RAS microbiomes revealed a previously unknown phylogenetic diversity of the potential to produce geosmin and MIB.
Collapse
Affiliation(s)
- Dan Zheng
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Torsten Wik
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Diessner EM, Takahashi GR, Butts CT, Martin RW. Comparative analysis of thermal adaptations of extremophilic prolyl oligopeptidases. Biophys J 2024; 123:3143-3162. [PMID: 39014897 PMCID: PMC11427779 DOI: 10.1016/j.bpj.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Prolyl oligopeptidases from psychrophilic, mesophilic, and thermophilic organisms found in a range of natural environments are studied using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis to determine how the S9 protease family adapts to extreme thermal conditions. We compare our results with hypotheses from the literature regarding structural adaptations that allow proteins to maintain structure and function at extreme temperatures, and we find that, in the case of prolyl oligopeptidases, only a subset of proposed adaptations are employed for maintaining stability. The catalytic and propeller domains are highly structured, limiting the range of mutations that can be made to enhance hydrophobicity or form disulfide bonds without disrupting the formation of necessary secondary structure. Rather, we observe a pattern in which overall prevalence of bound interactions (salt bridges and hydrogen bonds) is conserved by using increasing numbers of increasingly short-lived interactions as temperature increases. This suggests a role for an entropic rather than energetic strategy for thermal adaptation in this protein family.
Collapse
Affiliation(s)
| | - Gemma R Takahashi
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California
| | - Carter T Butts
- Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, Irvine, California.
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, Irvine, California; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California.
| |
Collapse
|
8
|
Graña-Miraglia L, Geney Higuita JL, Salazar JC, Guaya Iñiguez D, Alcolado León C, García-Angulo VA. Total substitution and partial modification of the set of non-ribosomal peptide synthetases clusters lead to pyoverdine diversity in the Pseudomonas fluorescens complex. Front Microbiol 2024; 15:1421749. [PMID: 39224222 PMCID: PMC11366639 DOI: 10.3389/fmicb.2024.1421749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Pyoverdines are high affinity siderophores produced by most Pseudomonas with a wide role in microbial interspecies interactions. They are primarily composed of a conserved chromophore moiety, an acyl side chain and a peptide backbone which may be highly variable among strains. Upon ferric iron sequestration, pyoverdines are internalized through specialized receptors. The peptide precursor of pyoverdine, termed ferribactin, is synthesized by a set of non-ribosomal peptide synthetase (NRPS) enzymes and further modified by tailoring enzymes. While PvdL, the NRPS responsible for the synthesis of the peptide moiety that derives into the chromophore is conserved, the NRPSs for the peptide backbone are different across fluorescent Pseudomonas. Although the variation of pyoverdine is a widely recognized characteristic within the genus, the evolutionary events associated with the diversity and distribution of this trait remain mostly unknown. This study analyzed the NRPSs clusters for the biosynthesis of the peptide backbone of ferribactin in the genomes of a representative subset of strains of the Pseudomonas fluorescens complex. Bioinformatic analysis of the specificity of adenylation domains of the NRPSs allowed the prediction of 30 different pyoverdine variants. Phylogenetic reconstruction and mapping of the NRPS clusters pinpointed two different general levels of modifications. In the first level, a complete replacement of the set of NRPRs by horizontal transfer occurs. In the second level, the original set of NRPSs is modified through different mechanisms, including partial substitution of the NRPS genes by horizontal transfer, adenylation domain specificity change or NRPS accessory domain gain/loss.
Collapse
Affiliation(s)
- Lucía Graña-Miraglia
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jorge Luis Geney Higuita
- Bacterial Metabolism Laboratory, Instituto de Ciencias Biomédicas, Microbiology and Mycology Program, University of Chile, Santiago, Chile
| | - Juan Carlos Salazar
- Laboratory of Enteropathogens, Instituto de Ciencias Biomédicas, Microbiology and Mycology Program, University of Chile, Santiago, Chile
| | - Diana Guaya Iñiguez
- Bacterial Metabolism Laboratory, Instituto de Ciencias Biomédicas, Microbiology and Mycology Program, University of Chile, Santiago, Chile
| | - Carlos Alcolado León
- Bacterial Metabolism Laboratory, Instituto de Ciencias Biomédicas, Microbiology and Mycology Program, University of Chile, Santiago, Chile
| | - Víctor A. García-Angulo
- Bacterial Metabolism Laboratory, Instituto de Ciencias Biomédicas, Microbiology and Mycology Program, University of Chile, Santiago, Chile
| |
Collapse
|
9
|
Poli N, Keel CJ, Garrido-Sanz D. Expanding the Pseudomonas diversity of the wheat rhizosphere: four novel species antagonizing fungal phytopathogens and with plant-beneficial properties. Front Microbiol 2024; 15:1440341. [PMID: 39077740 PMCID: PMC11284033 DOI: 10.3389/fmicb.2024.1440341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Plant-beneficial Pseudomonas bacteria hold the potential to be used as inoculants in agriculture to promote plant growth and health through various mechanisms. The discovery of new strains tailored to specific agricultural needs remains an open area of research. In this study, we report the isolation and characterization of four novel Pseudomonas species associated with the wheat rhizosphere. Comparative genomic analysis with all available Pseudomonas type strains revealed species-level differences, substantiated by both digital DNA-DNA hybridization and average nucleotide identity, underscoring their status as novel species. This was further validated by the phenotypic differences observed when compared to their closest relatives. Three of the novel species belong to the P. fluorescens species complex, with two representing a novel lineage in the Pseudomonas phylogeny. Functional genome annotation revealed the presence of specific features contributing to rhizosphere colonization, including flagella and components for biofilm formation. The novel species have the genetic potential to solubilize nutrients by acidifying the environment, releasing alkaline phosphatases and their metabolism of nitrogen species, indicating potential as biofertilizers. Additionally, the novel species possess traits that may facilitate direct promotion of plant growth through the modulation of the plant hormone balance, including the ACC deaminase enzyme and auxin metabolism. The presence of biosynthetic clusters for toxins such as hydrogen cyanide and non-ribosomal peptides suggests their ability to compete with other microorganisms, including plant pathogens. Direct inoculation of wheat roots significantly enhanced plant growth, with two strains doubling shoot biomass. Three of the strains effectively antagonized fungal phytopathogens (Thielaviopsis basicola, Fusarium oxysporum, and Botrytis cinerea), demonstrating their potential as biocontrol agents. Based on the observed genetic and phenotypic differences from closely related species, we propose the following names for the four novel species: Pseudomonas grandcourensis sp. nov., type strain DGS24T ( = DSM 117501T = CECT 31011T), Pseudomonas purpurea sp. nov., type strain DGS26T ( = DSM 117502T = CECT 31012T), Pseudomonas helvetica sp. nov., type strain DGS28T ( = DSM 117503T = CECT 31013T) and Pseudomonas aestiva sp. nov., type strain DGS32T ( = DSM 117504T = CECT 31014T).
Collapse
Affiliation(s)
| | - Christoph Joseph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Zhu Y, Mou X, Song Y, Zhang Q, Sun B, Liu H, Tang H, Bao R. Molecular mechanism of the one-component regulator RccR on bacterial metabolism and virulence. Nucleic Acids Res 2024; 52:3433-3449. [PMID: 38477394 PMCID: PMC11014249 DOI: 10.1093/nar/gkae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The regulation of carbon metabolism and virulence is critical for the rapid adaptation of pathogenic bacteria to host conditions. In Pseudomonas aeruginosa, RccR is a transcriptional regulator of genes involved in primary carbon metabolism and is associated with bacterial resistance and virulence, although the exact mechanism is unclear. Our study demonstrates that PaRccR is a direct repressor of the transcriptional regulator genes mvaU and algU. Biochemical and structural analyses reveal that PaRccR can switch its DNA recognition mode through conformational changes triggered by KDPG binding or release. Mutagenesis and functional analysis underscore the significance of allosteric communication between the SIS domain and the DBD domain. Our findings suggest that, despite its overall structural similarity to other bacterial RpiR-type regulators, RccR displays a more complex regulatory element binding mode induced by ligands and a unique regulatory mechanism.
Collapse
Affiliation(s)
- Yibo Zhu
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Mou
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Qianqian Zhang
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Huanxiang Liu
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Hong Tang
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Lick S, Wibberg D, Busche T, Blom J, Grimmler C, Goesmann A, Kalinowski J. Pseudomonas kulmbachensis sp. nov. and Pseudomonas paraveronii sp. nov., originating from chilled beef and chicken breast. Int J Syst Evol Microbiol 2024; 74. [PMID: 38587505 DOI: 10.1099/ijsem.0.006293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
By investigating wet and dry age-related ripening of beef, Pseudomonas strains V3/3/4/13T and V3/K/3/5T were isolated. Strain V3/3/4/13T exhibited more than 99 % 16S rRNA gene-based similarity to Pseudomonas fragi and other members of this group, while isolate V3/K/3/5T was very close to Pseudomonas veronii and a number of relatives within the Pseudomonas fluorescens group. Additional comparisons of complete rpoB sequences and draft genomes allowed us to place isolate V3/3/4/13T close to Pseudomonas deceptionensis DSM 26521T. In the case of V3/K/3/5T the closest relative was P. veronii DSM 11331T. Average nucleotide identity (ANIb) and digital DNA-DNA hybridization (dDDH) values calculated from the draft genomes of V3/3/4/13T and P. deceptionensis DSM 26521T were 88.5 and 39.8 %, respectively. For V3/K/3/5T and its closest relative P. veronii DSM 11331T, the ANIb value was 95.1 % and the dDDH value was 60.7 %. The DNA G+C contents of V3/3/4/13T and V3/K/3/5T were 57.4 and 60.8 mol%, respectively. Predominant fatty acids were C16 : 0, C18 : 1 ω7c, C17 : 0 cyclo and summed feature C16 : 1 ω7ct/C15 : 0 iso 2OH. The main respiratory quinones were Q9, with minor proportions of Q8 and, in the case of V3/K/3/5T, additional Q10. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and, in the case of V3/K/3/5T, additional phosphatidylcholine. Based on the combined data, isolates V3/3/4/13T and V3/K/3/5T should be considered as representatives of two novel Pseudomonas species. The type strain of the newly proposed Pseudomonas kulmbachensis sp. nov. is V3/3/4/13T (=DSM 113654T=LMG 32520T), a second strain belonging to the same species is FLM 004-28 (=DSM 113604=LMG 32521); the type strain for the newly proposed Pseudomonas paraveronii sp. nov. is V3/K/3/5T (=DSM 113573T=LMG 32518T) with a second isolate FLM 11 (=DSM 113572=LMG 32519).
Collapse
Affiliation(s)
- Sonja Lick
- Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department of Safety and Quality of Meat, E.-C.-Baumann Straße 20, D-95326 Kulmbach, Germany
| | - Daniel Wibberg
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
- ELIXIR DE Administration Office, Institute of Bio- and Geosciences IBG-5, Forschungszentrum Jülich GmbH - Branch office Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
- Medical School East Westphalia-Lippe, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Ludwigsstraße 23, D-35392 Gießen, Germany
| | - Christina Grimmler
- Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department of Safety and Quality of Meat, E.-C.-Baumann Straße 20, D-95326 Kulmbach, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Ludwigsstraße 23, D-35392 Gießen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology - CeBiTec, Bielefeld University, Universitätsstraße 27, D-33615 Bielefeld, Germany
| |
Collapse
|
12
|
Ampntelnour L, Poulaki EG, Dimitrakas V, Mavrommati M, Amourgis GG, Tjamos SE. Enhancing Botrytis disease management in tomato plants: insights from a Pseudomonas putida strain with biocontrol activity. J Appl Microbiol 2024; 135:lxae094. [PMID: 38599633 DOI: 10.1093/jambio/lxae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
AIMS This study explores the biocontrol potential of Pseudomonas putida Z13 against Botrytis cinerea in tomato plants, addressing challenges posed by the pathogen's fungicide resistance. The aims of the study were to investigate the in vitro and in silico biocontrol traits of Z13, identify its plant-colonizing efficacy, evaluate the efficacy of different application strategies against B. cinerea in planta, and assess the capacity of Z13 to trigger induced systemic resistance (ISR) in plants. METHODS AND RESULTS The in vitro experiments revealed that Z13 inhibits the growth of B. cinerea, produces siderophores, and exhibits swimming and swarming activity. Additionally, the Z13 genome harbors genes that encode compounds triggering ISR, such as pyoverdine and pyrroloquinoline quinone. The in planta experiments demonstrated Z13's efficacy in effectively colonizing the rhizosphere and leaves of tomato plants. Therefore, three application strategies of Z13 were evaluated against B. cinerea: root drenching, foliar spray, and the combination of root drenching and foliar spray. It was demonstrated that the most effective treatment of Z13 against B. cinerea was the combination of root drenching and foliar spray. Transcriptomic analysis showed that Z13 upregulates the expression of the plant defense-related genes PR1 and PIN2 upon B. cinerea inoculation. CONCLUSION The results of the study demonstrated that Z13 possesses significant biocontrol traits, such as the production of siderophores, resulting in significant plant protection against B. cinerea when applied as a single treatment to the rhizosphere or in combination with leaf spraying. Additionally, it was shown that Z13 root colonization primes plant defenses against the pathogen.
Collapse
Affiliation(s)
- Litsa Ampntelnour
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Eirini G Poulaki
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Vasilis Dimitrakas
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Maria Mavrommati
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Grigorios G Amourgis
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| | - Sotiris E Tjamos
- Laboratory of Phytopathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece
| |
Collapse
|
13
|
Pacheco-Moreno A, Bollmann-Giolai A, Chandra G, Brett P, Davies J, Thornton O, Poole P, Ramachandran V, Brown JKM, Nicholson P, Ridout C, DeVos S, Malone JG. The genotype of barley cultivars influences multiple aspects of their associated microbiota via differential root exudate secretion. PLoS Biol 2024; 22:e3002232. [PMID: 38662644 PMCID: PMC11045101 DOI: 10.1371/journal.pbio.3002232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Plant-associated microbes play vital roles in promoting plant growth and health, with plants secreting root exudates into the rhizosphere to attract beneficial microbes. Exudate composition defines the nature of microbial recruitment, with different plant species attracting distinct microbiota to enable optimal adaptation to the soil environment. To more closely examine the relationship between plant genotype and microbial recruitment, we analysed the rhizosphere microbiomes of landrace (Chevallier) and modern (NFC Tipple) barley (Hordeum vulgare) cultivars. Distinct differences were observed between the plant-associated microbiomes of the 2 cultivars, with the plant-growth promoting rhizobacterial genus Pseudomonas substantially more abundant in the Tipple rhizosphere. Striking differences were also observed between the phenotypes of recruited Pseudomonas populations, alongside distinct genotypic clustering by cultivar. Cultivar-driven Pseudomonas selection was driven by root exudate composition, with the greater abundance of hexose sugars secreted from Tipple roots attracting microbes better adapted to growth on these metabolites and vice versa. Cultivar-driven selection also operates at the molecular level, with both gene expression and the abundance of ecologically relevant loci differing between Tipple and Chevallier Pseudomonas isolates. Finally, cultivar-driven selection is important for plant health, with both cultivars showing a distinct preference for microbes selected by their genetic siblings in rhizosphere transplantation assays.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | | | - Govind Chandra
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Paul Brett
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Jack Davies
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Owen Thornton
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Philip Poole
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Vinoy Ramachandran
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - James K. M. Brown
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Paul Nicholson
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Chris Ridout
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- New Heritage Barley, Norwich Research Park, Norwich, United Kingdom
| | - Sarah DeVos
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- New Heritage Barley, Norwich Research Park, Norwich, United Kingdom
| | - Jacob G. Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
14
|
Khomarbaghi Z, Ngan WY, Ayan GB, Lim S, Dechow-Seligmann G, Nandy P, Gallie J. Large-scale duplication events underpin population-level flexibility in tRNA gene copy number in Pseudomonas fluorescens SBW25. Nucleic Acids Res 2024; 52:2446-2462. [PMID: 38296823 PMCID: PMC10954465 DOI: 10.1093/nar/gkae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
The complement of tRNA genes within a genome is typically considered to be a (relatively) stable characteristic of an organism. Here, we demonstrate that bacterial tRNA gene set composition can be more flexible than previously appreciated, particularly regarding tRNA gene copy number. We report the high-rate occurrence of spontaneous, large-scale, tandem duplication events in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The identified duplications are up to ∼1 Mb in size (∼15% of the wildtype genome) and are predicted to change the copy number of up to 917 genes, including several tRNA genes. The observed duplications are inherently unstable: they occur, and are subsequently lost, at extremely high rates. We propose that this unusually plastic type of mutation provides a mechanism by which tRNA gene set diversity can be rapidly generated, while simultaneously preserving the underlying tRNA gene set in the absence of continued selection. That is, if a tRNA set variant provides no fitness advantage, then high-rate segregation of the duplication ensures the maintenance of the original tRNA gene set. However, if a tRNA gene set variant is beneficial, the underlying duplication fragment(s) may persist for longer and provide raw material for further, more stable, evolutionary change.
Collapse
Affiliation(s)
- Zahra Khomarbaghi
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Wing Y Ngan
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Gökçe B Ayan
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Sungbin Lim
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Gunda Dechow-Seligmann
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Pabitra Nandy
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
15
|
Reverdy A, Hathaway D, Jha J, Michaels G, Sullivan J, McAdoo DD, Riquelme C, Chai Y, Godoy-Carter V. Insights into the diversity and survival strategies of soil bacterial isolates from the Atacama Desert. Front Microbiol 2024; 15:1335989. [PMID: 38516016 PMCID: PMC10955380 DOI: 10.3389/fmicb.2024.1335989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
The Atacama Desert, the driest, with the highest radiation, and one of the most ancient deserts in the world, is a hostile environment for life. We have a collection of 74 unique bacterial isolates after cultivation and confirmation by 16S rRNA gene sequencing. Pigmentation, biofilm formation, antimicrobial production against Escherichia coli MG1655 and Staphylococcus aureus HG003, and antibiotic resistance were assessed on these isolates. We found that approximately a third of the colonies produced pigments, 80% of isolates formed biofilms, many isolates produce growth inhibiting activities against E. coli and/or S. aureus, and many were resistant to antibiotics. The functional characterization of these isolates gives us insight into the adaptive bacterial strategies in harsh environments and enables us to learn about their possible use in agriculture, healthcare, or biotechnology.
Collapse
Affiliation(s)
| | | | - Jessica Jha
- Northeastern University, Boston, MA, United States
| | | | | | - Daniela Diaz McAdoo
- Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Carlos Riquelme
- Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Yunrong Chai
- Northeastern University, Boston, MA, United States
| | | |
Collapse
|
16
|
Arinkin V, Granzin J, Jaeger KE, Willbold D, Krauss U, Batra-Safferling R. Conserved Signal Transduction Mechanisms and Dark Recovery Kinetic Tuning in the Pseudomonadaceae Short Light, Oxygen, Voltage (LOV) Protein Family. J Mol Biol 2024; 436:168458. [PMID: 38280482 DOI: 10.1016/j.jmb.2024.168458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Light-Oxygen-Voltage (LOV) flavoproteins transduce a light signal into variable signaling outputs via a structural rearrangement in the sensory core domain, which is then relayed to fused effector domains via α-helical linker elements. Short LOV proteins from Pseudomonadaceae consist of a LOV sensory core and N- and C-terminal α-helices of variable length, providing a simple model system to study the molecular mechanism of allosteric activation. Here we report the crystal structures of two LOV proteins from Pseudomonas fluorescens - SBW25-LOV in the fully light-adapted state and Pf5-LOV in the dark-state. In a comparative analysis of the Pseudomonadaceae short LOVs, the structures demonstrate light-induced rotation of the core domains and splaying of the proximal A'α and Jα helices in the N and C-termini, highlighting evidence for a conserved signal transduction mechanism. Another distinguishing feature of the Pseudomonadaceae short LOV protein family is their highly variable dark recovery, ranging from seconds to days. Understanding this variability is crucial for tuning the signaling behavior of LOV-based optogenetic tools. At 37 °C, SBW25-LOV and Pf5-LOV exhibit adduct state lifetimes of 1470 min and 3.6 min, respectively. To investigate this remarkable difference in dark recovery rates, we targeted three residues lining the solvent channel entrance to the chromophore pocket where we introduced mutations by exchanging the non-conserved amino acids from SBW25-LOV into Pf5-LOV and vice versa. Dark recovery kinetics of the resulting mutants, as well as MD simulations and solvent cavity calculations on the crystal structures suggest a correlation between solvent accessibility and adduct lifetime.
Collapse
Affiliation(s)
- Vladimir Arinkin
- Institut für Biologische Informationsprozesse (IBI): Strukturbiochemie (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Joachim Granzin
- Institut für Biologische Informationsprozesse (IBI): Strukturbiochemie (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institut für Bio- und Geowissenschaften (IBG): Biotechnologie (IBG-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dieter Willbold
- Institut für Biologische Informationsprozesse (IBI): Strukturbiochemie (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institut für Bio- und Geowissenschaften (IBG): Biotechnologie (IBG-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Renu Batra-Safferling
- Institut für Biologische Informationsprozesse (IBI): Strukturbiochemie (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
17
|
Moreno-Fenoll C, Ardré M, Rainey PB. Polar accumulation of pyoverdin and exit from stationary phase. MICROLIFE 2024; 5:uqae001. [PMID: 38370141 PMCID: PMC10873284 DOI: 10.1093/femsml/uqae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Pyoverdin is a water-soluble metal-chelator synthesized by members of the genus Pseudomonas and used for the acquisition of insoluble ferric iron. Although freely diffusible in aqueous environments, preferential dissemination of pyoverdin among adjacent cells, fine-tuning of intracellular siderophore concentrations, and fitness advantages to pyoverdin-producing versus nonproducing cells, indicate control of location and release. Here, using time-lapse fluorescence microscopy to track single cells in growing microcolonies of Pseudomonas fluorescens SBW25, we show accumulation of pyoverdin at cell poles. Accumulation occurs on cessation of cell growth, is achieved by cross-feeding in pyoverdin-nonproducing mutants and is reversible. Moreover, accumulation coincides with localization of a fluorescent periplasmic reporter, suggesting that pyoverdin accumulation at cell poles is part of the general cellular response to starvation. Compatible with this conclusion is absence of non-accumulating phenotypes in a range of pyoverdin mutants. Analysis of the performance of pyoverdin-producing and nonproducing cells under conditions promoting polar accumulation shows an advantage to accumulation on resumption of growth after stress. Examination of pyoverdin polar accumulation in a multispecies community and in a range of laboratory and natural species of Pseudomonas, including P. aeruginosa PAO1 and P. putida KT2440, confirms that the phenotype is characteristic of Pseudomonas.
Collapse
Affiliation(s)
- Clara Moreno-Fenoll
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Maxime Ardré
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Paul B Rainey
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
18
|
Shepherd MJ, Pierce AP, Taylor TB. Evolutionary innovation through transcription factor rewiring in microbes is shaped by levels of transcription factor activity, expression, and existing connectivity. PLoS Biol 2023; 21:e3002348. [PMID: 37871011 PMCID: PMC10621929 DOI: 10.1371/journal.pbio.3002348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/02/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
The survival of a population during environmental shifts depends on whether the rate of phenotypic adaptation keeps up with the rate of changing conditions. A common way to achieve this is via change to gene regulatory network (GRN) connections-known as rewiring-that facilitate novel interactions and innovation of transcription factors. To understand the success of rapidly adapting organisms, we therefore need to determine the rules that create and constrain opportunities for GRN rewiring. Here, using an experimental microbial model system with the soil bacterium Pseudomonas fluorescens, we reveal a hierarchy among transcription factors that are rewired to rescue lost function, with alternative rewiring pathways only unmasked after the preferred pathway is eliminated. We identify 3 key properties-high activation, high expression, and preexisting low-level affinity for novel target genes-that facilitate transcription factor innovation. Ease of acquiring these properties is constrained by preexisting GRN architecture, which was overcome in our experimental system by both targeted and global network alterations. This work reveals the key properties that determine transcription factor evolvability, and as such, the evolution of GRNs.
Collapse
Affiliation(s)
- Matthew J. Shepherd
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aidan P. Pierce
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
19
|
Flanagan LM, Horton JS, Taylor TB. Mutational hotspots lead to robust but suboptimal adaptive outcomes in certain environments. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001395. [PMID: 37815519 PMCID: PMC10634368 DOI: 10.1099/mic.0.001395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
The observed mutational spectrum of adaptive outcomes can be constrained by many factors. For example, mutational biases can narrow the observed spectrum by increasing the rate of mutation at isolated sites in the genome. In contrast, complex environments can shift the observed spectrum by defining fitness consequences of mutational routes. We investigate the impact of different nutrient environments on the evolution of motility in Pseudomonas fluorescens Pf0-2x (an engineered non-motile derivative of Pf0-1) in the presence and absence of a strong mutational hotspot. Previous work has shown that this mutational hotspot can be built and broken via six silent mutations, which provide rapid access to a mutation that rescues swimming motility and confers the strongest swimming phenotype in specific environments. Here, we evolved a hotspot and non-hotspot variant strain of Pf0-2x for motility under nutrient-rich (LB) and nutrient-limiting (M9) environmental conditions. We observed the hotspot strain consistently evolved faster across all environmental conditions and its mutational spectrum was robust to environmental differences. However, the non-hotspot strain had a distinct mutational spectrum that changed depending on the nutrient environment. Interestingly, while alternative adaptive mutations in nutrient-rich environments were equal to, or less effective than, the hotspot mutation, the majority of these mutations in nutrient-limited conditions produced superior swimmers. Our competition experiments mirrored these findings, underscoring the role of environment in defining both the mutational spectrum and the associated phenotype strength. This indicates that while mutational hotspots working in concert with natural selection can speed up access to robust adaptive mutations (which can provide a competitive advantage in evolving populations), they can limit exploration of the mutational landscape, restricting access to potentially stronger phenotypes in specific environments.
Collapse
Affiliation(s)
| | - James S. Horton
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | |
Collapse
|
20
|
Sanow S, Kuang W, Schaaf G, Huesgen P, Schurr U, Roessner U, Watt M, Arsova B. Molecular Mechanisms of Pseudomonas-Assisted Plant Nitrogen Uptake: Opportunities for Modern Agriculture. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:536-548. [PMID: 36989040 DOI: 10.1094/mpmi-10-22-0223-cr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Stefan Sanow
- Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Weiqi Kuang
- College of life and Environmental Sciences, Hunan University of Arts and Science, China
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Pitter Huesgen
- Central institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Juelich GmbH, Germany
| | - Ulrich Schurr
- Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
| | - Ute Roessner
- Research School of Biology, The Australian National University, Acton, 2601 Australian Capital Territory, Australia
| | - Michelle Watt
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Borjana Arsova
- Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
| |
Collapse
|
21
|
Shepherd MJ, Reynolds M, Pierce AP, Rice AM, Taylor TB. Transcription factor expression levels and environmental signals constrain transcription factor innovation. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001378. [PMID: 37584667 PMCID: PMC10482368 DOI: 10.1099/mic.0.001378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
Evolutionary innovation of transcription factors frequently drives phenotypic diversification and adaptation to environmental change. Transcription factors can gain or lose connections to target genes, resulting in novel regulatory responses and phenotypes. However the frequency of functional adaptation varies between different regulators, even when they are closely related. To identify factors influencing propensity for innovation, we utilise a Pseudomonas fluorescens SBW25 strain rendered incapable of flagellar mediated motility in soft-agar plates via deletion of the flagellar master regulator (fleQ ). This bacterium can evolve to rescue flagellar motility via gene regulatory network rewiring of an alternative transcription factor to rescue activity of FleQ. Previously, we have identified two members (out of 22) of the RpoN-dependent enhancer binding protein (RpoN-EBP) family of transcription factors (NtrC and PFLU1132) that are capable of innovating in this way. These two transcription factors rescue motility repeatably and reliably in a strict hierarchy – with NtrC the only route in a ∆fleQ background, and PFLU1132 the only route in a ∆fleQ ∆ntrC background. However, why other members in the same transcription factor family have not been observed to rescue flagellar activity is unclear. Previous work shows that protein homology cannot explain this pattern within the protein family (RpoN-EBPs), and mutations in strains that rescued motility suggested high levels of transcription factor expression and activation drive innovation. We predict that mutations that increase expression of the transcription factor are vital to unlock evolutionary potential for innovation. Here, we construct titratable expression mutant lines for 11 of the RpoN-EBPs in P. fluorescens . We show that in five additional RpoN-EBPs (FleR, HbcR, GcsR, DctD, AauR and PFLU2209), high expression levels result in different mutations conferring motility rescue, suggesting alternative rewiring pathways. Our results indicate that expression levels (and not protein homology) of RpoN-EBPs are a key constraining factor in determining evolutionary potential for innovation. This suggests that transcription factors that can achieve high expression through few mutational changes, or transcription factors that are active in the selective environment, are more likely to innovate and contribute to adaptive gene regulatory network evolution.
Collapse
Affiliation(s)
- Matthew J. Shepherd
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Mitchell Reynolds
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Aidan P. Pierce
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Alan M. Rice
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
22
|
Spiers AJ, Dorfmueller HC, Jerdan R, McGregor J, Nicoll A, Steel K, Cameron S. Bioinformatics characterization of BcsA-like orphan proteins suggest they form a novel family of pseudomonad cyclic-β-glucan synthases. PLoS One 2023; 18:e0286540. [PMID: 37267309 PMCID: PMC10237404 DOI: 10.1371/journal.pone.0286540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria produce a variety of polysaccharides with functional roles in cell surface coating, surface and host interactions, and biofilms. We have identified an 'Orphan' bacterial cellulose synthase catalytic subunit (BcsA)-like protein found in four model pseudomonads, P. aeruginosa PA01, P. fluorescens SBW25, P. putida KT2440 and P. syringae pv. tomato DC3000. Pairwise alignments indicated that the Orphan and BcsA proteins shared less than 41% sequence identity suggesting they may not have the same structural folds or function. We identified 112 Orphans among soil and plant-associated pseudomonads as well as in phytopathogenic and human opportunistic pathogenic strains. The wide distribution of these highly conserved proteins suggest they form a novel family of synthases producing a different polysaccharide. In silico analysis, including sequence comparisons, secondary structure and topology predictions, and protein structural modelling, revealed a two-domain transmembrane ovoid-like structure for the Orphan protein with a periplasmic glycosyl hydrolase family GH17 domain linked via a transmembrane region to a cytoplasmic glycosyltransferase family GT2 domain. We suggest the GT2 domain synthesises β-(1,3)-glucan that is transferred to the GH17 domain where it is cleaved and cyclised to produce cyclic-β-(1,3)-glucan (CβG). Our structural models are consistent with enzymatic characterisation and recent molecular simulations of the PaPA01 and PpKT2440 GH17 domains. It also provides a functional explanation linking PaPAK and PaPA14 Orphan (also known as NdvB) transposon mutants with CβG production and biofilm-associated antibiotic resistance. Importantly, cyclic glucans are also involved in osmoregulation, plant infection and induced systemic suppression, and our findings suggest this novel family of CβG synthases may provide similar range of adaptive responses for pseudomonads.
Collapse
Affiliation(s)
- Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Robyn Jerdan
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Jessica McGregor
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Abbie Nicoll
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Kenzie Steel
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Scott Cameron
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| |
Collapse
|
23
|
Fortmann-Grote C, Hugoson E, Summers J, Theodosiou L, Rainey PB. Genome Update for Pseudomonas fluorescens Isolate SBW25. Microbiol Resour Announc 2023; 12:e0063722. [PMID: 36651771 PMCID: PMC9933645 DOI: 10.1128/mra.00637-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
We report a genome update for Pseudomonas fluorescens isolate SBW25. The updated genome assembly, which was derived from the original isolate, is based on PacBio long-read sequence data. It shows three minor differences, compared with the previously published genome sequence. Original annotations were merged with recent automated annotations to preserve information.
Collapse
Affiliation(s)
- Carsten Fortmann-Grote
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eric Hugoson
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Joanna Summers
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Loukas Theodosiou
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Paul B. Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Laboratoire Biophysique et Évolution, Institut Chimie Biologie Innovation, ESPCI Paris, Université Paris Sciences et Lettres, CNRS, Paris, France
| |
Collapse
|
24
|
Cooperative virulence via the collective action of secreted pathogen effectors. Nat Microbiol 2023; 8:640-650. [PMID: 36782026 DOI: 10.1038/s41564-023-01328-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Although virulence is typically attributed to single pathogenic strains, here we investigated whether effectors secreted by a population of non-virulent strains could function as public goods to enable the emergence of collective virulence. We disaggregated the 36 type III effectors of the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 into a 'metaclone' of 36 coisogenic strains, each carrying a single effector in an effectorless background. Each coisogenic strain was individually unfit, but the metaclone was collectively as virulent as the wild-type strain on Arabidopsis thaliana, suggesting that effectors can drive the emergence of cooperation-based virulence through their public action. We show that independently evolved effector suits can equally drive this cooperative behaviour by transferring the effector alleles native to the strain PmaES4326 into the conspecific but divergent strain PtoDC3000. Finally, we transferred the disaggregated PtoDC3000 effector arsenal into Pseudomonas fluorescens and show that their cooperative action was sufficient to convert this rhizosphere-inhabiting beneficial bacterium into a phyllosphere pathogen. These results emphasize the importance of microbial community interactions and expand the ecological scale at which disease may be attributed.
Collapse
|
25
|
Diessner EM, Takahashi GR, Martin RW, Butts CT. Comparative Modeling and Analysis of Extremophilic D-Ala-D-Ala Carboxypeptidases. Biomolecules 2023; 13:328. [PMID: 36830697 PMCID: PMC9953012 DOI: 10.3390/biom13020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Understanding the molecular adaptations of organisms to extreme environments requires a comparative analysis of protein structure, function, and dynamics across species found in different environmental conditions. Computational studies can be particularly useful in this pursuit, allowing exploratory studies of large numbers of proteins under different thermal and chemical conditions that would be infeasible to carry out experimentally. Here, we perform such a study of the MEROPS family S11, S12, and S13 proteases from psychophilic, mesophilic, and thermophilic bacteria. Using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis, we examine both conserved features and trends across thermal groups. Our findings suggest a number of hypotheses for experimental investigation.
Collapse
Affiliation(s)
| | - Gemma R. Takahashi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Carter T. Butts
- Departments of Sociology, Statistics, Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Bertels F, Rainey PB. Ancient Darwinian replicators nested within eubacterial genomes. Bioessays 2023; 45:e2200085. [PMID: 36456469 DOI: 10.1002/bies.202200085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Integrative mobile genetic elements (MGEs), such as transposons and insertion sequences, propagate within bacterial genomes, but persistence times in individual lineages are short. For long-term survival, MGEs must continuously invade new hosts by horizontal transfer. Theoretically, MGEs that persist for millions of years in single lineages, and are thus subject to vertical inheritance, should not exist. Here we draw attention to an exception - a class of MGE termed REPIN. REPINs are non-autonomous MGEs whose duplication depends on non-jumping RAYT transposases. Comparisons of REPINs and typical MGEs show that replication rates of REPINs are orders of magnitude lower, REPIN population size fluctuations correlate with changes in available genome space, REPIN conservation depends on RAYT function, and REPIN diversity accumulates within host lineages. These data lead to the hypothesis that REPINs form enduring, beneficial associations with eubacterial chromosomes. Given replicative nesting, our hypothesis predicts conflicts arising from the diverging effects of selection acting simultaneously on REPINs and host genomes. Evidence in support comes from patterns of REPIN abundance and diversity in two distantly related bacterial species. Together this bolsters the conclusion that REPINs are the genetic counterpart of mutualistic endosymbiotic bacteria.
Collapse
Affiliation(s)
- Frederic Bertels
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Paul B Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
27
|
van der Gulik PT, Egas M, Kraaijeveld K, Dombrowski N, Groot AT, Spang A, Hoff WD, Gallie J. On distinguishing between canonical tRNA genes and tRNA gene fragments in prokaryotes. RNA Biol 2023; 20:48-58. [PMID: 36727270 PMCID: PMC9897764 DOI: 10.1080/15476286.2023.2172370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Automated genome annotation is essential for extracting biological information from sequence data. The identification and annotation of tRNA genes is frequently performed by the software package tRNAscan-SE, the output of which is listed for selected genomes in the Genomic tRNA database (GtRNAdb). Here, we highlight a pervasive error in prokaryotic tRNA gene sets on GtRNAdb: the mis-categorization of partial, non-canonical tRNA genes as standard, canonical tRNA genes. Firstly, we demonstrate the issue using the tRNA gene sets of 20 organisms from the archaeal taxon Thermococcaceae. According to GtRNAdb, these organisms collectively deviate from the expected set of tRNA genes in 15 instances, including the listing of eleven putative canonical tRNA genes. However, after detailed manual annotation, only one of these eleven remains; the others are either partial, non-canonical tRNA genes resulting from the integration of genetic elements or CRISPR-Cas activity (seven instances), or attributable to ambiguities in input sequences (three instances). Secondly, we show that similar examples of the mis-categorization of predicted tRNA sequences occur throughout the prokaryotic sections of GtRNAdb. While both canonical and non-canonical prokaryotic tRNA gene sequences identified by tRNAscan-SE are biologically interesting, the challenge of reliably distinguishing between them remains. We recommend employing a combination of (i) screening input sequences for the genetic elements typically associated with non-canonical tRNA genes, and ambiguities, (ii) activating the tRNAscan-SE automated pseudogene detection function, and (iii) scrutinizing predicted tRNA genes with low isotype scores. These measures greatly reduce manual annotation efforts, and lead to improved prokaryotic tRNA gene set predictions.
Collapse
Affiliation(s)
- Peter T.S. van der Gulik
- Department of Algorithms and Complexity, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands,CONTACT Peter T.S. van der Gulik Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Martijn Egas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ken Kraaijeveld
- Leiden Centre for Applied Bioscience, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Astrid T. Groot
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Anja Spang
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands,Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Wouter D. Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA,Wouter Hoff
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany,Jenna Gallie
| |
Collapse
|
28
|
Halvorsen TM, Ricci DP, Park DM, Jiao Y, Yung MC. Comparison of Kill Switch Toxins in Plant-Beneficial Pseudomonas fluorescens Reveals Drivers of Lethality, Stability, and Escape. ACS Synth Biol 2022; 11:3785-3796. [PMID: 36346907 DOI: 10.1021/acssynbio.2c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kill switches provide a biocontainment strategy in which unwanted growth of an engineered microorganism is prevented by expression of a toxin gene. A major challenge in kill switch engineering is balancing evolutionary stability with robust cell killing activity in application relevant host strains. Understanding host-specific containment dynamics and modes of failure helps to develop potent yet stable kill switches. To guide the design of robust kill switches in the agriculturally relevant strain Pseudomonas fluorescens SBW25, we present a comparison of lethality, stability, and genetic escape of eight different toxic effectors in the presence of their cognate inactivators (i.e., toxin-antitoxin modules, polymorphic exotoxin-immunity systems, restriction endonuclease-methyltransferase pair). We find that cell killing capacity and evolutionary stability are inversely correlated and dependent on the level of protection provided by the inactivator gene. Decreasing the proteolytic stability of the inactivator protein can increase cell killing capacity, but at the cost of long-term circuit stability. By comparing toxins within the same genetic context, we determine that modes of genetic escape increase with circuit complexity and are driven by toxin activity, the protective capacity of the inactivator, and the presence of mutation-prone sequences within the circuit. Collectively, the results of our study reveal that circuit complexity, toxin choice, inactivator stability, and DNA sequence design are powerful drivers of kill switch stability and valuable targets for optimization of biocontainment systems.
Collapse
Affiliation(s)
- Tiffany M Halvorsen
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Dante P Ricci
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Dan M Park
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Yongqin Jiao
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| | - Mimi C Yung
- Lawrence Livermore National Laboratory, Biosciences and Biotechnology Division, Livermore, California 94550, United States
| |
Collapse
|
29
|
Ardré M, Doulcier G, Brenner N, Rainey PB. A leader cell triggers end of lag phase in populations of Pseudomonas fluorescens. MICROLIFE 2022; 3:uqac022. [PMID: 37223352 PMCID: PMC10117806 DOI: 10.1093/femsml/uqac022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 05/25/2023]
Abstract
The relationship between the number of cells colonizing a new environment and time for resumption of growth is a subject of long-standing interest. In microbiology this is known as the "inoculum effect." Its mechanistic basis is unclear with possible explanations ranging from the independent actions of individual cells, to collective actions of populations of cells. Here, we use a millifluidic droplet device in which the growth dynamics of hundreds of populations founded by controlled numbers of Pseudomonas fluorescens cells, ranging from a single cell, to one thousand cells, were followed in real time. Our data show that lag phase decreases with inoculum size. The decrease of average lag time and its variance across droplets, as well as lag time distribution shapes, follow predictions of extreme value theory, where the inoculum lag time is determined by the minimum value sampled from the single-cell distribution. Our experimental results show that exit from lag phase depends on strong interactions among cells, consistent with a "leader cell" triggering end of lag phase for the entire population.
Collapse
Affiliation(s)
- Maxime Ardré
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Guilhem Doulcier
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Naama Brenner
- Network Biology Research Laboratories, and Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Paul B Rainey
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
30
|
Tran T, French E, Iyer-Pascuzzi AS. In vitro functional characterization predicts the impact of bacterial root endophytes on plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5758-5772. [PMID: 35596672 DOI: 10.1093/jxb/erac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Utilizing beneficial microbes for crop improvement is one strategy to achieve sustainable agriculture. However, identifying microbial isolates that promote crop growth is challenging, in part because using bacterial taxonomy to predict an isolate's effect on plant growth may not be reliable. The overall aim of this work was to determine whether in vitro functional traits of bacteria were predictive of their in planta impact. We isolated 183 bacterial endophytes from field-grown roots of two tomato species, Solanum lycopersicum and S. pimpinellifolium. Sixty isolates were screened for six in vitro functional traits: auxin production, siderophore production, phosphate solubilization, antagonism to a soilborne pathogen, and the presence of two antimicrobial metabolite synthesis genes. Hierarchical clustering of the isolates based on the in vitro functional traits identified several groups of isolates sharing similar traits. We called these groups 'functional groups'. To understand how in vitro functional traits of bacteria relate to their impact on plants, we inoculated three isolates from each of the functional groups on tomato seedlings. Isolates within the same functional group promoted plant growth at similar levels, regardless of their host origin or taxonomy. Together, our results demonstrate the importance of examining root endophyte functions for improving crop production.
Collapse
Affiliation(s)
- Tri Tran
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Elizabeth French
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
31
|
Bachmann M, Wensch-Dorendorf M, Kuhnitzsch C, Kleinsteuber S, Popp D, Thierbach A, Martens SD, Steinhöfel O, Zeyner A. Changes in Composition and Diversity of Epiphytic Microorganisms on Field Pea Seeds, Partial Crop Peas, and Whole Crop Peas during Maturation and Ensiling with or without Lactic Acid Bacteria Inoculant. Microbiol Spectr 2022; 10:e0095322. [PMID: 35946942 PMCID: PMC9431205 DOI: 10.1128/spectrum.00953-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
The present study was conducted under the hypothesis that, in field peas, type of plant material, stage of maturity, ensiling, silage additive, and aerobic stress affect the composition and diversity of epiphytic microbial communities. Epiphytic microbial composition and diversity of pea seeds, partial crop peas, and whole crop peas was analyzed at different stages of late maturity, before and after ensiling, and with or without the use of lactic acid bacteria (LAB) as inoculant. Suitable combinations among pea crop variants, maturity stages, and inoculant use for the production of stable silages with sufficient aerobic stability after opening and during feed-out were identified. Genomic DNA was extracted, and 16S and 18S rRNA gene amplicons were sequenced. To assess the quality of the various silages, nutrient concentration, pH value, concentration of lactic acid, short chain fatty acids, and alcohols, and aerobic stability were determined. Pea seeds were barely colonized by epiphytic microorganisms. In partial and whole crop peas, composition and α-diversity (Shannon index) of bacterial communities did not differ between crop variants but differed among maturity stages. Epiphytic eukaryotes were rarely found on partial and whole crop peas. Bacterial composition and α-diversity were affected by ensiling and subsequent aerobic storage. In partial and whole crop peas, plant maturation caused an increase of the relative abundance of naturally occurring LAB (Weissella, Pediococcus, and Lactobacillus spp.). As a possible result, natural LAB support stable ensiling conditions even without the use of inoculants beginning with a maturity of 78 on the BBCH scale. This corresponded with a dry matter (DM) concentration of 341 and 363 g/kg in partial and whole crop peas, respectively. Addition of LAB inoculants, however, reduced ammonia, acetic acid, and butanol concentrations, and supported aerobic stability. Earlier stages of plant maturity (BBCH 76 and 77, 300 g DM/kg or less) were more prone to microbial spoilage. Stable pea seed silages can be produced at a maturity between BBCH 78 (427 g DM/kg) and 79 (549 g DM/kg), but they undoubtedly require LAB inoculation or application of other ensiling agents. IMPORTANCE Field peas are important protein suppliers for human and animal nutrition. They can be grown in many areas of the world, which may reduce imports of protein plants and has beneficial economic and ecological effects. Ensiling is a method of preserving feed that can be implemented easily and cost-effectively at the farm. Peas harvested as seeds, partial crop, or whole crop at different maturities enable a wide range of applications. The study characterized epiphytic microbial communities on peas in terms of composition and diversity depending on the maturity of the plants and feed conservation by ensiling as they play an essential role for the production of silages. Even if this study did not consider year, site, or cultivar effects, the results would show which part of the plant is probably well suited for the production of stable and high-quality silages and at which stage of maturity.
Collapse
Affiliation(s)
- Martin Bachmann
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle (Saale), Germany
| | - Monika Wensch-Dorendorf
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle (Saale), Germany
| | | | - Sabine Kleinsteuber
- Helmholtz Centre for Environmental Research (UFZ), Department of Environmental Microbiology, Leipzig, Germany
| | - Denny Popp
- Helmholtz Centre for Environmental Research (UFZ), Department of Environmental Microbiology, Leipzig, Germany
| | - Annabel Thierbach
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle (Saale), Germany
| | - Siriwan D. Martens
- Saxon State Office for Environment, Agriculture and Geology, Köllitsch, Germany
| | - Olaf Steinhöfel
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle (Saale), Germany
- Saxon State Office for Environment, Agriculture and Geology, Köllitsch, Germany
| | - Annette Zeyner
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle (Saale), Germany
| |
Collapse
|
32
|
de Sousa LP, Cipriano MAP, Freitas SDS, Carazzolle MF, da Silva MJ, Mondego JMC. Genomic and physiological evaluation of two root associated Pseudomonas from Coffea arabica. Microbiol Res 2022; 263:127129. [PMID: 35907286 DOI: 10.1016/j.micres.2022.127129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Many Pseudomonas species promote plant growth and colonize a wide range of environments. The annotation of a Coffea arabica ESTs database revealed a considerable number of Pseudomonas sequences. To evaluate the genomic and physiology of Pseudomonas that inhabit coffee plants, fluorescent Pseudomonas from C. arabica root environment were isolated. Two of them had their genomes sequenced; one from rhizospheric soil, named as MNR3A, and one from internal part of the root, named as EMN2. In parallel, we performed biochemical and physiological experiments to confirm genomic analyses results. Interestingly, EMN2 has achromobactin and aerobactin siderophore receptors, but does not have the genes responsible for the production of these siderophores, suggesting an interesting bacterial competition strategy. The two bacterial isolates were able to degrade and catabolize plant phenolic compounds for their own benefit. Surprisingly, MNR3A and EMN2 do not contain caffeine methylases that are responsible for the catabolism of caffeine. In fact, bench experiments confirm that the bacteria did not metabolize caffeine, but were resistant and chemically attracted to it. Furthermore, both bacteria, most especially MNR3A, were able to increase growth of lettuce plants. Our results indicate MNR3A as a potential plant growth promoting bacteria.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico de Campinas, IAC, Campinas, SP, Brazil; UNICAMP, Programa de Pós-graduação em Genética e Biologia Molecular, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Orozco-Mosqueda MDC, Fadiji AE, Babalola OO, Glick BR, Santoyo G. Rhizobiome engineering: Unveiling complex rhizosphere interactions to enhance plant growth and health. Microbiol Res 2022; 263:127137. [PMID: 35905581 DOI: 10.1016/j.micres.2022.127137] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Crop plants are affected by a series of inhibitory environmental and biotic factors that decrease their growth and production. To counteract these adverse effects, plants work together with the microorganisms that inhabit their rhizosphere, which is part of the soil influenced by root exudates. The rhizosphere is a microecosystem where a series of complex interactions takes place between the resident microorganisms (rhizobiome) and plant roots. Therefore, this study analyzes the dynamics of plant-rhizobiome communication, the role of exudates (diffusible and volatile) as a factor in stimulating a diverse rhizobiome, and the differences between rhizobiomes of domesticated crops and wild plants. The study also analyzes different strategies to decipher the rhizobiome through both classical cultivation techniques and the so-called "omics" sciences. In addition, the rhizosphere engineering concept and the two general strategies to manipulate the rhizobiome, i.e., top down and bottom up engineering have been revisited. In addition, recent studies on the effects on the indigenous rhizobiome of inoculating plants with foreign strains, the impact on the endobiome, and the collateral effects on plant crops are discussed. Finally, understanding of the complex rhizosphere interactions and the biological repercussions of rhizobiome engineering as essential steps for improving plant growth and health is proposed, including under adverse conditions.
Collapse
Affiliation(s)
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich 58030, Mexico.
| |
Collapse
|
34
|
Ruinelli M, Blom J, Smits THM, Pothier JF. Comparative Genomics of Prunus-Associated Members of the Pseudomonas syringae Species Complex Reveals Traits Supporting Co-evolution and Host Adaptation. Front Microbiol 2022; 13:804681. [PMID: 35592008 PMCID: PMC9111521 DOI: 10.3389/fmicb.2022.804681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the Pseudomonas syringae species complex cause symptoms that are ranging from leaf spots to cankers on a multitude of plant species, including some of the genus Prunus. To date, a total of two species of the P. syringae species complex and six different pathovars have been associated with diseases on Prunus spp., which were shown to belong to different phylogenetic units (phylogroups, PG) based on sequence similarity of housekeeping genes or whole genomes, suggesting that virulence to Prunus spp. may be the result of convergent pathoadaptation. In this study, a comparative genomics approach was used to determine genes significantly associated with strains isolated from Prunus spp. across a phylogeny of 97 strains belonging to the P. syringae species complex. Our study revealed the presence of a set of orthologous proteins which were significantly associated with strains isolated from Prunus spp. than in strains isolated from other hosts or from non-agricultural environments. Among them, the type III effector HopAY predicted to encode for a C58 cysteine protease was found to be highly associated with strains isolated from Prunus spp. and revealed patterns supporting co-evolution and host adaptation.
Collapse
Affiliation(s)
- Michela Ruinelli
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
35
|
Genome analysis of Pseudomonas sp. 14A reveals metabolic capabilities to support epiphytic behavior. World J Microbiol Biotechnol 2022; 38:49. [DOI: 10.1007/s11274-022-03238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
|
36
|
Ruan Z, Cao W, Zhu J, Yang B, Jiang J, Chen C, Xu X. Comparative Genomic Analysis of Pseudoxanthomonas sp. X-1, a Bromoxynil Octanoate-Degrading Bacterium, and Its Related Type Strains. Curr Microbiol 2022; 79:65. [DOI: 10.1007/s00284-021-02735-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022]
|
37
|
van Dijk B, Bertels F, Stolk L, Takeuchi N, Rainey PB. Transposable elements promote the evolution of genome streamlining. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200477. [PMID: 34839699 PMCID: PMC8628081 DOI: 10.1098/rstb.2020.0477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Eukaryotes and prokaryotes have distinct genome architectures, with marked differences in genome size, the ratio of coding/non-coding DNA, and the abundance of transposable elements (TEs). As TEs replicate independently of their hosts, the proliferation of TEs is thought to have driven genome expansion in eukaryotes. However, prokaryotes also have TEs in intergenic spaces, so why do prokaryotes have small, streamlined genomes? Using an in silico model describing the genomes of single-celled asexual organisms that coevolve with TEs, we show that TEs acquired from the environment by horizontal gene transfer can promote the evolution of genome streamlining. The process depends on local interactions and is underpinned by rock-paper-scissors dynamics in which populations of cells with streamlined genomes beat TEs, which beat non-streamlined genomes, which beat streamlined genomes, in continuous and repeating cycles. Streamlining is maladaptive to individual cells, but improves lineage viability by hindering the proliferation of TEs. Streamlining does not evolve in sexually reproducing populations because recombination partially frees TEs from the deleterious effects they cause. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Bram van Dijk
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Frederic Bertels
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Lianne Stolk
- Theoretical Biology, Department of Biology, Utrecht University, The Netherlands
| | - Nobuto Takeuchi
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paul B. Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, Paris, France
| |
Collapse
|
38
|
Wang P, Yang L, Sun J, Yang Y, Qu Y, Wang C, Liu D, Huang L, Cui X, Liu Y. Structure and Function of Rhizosphere Soil and Root Endophytic Microbial Communities Associated With Root Rot of Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2022; 12:752683. [PMID: 35069616 PMCID: PMC8766989 DOI: 10.3389/fpls.2021.752683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Panax notoginseng (Burk.) F. H. Chen is a Chinese medicinal plant of the Araliaceae family used for the treatment of cardiovascular and cerebrovascular diseases in Asia. P. notoginseng is vulnerable to root rot disease, which reduces the yield of P. notoginseng. In this study, we analyzed the rhizosphere soil and root endophyte microbial communities of P. notoginseng from different geographical locations using high-throughput sequencing. Our results revealed that the P. notoginseng rhizosphere soil microbial community was more diverse than the root endophyte community. Rhodopseudomonas, Actinoplanes, Burkholderia, and Variovorax paradoxus can help P. notoginseng resist the invasion of root rot disease. Ilyonectria mors-panacis, Pseudomonas fluorescens, and Pseudopyrenochaeta lycopersici are pathogenic bacteria of P. notoginseng. The upregulation of amino acid transport and metabolism in the soil would help to resist pathogens and improve the resistance of P. notoginseng. The ABC transporter and gene modulating resistance genes can improve the disease resistance of P. notoginseng, and the increase in the number of GTs (glycosyltransferases) and GHs (glycoside hydrolases) families may be a molecular manifestation of P. notoginseng root rot. In addition, the complete genomes of two Flavobacteriaceae species and one Bacteroides species were obtained. This study demonstrated the microbial and functional diversity in the rhizosphere and root microbial community of P. notoginseng and provided useful information for a better understanding of the microbial community in P. notoginseng root rot. Our results provide insights into the molecular mechanism underlying P. notoginseng root rot and other plant rhizosphere microbial communities.
Collapse
Affiliation(s)
- Panpan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lifang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jialing Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Yuan Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
| |
Collapse
|
39
|
Mukherjee A, Dechow-Seligmann G, Gallie J. Evolutionary flexibility in routes to mat formation by Pseudomonas. Mol Microbiol 2021; 117:394-410. [PMID: 34856020 DOI: 10.1111/mmi.14855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
Many bacteria form mats at the air-liquid interface of static microcosms. These structures typically involve the secretion of exopolysaccharides, the production of which is often controlled by the secondary messenger c-di-GMP. Mechanisms of mat formation have been particularly well characterized in Pseudomonas fluorescens SBW25; stimuli or mutations that increase c-di-GMP production by diguanylate cyclases (WspR, AwsR, and MwsR) result in the secretion of cellulose and mat formation. Here, we characterize and compare mat formation in two close relatives of SBW25: Pseudomonas simiae PICF7 and P. fluorescens A506. We find that PICF7-the strain more closely related to SBW25-can form mats through mutations affecting the activity of the same three diguanylate cyclases as SBW25. However, instead of cellulose, these mutations activate production of the exopolysaccharide Pel. We also provide evidence for at least two further-as yet uncharacterized-routes to mat formation by PICF7. P. fluorescens A506, while retaining the same mutational routes to mat formation as SBW25 and PICF7, preferentially forms mats by a semi-heritable mechanism that culminates in Psl and Pga over-production. Our results demonstrate a high level of evolutionary flexibility in the molecular and structural routes to mat formation, even among close relatives.
Collapse
Affiliation(s)
- Anuradha Mukherjee
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Gunda Dechow-Seligmann
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
40
|
Pacheco-Moreno A, Stefanato FL, Ford JJ, Trippel C, Uszkoreit S, Ferrafiat L, Grenga L, Dickens R, Kelly N, Kingdon AD, Ambrosetti L, Nepogodiev SA, Findlay KC, Cheema J, Trick M, Chandra G, Tomalin G, Malone JG, Truman AW. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021; 10:71900. [PMID: 34792466 PMCID: PMC8719888 DOI: 10.7554/elife.71900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs. Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques – for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Christine Trippel
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Simon Uszkoreit
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Laura Ferrafiat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lucia Grenga
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Ruth Dickens
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Nathan Kelly
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alexander Dh Kingdon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Liana Ambrosetti
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jitender Cheema
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
41
|
Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, Brockhurst MA. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021; 19:e3001225. [PMID: 34644303 PMCID: PMC8544851 DOI: 10.1371/journal.pbio.3001225] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/25/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmids play an important role in bacterial genome evolution by transferring genes between lineages. Fitness costs associated with plasmid carriage are expected to be a barrier to gene exchange, but the causes of plasmid fitness costs are poorly understood. Single compensatory mutations are often sufficient to completely ameliorate plasmid fitness costs, suggesting that such costs are caused by specific genetic conflicts rather than generic properties of plasmids, such as their size, metabolic burden, or gene expression level. By combining the results of experimental evolution with genetics and transcriptomics, we show here that fitness costs of 2 divergent large plasmids in Pseudomonas fluorescens are caused by inducing maladaptive expression of a chromosomal tailocin toxin operon. Mutations in single genes unrelated to the toxin operon, and located on either the chromosome or the plasmid, ameliorated the disruption associated with plasmid carriage. We identify one of these compensatory loci, the chromosomal gene PFLU4242, as the key mediator of the fitness costs of both plasmids, with the other compensatory loci either reducing expression of this gene or mitigating its deleterious effects by up-regulating a putative plasmid-borne ParAB operon. The chromosomal mobile genetic element Tn6291, which uses plasmids for transmission, remained up-regulated even in compensated strains, suggesting that mobile genetic elements communicate through pathways independent of general physiological disruption. Plasmid fitness costs caused by specific genetic conflicts are unlikely to act as a long-term barrier to horizontal gene transfer (HGT) due to their propensity for amelioration by single compensatory mutations, helping to explain why plasmids are so common in bacterial genomes.
Collapse
Affiliation(s)
- James P. J. Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Rosanna C. T. Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Katie J. Muddiman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - A. Jamie Wood
- Department of Biology, University of York, York, United Kingdom
- Department of Mathematics, University of York, York, United Kingdom
| | - Steve Paterson
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael A. Brockhurst
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
42
|
Complete Genome Sequence of a Novel Pseudomonas fluorescens Strain Isolated from the Flower of Kūmarahou (Pomaderris kumeraho). Microbiol Resour Announc 2021; 10:e0062921. [PMID: 34382834 PMCID: PMC8359784 DOI: 10.1128/mra.00629-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kūmarahou (Pomaderris kumeraho) is a shrub endemic to New Zealand used in rongoā (traditional medicine). While studying the antimicrobial properties of kūmarahou, we isolated a new strain of Pseudomonas fluorescens, which we designated KF1 (for “kūmarahou flower 1”). Here, we report the complete genome sequence of P. fluorescens KF1.
Collapse
|
43
|
Yan Q, Liu M, Kidarsa T, Johnson CP, Loper JE. Two Pathway-Specific Transcriptional Regulators, PltR and PltZ, Coordinate Autoinduction of Pyoluteorin in Pseudomonas protegens Pf-5. Microorganisms 2021; 9:microorganisms9071489. [PMID: 34361923 PMCID: PMC8305169 DOI: 10.3390/microorganisms9071489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/02/2022] Open
Abstract
Antibiotic biosynthesis by microorganisms is commonly regulated through autoinduction, which allows producers to quickly amplify the production of antibiotics in response to environmental cues. Antibiotic autoinduction generally involves one pathway-specific transcriptional regulator that perceives an antibiotic as a signal and then directly stimulates transcription of the antibiotic biosynthesis genes. Pyoluteorin is an autoregulated antibiotic produced by some Pseudomonas spp. including the soil bacterium Pseudomonas protegens Pf-5. In this study, we show that PltR, a known pathway-specific transcriptional activator of pyoluteorin biosynthesis genes, is necessary but not sufficient for pyoluteorin autoinduction in Pf-5. We found that pyoluteorin is perceived as an inducer by PltZ, a second pathway-specific transcriptional regulator that directly represses the expression of genes encoding a transporter in the pyoluteorin gene cluster. Mutation of pltZ abolished the autoinducing effect of pyoluteorin on the transcription of pyoluteorin biosynthesis genes. Overall, our results support an alternative mechanism of antibiotic autoinduction by which the two pathway-specific transcriptional regulators PltR and PltZ coordinate the autoinduction of pyoluteorin in Pf-5. Possible mechanisms by which PltR and PltZ mediate the autoinduction of pyoluteorin are discussed.
Collapse
Affiliation(s)
- Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence:
| | - Mary Liu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Teresa Kidarsa
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA;
| | - Colin P. Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA;
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA;
- Horticultural Crops Research Laboratory, US Department of Agriculture, Agricultural Research Service, Corvallis, OR 97330, USA;
| |
Collapse
|
44
|
Liu X, Xiang L, Yin Y, Li H, Ma D, Qu Y. Pneumonia caused by Pseudomonas fluorescens: a case report. BMC Pulm Med 2021; 21:212. [PMID: 34225696 PMCID: PMC8259381 DOI: 10.1186/s12890-021-01573-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas fluorescens (P. fluorescens) has been detected in respiratory samples from patients. However, no previous reports have been published about these P. fluorescens cultures from lung tissues. CASE PRESENTATION Here, we report a case of pneumonia caused by P. fluorescens. P. fluorescens was identified from lung biopsy specimens for the first time in this case. According to the antibiotic susceptibility testing (AST) of P. fluorescens, the patient was given ciprofloxacin treatment. The temperature of the patient then returned to normal. Chest CT examination revealed improvements in pulmonary inflammation. CONCLUSIONS These findings suggest that the patients with pneumonia caused by P. fluorescens should be treated in a timely manner according to the AST results.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Lei Xiang
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yunhong Yin
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - Hao Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - Dedong Ma
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China
| | - Yiqing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China.
| |
Collapse
|
45
|
Bacteria associated with vascular wilt of poplar. Arch Microbiol 2021; 203:4829-4838. [PMID: 34213597 PMCID: PMC8502120 DOI: 10.1007/s00203-021-02464-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 10/31/2022]
Abstract
In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. Leaves appeared smaller, turned yellow-brown, and were shed prematurely. Twigs and smaller branches died. Bark was sunken and discolored, often loosened and split. Trunks decayed from the base. Phloem and xylem showed brown necrosis. Ten per cent of trees died in 1-2 months. None of these symptoms was typical for known poplar diseases. Bacteria in soil and in the necrotic base of poplar trunk were analyzed with Illumina sequencing. Soil and wood were colonized by at least 615 and 249 taxa. The majority of bacteria were common to soil and wood. The most common taxa in soil were: Acidobacteria (14.76%), Actinobacteria (14.58%), Proteobacteria (36.87) with Betaproteobacteria (6.52%), (6.10%), Comamonadaceae (2.79%), and Verrucomicrobia (5.31%).The most common taxa in wood were: Bacteroidetes (22.72%) including Chryseobacterium (5.07%), Flavobacteriales (10.87%), Sphingobacteriales (9.40%) with Pedobacter cryoconitis (7.31%), Proteobacteria (73.79%) with Enterobacteriales (33.25%) including Serratia (15.30%) and Sodalis (6.52%), Pseudomonadales (9.83%) including Pseudomonas (9.02%), Rhizobiales (6.83%), Sphingomonadales (5.65%), and Xanthomonadales (11.19%). Possible pathogens were Pseudomonas, Rhizobium and Xanthomonas. The potential initial, endophytic character of bacteria is discussed. Soil and possibly planting material might be the reservoir of pathogen inoculum.
Collapse
|
46
|
Dillon MM, Ruiz-Bedoya T, Bundalovic-Torma C, Guttman KM, Kwak H, Middleton MA, Wang PW, Horuz S, Aysan Y, Guttman DS. Comparative genomic insights into the epidemiology and virulence of plant pathogenic pseudomonads from Turkey. Microb Genom 2021; 7:000585. [PMID: 34227931 PMCID: PMC8477409 DOI: 10.1099/mgen.0.000585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas is a highly diverse genus that includes species that cause disease in both plants and animals. Recently, pathogenic pseudomonads from the Pseudomonas syringae and Pseudomonas fluorescens species complexes have caused significant outbreaks in several agronomically important crops in Turkey, including tomato, citrus, artichoke and melon. We characterized 169 pathogenic Pseudomonas strains associated with recent outbreaks in Turkey via multilocus sequence analysis and whole-genome sequencing, then used comparative and evolutionary genomics to characterize putative virulence mechanisms. Most of the isolates are closely related to other plant pathogens distributed among the primary phylogroups of P. syringae, although there are significant numbers of P. fluorescens isolates, which is a species better known as a rhizosphere-inhabiting plant-growth promoter. We found that all 39 citrus blast pathogens cluster in P. syringae phylogroup 2, although strains isolated from the same host do not cluster monophyletically, with lemon, mandarin orange and sweet orange isolates all being intermixed throughout the phylogroup. In contrast, 20 tomato pith pathogens are found in two independent lineages: one in the P. syringae secondary phylogroups, and the other from the P. fluorescens species complex. These divergent pith necrosis strains lack characteristic virulence factors like the canonical tripartite type III secretion system, large effector repertoires and the ability to synthesize multiple bacterial phytotoxins, suggesting they have alternative molecular mechanisms to cause disease. These findings highlight the complex nature of host specificity among plant pathogenic pseudomonads.
Collapse
Affiliation(s)
- Marcus M. Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Present address: Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | - Tatiana Ruiz-Bedoya
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin M. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Haejin Kwak
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Maggie A. Middleton
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Pauline W. Wang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Sumer Horuz
- Department of Plant Protection, Erciyes University, Kayseri, Turkey
| | - Yesim Aysan
- Department of Plant Protection, University of Çukurova, Adana, Turkey
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Prudence SMM, Newitt† JT, Worsley SF, Macey MC, Murrell JC, Lehtovirta-Morley LE, Hutchings MI. Soil, senescence and exudate utilisation: characterisation of the Paragon var. spring bread wheat root microbiome. ENVIRONMENTAL MICROBIOME 2021; 16:12. [PMID: 34154664 PMCID: PMC8215762 DOI: 10.1186/s40793-021-00381-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/13/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Conventional methods of agricultural pest control and crop fertilisation are unsustainable. To meet growing demand, we must find ecologically responsible means to control disease and promote crop yields. The root-associated microbiome can aid plants with disease suppression, abiotic stress relief, and nutrient bioavailability. The aim of the present work was to profile the community of bacteria, fungi, and archaea associated with the wheat rhizosphere and root endosphere in different conditions. We also aimed to use 13CO2 stable isotope probing (SIP) to identify microbes within the root compartments that were capable of utilising host-derived carbon. RESULTS Metabarcoding revealed that community composition shifted significantly for bacteria, fungi, and archaea across compartments. This shift was most pronounced for bacteria and fungi, while we observed weaker selection on the ammonia oxidising archaea-dominated archaeal community. Across multiple soil types we found that soil inoculum was a significant driver of endosphere community composition, however, several bacterial families were identified as core enriched taxa in all soil conditions. The most abundant of these were Streptomycetaceae and Burkholderiaceae. Moreover, as the plants senesce, both families were reduced in abundance, indicating that input from the living plant was required to maintain their abundance in the endosphere. Stable isotope probing showed that bacterial taxa within the Burkholderiaceae family, among other core enriched taxa such as Pseudomonadaceae, were able to use root exudates, but Streptomycetaceae were not. CONCLUSIONS The consistent enrichment of Streptomycetaceae and Burkholderiaceae within the endosphere, and their reduced abundance after developmental senescence, indicated a significant role for these families within the wheat root microbiome. While Streptomycetaceae did not utilise root exudates in the rhizosphere, we provide evidence that Pseudomonadaceae and Burkholderiaceae family taxa are recruited to the wheat root community via root exudates. This deeper understanding crop microbiome formation will enable researchers to characterise these interactions further, and possibly contribute to ecologically responsible methods for yield improvement and biocontrol in the future.
Collapse
Affiliation(s)
- Samuel MM. Prudence
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Jake T. Newitt†
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Sarah F. Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Michael C. Macey
- School of Environment, Earth & Ecosystem Sciences, The Open University, Milton Keynes, MK7 6AA UK
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | | | - Matthew I. Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
48
|
Naren N, Zhang XX. Role of a local transcription factor in governing cellular carbon/nitrogen homeostasis in Pseudomonas fluorescens. Nucleic Acids Res 2021; 49:3204-3216. [PMID: 33675669 PMCID: PMC8034625 DOI: 10.1093/nar/gkab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Autoactivation of two-component systems (TCSs) can increase the sensitivity to signals but inherently cause a delayed response. Here, we describe a unique negative feedback mechanism enabling the global NtrB/NtrC regulator to rapidly respond to nitrogen starvation over the course of histidine utilization (hut) in Pseudomonas fluorescens. NtrBC directly activates transcription of hut genes, but overexpression will produce excess ammonium leading to NtrBC inactivation. To prevent this from occurring, the histidine-responsive repressor HutC fine-tunes ntrBC autoactivation: HutC and NtrC bind to the same operator site in the ntrBC promoter. This newly discovered low-affinity binding site shows little sequence similarity with the consensus sequence that HutC recognizes for substrate-specific induction of hut operons. A combination of genetic and transcriptomic analysis indicated that both ntrBC and hut promoter activities cannot be stably maintained in the ΔhutC background when histidine fluctuates at high concentrations. Moreover, the global carbon regulator CbrA/CbrB is involved in directly activating hut transcription while de-repressing hut translation via the CbrAB-CrcYZ-Crc/Hfq regulatory cascade. Together, our data reveal that the local transcription factor HutC plays a crucial role in governing NtrBC to maintain carbon/nitrogen homeostasis through the complex interactions between two TCSs (NtrBC and CbrAB) at the hut promoter.
Collapse
Affiliation(s)
- Naran Naren
- School of Natural and Computational Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University at Albany, Auckland 0745, New Zealand
| |
Collapse
|
49
|
Mavrodi OV, McWilliams JR, Peter JO, Berim A, Hassan KA, Elbourne LDH, LeTourneau MK, Gang DR, Paulsen IT, Weller DM, Thomashow LS, Flynt AS, Mavrodi DV. Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes in Rhizosphere Pseudomonas. Front Microbiol 2021; 12:651282. [PMID: 33936009 PMCID: PMC8079746 DOI: 10.3389/fmicb.2021.651282] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Plants live in association with microorganisms that positively influence plant development, vigor, and fitness in response to pathogens and abiotic stressors. The bulk of the plant microbiome is concentrated belowground at the plant root-soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and secondary low molecular weight metabolites, lysates, and mucilages. These exudates provide nutrients for soil microorganisms and modulate their affinity to host plants, but molecular details of this process are largely unresolved. We addressed this gap by focusing on the molecular dialog between eight well-characterized beneficial strains of the Pseudomonas fluorescens group and Brachypodium distachyon, a model for economically important food, feed, forage, and biomass crops of the grass family. We collected and analyzed root exudates of B. distachyon and demonstrated the presence of multiple carbohydrates, amino acids, organic acids, and phenolic compounds. The subsequent screening of bacteria by Biolog Phenotype MicroArrays revealed that many of these metabolites provide carbon and energy for the Pseudomonas strains. RNA-seq profiling of bacterial cultures amended with root exudates revealed changes in the expression of genes encoding numerous catabolic and anabolic enzymes, transporters, transcriptional regulators, stress response, and conserved hypothetical proteins. Almost half of the differentially expressed genes mapped to the variable part of the strains’ pangenome, reflecting the importance of the variable gene content in the adaptation of P. fluorescens to the rhizosphere lifestyle. Our results collectively reveal the diversity of cellular pathways and physiological responses underlying the establishment of mutualistic interactions between these beneficial rhizobacteria and their plant hosts.
Collapse
Affiliation(s)
- Olga V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Janiece R McWilliams
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Jacob O Peter
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karl A Hassan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Liam D H Elbourne
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Melissa K LeTourneau
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - David M Weller
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda S Thomashow
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Alex S Flynt
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Dmitri V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
50
|
Biosurfactants Produced by Phyllosphere-Colonizing Pseudomonads Impact Diesel Degradation but Not Colonization of Leaves of Gnotobiotic Arabidopsis thaliana. Appl Environ Microbiol 2021; 87:AEM.00091-21. [PMID: 33608298 DOI: 10.1128/aem.00091-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022] Open
Abstract
Biosurfactant production is a common trait in leaf surface-colonizing bacteria that has been associated with increased survival and movement on leaves. At the same time, the ability to degrade aliphatics is common in biosurfactant-producing leaf colonizers. Pseudomonads are common leaf colonizers and have been recognized for their ability to produce biosurfactants and degrade aliphatic compounds. In this study, we investigated the role of biosurfactants in four non-plant-pathogenic Pseudomonas strains by performing a series of experiments to characterize their surfactant properties and their role during leaf colonization and diesel degradation. The biosurfactants produced were identified using mass spectrometry. Two strains produced viscosin-like biosurfactants, and the other two produced massetolide A-like biosurfactants, which aligned with the phylogenetic relatedness between the strains. To further investigate the role of surfactant production, random Tn5 transposon mutagenesis was performed to generate knockout mutants. The knockout mutants were compared to their respective wild types with regard to their ability to colonize gnotobiotic Arabidopsis thaliana and to degrade diesel or dodecane. It was not possible to detect negative effects during plant colonization in direct competition or individual colonization experiments. When grown on diesel, knockout mutants grew significantly slower than their respective wild types. When grown on dodecane, knockout mutants were less impacted than during growth on diesel. By adding isolated wild-type biosurfactants, it was possible to complement the growth of the knockout mutants.IMPORTANCE Many leaf-colonizing bacteria produce surfactants and are able to degrade aliphatic compounds; however, whether surfactant production provides a competitive advantage during leaf colonization is unclear. Furthermore, it is unclear if leaf colonizers take advantage of the aliphatic compounds that constitute the leaf cuticle and cuticular waxes. Here, we tested the effect of surfactant production on leaf colonization, and we demonstrate that the lack of surfactant production decreases the ability to degrade aliphatic compounds. This indicates that leaf surface-dwelling, surfactant-producing bacteria contribute to degradation of environmental hydrocarbons and may be able to utilize leaf surface waxes. This has implications for plant-microbe interactions and future studies.
Collapse
|